
Topic-XICL: Demonstration Selection with Topic Inference for
Cross-lingual In-context Learning

Anonymous ACL submission

Abstract
Cross-lingual in-context learning (XICL)001
shows promise for adapting large language002
models (LLMs) to low-resource languages. Pre-003
vious methods rely on off-the-shelf or task-004
specific retrievers based on LLM feedback005
signals for demonstration selection. How-006
ever, these approaches often neglect factors007
beyond semantic similarity and can be resource-008
intensive. To address these challenges, we009
propose a novel approach called Topic-XICL,010
which leverages a latent topic model to select011
demonstrations for XICL. We assume that la-012
tent topic variables encapsulate information013
that more accurately characterizes demonstra-014
tions. By training this topic model on rich-015
resource language data with a small-parameter016
LLM, we obtain more informative demonstra-017
tions through topic inference and utilize them018
for in-context learning across various LLMs.019
Our method is tested on three multilingual020
tasks (XNLI, XCOPA, and TyDiQA-GoldP)021
and three models with approximately 7 bil-022
lion parameters, including two multilingual023
LLMs (BLOOM and XGLM), and an English-024
centric model, Llama2. Comparative evalu-025
ations against baselines of random selection,026
semantic similarity selection, and clustering-027
based selection show consistent improvements028
in multilingual performance with our approach.029

1 Introduction030

Large Language Models (LLMs) have exhibited031

exceptional natural language understanding capa-032

bilities across diverse NLP tasks. However, their033

training data is predominantly English-centric, pos-034

ing challenges for cross-lingual generalization (Lai035

et al., 2023; Bang et al., 2023; Zhang et al., 2023).036

In-context learning (ICL) (Brown et al., 2020)037

presents a promising solution for LLMs in low-038

resource language settings, as demonstrated by the039

strong ICL performances of models like BLOOM040

(Scao et al., 2022) and XGLM (Lin et al., 2022) in041

various multilingual tasks.042

Figure 1: Accuracy scores for 7 languages from the
XCOPA dataset (Gordon et al., 2012) using direct infer-
ence (dashed line) or 4-shot in-context learning (ICL)
with the BLOOM model (Scao et al., 2022) (7.1 billion
parameters). k represents the number of demonstra-
tions. "sem" denotes semantic-based selection, while
"random" denotes random selection.

The impressive comprehension abilities of 043

LLMs in English have sparked interest in Cross- 044

lingual In-Context Learning (XICL)(Winata et al., 045

2021; Lin et al., 2022; Asai et al., 2023; Cahyaw- 046

ijaya et al., 2024; Zhang et al., 2024). This ap- 047

proach utilizes demonstrations from rich-resource 048

languages to guide learning tasks in low-resource 049

languages. However, the effectiveness of XICL 050

depends heavily on the selection of demonstration 051

examples (Zhao et al., 2021; Perez et al., 2021; 052

Qin et al., 2023; Cahyawijaya et al., 2024). Re- 053

searchers have proposed two main approaches to 054

select demonstration: leveraging off-the-shelf re- 055

trievers (Nie et al., 2023; Chang and Fosler-Lussier, 056

2023; Winata et al., 2023; Li et al., 2023; Cahyaw- 057

ijaya et al., 2024), such as BM25 or Sentence- 058

BERT (Reimers and Gurevych, 2019), and train- 059

ing task-specific retrievers (Shi et al., 2022) by a 060

specially designed task signal, such as the feed- 061

back signals from LLMs. The latter approaches 062

may yield better results for specific LLMs, but 063

they often require access to model parameters or 064

1



detailed output distributions, which can be costly065

and are typically unavailable for black-box LLMs066

(Sun et al., 2022). In contrast, the former meth-067

ods can lightweightly exploit semantic similarity068

input-label pairs, but they overlook task-specific069

information or diversity.070

As noted in Qin et al. (2023), the choice be-071

tween similarity and diversity in demonstrations072

varies depending on the task: diversity suits tasks073

like commonsense reasoning question answering,074

while similarity is preferable for text classification.075

Fig.1 demonstrates the challenge of balancing these076

two dimensions across different languages. Seman-077

tically similar examples lead to better results for078

Haitian Creole (ht) and Italian (it), while randomly079

selected diversity examples lead to better perfor-080

mance for Quechua (qu) and Chinese (zh). When081

selecting demonstrations across languages, it is082

crucial to consider not only semantic similarity but083

also factors such as syntactic structure, task struc-084

ture, and domain information. We collectively refer085

to these factors as latent topic information, which is086

multidimensional and may enhance demonstration087

choices for cross-lingual in-context learning.088

Xie et al. (2022) examined in-context learn-089

ing from a Bayesian Inference perspective, and090

Wang et al. (2023) treated LLMs as topic models091

to apply the theory, which proved productive in092

demonstration selection for classification tasks. In-093

spired by this, we extended Wang et al. (2023)’s094

approach to cross-lingual in-context learning and095

more tasks, proposing a demonstration selection096

algorithm based on topic inference (Topic-XICL),097

as shown in Fig. 2. It comprises a latent topic098

learning phase and a demonstration selection099

phase. In the latent topic learning phase, demon-100

stration candidates from a rich-resource language101

are clustered into several topics by the K-means102

algorithm with multilingual representations, and a103

topic model trained based on LLM by absorbing104

nuanced topic information. Specifically, we clus-105

ter the candidate data for a task into n topics. For106

each topic, we introduce c new tokens to enrich107

the LLM’s vocabulary. These tokens are concate-108

nated with the input to predict the output, enabling109

the LLM to update the embeddings of these new110

tokens. During the demonstration selection phase,111

we perform topic inference on the candidate data,112

selecting the k most representative examples for113

each topic. For each target language input, we de-114

termine its topic by calculating semantic similarity115

with the candidate data and using the corresponding116

representative examples as the context. 117

We trained the latent topic model on BLOOMZ- 118

1b7 (Muennighoff et al., 2023) (with 1.7 billion 119

parameters) and conducted cross-lingual ICL on 120

two multilingual sentence-level tasks and one cross- 121

lingual reading comprehension task. 122

Our contributions are summarized as follows: 123

• We propose a cross-lingual demonstration 124

selection algorithm based on topic infer- 125

ence (Topic-XICL), extending Bayesian infer- 126

ence theory to practical applications in cross- 127

lingual ICL. 128

• Intuitively, the Bayesian theorem is primar- 129

ily suited for classification tasks. To our 130

knowledge, we are the first to apply it to non- 131

classification tasks on XICL, and we have ex- 132

perimentally validated its effectiveness. 133

• We compared our method with three demon- 134

stration selection baselines using three LLMs 135

(BLOOM, XGLM, and Llama2) on three 136

cross-lingual tasks (XNLI, XCOPA, and 137

TyDiQA-GoldP). The results show that our 138

topic-based demonstration selection signifi- 139

cantly outperforms existing strong baselines. 140

2 Related Work 141

Cross-lingual In-context learning The cross- 142

lingual nature of multilingual language models 143

further enables the possibility of learning from 144

a different language in-context without parame- 145

ter updates, as demonstrated by the XICL method 146

(Winata et al., 2021; Lin et al., 2022). Winata et al. 147

(2021) first showed that, given a few English exam- 148

ples as context, multilingual pre-trained language 149

models (such as GPT (Radford et al., 2019) and 150

T5 (Raffel et al., 2020)) can predict not only En- 151

glish test samples but also non-English ones. Lin 152

et al. (2022) also found that their XGLM demon- 153

strates strong cross-lingual capability, where us- 154

ing English prompts together with non-English 155

examples yields competitive zero- and few-shot 156

learning performance. Cahyawijaya et al. (2024) 157

extensively studied XICL on some low-resource 158

languages from four aspects: cross-lingual align- 159

ment, alignment formatting, label configuration, 160

and cross-lingual retrieval, highlighting the impor- 161

tance of advancing ICL research. Our research 162

mainly focuses on the aspect of cross-lingual re- 163

trieval to select demonstrations for XICL. 164

Cross-lingual Demonstration Selection Different 165

rich-resource language demonstrations yield vary- 166
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Figure 2: An overview of our proposed cross-lingual demonstration selection framework with topic inference.①
Latent topic embeddings are learned for the clustered English candidates using LLMs, and probabilities of inferring
to n topics are calculated for each candidate. The top-k representative demonstrations for each topic are then
obtained. ② For each target input, the semantic relationship with the candidates is calculated. The most frequent
topic in the top-10 examples is used as its classification topic, denoted as ai. The k most representative examples in
the ai topic are used as the context for the target input, which can be used for ICL in any generative LLM.

ing XICL outcomes for target languages. Current167

cross-lingual retrieval methods fall into two cate-168

gories: using off-the-shelf multilingual representa-169

tions and leveraging LLM feedback signals. For170

example, Nie et al. (2023) conducts cross-lingual171

retrieval from labeled or unlabeled high-resource172

languages based on the semantic similarity of mul-173

tilingual embeddings. Li et al. (2023) extended174

this to focus on zero-shot settings, revealing limi-175

tations for complex generation tasks. Tanwar et al.176

(2023) augmented prompts with cross-lingual se-177

mantic similarity demonstrations and in-context178

label alignment, but Cahyawijaya et al. (2024) iden-179

tified shortcomings and introduced translation pairs180

for alignment. Additionally, Winata et al. (2023)181

emphasized semantic similarity by selecting the182

nearest examples from various sub-datasets for clas-183

sification tasks. In contrast, Shi et al. (2022) pro-184

posed a retrieve-rerank framework for cross-lingual185

Text-to-SQL, using a bi-encoder to identify rele-186

vant exemplars, and then training a retriever by187

distilling the LLM’s scoring function.188

Training retrievers on specific task data and189

LLMs can be advantageous, but managing inacces-190

sible parameters of black-box models is challeng-191

ing. Our method trains using only accessible LLMs.192

Semantic similarity alone may not suffice for com-193

plex tasks, so we expect to integrate richer infor-194

mation into "latent topics," such as article types195

in question-answering tasks, question types, and196

the structural relationship between answers and197

articles. We use LLMs to mine this latent topic 198

information and select demonstrations to enhance 199

cross-lingual in-context learning. 200

In-Context Learning with Bayesian inference 201

Xie et al. (2022) provided a latent topic interpre- 202

tation to explain in-context learning, showing that 203

the in-context learning predictor approaches the 204

Bayes optimal predictor as the number of demon- 205

strations increases, assuming both pre-training and 206

task-specific data follow Hidden Markov Mod- 207

els (HMM). However, the Markovian assumption 208

about data generation limits empirical validation 209

to synthetic data and toy models, raising questions 210

about its applicability to natural language. 211

To bridge the gap between theoretical under- 212

standing and real-world LLM algorithms, Wang 213

et al. (2023) developed a practical demonstration se- 214

lection algorithm. Our method extends Wang et al. 215

(2023) to an XICL setting. Unlike their approach, 216

which treats each classification data as a topic, we 217

perform semantic clustering on each task’s data to 218

obtain topics, making our approach applicable to a 219

wider range of tasks. To our knowledge, this is the 220

first attempt to use Bayesian theory for demonstra- 221

tion selection beyond classification. 222

3 Method 223

Based on the theoretical understanding and prac- 224

tical algorithm of Bayesian inference in ICL, we 225

proposed a cross-lingual demonstration selection 226

framework (as shown in Fig. 2) with topic inference 227

3



to improve the performance of XICL for various228

tasks. First, we introduce the notations of prob-229

lem setting and theoretical analysis of the prob-230

lem. Then we describe the pipeline to learn latent231

topic embedding in Section 3.2 and the algorithm232

of demonstration selection in Section 3.3.233

3.1 Notations and Problem Setting234

In cross-lingual in-context learning, the prompt235

comprises k rich-resource language demonstra-236

tions (X1, Y1), (X2, Y2), ..., (Xk, Yk) and a low-237

resource target language test input X , and the gold238

truth is Y ∈ Y. For the generation-form task based239

on decoder-only LLMs, Y is the space of all pos-240

sible token sequences. Similar to that of the topic241

model, a simplified assumption can be made for242

LLM (denoted by M ):243

PM (Y |X) =

∫
Θ
PM (Y |θ)PM (θ|X)dθ, (1)244

θ ∈ Θ is a high dimensional latent topic variable245

continuously distributed over Θ, where Θ is the246

space of the variable.247

Following Wang et al. (2023), we posit the exis-248

tence of an underlying causal relation between X ,249

Y , and θ, directly named as X → Y ← θ, which250

can be represented mathematically as the following251

structural equation:252

Y a = f(Xa, θa, ϵ), (2)253

where ϵ is an independent noise variable. a is the254

topic of (X,Y ), and θa ∈ Θ is the value of the255

topic variable corresponding to the topic a. The in-256

context learning output probability of LLM for an257

input Xa,l classified to a topic in target language258

l can be denoted by P a,l
M , and the solution can be259

defined as:260

argmax
y∈Y

P a,l
M (Y a,l = y|Xa

1 , Y
a
1 , ..., X

a
k , Y

a
k , X

a,l).

(3)261

It is always lower or equal to the Bayes optimal262

decoder:263

argmax
y∈Y

P a,l
M (Y a,l = y|θa, Xa,l).264

Equality only holds when265

P a,l
M (θa|Xa

1 , Y
a
1 , ..., X

a
k , Y

a
k , X

a,l) = 1 (4)266

Following Wang et al. (2023), we focus on es-267

timating an optimal value of θ corresponding to268

a topic a. Then, we will discuss how to select an269

optimal set of demonstrations by using the learned270

optimal latent concept variable value.271

3.2 Latent Topic Learning 272

As shown in Fig.2, we first cluster the source 273

language task dataset into several topics {ai|i = 274

1, 2, ..., n} by the multilingual embedding with 275

K-means algorithm, the number of topic n is 276

a hyper-parameter. For a topic ai, the objec- 277

tion of Bayes optimal decoder is to minimize 278

EX,Y,ai [−logP
ai
M (Y |θai , X)]. 279

In practice, we try to align θa to the token embed- 280

ding space by adding new tokens to the vocabulary 281

of LLM. Then, the learned new tokens of θa are 282

used as regular tokens in the vocabulary. Specifi- 283

cally, to represent each specific topic ai, c new topi- 284

cal tokens (denoted as θ̂ai) are added to the original 285

vocabulary. c is also a hyper-parameter, and corre- 286

sponding c topical tokens are appended to the input 287

X as demonstrated, like "<t1_1><t1_2>...<t1_c>X" 288

for the topic a1. The new topical token can be any- 289

thing as long as it does not overlap with the original 290

vocabulary of LLM. 291

Subsequently, the embedding of these new to- 292

kens E(θ̂ai) is fine-tuned while freezing the re- 293

maining parameters of LLM. The fine-tuning ob- 294

jective is to minimize loss: 295

L(θ̂ai) = EX,Y [−logP ai
M (Y |θ̂ai , X)] (5) 296

and the fine-tuned LLM denoted as M ′. To obtain 297

the topical tokens for all topics in a task, we fine- 298

tune all data together with the loss
∑n

i=1 L(θ̂ai). 299

3.3 Demonstration Selection 300

About the topic of target instance (X l, Y l), we em- 301

bed the input X l and measured its semantic similar- 302

ity with all source input embeddings by Sentence- 303

BERT (Reimers and Gurevych, 2019). Then, we 304

statistic the topic category of the top-10 seman- 305

tic similar source examples and choose the most 306

frequent topic as the target language topic a. 307

According to the analysis in Section 3.1, for the 308

target instances with topic a, our goal becomes 309

selecting demonstrations that can best infer the 310

topic for all inputs: 311

argmax
Xa

1 ,Y
a
1 ,...,Xa

k ,Y
a
k

EX [P a
M (θa|Xa

1 , Y
a
1 , ..., X

a
k , Y

a
k , X)]

(6) 312

As test examples are sampled independently of 313

the demonstrations and each demonstration is also 314

sampled independently, the goal can be: 315

argmax
Xa

1 ,Y
a
1 ,...,Xa

k ,Y
a
k

P a
M (θa|Xa

1 , Y
a
1 , ..., X

a
k , Y

a
k )

=

∏k
i=1 P

a
M (θa|Xa

i , Y
a
i )

P a
M (θa)k−1

(7) 316
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Assuming that θ has a uniform prior, then our goal317

becomes finding the top k demonstrations that max-318

imize P̂ a
M ′(θ̂a|Xa

i , Y
a
i ).319

For the setting of n, the estimated conditional320

probability of θ̂ai for instance (X,Y ) would be:321

P̂ ai
M ′(θ̂

ai |(X,Y )) =
P ai
M ′(θ̂ai |(X,Y ))∑n

j=1 P
aj
M ′(θ̂aj |(X,Y ))

(8)322

We mainly focus on the fundamental effects of323

topic inference on multilingual demonstration se-324

lection, without discussion of the mutual influence325

between demonstrations and the impact of order.326

4 Experiments327

4.1 Dataset328

This paper presents experiments conducted on three329

datasets: XNLI (Conneau et al., 2018), XCOPA1,330

and TyDiQA-GoldP (Clark et al., 2020). The Cross-331

lingual Natural Language Inference dataset (XNLI)332

is a sentence-pair classification task involving333

15 languages, translated from the English SNLI334

(Bowman et al., 2015) dataset. Since existing work335

mainly discusses demonstration selection meth-336

ods for classification tasks, we also explored the337

multilingual causal commonsense reasoning task338

XCOPA and the Question Answering (QA) task339

in our experiments. XCOPA is an extension and340

re-annotation of the English Choice of Plausible341

Alternatives (COPA) dataset (Gordon et al., 2012),342

with validation and test examples translated and343

annotated in 11 typologically diverse languages.344

TyDiQA-GoldP is the gold passage task in TyDiQA345

(Clark et al., 2020), covering 9 typologically di-346

verse languages and serving as a challenging multi-347

lingual QA benchmark.348

For each dataset, the English training set D349

serves as the pool of candidate demonstrations,350

evaluated across all test sets in each language. We351

list the English training set volume, 24 target lan-352

guages, and their test set sizes in Table 4. The353

XCOPA test set is a combination of the official354

open-source 100 validation sets and 400 test sets.355

Due to the large size of the XNLI training dataset356

(392,701 instances in total), we only used the first357

10,000 instances.358

4.2 Experimental Setting359

We employ the K-means algorithm with random360

initial center points to cluster the training set D, us-361

1https://github.com/cambridgeltl/xcopa

ing three seed values [32, 44, 100] and reporting the 362

average results and standard deviation per language 363

for k = [2, 3, 4]. Each training data representation 364

is obtained using multilingual Sentence-BERT2. As 365

for hyper-parameters, the number of cluster classes 366

n = 20 and the length of each topic token sequence 367

c = 10 are used for XNLI, and n = 20 and c = 15 368

are for TyDiQA-Gold, while n = 5 and c = 15 369

are set for XCOPA (with only 500 English training 370

dataset). The guidelines for the hyper-parameters 371

section can be seen in A. 372

We leverage the Bloomz-1b73 model to learn 373

the topic token embeddings and compute the prob- 374

ability of each candidate. BLOOMZ-1b7 (Muen- 375

nighoff et al., 2023) is a multilingual supervised 376

fine-tuning version of BLOOM, which may be 377

more efficient for learning the topic of a task. 378

Greedy Search is employed for decoding answers 379

in each task. For XCOPA, the gold output is 380

changed to "1" or "2". For two-sentence tasks, 381

we set the output length to 1 to obtain the answer 382

label. For the QA task, the maximum output length 383

is 30, and the metric is F1. The prompts used for 384

each task are detailed in Appendix B. 385

4.3 Baselines 386

We use the same set of demonstrations for three 387

LLMs, each with about 7 billion parameters, includ- 388

ing BLOOM, XGLM, and Llama-2. We consider 389

the following demonstration selection methods as 390

baselines: 391

ICL_random: Random select k demonstrations 392

from D for each test example. We also set three 393

seeds to obtain the average results. 394

ICL_sem: We use the same sentence-BERT to 395

calculate the cosine similarity between the inputs 396

of the source and target language. We select the top 397

k demonstrations from D for each test example. 398

Cluster: Since our method initially clusters D and 399

subsequently selects demonstrations, we randomly 400

sample k instances from each category of the clus- 401

tered data as demonstrations for all test examples 402

within that category. This also serves as an ablation 403

baseline for our approach. 404

4.4 Main Results 405

Table 1 presents our main results for the three 406

datasets averaged over all languages baseline on 407

2https://huggingface.co/sentence-transformers/distiluse-
base-multilingual-cased-v1

3https://huggingface.co/bigscience/bloomz-1b7
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Model Method
XNLI (accuracy, %) XCOPA (accuracy, %) TidyQA-GoldP (F1, %)

k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

BLOOM

Zero-shot 32.8 49.6 20.3
ICL_random 35.3(0.004) 34.8(0.014) 34.3(0.059) 51.3(0.040) 51.4(0.033) 51.3(0.059) 26.8(0.001) 27.9(0.001) 29.9(0.001)
ICL_sem 36.6(0.000) 36.9(0.000) 37.2(0.000) 50.7(0.160) 50.4(0.250) 51.5(0.056) 29.3(0.001) 29.4(0.001) 29.3(0.001)
ICL_cluster 34.4(0.031) 35.2(0.003) 36.1(0.001) 51.7(0.027) 51.0(0.128) 51.9(0.036) 28.6(0.001) 27.9(0.001) 28.4(0.001)
Topic-XICL(ours) 37.4(0.000) 37.9(0.000) 37.4(0.000) 53.9(0.000) 54.5(0.000) 54.4(0.000) 36.2(0.000) 34.6(0.000) 35.7(0.000)

XGLM

Zero-shot 32.3 49.7 15.8
ICL_random 34.4(0.002) 35.0(0.000) 35.8(0.000) 50.8(0.079) 51.6(0.041) 50.9(0.074) 18.8(0.010) 18.7(0.015) 19.8(0.008)
ICL_sem 35.5(0.000) 35.8(0.000) 35.4(0.001) 50.5(0.169) 52.2(0.002) 52.2(0.000) 20.7(0.002) 20.3(0.004) 20.8(0.004)
ICL_cluster 35.2(0.000) 35.8(0.000) 36.0(0.000) 50.5(0.088) 51.9(0.005) 52.1(0.002) 18.8(0.023) 19.5(0.007) 19.8(0.009)
Topic-XICL(ours) 35.7(0.000) 36.4(0.000) 36.6(0.000) 53.1(0.000) 53.5(0.000) 53.1(0.000) 24.8(0.000) 24.4(0.001) 24.5(0.001)

Llama2

Zero-shot 39.6 50.6 24.1
ICL_random 41.6(0.000) 41.3(0.001) 41.4(0.002) 57.1(0.005) 57.1(0.002) 57.7(0.001) 28.2(0.043) 31.1(0.005) 33.1(0.001)
ICL_sem 42.0(0.000) 42.9(0.000) 43.6(0.000) 57.4(0.004) 58.3(0.002) 57.7(0.003) 29.0(0.019) 31.0(0.006) 32.1(0.003)
ICL_cluster 41.1(0.001) 42.1(0.000) 42.5(0.000) 57.4(0.003) 58.2(0.002) 57.9(0.002) 31.3(0.010) 32.4(0.005) 33.7(0.001)
Topic-XICL(ours) 42.8(0.000) 43.4(0.000) 44.2(0.000) 60.0(0.001) 60.4(0.000) 60.6(0.001) 41.4(0.000) 42.2(0.000) 42.7(0.000)

Table 1: Average performance across languages for three tasks with different numbers of demonstrations. Parentheses
contain the p-values from the statistical significance analysis of the ICL methods and zero-shot baseline results,
with those greater than 0.05 marked with a gray background. We also calculated the standard deviation over 3 seeds
for ICL_random, ICL_cluster, and Topic-XICL, as shown in Appendix D.

Figure 3: Performance difference between 4-shot Topic-
XICL and best baseline results for individual languages
in Three datasets."*" represents the language is unseen
for the models

three LLMs, along with the p-values from signif-408

icance analysis of the ICL methods and the zero-409

shot. Detailed results can be found in Appendix D.410

Across all three datasets, our method consistently411

outperforms the baselines on three models with412

different lengths of demonstrations. Figure 3 illus-413

trates the performance difference between Topic-414

XICL and the best baseline results for individual415

low-resource languages across the three datasets,416

and languages marked with a "*" signal are un-417

seen languages for the models. Please refer to418

Appendix C for definitions of the languages.419

For classification task XNLI, our method can420

achieve significant gains when k = 3, such as the421

average performance of our method improves by422

1.0% over the best baseline on the BLOOM model.423

In other cases, although the overall improvement is424

not significant, our method shows substantial im-425

provements for low-resource languages, as shown 426

in Figure 3(a). Specifically, our method achieves 427

improvements of 3.1% and 3.6% in Swahili (sw) 428

and Thai (th) over the best baseline on the BLOOM 429

model with k = 3 respectively. 430

For the XCOPA dataset, the performance im- 431

provement is more pronounced, with average im- 432

provements of 2.8%, 1.6%, and 2.5% on BLOOM, 433

XGLM, and Llama2, respectively. Moreover, our 434

method achieves significant improvements, espe- 435

cially on multilingual models like BLOOM and 436

XGLM. As shown in Figure 3(b), our model 437

achieves improvements in low-resource languages, 438

with a 10.9% improvement in the unseen language 439

Vietnamese (vi) compared to the best baseline 440

based on BLOOM. 441

Our method also shows significant improve- 442

ments in average performance for more com- 443

plex QA tasks TyDiQA-GoldP. In BLOOM, the 444

improvement mainly comes from several low- 445

resource languages. For instance, our best results 446

in unseen languages Finnish (fi) and Korean (ko) 447

surpass the best baseline by 25.5% and 27.4%, re- 448

spectively. Our approach notably enhances perfor- 449

mance across the other two models as well, partic- 450

ularly on the English-centric LLM Llama2, where 451

the mean improvement is 9.6%. 452

Experimental results show that training the topic 453

model on BLOOMZ-1b7 and selecting appropriate 454

contextual data can improve performance across 455

different LLM architectures. From a task-level 456

perspective, our method achieves greater improve- 457

ments in relatively complex reasoning and question- 458

answering tasks. It indicated our method makes 459

successful use of the Bayesian theorem for non- 460
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Figure 4: t-SNE plot of the learned topic tokens for
TyDiQA-GoldP. "tx_0" represents the first token of the
xth topic.

classification tasks ICL. Topic-XICL consistently461

outperforms the cluster baseline, indicating that462

our approach’s superiority isn’t solely derived from463

simple semantic clustering.464

5 Analysis465

The experimental results show that our topic model466

has effectively learned latent information beneficial467

for in-context learning. We visualized the embed-468

dings of the topic tokens to understand the rela-469

tionships between each category. Through case470

studies, we observed the characteristics of repre-471

sentative demonstrations for a topic. Furthermore,472

we explored our method in terms of model scale473

and source language.474

5.1 Visualization of topic token embedding475

As shown in Figure 4, the embeddings of the 20476

topics in the topic model trained on the TyDiQA-477

GoldP dataset are distributed in about three to four478

distinct regions. This clustering indicates that our479

topic model can recognize the similarities between480

different topics. For example, the twelfth topic481

"t12" and the thirteenth topic "t13" belong to dif-482

ferent clusters but are close in the token sequence483

space. This demonstrates that even if the initial484

clustering is not very precise, our topic model can485

still effectively identify and group similar topics.486

Therefore, our model can adapt to different seed487

settings of initial clustering, resulting in a lower488

standard deviation, as shown in Figure 4. For non-489

classification tasks, where topic classification is490

inherently ambiguous, our method shows adapt-491

ability. This illustrates that our framework can ex-492

tend the application of Bayesian theory in context493

sample selection to a wider range of tasks.494

5.2 Case Study495

We observed the characteristics of representative496

examples from different topics in TyDiQA-GoldP.497

Figure 5: The 2-shot performance of BLOOM in three
tasks based on the Topic-XICL model trained with fewer
parameters (BLOOMZ-560m).

For instance, examples from the ninth topic "t9" 498

mainly consist of paragraphs introducing an item 499

or concept; those from the fourth topic "t14" relate 500

to population themes; and examples from the third 501

topic "t3" have longer answers, not just a single 502

noun or short phrase. These samples show that 503

our topic inference method incorporates more in- 504

formation than just semantic similarity. Details are 505

provided in Appendix E. 506

5.3 Results with Less Parameter Topic Model 507

Since the cluster boundaries of source language 508

candidates may not be very clear, we primarily con- 509

ducted experiments on the BLOOMZ model with 510

1.7 billion parameters and also experimented with a 511

smaller BLOOMZ model with 560 million param- 512

eters (BLOOMZ-560m). Fig. 5 shows the ICL re- 513

sults on the BLOOM model for three datasets with 514

k = 2. Our method consistently outperforms the 515

strongest baseline in terms of mean performance 516

on the three tasks. As shown in the figure, using 517

the BLOOMZ-560m model to learn the latent topic 518

model improves performance on tasks in visible 519

languages in the XNLI task, but the advantage is 520

not significant for unseen languages. On XCOPA 521

and TyDiQA-GoldP, the topic model based on 522

BLOOMZ-560m also lags behind the BLOOMZ- 523

1b7 model, primarily in unseen languages. 524

5.4 Results with Other Source Languages 525

For multilingual LLMs, besides English, other 526

languages like Chinese and Italian have signifi- 527

cant pre-training data. We translated the English 528

7



Figure 6: Results of 4-shot ICL for Individual Languages in XCOPA by the Topic-XICL model trained with Chinese
and Italian.

XCOPA training data into Chinese and Italian using529

the Google Translation API and conducted exper-530

iments with these translations as source language531

data. The results are shown in Table 2, and perfor-532

mance in various languages is detailed in Figure 6.533

Since the Chinese have relatively more pre-training534

data than other languages in BLOOM and XGLM,535

the ICL performance of Topic-XICL demonstra-536

tions in it consistently outperforms the strongest537

baselines.538

However, Italian also has a substantial amount539

of training data in XGLM, but the average per-540

formance of Topic-XICL in it is worse than the541

English-based baseline. Nonetheless, Topic-XICL542

based on Italian showed significant improvements543

in Chinese and unseen languages like Thai (non-544

Latin script) on XGLM. On BLOOM, using Italian545

as the context language for unseen languages also546

yielded good results. For non-English contexts,547

it is difficult to predict performance based on the548

amount of training data or language similarity, and549

the conclusions can vary across different models.550

Zhang et al. (2024) conducted a multidimen-551

sional study on ICL for low-resource languages552

and found that the effectiveness of demonstration553

samples varies significantly across different mod-554

els, tasks, and languages. This is similar to our con-555

clusions. They also found that carefully designed556

templates can completely eliminate the benefits557

of demonstration samples for some tasks and lan-558

guages. In our experiments, we also observed that559

for a few languages, changing the prompt could560

yield greater benefits than ICL. However, this phe-561

nomenon is not consistent across all languages, pos-562

ing a challenge for automatic multilingual prompt563

Model method k=2 k=3 k=4

BLOOM

best basline 51.67 51.43 51.87
Topic_XICL 53.92 54.50 54.41
Topic_XICL w/ Chinese 52.98 52.85 53.03
Topic_XICL w/ Italian 52.40 52.83 52.68

XGLM

best basline 50.84 52.23 52.22
Topic_XICL 53.07 53.53 53.12
Topic_XICL w/ Chinese 53.18 53.18 52.87
Topic_XICL w/ Italian 51.78 51.87 52.22

Table 2: The average accuracy of the Topic-XICL model
trained with Chinese and Italian.

design. Our primary focus is on comparing the 564

performance of ICL sample selection, and prompt 565

selection will be reserved for future work. 566

6 Conclusion 567

In this work, we explore cross-lingual demonstra- 568

tion selection from a more informative latent topic 569

perspective. We propose a demonstration selection 570

algorithm based on topic inference (Topic-XICL) 571

for cross-lingual in-context learning. Our approach 572

requires learning the latent topic model on fewer 573

parameters LLMs and selecting appropriate rich- 574

resource language demonstrations for each topic 575

of the target input by computing topic inference 576

probabilities. One-time demonstration selection 577

for a task can be generalized across various LLMs. 578

We validate the effectiveness of our method on 579

three task categories and three models and analyze 580

that the latent topic variables indeed capture useful 581

diversity information for cross-lingual in-context 582

learning. 583
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Limitations584

Due to the computation constraints, we were not585

able to experiment with our framework on larger586

LLMs or other tasks. The experiments confirm that587

different clustering parameter choices yield diverse588

outcomes. However, as we did not prioritize explor-589

ing the selection of clustering methods, we leave590

it for future iterations of our method to delve into591

and explore this aspect further.592
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A Empirical guidelines For Hyper-parameter Selection 808

Regarding the choice of the number of topics (n) and tokens (c), there are empirical guidelines. For tasks 809

with a large amount of English candidate data (greater than or equal to 2000), the number of clustering 810

categories is set to n = 20, and for tasks with other data sizes, it is selected from (5, 10, 15), such as 811

XCOPA with only 500 training data, which chooses n = 5. As for the topic tag sequence length, it is set 812

to c = 10 for general classification tasks, and c = 15 for tasks that require reasoning or understanding of 813

longer texts. 814

B Prompt Template 815

Table 3 shows the prompt template we used for three tasks. 816

Dataset Prompt

XNLI <premise> question: <hypothesis>. True, False, or Inconclusive?
Answer: [True/False/Inconclusive]

XCOPA

Question: What might be the cause of / What might have happened as a result of "<premise>"?
Options:
1-<Choice1>
2-<Choice2>
You should tell me the choice number 1 or 2.
Answer: [1/2]

TyDiQA-GoldP
Passage: <passage>
question: <question>
Answer: [a span in passage]

Table 3: Prompt template for three tasks.

C Low-resource Languages 817

All 24 languages in the three datasets are not always pre-trained on the three baseline LLMs. Based 818

on the language distribution in the pre-training data for each model, we selected some languages as 819

low-resource or unseen languages, as shown in Table ??. For BLOOM (Scao et al., 2022), English training 820

data accounts for 30.4% of the total, with pre-training data covering 46 natural languages. We define 821

languages accounting for less than 0.1% as low-resource languages, and languages without training data 822

are unseen languages. In XGLM (Lin et al., 2022), with 7.5 billion parameters, English tokens constitute 823

48.99%. It is pre-trained in 30 natural languages, including all 24 languages we evaluate. We define 824

languages with a token ratio of less than 0.1% as low-resource languages. Llama2 (Touvron et al., 2023) is 825

an English-centric LLM, with English training data making up 89.7% and covering 27 natural languages. 826

Its language classification standards are the same as BLOOM’s. 827

Dataset Task Languages Train num. Dev num.

XNLI natural language inference English(en), German(de), Russian(ru), French(fr), Spanish(es), Chinese(zh),
Vietnamese(vi), Turkish(tr), Arabic(ar), Greek(el), Thai(th), Bulgarian(bg),
Hindi(hi), Urdu(ur), Swahili(sw)

10,000 5010

XCOPA commonsense reasoning Chinese(zh), Italian(it), Vietnamese(vi), Indonesian(id), Turkish(tr), Thai(th),
Estonian(es), Tamil(ta), Swahili(sw), Haitian(ht), Quechua(qu)

500 500

TyDiQA-GoldP TyDiQA-GoldP English(en), Russian(ru), Indonesian(id), Korean(ko), Arabic(ar), Finnish(fi),
Bengali(bn), Telugu(te), Swahili(sw)

3,695 113-921

Table 4: The detailed information of datasets.

D Detailed Results 828

As shown in Figures 7, 8, and 9, we visualized the results for each language in the 4-shot setting, including 829

the mean and standard deviation, except for the semantic similarity method. All results are reported in 830

Tables 6, 7, and 8. 831
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Model Dataset low-resource languages extremly low-resource languages

BLOOM

XNLI Swahili(sw) German(de), Russian(ru), Turkish(tr), Greek(el), Thai(th), Bulgarian(bg)
XCOPA Swahili(sw) Italian(it), Turkish(tr), Thai(th), Estonian(es), Haitian(ht), Quechua(qu)
TyDiQA-GoldP Telugu(te), Swahili(sw) Russian(ru), Korean(ko), Finnish(fi), Bengali(bn)

XGLM

XNLI Urdu(ur), Swahili(sw)
XCOPA Tamil(ta), Swahili(sw), Haitian(ht), Quechua(qu)
TyDiQA-GoldP Bengali(bn), Telugu(te), Swahili(sw)

Llama2

XNLI Vietnamese(vi), Bulgarian(bg) Turkish(tr), Arabic(ar), Greek(el), Thai(th), Hindi(hi), Urdu(ur), Swahili(sw)
XCOPA Vietnamese(vi), Indonesian(id) Turkish(tr), Thai(th), Tamil(ta), Swahili(sw), Haitian(ht), Quechua(qu)
TyDiQA-GoldP Indonesian(id), Korean(ko) Arabic(ar), Finnish(fi), Bengali(bn), Telugu(te), Swahili(sw)

Table 5: Classification of languages for three datasets (XNLI, XCOPA, TyDiQA-GoldP) across three LLMs
(BLOOM, XGLM, LLama2).

Figure 7: The 4-shot performance of individual languages in XCOPA.
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Figure 8: The 4-shot performance of individual languages in XNLI.

XNLI(acc.)

Model en ar bn de el es fr hi ru sw th tr ur vi zh AVG

BLOOM 34.1 33.6 33.7 33.1 33.4 35.8 36.5 31.0 33.4 32.9 21.2 33.6 33.3 33.1 32.7 32.8

k=2

ICL_random 37.8±5.13 35.1±2.47 34.7±1.49 34.5±0.94 34.5±0.27 38.3±5.14 37.9±5.62 33.8±0.65 34.0±0.42 36.2±2.65 34.9±2.34 34.6±1.58 34.4±1.51 34.6±1.52 34.2±1.33 35.3±2.15
ICL_sem 37.9 35.9 36.3 35.8 36.1 38.0 37.6 36.2 36.2 38.8 35.3 36.5 34.7 38.6 35.1 36.6
ICL_cluster 35.7±1.63 33.8±1.33 34.9±0.2 34.3±1.1 35.0±1.3 35.3±1.49 35.5±1.58 32.5±1.09 35.5±0.35 36.1±0.47 33.9±1.4 33.7±0.28 33.2±0.93 33.5±0.83 33.7±1.41 34.4±0.92
Topic-XICL(ours) 38.7±0.11 38.1±0.08 37.8±0.41 37.0±0.07 35.2±1.08 37.0±0.15 37.1±0.03 36.8±0.62 39.0±0.44 39.2±0.38 36.7±1.84 36.0±0.46 37.4±0.72 37.6±1.37 36.8±0.09 37.4±0.33

k=3

ICL_random 35.9±3.29 34.8±3.24 34.3±0.3 34.9±1.54 36.3±2.56 35.1±3.23 35.0±2.47 34.2±2.31 35.0±2.28 34.3±2.06 33.9±0.83 33.3±0.41 34.5±2.18 35.4±4.11 35.0±3.18 34.8±1.56
ICL_sem 38.3 37.6 36.7 35.7 36.6 37.6 37.7 36.4 37.3 37.7 34.1 36.6 36.2 38.1 36.2 36.9
ICL_cluster 36.4±1.38 35.6±2.53 35.7±1.54 35.2±1.53 34.2±1.54 36.2±1.59 36.3±1.16 34.9±2.77 35.9±1.8 38.0±1.46 33.4±0.94 34.5±0.81 34.1±2.57 33.8±4.16 33.8±2.19 35.2±1.67
Topic-XICL(ours) 41.1±0.69 35.2±0.82 37.2±0.09 36.8±0.42 36.7±1.02 39.8±0.61 39.9±0.41 35.8±0.6 37.7±0.38 41.1±1.55 37.8±1.57 34.1±0.4 37.8±0.91 39.8±1.85 37.2±0.22 37.9±0.25

k=4

ICL_random 33.6±2.17 34.9±2.34 33.4±0.64 35.0±0.82 33.4±0.53 33.1±0.72 33.5±0.91 35.1±2.63 35.8±0.95 34.6±0.76 33.1±0.38 33.2±0.61 34.1±1.19 35.9±3.53 35.3±2.39 34.3±1.13
ICL_sem 38.9 37.8 35.8 36.3 36.5 39.0 39.3 36.3 37.3 38.1 34.1 36.1 36.6 38.1 37.4 37.2
ICL_cluster 36.6±1.61 36.3±1.79 35.1±1.83 36.0±1.63 33.9±0.33 36.7±1.48 36.7±0.83 37.7±1.51 36.4±1.84 36.2±2.68 33.8±1.71 34.0±0.51 36.6±2.61 39.2±3.22 36.9±2.07 36.1±1.59
Topic-XICL(ours) 37.6±0.33 40.6±0.51 37.2±0.2 36.5±0.45 35.7±0.47 38.3±0.65 37.5±0.78 34.6±2.59 37.6±0.25 36.5±1.12 34.6±0.11 35.4±0.38 38.5±0.94 40.7±3.14 39.2±0.65 37.4±0.52

XGLM 32.1 37.1 34.8 34.3 32.4 33.1 32.4 31.8 32.8 31.8 30.5 28.3 33.2 31.8 28.6 32.3

k=2

ICL_random 33.7±0.53 35.8±2.29 33.7±0.21 35.3±1.27 34.2±0.93 33.8±0.28 33.5±0.16 34.0±0.76 34.0±0.52 33.5±0.15 36.5±4.3 35.4±2.73 34.7±1.96 33.7±0.18 34.9±1.62 34.4±0.77
ICL_sem 35.5 39.0 34.6 37.8 34.6 37.2 37.1 32.9 37.8 33.4 32.7 37.0 34.5 33.8 34.8 35.5
ICL_cluster 34.7±0.43 37.7±1.5 33.9±0.38 36.3±0.89 35.6±1.99 35.6±0.84 35.1±1.1 33.5±0.35 34.6±0.59 33.2±0.16 35.8±1.87 37.3±2.35 33.9±0.35 35.3±2.82 35.4±0.97 35.2±1.05
Topic-XICL(ours) 34.9±0.84 38.1±0.61 36.5±0.51 37.4±0.73 36.7±0.47 35.4±0.54 34.7±0.24 34.4±0.69 35.1±0.61 33.9±0.8 35.8±0.61 35.1±0.87 35.6±1.18 35.0±0.8 37.1±1.07 35.7±0.69

k=3

ICL_random 33.7±0.83 38.4±3.74 34.1±0.51 35.9±0.33 35.7±1.25 36.1±3.06 34.5±1.2 33.9±0.37 34.5±0.62 33.4±0.07 34.6±1.03 35.6±2.09 35.1±1.14 35.2±1.68 34.5±0.86 35.0±0.69
ICL_sem 35.3 38.9 35.6 37.7 37.5 38.1 37.2 33.0 37.3 34.4 33.5 36.9 32.3 34.9 34.7 35.8
ICL_cluster 34.7±0.72 38.6±0.51 34.4±0.35 37.4±0.13 36.9±1.19 37.0±0.42 36.6±0.29 33.6±0.25 36.5±0.16 33.3±0.2 34.9±1.96 38.0±1.97 34.3±0.83 35.1±1.07 35.6±0.54 35.8±0.26
Topic-XICL(ours) 34.5±0.86 39.5±1 33.8±0.98 38.7±0.62 36.4±0.94 37.2±0.31 38.3±0.07 35.0±0.24 37.4±0.15 34.1±0.39 36.3±1.63 36.5±0.08 35.5±0.56 35.9±0.13 36.4±0.58 36.4±0.22

k=4

ICL_random 33.7±1.31 38.4±4.34 35.0±1.71 37.5±0.88 37.8±2.37 37.6±3.23 35.9±2.74 34.8±1.41 37.1±1.4 33.8±0.94 34.9±0.4 37.2±4.33 33.7±1 34.4±2.43 35.4±2.41 35.8±1.42
ICL_sem 36.0 39.0 34.8 38.0 37.0 37.9 36.8 32.0 37.0 32.2 33.0 37.5 30.8 32.8 35.5 35.4
ICL_cluster 35.2±0.73 38.8±0.21 35.7±0.56 38.1±0.6 37.4±1.02 37.4±0.21 36.8±0.76 33.9±1.01 36.8±0.45 33.9±0.24 33.7±1.57 37.4±0.58 34.5±1.47 35.2±0.87 35.8±1.45 36.0±0.51
Topic-XICL(ours) 35.8±0.78 39.7±0.68 34.6±0.9 38.2±0.65 37.7±0.21 39.7±0.56 36.9±0.35 34.3±0.42 37.2±0.15 35.0±0.74 34.0±2.2 37.4±0.4 36.8±1.65 35.1±0.19 36.3±1.03 36.6±0.31

Llama2 48.1 37.2 41.9 41.0 37.1 43.6 42.1 37.8 43.3 32.2 34.4 37.0 35.9 40.2 41.8 39.6

k=2

ICL_random 51.9±4.52 38.5±1.54 43.2±2.3 45.2±2.6 37.4±1.09 46.3±2.96 47.2±2.91 39.4±0.69 44.9±3 32.1±0.59 35.6±1.13 38.1±1.87 36.1±0.59 43.2±2.35 44.5±3.09 41.6±2.01
ICL_sem 52.3 38.6 44.8 46.5 37.5 47.3 47.8 38.4 46.5 32.5 35.7 38.2 36.0 44.1 43.8 42.0
ICL_cluster 50.0±2.26 38.2±1 43.1±1.58 45.8±1.18 36.4±0.63 46.4±1.5 46.7±1.4 39.2±1.16 45.0±1.89 32.4±1 34.3±0.15 37.5±1.18 35.4±1.04 42.8±1.05 43.3±0.96 41.1±1.09
Topic-XICL(ours) 52.7±0.56 38.7±0.5 43.5±0.33 46.6±0.33 37.8±0.22 47.9±0.35 47.8±0.28 43.0±0.96 45.4±0.36 34.3±0.55 36.2±0.16 38.6±0.11 38.4±0.65 46.5±1.07 44.3±0.43 42.8±0.45

k=3

ICL_random 50.8±2.4 38.1±2.11 44.3±2.74 46.2±2.2 37.1±2.07 46.0±3.01 48.0±2.16 38.6±2.5 44.9±2.64 32.7±0.3 34.6±0.71 37.4±2.16 36.1±1.71 43.0±2.65 41.9±3.03 41.3±2.1
ICL_sem 53.2 39.7 45.9 47.8 38.3 49.8 49.6 38.4 46.9 32.8 36.7 39.0 36.2 45.0 44.8 42.9
ICL_cluster 51.1±1.35 38.8±1.16 44.7±0.6 47.4±1.14 37.8±1.13 47.9±1.45 47.7±0.56 39.2±1.54 45.9±1.39 33.1±0.69 35.4±0.93 38.6±0.66 36.3±1.05 44.3±1.14 43.6±1.43 42.1±1
Topic-XICL(ours) 54.1±0.56 39.5±0.5 45.6±0.4 46.3±0.36 37.6±0.23 49.3±0.22 49.9±0.27 40.9±0.56 48.4±0.47 33.6±0.51 36.5±0.17 39.2±0.07 36.9±0.42 46.5±0.83 46.4±0.44 43.4±0.37

k=4

ICL_random 51.1±1.71 37.1±1.4 43.9±1.88 47.2±1.96 37.2±1.75 46.7±1.98 48.0±1.99 39.0±2.41 45.5±2.22 32.5±0.3 34.8±1.08 37.4±1.49 35.7±1.69 42.5±2.53 41.9±1.45 41.4±1.67
ICL_sem 54.0 40.7 46.7 48.6 38.7 50.3 50.6 38.4 47.9 33.0 37.1 40.2 36.6 45.3 45.7 43.6
ICL_cluster 51.9±0.83 39.2±0.94 45.4±1.03 47.3±0.84 37.5±0.42 48.3±1.12 48.8±0.76 39.6±1.4 46.5±0.91 33.2±0.93 35.8±0.81 39.0±1.41 36.5±1.45 44.1±1.63 43.9±1.12 42.5±1
Topic-XICL(ours) 54.4±0.32 40.0±0.12 46.1±0.1 47.6±0.17 38.7±0.13 50.1±0.17 51.0±0.29 42.4±0.42 49.3±0.1 34.6±0.11 37.6±0.16 39.8±0.13 39.3±0.33 45.8±0.38 46.6±0.07 44.2±0.05

Table 6: Accuracy of XNLI in 15 languages based on BLOOM-7b1, XGLM-7.5b and Llama-2-7b models.
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Figure 9: The 4-shot performance of individual languages in TyDiQA-GoldP.
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XCOPA(acc.)

Model en et ht id it qu sw ta th tr vi zh AVG

BLOOM 45.8 49.8 49.6 49.8 49.4 50.2 49.6 49.4 50.4 50.0 51.0 50.4 49.6

k=2

ICL_random 56.4±0.93 49.5±0.34 49.6±1.31 51.6±0.9 50.1±0.33 50.9±1.33 49.6±1.75 51.6±0.75 52.8±0 53.2±0.68 50.9±0.82 49.6±0.43 51.3±0.4
ICL_sem 55.2 49.0 44.8 52.4 47.0 52.6 50.2 54.2 53.0 52.4 49.2 49.0 50.8
ICL_cluster 57.4±0.65 49.5±0.82 50.5±0.9 52.3±0.57 49.8±0.29 49.9±0.84 50.5±0.29 53.1±0.82 52.6±1.02 53.0±1.72 51.0±1.72 50.5±0.62 51.7±0.09
Topic-XICL(ours) 58.0±0 53.8±0.82 50.4±0.66 53.6±1.36 50.8±0.9 52.4±0.19 55.0±1.32 53.6±1.43 53.8±0.93 54.0±1.71 56.8±1 54.8±0.62 53.9±0.13

k=3

ICL_random 56.6±0.34 51.1±0.49 49.4±0.93 51.9±0.81 50.3±0.47 51.9±1.52 50.4±0.52 50.5±0.78 52.4±0.98 53.3±0.34 49.5±0.19 49.9±0.62 51.4±0.21
ICL_sem 56.0 50.0 51.0 52.2 46.8 48.2 47.8 51.4 53.6 53.8 46.6 47.6 50.4
ICL_cluster 58.2±0.29 48.6±0.43 49.7±0.52 52.6±0.16 48.2±0.47 49.4±1.16 50.3±0.68 48.9±0.84 52.9±0.96 53.5±0.75 50.7±0.57 48.5±0.38 51.0±0.26
Topic-XICL(ours) 58.6±0.66 50.2±0.9 53.2±0.34 53.2±0.9 51.4±0.56 52.0±0.84 52.0±0.66 54.2±1.73 56.4±1.57 54.2±1 61.6±1.14 57.0±0.57 54.5±0.09

k=4

ICL_random 57.3±0.34 49.6±0.68 49.1±0.85 51.7±0.9 49.9±0.41 50.1±0.57 50.0±0.65 52.1±0.73 52.3±1.18 53.7±0.1 49.8±0.66 49.9±0.65 51.3±0.29
ICL_sem 56.8 49.0 51.4 51.6 51.0 48.8 49.2 53.2 54.8 54.6 50.0 47.4 51.5
ICL_cluster 59.3±0.19 49.7±0.33 50.3±0.47 52.1±0.78 49.9±1.23 49.9±1.14 50.3±0.19 52.9±0.9 53.1±0.1 54.4±0.71 49.9±0.16 50.6±0.66 51.9±0.17
Topic-XICL(ours) 59.4±0.75 54.0±0.87 50.4±1 53.0±0.34 50.8±1.39 51.0±1.14 55.6±0.49 53.2±0.34 53.6±1.96 55.2±0.85 58.6±1.7 58.0±0.41 54.4±0.16

XGLM 50.4 50.8 49.0 47.0 49.6 49.2 48.4 49.4 55.2 46.4 50.0 50.4 49.7

k=2

ICL_random 50.8±0.43 50.5±2.42 49.7±0.9 50.3±0.25 54.6±2.44 50.1±0.68 49.2±1.11 50.3±1.09 49.9±0.66 51.7±3.56 50.5±2.08 52.5±2.69 50.8±0.92
ICL_sem 53.0 52.2 46.0 51.2 49.2 53.0 50.4 46.2 55.2 50.2 46.2 53.0 50.5
ICL_cluster 50.7±0.73 49.1±0.47 49.2±0.65 50.4±0.1 50.3±0.1 48.9±0.87 46.5±0.5 48.9±0.25 57.3±0.34 50.6±0.5 50.3±0.1 53.5±0.84 50.5±0.08
Topic-XICL(ours) 54.2±3 54.8±0.47 51.6±2.77 54.6±0.92 53.6±1.73 51.4±1.15 51.6±0.47 54.0±0.92 54.6±0.23 50.8±0.92 51.6±0.69 54.0±0.81 53.1±0.1

k=3

ICL_random 49.3±1.22 52.9±1.07 49.0±0.68 50.9±1.22 58.9±2.34 49.8±0.43 48.7±0.57 50.6±0.85 51.3±0.94 53.4±2.16 50.8±0.56 53.8±0.91 51.6±0.71
ICL_sem 52.8 53.2 52.0 53.8 53.2 51.0 47.4 49.6 55.6 54.0 51.0 53.2 52.2
ICL_cluster 50.1±1.14 51.5±0.78 50.1±0.66 51.3±0.73 56.2±0.66 49.9±0.34 48.9±0.56 49.3±0.41 57.7±0.41 53.5±0.1 50.7±0.57 53.9±0.85 51.9±0.22
Topic-XICL(ours) 53.4±1.23 55.6±0.99 52.2±1 53.4±1.39 56.6±0.16 52.0±1.32 51.4±1.73 51.2±0.16 56.2±0.57 55.0±0.62 51.4±1.09 54.0±0.84 53.5±0.24

k=4

ICL_random 49.3±0.57 52.8±1.63 50.0±0.62 50.1±0.5 54.7±2.38 50.1±0.41 48.7±0.84 49.7±0.75 50.5±0.41 51.7±2.38 50.3±0.47 52.4±0.85 50.9±0.49
ICL_sem 54.0 50.6 51.6 52.4 52.0 49.8 50.4 51.4 56.4 52.6 52.2 53.2 52.2
ICL_cluster 50.8±1.42 51.9±0.82 48.9±0.5 50.3±0.91 55.5±0.5 50.3±0.66 52.3±0.99 49.8±0.5 57.2±0.62 52.6±0.41 50.4±0.66 54.6±0.1 52.1±0.22
Topic-XICL(ours) 51.8±0.82 54.0±1.52 52.0±0.71 54.6±1.2 55.8±1.45 51.8±0.9 52.0±0.68 51.4±0.84 56.2±0.33 53.2±0.82 52.0±0.16 52.6±0.25 53.1±0.11

Llama2 57.8 44.8 48.2 51.8 52.4 46.8 49.0 49.0 49.6 52.4 50.0 55.0 50.6

k=2

ICL_random 82.0±2.08 49.0±1.88 48.3±2.27 61.1±1.25 68.8±1.91 50.3±0.96 49.4±1.22 48.6±1.25 51.5±0.43 54.4±1.79 57.8±0.25 64.2±0.82 57.1±0.36
ICL_sem 79.6 50.2 46.8 59.4 68.2 48.8 49.4 48.8 54.6 54.0 63.2 65.4 57.4
ICL_cluster 80.7±0.41 50.0±0.5 50.6±1.06 59.8±1.27 69.0±0.78 50.4±0.73 50.3±0.78 48.9±0.66 52.1±0.19 53.3±1.14 57.8±1.32 66.1±2.14 57.4±0.3
Topic-XICL(ours) 84.0±0.96 53.2±0.93 51.8±0.96 63.4±1.45 72.6±1.71 52.0±3.21 52.4±1.56 51.2±0.75 54.4±1.63 55.6±1.8 62.0±1.36 67.2±0.81 60.0±0.18

k=3

ICL_random 77.6±1.8 48.9±2.62 49.9±2.29 62.4±2.26 68.4±2.69 50.5±2.78 48.7±0.71 47.5±1.23 52.1±1.06 55.3±1.72 60.2±1.55 64.0±2.29 57.1±1.09
ICL_sem 78.8 50.6 52.2 62.4 71.0 50.6 47.6 49.2 51.4 56.0 62.2 67.2 58.3
ICL_cluster 81.9±0.96 48.8±0.1 51.3±0.16 63.0±1.11 70.3±0.25 49.8±0.68 49.9±0.9 49.1±0.81 54.3±0.16 54.0±1.09 59.3±0.9 67.1±0.62 58.2±0.26
Topic-XICL(ours) 84.4±1.31 54.0±3.69 53.6±0.19 64.0±1.31 72.8±1.73 51.8±1.14 51.6±1.09 51.4±0.25 53.8±1.82 56.1±1.8 62.0±1.09 69.8±2.34 60.4±0.17

k=4

ICL_random 79.3±3.44 50.1±1.11 51.2±1.79 60.2±0.59 69.3±0.87 50.4±2.39 51.9±1.37 49.0±0.25 53.5±1.8 54.0±1.85 59.0±1.89 64.1±2.16 57.7±0.42
ICL_sem 80.8 52.0 47.0 61.6 69.6 51.2 51.4 47.4 51.2 54.0 60.6 65.4 57.7
ICL_cluster 81.4±0.41 50.5±0.49 49.5±0.41 60.9±0.25 69.9±0.41 51.7±0.41 50.5±0.43 48.5±0.38 52.5±0.34 54.5±0.43 59.0±0.41 66.1±0.25 57.9±0.14
Topic-XICL(ours) 84.4±1.05 55.2±1.52 52.4±0.43 64.6±2.53 72.2±0.38 52.2±2.62 52.8±1.55 49.6±0.5 54.2±1.98 54.6±0.33 64.4±0.93 70.6±3.51 60.6±0.22

Table 7: Accuracy of XCOPA in 12 languages based on BLOOM-7b1, XGLM-7.5b and Llama-2-7b models.

E Case Study 832

Table 9 shows the representative examples selected from some topics in TyDiQA-GoldP. 833
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TyDiQA-GoldP(F1)

Model ar bg en fi id ko ru sw te AVG

BLOOM 28.8 28.9 29.0 4.1 28.1 2.6 12.3 27.9 21.5 20.3

k=2

ICL_random 38.1±0.92 42.3±0.56 32.8±1.01 4.8±0.3 39.9±1.76 3.3±0.19 21.9±1.94 31.7±2.18 26.5±0.42 26.8±0.91
ICL_sem 42.7 42.8 39.0 4.8 43.7 3.7 23.5 36.0 27.3 29.3
ICL_cluster 40.9±1.24 40.8±1.05 38.1±0.89 5.0±0.2 44.1±1.85 3.2±0.26 24.2±0.6 36.1±3.07 25.2±1.98 28.6±0.54
Topic-XICL(ours) 45.7±0.78 45.7±0.96 44.7±0.6 30.5±0.14 33.8±0.23 31.1±0.16 30.5±0.45 31.8±1.16 31.8±1.7 36.2±0.23

k=3

ICL_random 39.5±1.54 42.8±2.64 34.3±1.75 4.8±0.01 41.3±2.15 3.6±0.06 22.9±1.28 33.9±2.6 28.1±0.8 27.9±1.37
ICL_sem 41.9 42.3 39.5 4.6 43.2 3.2 24.6 37.7 27.4 29.4
ICL_cluster 40.1±1.34 40.7±2.03 36.5±1.11 4.9±0.31 41.9±0.85 3.2±0.32 23.4±2.25 33.2±0.79 27.1±0.56 27.9±0.6
Topic-XICL(ours) 43.6±0.82 43.3±0.86 42.5±0.89 29.2±0.05 31.9±0.56 29.4±0.4 28.7±0.9 32.6±0.39 29.9±0.77 34.6±0.36

k=4

ICL_random 42.9±1.01 43.7±0.54 39.2±0.28 5.3±0.17 45.2±1.01 3.5±0.03 26.5±0.65 33.6±1.05 28.9±0.9 29.9±0.4
ICL_sem 42.1 43.8 38.2 4.4 42.6 2.7 24.6 37.2 27.9 29.3
ICL_cluster 40.9±0.35 42.0±4.06 36.6±1.57 4.8±0.14 41.4±0.82 3.9±0.32 23.6±0.69 34.0±2.06 28.4±2.69 28.4±0.24
Topic-XICL(ours) 44.2±0.41 43.6±0.4 43.1±0.29 29.7±0.33 40.2±0.28 29.8±0.36 29.3±0.35 31.1±0.7 30.2±1.47 35.7±0.3

XGLM 23.6 18.7 8.5 12.6 10.8 8.7 7.9 25.2 25.8 15.8

k=2

ICL_random 26.1±0.69 20.3±1.49 13.2±1.83 15.6±0.88 18.8±1.18 14.1±0.91 11.6±0.72 21.7±0.15 27.8±0.36 18.8±0.58
ICL_sem 27.0 21.6 17.1 17.6 21.5 16.1 13.4 23.8 28.2 20.7
ICL_cluster 26.7±0.43 17.6±1.31 15.4±1.08 16.6±0.91 18.7±0.34 13.6±0.14 12.1±0.24 20.9±0.25 27.3±0.51 18.8±0.1
Topic-XICL(ours) 31.5±0.46 29.7±0.82 25.0±0.77 22.7±0.78 22.0±0.43 21.5±0.29 19.9±0.43 22.7±0.4 28.1±0.19 24.8±0.25

k=3

ICL_random 25.9±0.24 20.0±1.54 13.6±1.34 16.7±1.89 18.5±0.16 13.7±0.92 12.0±1.22 20.9±0.59 27.3±0.8 18.7±0.55
ICL_sem 26.4 19.5 18.0 19.1 21.1 15.3 12.6 23.5 27.2 20.3
ICL_cluster 26.4±0.3 19.2±0.57 16.7±0.91 18.5±0.18 19.4±0.92 13.4±0.32 12.2±0.33 22.1±0.87 28.0±0.63 19.5±0.11
Topic-XICL(ours) 30.9±0.19 29.3±0.82 24.8±0.16 22.2±0.49 21.5±0.45 20.9±0.33 19.3±0.22 22.9±0.15 27.4±0.27 24.4±0.08

k=4

ICL_random 26.7±0.47 20.1±1.68 16.1±2.86 18.4±3.4 20.4±0.62 14.1±1.01 12.9±1.78 21.4±0.38 27.7±5.63 19.8±0.96
ICL_sem 25.7 20.0 20.2 19.2 21.9 15.9 12.6 24.4 27.4 20.8
ICL_cluster 26.4±0.37 20.0±0.68 18.3±0.76 18.1±0.73 20.0±0.24 13.9±0.38 12.5±0.37 22.1±0.99 26.6±0.69 19.8±0.14
Topic-XICL(ours) 30.6±0.13 29.1±0.69 24.6±0.24 22.3±0.49 21.6±0.52 20.9±0.49 19.3±0.33 21.8±0.3 30.4±0.53 24.5±0.24

Llama2 15.4 1.1 45.3 38.9 33.6 21.4 29.7 31.4 0.5 24.1

k=2

ICL_random 17.7±1.39 4.3±0.87 60.3±5 43.9±7.1 43.9±2.97 26.5±3.18 28.2±3.91 24.5±3.04 4.6±0.12 28.2±2.49
ICL_sem 17.4 4.9 61.7 45.4 43.9 24.5 29.5 27.4 6.5 29.0
ICL_cluster 25.4±0.58 6.5±2.16 63.2±2.3 44.1±2.39 44.4±3.04 38.8±0.42 29.6±1.41 26.7±1.85 3.2±0.22 31.3±0.77
Topic-XICL(ours) 27.9±0.6 26.0±1.15 69.2±1.91 50.3±0.4 51.7±1.04 43.7±2.31 35.8±1.09 37.7±1.76 30.8±0.09 41.4±0.24

k=3

ICL_random 17.2±1.06 4.2±0.51 64.1±2.29 46.6±1.87 47.7±2.55 28.0±0.87 29.9±2.31 32.4±1.33 10.1±0.37 31.1±1.16
ICL_sem 18.0 4.5 65.2 47.0 47.1 26.8 31.8 30.6 8.5 31.0
ICL_cluster 25.8±0.82 6.2±2.06 65.9±0.51 45.4±1.72 45.2±0.69 37.5±0.37 30.4±0.69 27.8±2.34 7.5±0.02 32.4±0.36
Topic-XICL(ours) 29.2±0.14 26.9±1.71 68.8±2.44 52.1±1.44 52.2±0.97 39.9±1.48 38.9±1.43 39.4±1.6 32.4±0.02 42.2±0.27

k=4

ICL_random 18.2±1.61 6.8±1 66.9±3.67 49.5±2.73 50.1±2.17 27.2±1.06 32.7±1.89 36.0±2.02 10.1±0.05 33.1±1.45
ICL_sem 19.0 6.5 66.6 48.4 47.2 27.3 32.7 29.9 11.0 32.1
ICL_cluster 26.4±0.42 6.5±1.54 66.0±0.94 48.3±1.32 47.4±2.05 36.9±1.58 31.3±1.89 32.2±2.31 8.6±0.48 33.7±0.29
Topic-XICL(ours) 31.1±0.33 28.7±2.41 64.0±2.76 52.3±1.38 54.6±0.77 42.5±1.54 40.1±1.85 37.9±0.77 33.0±0.33 42.7±0.55

Table 8: F1 score of TyDiQA-GoldP in 9 languages based on BLOOM-7b1, XGLM-7.5b and Llama-2-7b models.
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Topic
Top-4 Examples

Passage Question Answer

t3

Magnetoreception (also magnetoception) is a sense which al-
lows an organism to detect a magnetic field to perceive direction,
altitude or location. This sensory modality is ...

Do birds use magnetorecep-
tion?

Magnetoreception (also magnetoception) is a sense which
allows an organism to detect a magnetic field to perceive
direction, altitude or location

In most countries, the academic year begins in late summer or
early autumn and ends during the following spring or summer.
In Northern Hemisphere countries, this means that the academic
year lasts from August, September, or October to May, June, or
July...

How long does a school year
last in Germany?

from August, September, or October to May, June, or July

Cuneiform law refers to any of the legal codes written in
cuneiform script, that were developed and used throughout
the ancient Middle East among the Sumerians, Babylonians,
Assyrians, Elamites, Hurrians, Kassites, and Hittites.[1] The
Code of...[1]

What is cuneiform law? any of the legal codes written in cuneiform script, that were
developed and used throughout the ancient Middle East
among the Sumerians, Babylonians, Assyrians, Elamites,
Hurrians, Kassites, and Hittites

The view of most scholars (see organology) is that the term
"brass instrument" should be defined by the way the sound is
made, as above, and not by whether the instrument is actually
made of brass. Thus one finds brass instruments made of wood,
like...

Why are they called brass in-
struments?

the term "brass instrument" should be defined by the
way the sound is made, as above, and not by whether the
instrument is actually made of brass

t9

Ice wine (or icewine; German: Eiswein) is a type of dessert
wine produced from grapes that have been frozen while still on
the vine...

What makes an ice wine an ice
wine?

produced from grapes that have been frozen while still on the
vine

Earth’s magnetic field, also known as the geomagnetic field,
is the magnetic field that extends from the Earth’s interior out
into space, where it meets the solar wind...

What is the magnetic force of
the Earth?

Earth’s magnetic field

The lux (symbol: lx) is the SI derived unit of illuminance and
luminous emittance, measuring luminous flux per unit area.[1]
It is equal to one lumen per square metre...

What is the unit of measure-
ment for light brightness?

lux

General speed limits in Germany are set by the federal gov-
ernment. All limits are multiples of 5km/h. There are two
default speed limits: 50km/h (31mph) inside built-up areas and
100km/h (62mph) outside built-up areas. While parts of the
autobahns and many other freeway-style highways have posted
limits up to 130km/h (81mph) based on accident experience,
congestion and other factors, many rural sections have no gen-
eral speed limit...

How fast can you drive on the
Autobahn?

130km/h

t14

The demography of France is monitored by the Institut national
d’études démographiques (INED) and the Institut national de
la statistique et des études économiques (INSEE). As of 1 Jan-
uary 2018, 67.19 million people lived in France (67,186,638),
including all the five overseas departments (2,141,000), but ex-
cluding the overseas collectivities and territories (604,000).[1]
65,017,000 of these lived in Metropolitan France, which is main-
land France located in Europe.

How many people live in
France?

67.19 million

The Balkans are usually said to comprise Albania, Bosnia and
Herzegovina, Bulgaria, Croatia, Kosovo,[a] the Republic of
Macedonia, Montenegro, Romania, Serbia and Slovenia, while
Greece and Turkey are often excluded. Its total area is usually
given as 666,700 square km (257,400 square miles) and the
population as 59,297,000 (est. 2002).[38][39]

What countries are on the
Balkan Peninsula?

Albania, Bosnia and Herzegovina, Bulgaria, Croatia,
Kosovo,[a] the Republic of Macedonia, Montenegro, Roma-
nia, Serbia and Slovenia

In United States, the poverty thresholds are updated every year
by Census Bureau. The threshold in United States are updated
and used for statistical purposes. In 2015, in the United States,
the poverty threshold for a single person under 65 was an
annual income of US$11,770; the threshold for a family group
of four, including two children, was US$24,250...

What’s the poverty line in
America?

24250

The metropolis is an alpha global city as listed by the Glob-
alization and World Cities Research Network. In 2011, the
population of the city of Johannesburg was 4,434,827, making
it the most populous city in South Africa.[4] In the same year,
...

How large is Johannesburg’s
population?

4434827

Table 9: The top-4 representative samples of some topics in TyDiQA-GoldP selected by our Topic-XICL model.
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