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Abstract

Cross-lingual in-context learning (XICL)
shows promise for adapting large language
models (LLMs) to low-resource languages. Pre-
vious methods rely on off-the-shelf or task-
specific retrievers based on LLM feedback
signals for demonstration selection. How-
ever, these approaches often neglect factors
beyond semantic similarity and can be resource-
intensive. To address these challenges, we
propose a novel approach called Topic-XICL,
which leverages a latent topic model to select
demonstrations for XICL. We assume that la-
tent topic variables encapsulate information
that more accurately characterizes demonstra-
tions. By training this topic model on rich-
resource language data with a small-parameter
LLM, we obtain more informative demonstra-
tions through topic inference and utilize them
for in-context learning across various LLMs.
Our method is tested on three multilingual
tasks (XNLI, XCOPA, and TyDiQA-GoldP)
and three models with approximately 7 bil-
lion parameters, including two multilingual
LLMs (BLOOM and XGLM), and an English-
centric model, Llama2. Comparative evalu-
ations against baselines of random selection,
semantic similarity selection, and clustering-
based selection show consistent improvements
in multilingual performance with our approach.

1 Introduction

Large Language Models (LLMs) have exhibited
exceptional natural language understanding capa-
bilities across diverse NLP tasks. However, their
training data is predominantly English-centric, pos-
ing challenges for cross-lingual generalization (Lai
et al., 2023; Bang et al., 2023; Zhang et al., 2023).
In-context learning (ICL) (Brown et al., 2020)
presents a promising solution for LLMs in low-
resource language settings, as demonstrated by the
strong ICL performances of models like BLOOM
(Scao et al., 2022) and XGLM (Lin et al., 2022) in
various multilingual tasks.
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Figure 1: Accuracy scores for 7 languages from the
XCOPA dataset (Gordon et al., 2012) using direct infer-
ence (dashed line) or 4-shot in-context learning (ICL)
with the BLOOM model (Scao et al., 2022) (7.1 billion
parameters). k represents the number of demonstra-
tions. "sem" denotes semantic-based selection, while
"random" denotes random selection.

The impressive comprehension abilities of
LLMs in English have sparked interest in Cross-
lingual In-Context Learning (XICL)(Winata et al.,
2021; Lin et al., 2022; Asai et al., 2023; Cahyaw-
ijaya et al., 2024; Zhang et al., 2024). This ap-
proach utilizes demonstrations from rich-resource
languages to guide learning tasks in low-resource
languages. However, the effectiveness of XICL
depends heavily on the selection of demonstration
examples (Zhao et al., 2021; Perez et al., 2021;
Qin et al., 2023; Cahyawijaya et al., 2024). Re-
searchers have proposed two main approaches to
select demonstration: leveraging off-the-shelf re-
trievers (Nie et al., 2023; Chang and Fosler-Lussier,
2023; Winata et al., 2023; Li et al., 2023; Cahyaw-
ijaya et al., 2024), such as BM25 or Sentence-
BERT (Reimers and Gurevych, 2019), and train-
ing task-specific retrievers (Shi et al., 2022) by a
specially designed task signal, such as the feed-
back signals from LLMs. The latter approaches
may yield better results for specific LLMs, but
they often require access to model parameters or



detailed output distributions, which can be costly
and are typically unavailable for black-box LLMs
(Sun et al., 2022). In contrast, the former meth-
ods can lightweightly exploit semantic similarity
input-label pairs, but they overlook task-specific
information or diversity.

As noted in Qin et al. (2023), the choice be-
tween similarity and diversity in demonstrations
varies depending on the task: diversity suits tasks
like commonsense reasoning question answering,
while similarity is preferable for text classification.
Fig.1 demonstrates the challenge of balancing these
two dimensions across different languages. Seman-
tically similar examples lead to better results for
Haitian Creole (ht) and Italian (it), while randomly
selected diversity examples lead to better perfor-
mance for Quechua (qu) and Chinese (zh). When
selecting demonstrations across languages, it is
crucial to consider not only semantic similarity but
also factors such as syntactic structure, task struc-
ture, and domain information. We collectively refer
to these factors as latent topic information, which is
multidimensional and may enhance demonstration
choices for cross-lingual in-context learning.

Xie et al. (2022) examined in-context learn-
ing from a Bayesian Inference perspective, and
Wang et al. (2023) treated LLMs as topic models
to apply the theory, which proved productive in
demonstration selection for classification tasks. In-
spired by this, we extended Wang et al. (2023)’s
approach to cross-lingual in-context learning and
more tasks, proposing a demonstration selection
algorithm based on topic inference (Topic-XICL),
as shown in Fig. 2. It comprises a latent topic
learning phase and a demonstration selection
phase. In the latent topic learning phase, demon-
stration candidates from a rich-resource language
are clustered into several topics by the K-means
algorithm with multilingual representations, and a
topic model trained based on LLM by absorbing
nuanced topic information. Specifically, we clus-
ter the candidate data for a task into n topics. For
each topic, we introduce ¢ new tokens to enrich
the LLM’s vocabulary. These tokens are concate-
nated with the input to predict the output, enabling
the LLM to update the embeddings of these new
tokens. During the demonstration selection phase,
we perform topic inference on the candidate data,
selecting the & most representative examples for
each topic. For each target language input, we de-
termine its topic by calculating semantic similarity
with the candidate data and using the corresponding

representative examples as the context.

We trained the latent topic model on BLOOMZ-
1b7 (Muennighoff et al., 2023) (with 1.7 billion
parameters) and conducted cross-lingual ICL on
two multilingual sentence-level tasks and one cross-
lingual reading comprehension task.

Our contributions are summarized as follows:

* We propose a cross-lingual demonstration
selection algorithm based on topic infer-
ence (Topic-XICL), extending Bayesian infer-
ence theory to practical applications in cross-
lingual ICL.

* Intuitively, the Bayesian theorem is primar-
ily suited for classification tasks. To our
knowledge, we are the first to apply it to non-
classification tasks on XICL, and we have ex-
perimentally validated its effectiveness.

* We compared our method with three demon-
stration selection baselines using three LLMs
(BLOOM, XGLM, and Llama2) on three
cross-lingual tasks (XNLI, XCOPA, and
TyDiQA-GoldP). The results show that our
topic-based demonstration selection signifi-
cantly outperforms existing strong baselines.

2 Related Work

Cross-lingual In-context learning The cross-
lingual nature of multilingual language models
further enables the possibility of learning from
a different language in-context without parame-
ter updates, as demonstrated by the XICL method
(Winata et al., 2021; Lin et al., 2022). Winata et al.
(2021) first showed that, given a few English exam-
ples as context, multilingual pre-trained language
models (such as GPT (Radford et al., 2019) and
T5 (Raftel et al., 2020)) can predict not only En-
glish test samples but also non-English ones. Lin
et al. (2022) also found that their XGLM demon-
strates strong cross-lingual capability, where us-
ing English prompts together with non-English
examples yields competitive zero- and few-shot
learning performance. Cahyawijaya et al. (2024)
extensively studied XICL on some low-resource
languages from four aspects: cross-lingual align-
ment, alignment formatting, label configuration,
and cross-lingual retrieval, highlighting the impor-
tance of advancing ICL research. Our research
mainly focuses on the aspect of cross-lingual re-
trieval to select demonstrations for XICL.

Cross-lingual Demonstration Selection Different
rich-resource language demonstrations yield vary-
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Figure 2: An overview of our proposed cross-lingual demonstration selection framework with topic inference.®
Latent topic embeddings are learned for the clustered English candidates using LLMs, and probabilities of inferring
to n topics are calculated for each candidate. The top-k representative demonstrations for each topic are then
obtained. @ For each target input, the semantic relationship with the candidates is calculated. The most frequent
topic in the top-10 examples is used as its classification topic, denoted as a;. The k most representative examples in
the a; topic are used as the context for the target input, which can be used for ICL in any generative LLM.

ing XICL outcomes for target languages. Current
cross-lingual retrieval methods fall into two cate-
gories: using off-the-shelf multilingual representa-
tions and leveraging LLM feedback signals. For
example, Nie et al. (2023) conducts cross-lingual
retrieval from labeled or unlabeled high-resource
languages based on the semantic similarity of mul-
tilingual embeddings. Li et al. (2023) extended
this to focus on zero-shot settings, revealing limi-
tations for complex generation tasks. Tanwar et al.
(2023) augmented prompts with cross-lingual se-
mantic similarity demonstrations and in-context
label alignment, but Cahyawijaya et al. (2024) iden-
tified shortcomings and introduced translation pairs
for alignment. Additionally, Winata et al. (2023)
emphasized semantic similarity by selecting the
nearest examples from various sub-datasets for clas-
sification tasks. In contrast, Shi et al. (2022) pro-
posed a retrieve-rerank framework for cross-lingual
Text-to-SQL, using a bi-encoder to identify rele-
vant exemplars, and then training a retriever by
distilling the LLM’s scoring function.

Training retrievers on specific task data and
LLMs can be advantageous, but managing inacces-
sible parameters of black-box models is challeng-
ing. Our method trains using only accessible LLMs.
Semantic similarity alone may not suffice for com-
plex tasks, so we expect to integrate richer infor-
mation into "latent topics," such as article types
in question-answering tasks, question types, and
the structural relationship between answers and

articles. We use LLMs to mine this latent topic
information and select demonstrations to enhance
cross-lingual in-context learning.

In-Context Learning with Bayesian inference
Xie et al. (2022) provided a latent topic interpre-
tation to explain in-context learning, showing that
the in-context learning predictor approaches the
Bayes optimal predictor as the number of demon-
strations increases, assuming both pre-training and
task-specific data follow Hidden Markov Mod-
els (HMM). However, the Markovian assumption
about data generation limits empirical validation
to synthetic data and toy models, raising questions
about its applicability to natural language.

To bridge the gap between theoretical under-
standing and real-world LLM algorithms, Wang
etal. (2023) developed a practical demonstration se-
lection algorithm. Our method extends Wang et al.
(2023) to an XICL setting. Unlike their approach,
which treats each classification data as a topic, we
perform semantic clustering on each task’s data to
obtain topics, making our approach applicable to a
wider range of tasks. To our knowledge, this is the
first attempt to use Bayesian theory for demonstra-
tion selection beyond classification.

3 Method

Based on the theoretical understanding and prac-
tical algorithm of Bayesian inference in ICL, we
proposed a cross-lingual demonstration selection
framework (as shown in Fig. 2) with topic inference



to improve the performance of XICL for various
tasks. First, we introduce the notations of prob-
lem setting and theoretical analysis of the prob-
lem. Then we describe the pipeline to learn latent
topic embedding in Section 3.2 and the algorithm
of demonstration selection in Section 3.3.

3.1 Notations and Problem Setting

In cross-lingual in-context learning, the prompt
comprises k rich-resource language demonstra-
tions (X1, Y1), (X2,Y2),...,(Xg, Yx) and a low-
resource target language test input X, and the gold
truthis Y € Y. For the generation-form task based
on decoder-only LLLMs, Y is the space of all pos-
sible token sequences. Similar to that of the topic
model, a simplified assumption can be made for
LLM (denoted by M):

PM(YyX):/@PM(Y|¢9)PM(9|X)d9, (1)

0 € © is a high dimensional latent topic variable
continuously distributed over ©, where O is the
space of the variable.

Following Wang et al. (2023), we posit the exis-
tence of an underlying causal relation between X,
Y, and 6, directly named as X — Y < 6, which
can be represented mathematically as the following
structural equation:

Y =£(X" 0%e€), )

where € is an independent noise variable. a is the
topic of (X,Y’), and 6 € O is the value of the
topic variable corresponding to the topic a. The in-
context learning output probability of LLM for an
input X! classified to a topic in target language
[ can be denoted by P! and the solution can be
defined as:

argmax PUH (Yol = | X P, vE, .., X8, Y2, X,

yeyY
3)
It is always lower or equal to the Bayes optimal
decoder:

arg max P (Yol = 467, X %),
yeY

Equality only holds when
P]‘\Z’Z(G“\Xf,}/l“,...,X,?7Yk“,Xa,l) =1 4

Following Wang et al. (2023), we focus on es-
timating an optimal value of 6 corresponding to
a topic a. Then, we will discuss how to select an
optimal set of demonstrations by using the learned
optimal latent concept variable value.

3.2 Latent Topic Learning

As shown in Fig.2, we first cluster the source
language task dataset into several topics {a;|i =
1,2,...,n} by the multilingual embedding with
K-means algorithm, the number of topic n is
a hyper-parameter. For a topic a;, the objec-
tion of Bayes optimal decoder is to minimize
IE’EX,Y,ai [—logpﬁ (Y‘Hai’ X)}

In practice, we try to align 8 to the token embed-
ding space by adding new tokens to the vocabulary
of LLM. Then, the learned new tokens of 8¢ are
used as regular tokens in the vocabulary. Specifi-
cally, to represent each specific topic a;, c new topi-
cal tokens (denoted as é“i) are added to the original
vocabulary. c is also a hyper-parameter, and corre-
sponding c topical tokens are appended to the input
X as demonstrated, like "<t]l_I1><tl_2>..<tl_c>X"
for the topic a;. The new topical token can be any-
thing as long as it does not overlap with the original
vocabulary of LLM.

Subsequently, the embedding of these new to-
kens E(A%) is fine-tuned while freezing the re-
maining parameters of LLM. The fine-tuning ob-
jective is to minimize loss:

L(0%) = Exy[-logPyi(Y |, X)] (5

and the fine-tuned LLM denoted as M’. To obtain
the topical tokens for all topics in a task, we fine-
tune all data together with the loss Y ;- | £(6%).

3.3 Demonstration Selection

About the topic of target instance (X!, V'), we em-
bed the input X' and measured its semantic similar-
ity with all source input embeddings by Sentence-
BERT (Reimers and Gurevych, 2019). Then, we
statistic the topic category of the top-10 seman-
tic similar source examples and choose the most
frequent topic as the target language topic a.

According to the analysis in Section 3.1, for the
target instances with topic a, our goal becomes
selecting demonstrations that can best infer the
topic for all inputs:

Ex [Py (0% XT, Y, ..., X7, Vi, X))
(©6)

As test examples are sampled independently of
the demonstrations and each demonstration is also
sampled independently, the goal can be:

arg max
XO Y., X0, Y,e

a a a a a a
argmax Py, (0| X7, Y, .., Xi, V)
X¢YP . X2 Y

7
I, Pyerixe e
Py (61




Assuming that 6 has a uniform prior, then our goal
becomes finding the top k£ demonstrations that max-
imize P§, (0 X2, Y1),

For the setting of n, the estimated conditional
probability of #% for instance (X,Y) would be:

a; (pa;
B (041, v) = T T)
2 j=1 Pap (041(X,Y)
®)
We mainly focus on the fundamental effects of
topic inference on multilingual demonstration se-
lection, without discussion of the mutual influence
between demonstrations and the impact of order.

4 Experiments

4.1 Dataset

This paper presents experiments conducted on three
datasets: XNLI (Conneau et al., 2018), XCOPA!,
and TyDiQA-GoldP (Clark et al., 2020). The Cross-
lingual Natural Language Inference dataset (XNLI)
is a sentence-pair classification task involving
15 languages, translated from the English SNLI
(Bowman et al., 2015) dataset. Since existing work
mainly discusses demonstration selection meth-
ods for classification tasks, we also explored the
multilingual causal commonsense reasoning task
XCOPA and the Question Answering (QA) task
in our experiments. XCOPA is an extension and
re-annotation of the English Choice of Plausible
Alternatives (COPA) dataset (Gordon et al., 2012),
with validation and test examples translated and
annotated in 11 typologically diverse languages.
TyDiQA-GoldP is the gold passage task in TyDiQA
(Clark et al., 2020), covering 9 typologically di-
verse languages and serving as a challenging multi-
lingual QA benchmark.

For each dataset, the English training set D
serves as the pool of candidate demonstrations,
evaluated across all test sets in each language. We
list the English training set volume, 24 target lan-
guages, and their test set sizes in Table 4. The
XCOPA test set is a combination of the official
open-source 100 validation sets and 400 test sets.
Due to the large size of the XNLI training dataset
(392,701 instances in total), we only used the first
10,000 instances.

4.2 Experimental Setting

We employ the K-means algorithm with random
initial center points to cluster the training set D, us-

"https://github.com/cambridgeltl/xcopa

ing three seed values [32, 44, 100] and reporting the
average results and standard deviation per language
for k = [2, 3,4]. Each training data representation
is obtained using multilingual Sentence-BERT?. As
for hyper-parameters, the number of cluster classes
n = 20 and the length of each topic token sequence
¢ = 10 are used for XNLI, and n = 20 and ¢ = 15
are for TyDiQA-Gold, while n = 5 and ¢ = 15
are set for XCOPA (with only 500 English training
dataset). The guidelines for the hyper-parameters
section can be seen in A.

We leverage the Bloomz-1b73 model to learn
the topic token embeddings and compute the prob-
ability of each candidate. BLOOMZ-1b7 (Muen-
nighoff et al., 2023) is a multilingual supervised
fine-tuning version of BLOOM, which may be
more efficient for learning the topic of a task.
Greedy Search is employed for decoding answers
in each task. For XCOPA, the gold output is
changed to "1" or "2". For two-sentence tasks,
we set the output length to 1 to obtain the answer
label. For the QA task, the maximum output length
is 30, and the metric is F1. The prompts used for
each task are detailed in Appendix B.

4.3 Baselines

We use the same set of demonstrations for three
LLMs, each with about 7 billion parameters, includ-
ing BLOOM, XGLM, and Llama-2. We consider
the following demonstration selection methods as
baselines:

ICL_random: Random select k£ demonstrations
from D for each test example. We also set three
seeds to obtain the average results.

ICL_sem: We use the same sentence-BERT to
calculate the cosine similarity between the inputs
of the source and target language. We select the top
k demonstrations from D for each test example.
Cluster: Since our method initially clusters D and
subsequently selects demonstrations, we randomly
sample £ instances from each category of the clus-
tered data as demonstrations for all test examples
within that category. This also serves as an ablation
baseline for our approach.

4.4 Main Results

Table 1 presents our main results for the three
datasets averaged over all languages baseline on

“https://huggingface.co/sentence-transformers/distiluse-
base-multilingual-cased-v1
3https://huggingface.co/bigscience/bloomz-1b7



XNLI (accuracy, %)

Model ~ Method

XCOPA (accuracy, %) TidyQA-GoldP (F1, %)

k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

Zero-shot 32.8 49.6 20.3

ICL_random 35.3(0.004) 34.8(0.014) 34.3(0.059) | 51.3(0.040) 51.4(0.033) 51.3(0.059) | 26.8(0.001) 27.9(0.001) 29.9(0.001)
BLOOM ICL_sem 36.6(0.000) 36.9(0.000) 37.2(0.000) | 50.7(0.160) 50.4(0.250) 51.5(0.056) | 29.3(0.001) 29.4(0.001) 29.3(0.001)

ICL_cluster 34.4(0.031) 35.2(0.003) 36.1(0.001) | 51.7(0.027) 51.0(0.128) 51.9(0.036) | 28.6(0.001) 27.9(0.001) 28.4(0.001)

Topic-XICL(ours) | 37.4(0.000) 37.9(0.000) 37.4(0.000) | 53.9(0.000) 54.5(0.000) 54.4(0.000) | 36.2(0.000) 34.6(0.000) 35.7(0.000)

Zero-shot 323 49.7 15.8

ICL_random 34.4(0.002) 35.0(0.000) 35.8(0.000) | 50.8(0.079) 51.6(0.041) 50.9(0.074) | 18.8(0.010) 18.7(0.015) 19.8(0.008)
XGLM ICL_sem 35.5(0.000) 35.8(0.000) 35.4(0.001) | 50.5(0.169) 52.2(0.002) 52.2(0.000) | 20.7(0.002) 20.3(0.004) 20.8(0.004)

ICL_cluster 35.2(0.000) 35.8(0.000) 36.0(0.000) | 50.5(0.088) 51.9(0.005) 52.1(0.002) | 18.8(0.023) 19.5(0.007) 19.8(0.009)

Topic-XICL(ours) | 35.7(0.000) 36.4(0.000) 36.6(0.000) | 53.1(0.000) 53.5(0.000) 53.1(0.000) | 24.8(0.000) 24.4(0.001) 24.5(0.001)

Zero-shot 39.6 50.6 24.1

ICL_random 41.6(0.000) 41.3(0.001) 41.4(0.002) | 57.1(0.005) 57.1(0.002) 57.7(0.001) | 28.2(0.043) 31.1(0.005) 33.1(0.001)
Llama2 ICL_sem 42.0(0.000) 42.9(0.000) 43.6(0.000) | 57.4(0.004) 58.3(0.002) 57.7(0.003) | 29.0(0.019) 31.0(0.006) 32.1(0.003)

ICL_cluster 41.1(0.001) 42.1(0.000) 42.5(0.000) | 57.4(0.003) 58.2(0.002) 57.9(0.002) | 31.3(0.010) 32.4(0.005) 33.7(0.001)

Topic-XICL(ours) | 42.8(0.000) 43.4(0.000) 44.2(0.000) | 60.0(0.001) 60.4(0.000) 60.6(0.001) | 41.4(0.000) 42.2(0.000) 42.7(0.000)

Table 1: Average performance across languages for three tasks with different numbers of demonstrations. Parentheses
contain the p-values from the statistical significance analysis of the ICL methods and zero-shot baseline results,
with those greater than 0.05 marked with a gray background. We also calculated the standard deviation over 3 seeds
for ICL_random, ICL_cluster, and Topic-XICL, as shown in Appendix D.
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Figure 3: Performance difference between 4-shot Topic-
XICL and best baseline results for individual languages
in Three datasets."*" represents the language is unseen
for the models

three LLMs, along with the p-values from signif-
icance analysis of the ICL methods and the zero-
shot. Detailed results can be found in Appendix D.
Across all three datasets, our method consistently
outperforms the baselines on three models with
different lengths of demonstrations. Figure 3 illus-
trates the performance difference between Topic-
XICL and the best baseline results for individual
low-resource languages across the three datasets,
and languages marked with a "*" signal are un-
seen languages for the models. Please refer to
Appendix C for definitions of the languages.

For classification task XNLI, our method can
achieve significant gains when k£ = 3, such as the
average performance of our method improves by
1.0% over the best baseline on the BLOOM model.
In other cases, although the overall improvement is
not significant, our method shows substantial im-

provements for low-resource languages, as shown
in Figure 3(a). Specifically, our method achieves
improvements of 3.1% and 3.6% in Swahili (sw)
and Thai (th) over the best baseline on the BLOOM
model with & = 3 respectively.

For the XCOPA dataset, the performance im-
provement is more pronounced, with average im-
provements of 2.8%, 1.6%, and 2.5% on BLOOM,
XGLM, and Llama2, respectively. Moreover, our
method achieves significant improvements, espe-
cially on multilingual models like BLOOM and
XGLM. As shown in Figure 3(b), our model
achieves improvements in low-resource languages,
with a 10.9% improvement in the unseen language
Vietnamese (vi) compared to the best baseline
based on BLOOM.

Our method also shows significant improve-
ments in average performance for more com-
plex QA tasks TyDiQA-GoldP. In BLOOM, the
improvement mainly comes from several low-
resource languages. For instance, our best results
in unseen languages Finnish (fi) and Korean (ko)
surpass the best baseline by 25.5% and 27.4%, re-
spectively. Our approach notably enhances perfor-
mance across the other two models as well, partic-
ularly on the English-centric LLM Llama2, where
the mean improvement is 9.6%.

Experimental results show that training the topic
model on BLOOMZ-1b7 and selecting appropriate
contextual data can improve performance across
different LLM architectures. From a task-level
perspective, our method achieves greater improve-
ments in relatively complex reasoning and question-
answering tasks. It indicated our method makes
successful use of the Bayesian theorem for non-
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classification tasks ICL. Topic-XICL consistently
outperforms the cluster baseline, indicating that
our approach’s superiority isn’t solely derived from
simple semantic clustering.

5 Analysis

The experimental results show that our topic model
has effectively learned latent information beneficial
for in-context learning. We visualized the embed-
dings of the topic tokens to understand the rela-
tionships between each category. Through case
studies, we observed the characteristics of repre-
sentative demonstrations for a topic. Furthermore,
we explored our method in terms of model scale
and source language.

5.1 Visualization of topic token embedding

As shown in Figure 4, the embeddings of the 20
topics in the topic model trained on the TyDiQA-
GoldP dataset are distributed in about three to four
distinct regions. This clustering indicates that our
topic model can recognize the similarities between
different topics. For example, the twelfth topic
"t12" and the thirteenth topic "t13" belong to dif-
ferent clusters but are close in the token sequence
space. This demonstrates that even if the initial
clustering is not very precise, our topic model can
still effectively identify and group similar topics.

Therefore, our model can adapt to different seed
settings of initial clustering, resulting in a lower
standard deviation, as shown in Figure 4. For non-
classification tasks, where topic classification is
inherently ambiguous, our method shows adapt-
ability. This illustrates that our framework can ex-
tend the application of Bayesian theory in context
sample selection to a wider range of tasks.

5.2 Case Study

We observed the characteristics of representative
examples from different topics in TyDiQA-GoldP.

XNLI

strong baseline
Topic_XICL
Topic_XICL w/ 560m

Accuracy (%)
w w & &
g 8 &8 B

@
®

en zh fr e ar i hi ur sw *bg *de *el *ru *th *tr AVG

XCOPA

en zh vi id sw *et *ht *it *qu *ta *th *tr  AVG

TyDiQA-GoldP

Figure 5: The 2-shot performance of BLOOM in three
tasks based on the Topic-XICL model trained with fewer
parameters (BLOOMZ-560m).

For instance, examples from the ninth topic "t9"
mainly consist of paragraphs introducing an item
or concept; those from the fourth topic "t14" relate
to population themes; and examples from the third
topic "t3" have longer answers, not just a single
noun or short phrase. These samples show that
our topic inference method incorporates more in-
formation than just semantic similarity. Details are
provided in Appendix E.

5.3 Results with Less Parameter Topic Model

Since the cluster boundaries of source language
candidates may not be very clear, we primarily con-
ducted experiments on the BLOOMZ model with
1.7 billion parameters and also experimented with a
smaller BLOOMZ model with 560 million param-
eters (BLOOMZ-560m). Fig. 5 shows the ICL re-
sults on the BLOOM model for three datasets with
k = 2. Our method consistently outperforms the
strongest baseline in terms of mean performance
on the three tasks. As shown in the figure, using
the BLOOMZ-560m model to learn the latent topic
model improves performance on tasks in visible
languages in the XNLI task, but the advantage is
not significant for unseen languages. On XCOPA
and TyDiQA-GoldP, the topic model based on
BLOOMZ-560m also lags behind the BLOOMZ-
1b7 model, primarily in unseen languages.

5.4 Results with Other Source Languages

For multilingual LLMs, besides English, other
languages like Chinese and Italian have signifi-
cant pre-training data. We translated the English
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Figure 6: Results of 4-shot ICL for Individual Languages in XCOPA by the Topic-XICL model trained with Chinese

and Italian.

XCOPA training data into Chinese and Italian using
the Google Translation API and conducted exper-
iments with these translations as source language
data. The results are shown in Table 2, and perfor-
mance in various languages is detailed in Figure 6.
Since the Chinese have relatively more pre-training
data than other languages in BLOOM and XGLM,
the ICL performance of Topic-XICL demonstra-
tions in it consistently outperforms the strongest
baselines.

However, Italian also has a substantial amount
of training data in XGLM, but the average per-
formance of Topic-XICL in it is worse than the
English-based baseline. Nonetheless, Topic-XICL
based on Italian showed significant improvements
in Chinese and unseen languages like Thai (non-
Latin script) on XGLM. On BLOOM, using Italian
as the context language for unseen languages also
yielded good results. For non-English contexts,
it is difficult to predict performance based on the
amount of training data or language similarity, and
the conclusions can vary across different models.

Zhang et al. (2024) conducted a multidimen-
sional study on ICL for low-resource languages
and found that the effectiveness of demonstration
samples varies significantly across different mod-
els, tasks, and languages. This is similar to our con-
clusions. They also found that carefully designed
templates can completely eliminate the benefits
of demonstration samples for some tasks and lan-
guages. In our experiments, we also observed that
for a few languages, changing the prompt could
yield greater benefits than ICL. However, this phe-
nomenon is not consistent across all languages, pos-
ing a challenge for automatic multilingual prompt

Model | method k=2 k=3 k=4
best basline 51.67 51.43 51.87
Topic_XICL 53.92 5450 54.41

BLOOM | Topic_XICL w/ Chinese | 52.98 52.85 53.03
Topic_XICL w/ Italian 5240 52.83 52.68
best basline 50.84 52.23 5222
Topic_XICL 53.07 53.53 53.12

XGLM | Topic_XICL w/ Chinese | 53.18  53.18  52.87

Topic_XICL w/ Italian 51.78 51.87 5222

Table 2: The average accuracy of the Topic-XICL model
trained with Chinese and Italian.

design. Our primary focus is on comparing the
performance of ICL sample selection, and prompt
selection will be reserved for future work.

6 Conclusion

In this work, we explore cross-lingual demonstra-
tion selection from a more informative latent topic
perspective. We propose a demonstration selection
algorithm based on topic inference (Topic-XICL)
for cross-lingual in-context learning. Our approach
requires learning the latent topic model on fewer
parameters LLMs and selecting appropriate rich-
resource language demonstrations for each topic
of the target input by computing topic inference
probabilities. One-time demonstration selection
for a task can be generalized across various LLMs.
We validate the effectiveness of our method on
three task categories and three models and analyze
that the latent topic variables indeed capture useful
diversity information for cross-lingual in-context
learning.



Limitations

Due to the computation constraints, we were not
able to experiment with our framework on larger
LLMs or other tasks. The experiments confirm that
different clustering parameter choices yield diverse
outcomes. However, as we did not prioritize explor-
ing the selection of clustering methods, we leave
it for future iterations of our method to delve into
and explore this aspect further.
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A Empirical guidelines For Hyper-parameter Selection

Regarding the choice of the number of topics (n) and tokens (c), there are empirical guidelines. For tasks
with a large amount of English candidate data (greater than or equal to 2000), the number of clustering
categories is set to n = 20, and for tasks with other data sizes, it is selected from (5, 10, 15), such as
XCOPA with only 500 training data, which chooses n = 5. As for the topic tag sequence length, it is set
to ¢ = 10 for general classification tasks, and ¢ = 15 for tasks that require reasoning or understanding of
longer texts.

B Prompt Template

Table 3 shows the prompt template we used for three tasks.

Dataset | Prompt

<premise> question: <hypothesis>. True, False, or Inconclusive?

XNLI Answer: [True/False/Inconclusive]
Question: What might be the cause of / What might have happened as a result of "<premise>"?
Options:
XCOPA 1-<Choicel>

2-<Choice2>
You should tell me the choice number 1 or 2.
Answer: [1/2]

Passage: <passage>
TyDiQA-GoldP | question: <question>
Answer: [a span in passage]

Table 3: Prompt template for three tasks.

C Low-resource Languages

All 24 languages in the three datasets are not always pre-trained on the three baseline LLMs. Based
on the language distribution in the pre-training data for each model, we selected some languages as
low-resource or unseen languages, as shown in Table ??. For BLOOM (Scao et al., 2022), English training
data accounts for 30.4% of the total, with pre-training data covering 46 natural languages. We define
languages accounting for less than 0.1% as low-resource languages, and languages without training data
are unseen languages. In XGLM (Lin et al., 2022), with 7.5 billion parameters, English tokens constitute
48.99%. 1t is pre-trained in 30 natural languages, including all 24 languages we evaluate. We define
languages with a token ratio of less than 0.1% as low-resource languages. Llama?2 (Touvron et al., 2023) is
an English-centric LLM, with English training data making up 89.7% and covering 27 natural languages.
Its language classification standards are the same as BLOOM’s.

Dataset Task Languages Train num. Dev num.

XNLI natural language inference  English(en), German(de), Russian(ru), French(fr), Spanish(es), Chinese(zh), 10,000 5010
Vietnamese(vi), Turkish(tr), Arabic(ar), Greek(el), Thai(th), Bulgarian(bg),
Hindi(hi), Urdu(ur), Swahili(sw)

XCOPA commonsense reasoning Chinese(zh), Italian(it), Vietnamese(vi), Indonesian(id), Turkish(tr), Thai(th), 500 500
Estonian(es), Tamil(ta), Swahili(sw), Haitian(ht), Quechua(qu)
TyDiQA-GoldP  TyDiQA-GoldP English(en), Russian(ru), Indonesian(id), Korean(ko), Arabic(ar), Finnish(fi), 3,695 113-921

Bengali(bn), Telugu(te), Swahili(sw)

Table 4: The detailed information of datasets.

D Detailed Results

As shown in Figures 7, 8, and 9, we visualized the results for each language in the 4-shot setting, including
the mean and standard deviation, except for the semantic similarity method. All results are reported in
Tables 6, 7, and 8.
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Model Dataset low-resource languages extremly low-resource languages

XNLI Swahili(sw) German(de), Russian(ru), Turkish(tr), Greek(el), Thai(th), Bulgarian(bg)
BLOOM XCOPA Swahili(sw) Italian(it), Turkish(tr), Thai(th), Estonian(es), Haitian(ht), Quechua(qu)

TyDiQA-GoldP  Telugu(te), Swahili(sw) Russian(ru), Korean(ko), Finnish(fi), Bengali(bn)

XNLI Urdu(ur), Swahili(sw)
XGLM XCOPA Tamil(ta), Swahili(sw), Haitian(ht), Quechua(qu)

TyDiQA-GoldP  Bengali(bn), Telugu(te), Swahili(sw)

XNLI Vietnamese(vi), Bulgarian(bg) Turkish(tr), Arabic(ar), Greek(el), Thai(th), Hindi(hi), Urdu(ur), Swahili(sw)
Llama2 XCOPA Vietnamese(vi), Indonesian(id) Turkish(tr), Thai(th), Tamil(ta), Swahili(sw), Haitian(ht), Quechua(qu)

TyDiQA-GoldP Indonesian(id), Korean(ko) Arabic(ar), Finnish(fi), Bengali(bn), Telugu(te), Swahili(sw)

Table 5: Classification of languages for three datasets (XNLI, XCOPA, TyDiQA-GoldP) across three LLMs
(BLOOM, XGLM, LLama?2).
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Figure 7: The 4-shot performance of individual languages in XCOPA.
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Figure 8: The 4-shot performance of individual languages in XNLI.
XNLI(acc.)
Model en ar bn de el es fr hi ru sw th tr ur vi zh | AVG
BLOOM 34.1 33.6 337 33.1 334 35.8 36.5 31.0 334 329 212 33.6 333 33.1 32.7 ‘ 32.8
ICL_random 37.845.13 3514247 3474149 3454094 3454027 38.3+5.14 37.945.62 33.8+0.65 34.0+0.42 36.242.65 3494234 34.6+158 344+1.51 34.6+1.52 3424133 | 3534215
k=2 ICL_sem 379 359 36.3 35.8 36.1 38.0 376 36.2 36.2 38.8 353 36.5 34.7 38.6 35.1 36.6
~7 ICL_cluster 3574£1.63 338+£133 349402 343+11  350+£13 353£149 355158 3254109 355+035 3614047 339414  337+£028 3324093 3354083 33.7+£141 | 34.4+0.92
Topic-XICL(ours) | 38.70.11 38.1:0.08 37.8+£0.41 37.040.07 352+1.08 37.0£0.15 37.140.03 36.8+£0.62 39.0:0.44 3924038 36.7+:184 36.0+046 3744072 37.6+£137 36.8+0.09 | 37.4£0.33
ICL_random 3594329 34.8+3.24 343103 3494154 363+2.56 3514323 3504247 3424231 3504228 3434206 33.9+0.83 3331041 345+2.18 3544411 350+3.18 | 34.8£1.56
k=3 ICL_sem 383 376 36.7 357 36.6 37.6 377 36.4 373 317 34.1 36.6 36.2 38.1 36.2 36.9
7 ICL_cluster 36.441.38 35.6+2.53 3574154 35241.53 342+1.54 36.2+1.59 36.3+1.16 3494277 359418 38.0+1.46 3344094 345081 3414257 33.8+4.16 33.842.19 | 35.2£1.67
Topic-XICL(ours) | 41.1+0.69 352+0.82 37.240.09 36.8+0.42 36.7+1.02 39.8+0.61 39.94+0.41 358+0.6 37.7+0.38 41.1+1.55 37.8+1.57 341404 37.8+0.91 39.8+1.85 37.2:+0.22 | 37.9+0.25
ICL_random 33.642.17 3494234 3344064 35.0+£082 3342053 33.0£072 3354091 3514263 35.8+095 3464076 33.1+038 332+£0.61 34.1+1.19 359+3.53 353+£2.39 | 343£1.13
keq [CL_sem 389 378 358 36.3 36.5 39.0 39.3 363 373 38.1 34.1 36.1 36.6 38.1 374 372
~ ICL_cluster 36.6£1.61 363179 35.1+1.83 36.0+£1.63 339+033 36.7+148 367083 37.7+151 364+1.84 3624268 338+171 34.0£0.51 3664261 3924322 36.9+£2.07 | 36.1£1.59
Topic-XICL(ours) | 37.6+£0.33  40.6£0.51 37.2+02 3654045 3574047 3834065 37.540.78 34.6+259 37.6+025 36.5+1.12 34.6+0.11 354038 38.5+0.94 40.7+3.14 39.2+0.65 | 37.4+0.52
XGLM 32.1 37.1 34.8 343 324 33.1 324 31.8 32.8 31.8 30.5 283 332 318 28.6 323
ICL_random 33.740.53 35.842.29 33.740.21 3534127 3424093 33.840.28 33.54+0.16 34.0+0.76 34.040.52 33.5+0.15 36.5+4.3 3544273 347+1.96 33.7+0.18 34.941.62 | 34.4+0.77
k=2 ICL_sem 355 39.0 34.6 378 34.6 372 371 329 378 334 327 37.0 345 338 34.8 355
"~ ICL_cluster 3474043  37.7£15 3394038 36.3+£089 356+1.99 35.6+0.84 35.0+11 3354035 34.6+£0.59 3324016 358+1.87 37.3£235 3394035 353+2.82 354£097 | 35.2£1.05
Topic-XICL(ours) | 34.9£0.84 38.120.61 36.5+£0.51 3742073 3674047 3542054 3474024 34.4+0.69 351061 339+0.8 358+0.61 351087 35.6+1.18 35.0+£0.8 37.1:1.07 | 35.7£0.69
ICL_random 33.740.83 38.4+3.74 34.1£051 3594033 357+1.25 36.1£3.06 34.5+1.2  33.9+0.37 34.5+0.62 33.4+0.07 34.6£1.03 356+2.09 35.1+£1.14 352+1.68 34.5+0.86 | 35.0+£0.69
k=3 ICL_sem 353 38.9 35.6 377 375 38.1 372 33.0 373 344 335 36.9 323 349 34.7 35.8
"~ ICL_cluster 3474072 38.6+0.51 3444035 37.440.13 36.9+1.19 37.040.42 36.6+0.29 33.6+£0.25 36.5+0.16 33.3+0.2 34.9+196 38.0+1.97 343:+0.83 35.1£1.07 35.6+0.54 | 35.8+0.26
Topic-XICL(ours) | 34.5+0.86 ~ 39.5£1  33.840.98 38.740.62 36.4+0.94 3724031 38.340.07 35.0+0.24 37.4:+0.15 34.1+0.39 36.3+1.63 36.5£0.08 355+0.56 35.9+0.13 36.4:0.58 | 36.4+0.22
ICL_random 3374131 384+4.34 3504171 3754088 37.8+2.37 37.6£323 3594274 34.8+141 37.1+14 3384094 349404 3724433  33.7+1 3444243 3544241 | 3584142
eg [CLsem 36.0 39.0 348 38.0 37.0 379 36.8 320 37.0 322 33.0 375 30.8 328 355 354
ICL_cluster 3524073 388021 3574056 38.1£0.6 3742102 374+021 368+£0.76 339+1.01 36.8+£045 3394024 33.7+1.57 37.4£058 345+147 3524087 358£145 | 36.0£0.51
Topic-XICL(ours) | 35.8+0.78 39.7+0.68 34.6+£09 38240.65 37.7+£0.21 39.7+0.56 36.9+0.35 343+£042 372015 3504074 34.0+£22 374204 36.8+1.65 35.1+0.19 36.3+1.03 | 36.6+0.31
Llama2 48.1 37.2 41.9 410 37.1 43.6 42.1 37.8 433 322 344 37.0 359 40.2 418 39.6
ICL_random 51.944.52 385+1.54 432423 452426 37.4+1.09 46.34296 4724291 39.4+40.69 44943 3214059 35.6+1.13 38.1+£1.87 36.1+0.59 4324235 44.5+3.09 | 41.6+2.01
k=2 ICL_sem 523 38.6 4438 46.5 375 473 478 38.4 46.5 325 357 38.2 36.0 44.1 438 4.0
~7 ICL_cluster 5004226 38241  43.1+158 458£1.18 3642063 464+15  467+£14 3924116 450+£1.89  324+1 3434005 37.5£118 3544104 428+1.05 43.3+£0.96 | 41.1£1.09
Topic-XICL(ours) | 52.7+0.56  38.7+0.5 43.5+£0.33 46.6+0.33 37.8+0.22 47.9+0.35 47.840.28 43.0+0.96 454+036 34.3+0.55 36.2+0.16 38.6+0.11 38.4+0.65 46.5+£1.07 44.3+£0.43 | 42.8+0.45
ICL_random 508424  38.1+2.11 4434274 462422 3714207 46.0+3.01 4804216 386425 4494264 327403  34.6+071 37.4+2.16 36.1+171 43.0+£2.65 41.9+£3.03 | 41321
k=3 ICL_sem 532 39.7 459 478 383 49.8 49.6 384 46.9 32.8 36.7 39.0 36.2 450 448 429
7 ICL_cluster SLI1£135 388+£1.16 447406 4744114 378+1.13 47.9£145 47.740.56 39.2+1.54 459£139 33.1+0.69 354:+0093 38.6:0.66 363+1.05 443:£1.14 43.6+143 | 42.1+1
Topic-XICL(ours) | 54.14£0.56  39.5+0.5  45.6+0.4 46.3+0.36 37.6+0.23 49.3+0.22 49.940.27 40.9+0.56 48.4:+0.47 33.6+0.51 36.5+0.17 39.2£0.07 36.9+0.42 46.5+0.83 46.4::0.44 | 43.4+0.37
ICL_random SLI£L71 37.041.4 4394188 4724196 372+1.75 46.7+1.98 48.0+1.99 39.0+2.41 4554222 325403 348+1.08 37.4+149 357+1.69 4254253 41.9+£1.45 | 41.4£1.67
k=4 ICL_sem 54.0 40.7 46.7 48.6 38.7 50.3 50.6 38.4 479 33.0 37.1 40.2 36.6 453 457 436
ICL_cluster 51.9+0.83 392094 4544103 47.3+£084 3755042 483+1.12 488+0.76 39.6:1.4 46.5£091 3324093 358+0.81 39.0£141 3654145 44.1£1.63 439+£1.12 | 425+1
Topic-XICL(ours) | 5442032 40.0£0.12  46.1+£0.1 47.640.17 38.7+0.13 50.1£0.17 5104029 4244042 49.3£0.1 34.6:0.11 37.6+£0.16 39.8+0.13 39.3+£0.33 458+0.38 46.6:0.07 | 44.2:0.05

Table 6: Accuracy of XNLI in 15 languages based on BLOOM-7b1, XGLM-7.5b and Llama-2-7b models.
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Figure 9: The 4-shot performance of individual languages in TyDiQA-GoldP.
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XCOPA(acc.)

Model en et ht id it qu swW ta th tr vi zh ‘ AVG
BLOOM 45.8 49.8 49.6 49.8 49.4 50.2 49.6 49.4 50.4 50.0 51.0 50.4 ‘ 49.6
ICL_random 56.4+£0.93 49.5+0.34 49.6+1.31 51.6+0.9 50.1+0.33 50.9+1.33 49.6+1.75 51.6+0.75  52.840  53.240.68 50.9+0.82 49.6+0.43 | 51.3+0.4
k=2 ICL_sem 552 49.0 44.8 524 47.0 52.6 50.2 54.2 53.0 524 49.2 49.0 50.8
~" ICL_cluster 57.4+0.65 49.5+0.82 50.5+£0.9 52.3+0.57 49.840.29 49.9+0.84 50.5+£0.29 53.1+0.82 52.6+1.02 53.0+1.72 51.0£1.72 50.54+0.62 | 51.7+0.09
Topic-XICL(ours) | 58.0+0  53.840.82 50.4+0.66 53.6+1.36 50.8+£0.9 52.440.19 55.0+1.32 53.6+1.43 53.8+0.93 54.0+1.71 56.8+1  54.8+0.62 | 53.9+0.13
ICL_random 56.6+0.34 51.1+0.49 49.4+0.93 51.9+0.81 50.3+0.47 51.9+1.52 50.440.52 50.5+0.78 5244098 53.3+£0.34 49.5+0.19 49.94+0.62 | 51.4+0.21
k=3 ICL_sem 56.0 50.0 51.0 522 46.8 482 478 514 53.6 538 46.6 47.6 50.4
7 ICL_cluster 5824029 48.6+043 49.7+0.52 52.6+0.16 4824047 49.4+1.16 50.340.68 48.9+0.84 52.9+0.96 53.5+0.75 50.7+0.57 48.5+0.38 | 51.0+0.26
Topic-XICL(ours) | 58.6+0.66 50.2+0.9 53.2+0.34 53.2+0.9 51.4+0.56 52.0+-0.84 52.0+0.66 54.2+1.73 56.4+1.57 54241 61.6+1.14 57.0+0.57 | 54.5+0.09
ICL_random 57.3+£0.34 49.6+0.68 49.1+0.85 51.740.9 49.9+0.41 50.1+£0.57 50.0£0.65 52.1+0.73 523=£1.18 53.7+0.1 49.840.66 49.940.65 | 51.3+0.29
ked ICL_sem 56.8 49.0 514 516 51.0 48.8 492 532 54.8 54.6 50.0 474 51.5
~ " ICL_cluster 59.3+0.19 49.7+0.33 50.3+0.47 52.1£0.78 49.9+1.23 499+1.14 50.3%0.19 52.9+0.9 53.1+0.1 54.440.71 49.9+0.16 50.6+0.66 | 51.9+0.17
Topic-XICL(ours) | 59.4+0.75 54.0+0.87  50.4+1  53.0+0.34 50.8+1.39 51.0+1.14 55.6+0.49 53.2+0.34 53.6+1.96 55.2+0.85 58.6+1.7 58.0+0.41 | 54.4+0.16
XGLM 50.4 50.8 49.0 47.0 49.6 492 484 494 552 46.4 50.0 50.4 49.7
ICL_random 50.8+0.43 50.5+2.42 49709 50.3+0.25 54.6+2.44 50.1+£0.68 49.2+1.11 50.3+1.09 49.9+0.66 51.743.56 50.5+£2.08 52.542.69 | 50.8+0.92
k=2 ICL_sem 53.0 522 46.0 512 492 53.0 50.4 46.2 552 50.2 46.2 53.0 50.5
~" ICL_cluster 50.7+0.73  49.1+0.47 49.240.65 50.440.1  50.3+0.1 48.9+0.87 46.5+0.5 48.9+0.25 57.3+0.34 50.6+0.5 50.3+0.1 53.5+0.84 | 50.5+0.08
Topic-XICL(ours) | 54243  54.840.47 51.6+2.77 54.6+0.92 53.6+1.73 51.4%1.15 51.6+0.47 54.0+0.92 54.6+023 50.84+0.92 51.6+0.69 54.0+0.81 | 53.1+0.1
ICL _random 49.3£1.22 52.9+£1.07 49.0£0.68 50.9+1.22 58.9+2.34 49.8+£043 48.7+£0.57 50.6+£0.85 51.3+£0.94 53.4+2.16 50.84£0.56 53.840.91 | 51.640.71
k=3 ICL_sem 52.8 532 52.0 538 532 51.0 474 49.6 55.6 54.0 51.0 532 522
~  ICL_cluster 50.1£1.14  51.5+0.78 50.1+£0.66 51.3+0.73 56.2+0.66 49.9+0.34 48.9+0.56 49.3+0.41 57.7+0.41 53.5+0.1 50.7+£0.57 53.94+0.85 | 51.9+0.22
Topic-XICL(ours) | 53.4+1.23 55.6+0.99  52.2+1 5344139 56.6+0.16 52.0+1.32 51.4+1.73 51.240.16 56.24+0.57 55.0+0.62 51.4+1.09 54.0+0.84 | 53.5+0.24
ICL_random 49.340.57 52.8+1.63 50.0£0.62 50.1+0.5 5474238 50.1+0.41 48.7+0.84 49.7+0.75 50.5+0.41 51.74+238 50.3+0.47 52.440.85 | 50.94+0.49
k4 ICL_sem 54.0 50.6 51.6 524 52.0 49.8 504 514 56.4 526 522 532 522
" ICL_cluster 50.8+£1.42 51.94+0.82 489+0.5 50.3+091 555405 50.3+0.66 52.3+0.99 49.8+0.5 57.2+0.62 52.6+0.41 50.4+0.66 54.6+0.1 | 52.1+0.22
Topic-XICL(ours) | 51.84+0.82 54.0+1.52 52.0+£0.71 54.6+1.2 55.8+1.45 51.840.9 52.0+0.68 51.4+0.84 56.240.33 53.2+0.82 52.0+0.16 52.64+0.25 | 53.1+0.11
Liama2 57.8 44.8 482 51.8 524 46.8 49.0 49.0 49.6 524 50.0 55.0 50.6
ICL_random 82.0+£2.08 49.041.88 48.3+227 61.1£1.25 68.8+1.91 5034096 49.4+1.22 48.6+1.25 51.5+£0.43 54.441.79 57.840.25 64.240.82 | 57.1+0.36
k=2 ICL_sem 79.6 50.2 46.8 594 68.2 48.8 494 48.8 54.6 54.0 63.2 65.4 574
~~ ICL_cluster 80.7£0.41  50.0+0.5 50.6+1.06 59.8+1.27 69.0+0.78 50.4+0.73 50.3+0.78 48.9+0.66 52.1+0.19 53.3+1.14 57.8+1.32 66.1+2.14 | 57.4+0.3
Topic-XICL(ours) | 84.0+0.96 53.2+0.93 51.8+0.96 63.4+1.45 72.6+1.71 52.0+3.21 52.4+1.56 51.2+0.75 54.4+1.63 55.6+1.8 62.0£1.36 67.2+0.81 | 60.0+0.18
ICL _random 77.6£1.8 489+2.62 49.942.29 6244226 68.4+2.69 50.5+2.78 48.7+0.71 47.5+1.23 52.1+£1.06 553+1.72 60.2+1.55 64.04£2.29 | 57.1+1.09
k=3 ICL_sem 78.8 50.6 522 62.4 71.0 50.6 47.6 492 514 56.0 62.2 67.2 58.3
~7  ICL_cluster 81.9+0.96 48.8+£0.1 51.3+0.16 63.0+1.11 70.3+£0.25 49.8+0.68 49.9+0.9 49.1+0.81 54.3+0.16 54.0+1.09 59.3+£0.9 67.1+0.62 | 58.2+0.26
Topic-XICL(ours) | 84.4+1.31 54.0+3.69 53.6+0.19 64.0+1.31 72.8+1.73 51.8+1.14 51.6+1.09 51.4+0.25 53.8+1.82 56.1+1.8 62.0+£1.09 69.8+2.34 | 60.4+0.17
ICL_random 79.3+3.44  50.1£1.11 5124179 60.2+0.59 69.3+0.87 5044239 51.9+1.37 49.0+£0.25 53.5£1.8 54.0+1.85 59.0+1.89 64.14+2.16 | 57.7+£0.42
k=4 ICL_sem 80.8 52.0 47.0 61.6 69.6 512 514 474 512 54.0 60.6 65.4 577
~  ICL_cluster 81.4+0.41 50.5+0.49 49.5+0.41 60.9+£0.25 69.94£0.41 5174041 50.5+043 48.5+0.38 52.5+0.34 54.5+0.43 59.0+0.41 66.1£0.25 | 57.9+0.14
Topic-XICL(ours) | 84.4+1.05 55.2+1.52 52.4+0.43 64.6+2.53 72.2+0.38 52.242.62 52.8+1.55 49.6+0.5 54.2+1.98 54.6+0.33 64.4+0.93 70.6+3.51 | 60.6+-0.22

Table 7: Accuracy of XCOPA in 12 languages based on BLOOM-7b1, XGLM-7.5b and Llama-2-7b models.

E Case Study

Table 9 shows the representative examples selected from some topics in TyDiQA-GoldP.
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TyDiQA-GoldP(F1)

Model ar bg en fi id ko ru swW te ‘ AVG
BLOOM 28.8 28.9 29.0 4.1 28.1 2.6 12.3 27.9 215 ‘ 20.3
ICL_random 38.1+£0.92 42.3+0.56 32.8+1.01 4.840.3 39.9+1.76 3.3+0.19 21.9+1.94 31.7£2.18 26.5+0.42 | 26.84+0.91
k=2 ICL_sem 42.7 42.8 39.0 4.8 43.7 3.7 23.5 36.0 27.3 29.3
" ICL_cluster 40.9+1.24 40.8+1.05 38.1£0.89 5.0+0.2 44.1+£1.85 324026 24.240.6 36.1+3.07 25.2+1.98 | 28.6+0.54
Topic-XICL(ours) | 45.7+0.78 45.7+0.96 44.7+0.6 30.5+0.14 33.8£0.23 31.1£0.16 30.5£0.45 31.8£1.16 31.8+1.7 | 36.2+0.23
ICL_random 39.5+1.54 42.842.64 343£1.75 4.8+0.01 41.3£2.15 3.6+0.06 229+1.28 339426 28.1+0.8 | 27.94+1.37
k=3 ICL_sem 41.9 42.3 39.5 4.6 43.2 32 24.6 37.7 27.4 29.4
7 ICL_cluster 40.1+1.34  40.742.03 36.5+1.11 4.9+031 41.940.85 3.2+032 2344225 33.240.79 27.1+0.56 | 27.9+£0.6
Topic-XICL(ours) | 43.6+0.82 43.3+0.86 42.5+0.89 29.2+0.05 31.9+0.56 29.44+0.4 28.7+0.9 32.6+£0.39 29.9+0.77 | 34.6+0.36
ICL_random 4294+1.01 43.7+0.54 39.240.28 5.3+0.17 4524+1.01 3.5+£0.03 26.54+0.65 33.6+1.05 28.9+0.9 | 29.9+0.4
K= ICL_sem 42.1 43.8 38.2 4.4 42.6 2.7 24.6 37.2 27.9 293
" ICL_cluster 40.9+0.35 42.0+4.06 36.6+1.57 4.8+£0.14 41.44+0.82 3.9+032 23.6+0.69 34.0+2.06 28.442.69 | 28.4+0.24
Topic-XICL(ours) | 44.2+0.41 43.6+04 43.1+£0.29 29.7+0.33 40.2+0.28 29.8+£0.36 29.3+0.35 31.1+0.7 30.2+1.47 | 35.7+0.3
XGLM 23.6 18.7 8.5 12.6 10.8 8.7 79 25.2 25.8 15.8
ICL_random 26.1£0.69 20.3£1.49 13.2+1.83 15.6£0.88 18.8£1.18 14.1£091 11.6£0.72 21.7£0.15 27.8£0.36 | 18.840.58
=2 ICL_sem 27.0 21.6 17.1 17.6 21.5 16.1 13.4 23.8 28.2 20.7
" ICL_cluster 26.7£0.43 17.6£1.31 154+1.08 16.6£091 18.7£0.34 13.6£0.14 12.1£0.24 20.9+£0.25 27.3+0.51 | 18.8+0.1
Topic-XICL(ours) | 31.5+0.46 29.7+0.82 25.0+£0.77 22.7+0.78 22.0+£0.43 21.5+£0.29 19.9+£0.43 227404 28.1£0.19 | 24.840.25
ICL_random 2594024 20.0£1.54 13.6£1.34 16.7£1.89 18.5+0.16 13.7£0.92 12.0£1.22 20.9+£0.59 27.3+0.8 | 18.74+0.55
k=3 ICL_sem 26.4 19.5 18.0 19.1 21.1 153 12.6 23.5 27.2 20.3
7 ICL_cluster 264403 1924057 16.7£091 18.5+0.18 19.4+0.92 13.4+0.32 12.2+0.33 22.1+0.87 28.0+0.63 | 19.5+0.11
Topic-XICL(ours) | 30.9+£0.19 29.3+0.82 24.8+0.16 22.2+0.49 21.5+£0.45 20.9+£0.33 19.3+0.22 22.9+0.15 27.4+0.27 | 24.4+0.08
ICL_random 26.7£0.47 20.1£1.68 16.1£2.86 18.4+34 20.4+0.62 14.1£1.01 12.9+1.78 21.4+0.38 27.7+£5.63 | 19.840.96
K=t ICL_sem 25.7 20.0 20.2 19.2 219 15.9 12.6 244 27.4 20.8
" ICL_cluster 26.4+0.37 20.0£0.68 18.3+0.76 18.1£0.73 20.0+0.24 13.9£0.38 12.5+0.37 22.1£0.99 26.6+0.69 | 19.84+0.14
Topic-XICL(ours) | 30.6+£0.13 29.1+0.69 24.6+0.24 22.3+0.49 21.6+£0.52 20.9+0.49 19.3+£0.33 21.8+0.3 30.4+0.53 | 24.5+0.24
Llama2 15.4 1.1 453 38.9 33.6 21.4 29.7 31.4 0.5 24.1
ICL_random 17.7+1.39  4.3+0.87 60.3+5 43.94+7.1 4394297 26.5+3.18 2824391 24.5+3.04 4.6+0.12 | 28.24+2.49
k=2 ICL_sem 17.4 49 61.7 45.4 439 245 29.5 274 6.5 29.0
" ICL_cluster 2544058 6.5+2.16 632423 44.14£2.39 44.4+3.04 38.8+£0.42 29.6£1.41 26.7£1.85 3.24+0.22 | 31.34+0.77
Topic-XICL(ours) | 27.9+0.6 26.0+1.15 69.2+1.91 50.3+0.4 51.7+1.04 43.7+2.31 35.8+£1.09 37.7£1.76 30.8+£0.09 | 41.4+0.24
ICL_random 17.241.06 4.2+0.51 64.1+2.29 46.6+1.87 47.742.55 28.0+0.87 29.94+2.31 32.441.33 10.14+0.37 | 31.1+1.16
k=3 ICL_sem 18.0 4.5 65.2 47.0 471 26.8 31.8 30.6 8.5 31.0
7 ICL_cluster 25.8£0.82 6.2+2.06 65.9+0.51 454+1.72 452+0.69 37.5+£0.37 30.4+0.69 27.8+2.34 7.5+0.02 | 32.4+0.36
Topic-XICL(ours) | 29.2+0.14 26.9+1.71 68.8+2.44 52.1+1.44 52.2+0.97 39.9+1.48 38.9£1.43 39.4+1.6 32.4+0.02 | 42.2+0.27
ICL_random 18.2+1.61 6.8+1 66.9+£3.67 49.5+2.73 50.1£2.17 27.24+1.06 32.7£1.89 36.0+2.02 10.1+£0.05 | 33.1+1.45
Ked ICL_sem 19.0 6.5 66.6 48.4 472 27.3 32.7 29.9 11.0 321
" ICL_cluster 264+0.42 6.5+1.54 66.0£0.94 48.3£1.32 4744205 369+1.58 31.3£1.89 322+231 8.6+048 | 33.7+0.29
Topic-XICL(ours) | 31.1+0.33  28.7+2.41 64.0£2.76 52.3+1.38 54.6+£0.77 42.5+1.54 40.1£1.85 37.9£0.77 33.0+£0.33 | 42.7+0.55

Table 8: F1 score of TyDiQA-GoldP in 9 languages based on BLOOM-7b1, XGLM-7.5b and Llama-2-7b models.
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Topic

Passage

Top-4 Examples
Question

Answer

3

Magnetoreception (also magnetoception) is a sense which al-
lows an organism to detect a magnetic field to perceive direction,
altitude or location. This sensory modality is ...

In most countries, the academic year begins in late summer or
early autumn and ends during the following spring or summer.
In Northern Hemisphere countries, this means that the academic
year lasts from August, September, or October to May, June, or
July...

Cuneiform law refers to any of the legal codes written in
cuneiform script, that were developed and used throughout
the ancient Middle East among the Sumerians, Babylonians,
Assyrians, Elamites, Hurrians, Kassites, and Hittites.[1] The
Code of...[1]

The view of most scholars (see organology) is that the term
"brass instrument" should be defined by the way the sound is
made, as above, and not by whether the instrument is actually
made of brass. Thus one finds brass instruments made of wood,
like...

Do birds use magnetorecep-
tion?

How long does a school year
last in Germany?

‘What is cuneiform law?

Why are they called brass in-
struments?

Magnetoreception (also magnetoception) is a sense which
allows an organism to detect a magnetic field to perceive
direction, altitude or location

from August, September, or October to May, June, or July

any of the legal codes written in cuneiform script, that were
developed and used throughout the ancient Middle East
among the Sumerians, Babylonians, Assyrians, Elamites,
Hurrians, Kassites, and Hittites

the term "brass instrument' should be defined by the
way the sound is made, as above, and not by whether the
instrument is actually made of brass

Ice wine (or icewine; German: Eiswein) is a type of dessert
wine produced from grapes that have been frozen while still on
the vine...

Earth’s magnetic field, also known as the geomagnetic field,
is the magnetic field that extends from the Earth’s interior out
into space, where it meets the solar wind...

The lux (symbol: Ix) is the SI derived unit of illuminance and
luminous emittance, measuring luminous flux per unit area.[1]
It is equal to one lumen per square metre...

General speed limits in Germany are set by the federal gov-
ernment. All limits are multiples of Skm/h. There are two
default speed limits: 50km/h (31mph) inside built-up areas and
100km/h (62mph) outside built-up areas. While parts of the
autobahns and many other freeway-style highways have posted
limits up to 130km/h (81mph) based on accident experience,
congestion and other factors, many rural sections have no gen-
eral speed limit...

What makes an ice wine an ice
wine?

What is the magnetic force of
the Earth?

What is the unit of measure-
ment for light brightness?

How fast can you drive on the
Autobahn?

produced from grapes that have been frozen while still on the
vine
Earth’s magnetic field

lux

130km/h

tl4

The demography of France is monitored by the Institut national
d’études démographiques (INED) and the Institut national de
la statistique et des études économiques (INSEE). As of 1 Jan-
uary 2018, 67.19 million people lived in France (67,186,638),
including all the five overseas departments (2,141,000), but ex-
cluding the overseas collectivities and territories (604,000).[1]
65,017,000 of these lived in Metropolitan France, which is main-
land France located in Europe.

The Balkans are usually said to comprise Albania, Bosnia and
Herzegovina, Bulgaria, Croatia, Kosovo,[a] the Republic of
Macedonia, Montenegro, Romania, Serbia and Slovenia, while
Greece and Turkey are often excluded. Its total area is usually
given as 666,700 square km (257,400 square miles) and the
population as 59,297,000 (est. 2002).[38][39]

In United States, the poverty thresholds are updated every year
by Census Bureau. The threshold in United States are updated
and used for statistical purposes. In 2015, in the United States,
the poverty threshold for a single person under 65 was an
annual income of US$11,770; the threshold for a family group
of four, including two children, was US$24,250...

The metropolis is an alpha global city as listed by the Glob-
alization and World Cities Research Network. In 2011, the
population of the city of Johannesburg was 4,434,827, making
it the most populous city in South Africa.[4] In the same year,

How many people live in
France?

What countries are on the

Balkan Peninsula?

What’s the poverty line in
America?

How large is Johannesburg’s
population?

67.19 million

Albania, Bosnia and Herzegovina, Bulgaria, Croatia,
Kosovo,[a] the Republic of Macedonia, Montenegro, Roma-
nia, Serbia and Slovenia

24250

4434827

Table 9: The top-4 representative samples of some topics in TyDiQA-GoldP selected by our Topic-XICL model.
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