
WaveCoder: Widespread And Versatile Enhancing Code Large
Language Models By Instruction Tuning

Anonymous ACL submission

Abstract

Recent work demonstrates that, after instruc-001
tion tuning, Code Large Language Models002
(Code LLMs) can obtain impressive capabil-003
ities to address a wide range of code-related004
tasks. However, current instruction tuning005
methods for Code LLMs mainly focus on the006
traditional code generation task, resulting in007
poor performance in complex multi-task scenar-008
ios. In this paper, we concentrate on multiple009
code-related tasks and present WaveCoder, a010
series of Code LLMs trained with Widespread011
And Versatile Enhanced instruction data. To012
enable the models to tackle complex code-013
related tasks, we propose a method to stably014
generate diverse, high-quality instruction data015
from open source code dataset in multi-task sce-016
narios and obtain CodeOcean, a dataset com-017
prising 19,915 instruction instances across 4018
code-related tasks, which is aimed at improving019
the generalization ability of Code LLM. Our020
experiments demonstrate that WaveCoder mod-021
els significantly outperform other open-source022
models in terms of the generalization ability023
across different code-related tasks. Moreover,024
WaveCoder-Ultra-6.7B presents the state-of-025
the-art generalization abilities on a wide range026
of code-related tasks.027

1 Introduction028

Recently, Large Language Models (LLMs) such029

as ChatGPT, GPT-4 (OpenAI, 2023), and Gem-030

ini 1 have attained unprecedented performance lev-031

els in a broad array of NLP tasks. These models032

utilize a self-supervised pre-training process, and033

subsequent supervised fine-tuning to demonstrate034

exceptional zero/few-shot capabilities, effectively035

following human instructions across various tasks.036

For code-related tasks, several previous works,037

including Codex (Chen et al., 2021), StarCoder (Li038

et al., 2023a), CodeLLaMa (Roziere et al., 2023)039

1https://deepmind.google/technologies/
gemini

and DeepseekCoder (Guo et al., 2024), have suc- 040

cessfully demonstrated that pre-training on code 041

corpus can significantly improve the model’s ca- 042

pability to tackle code-related problems. After the 043

process of pre-training, instruction tuning (Wei 044

et al., 2022; Aribandi et al., 2022; Chung et al., 045

2022) has shown its effectiveness in the aspect of 046

improving the quality of LLM responses. To specif- 047

ically enhance the performance of Code LLMs 048

on code-related tasks through instruction tuning, 049

many existing methods for instruction data gen- 050

eration have been designed. For example, Code 051

Alpaca (Chaudhary, 2023) utilizes the method of 052

self-instruct (Wang et al., 2023a) within the cod- 053

ing domain, leveraging the few-shot capabilities 054

of teacher LLM to generate instruction data. Sim- 055

ilarly, WizardCoder (Luo et al., 2024) applies the 056

evol-instruct (Xu et al., 2024) approach based on 057

Code Alpaca, demonstrating a novel and effec- 058

tive method for the generation of instruction data. 059

These applications underscore the potential of uti- 060

lizing teacher LLMs to produce instructional con- 061

tent effectively, thereby offering an avenue for the 062

creation of instruction data in the code domain. 063

However, the quality of the data they generate heav- 064

ily relies on the performance of the teacher LLM 065

and the limited initial seeds, which often produces a 066

large amount of duplicate instruction instances and 067

reduce the effectiveness of instruction tuning (Xu 068

et al., 2022; Yan et al., 2023; Lee et al., 2022). To 069

break away from dependence on teacher LLMs, Oc- 070

topack (Muennighoff et al., 2024) constructs a code 071

instruction dataset leveraging the natural structure 072

of Git commits. Nonetheless, ensuring the qual- 073

ity of data in git messages presents a considerable 074

challenge, and the comprehensive screening of data 075

through artificial filtering rules is often a complex 076

task. Additionally, these endeavors are predomi- 077

nantly centered on traditional code generation tasks 078

and lack the capability to produce detailed, task- 079

specific instructions in multi-task scenarios. 080

1

https://deepmind.google/technologies/gemini
https://deepmind.google/technologies/gemini

Manually-
defined rules

Code Embedding Space

Coreset
Generation

Raw Code Coreset

Raw data Collection Instruction Data Generation

LLM Generator LLM Discriminator

Bad Generation

Good Generation

zero/few shot

Example Database

Training Process

Base Language Model

Good Generation

CodeOcean

Instruction
tuning

WaveCoderProblem solving

Foundation dataset

Task definition:
Ø Code generation
Ø Code summary
Ø …

Task rule:
Ø Check the input
Ø Check the generation
Ø …

Input:…
Generation:

A

B Generator setting

Discriminator settingC

Reformatting the
good generation
to instruction data

Raw Code

A B C

Raw code collection

KcenterGreedy

D

D Training process

Figure 1: The overview of the widespread and versatile enhancement for Code LLM. Part B and C indicates
the LLM-based Generator and LLM-based Disciminator where the generator can leverage different examples in
example database by in-context learning.

In this paper, we primarily focus on multiple081

code-related tasks, aiming to generate high-quality082

and diverse instructional data tailored to specific083

task requirements. Addressing the aforementioned084

challenges, we refine the instruction data by clas-085

sifying the instruction instances to four univer-086

sal code-related tasks in CodeXGLUE (Lu et al.,087

2021): 1) Code Summarization, 2) Code Gener-088

ation, 3) Code Translation, 4) Code Repair and089

propose a widespread and versatile enhanced in-090

struction generation method that could make full091

use of open source code data and stably generate092

high quality and diverse instruction data in multi-093

task scenarios. By this generation strategy, we ob-094

tain a dataset of 19,915 instruction instances across095

four code-related tasks., termed CodeOcean.096

To validate our approach, we train StarCoder (Li097

et al., 2023a), CodeLLaMa (Roziere et al., 2023),098

and DeepseekCoder (Guo et al., 2024) with our099

initial CodeOcean dataset and get WaveCoder.100

Following a thorough assessment on HumanEval101

(Chen et al., 2021), MBPP (Austin et al., 2021),102

HumanEvalPack (Muennighoff et al., 2024) bench-103

marks, experimental results show that our Wave-104

Coder exhibits outstanding generalization ability105

based on widespread and versatile enhanced in-106

struction tuning. Moreover, to further explore107

the improvements brought by data quality, we use108

GPT-4 (OpenAI, 2023) to regenerate response for109

the instruction in CodeOcean. Fine-tuned with110

the enhanced 20K CodeOcean dataset, we ob- 111

tain WaveCoder-Pro-6.7B which achieve 72.0% 112

pass@1 on HumanEval (Chen et al., 2021) and 113

surpass open source Code LLMs but still behind 114

SoTA Code LLM. Combining enhanced CodeO- 115

cean with WaveCoder-evol-instruct, the decontami- 116

nated Magicoder-evol-instruct 2 dataset, we present 117

WaveCoder-Ultra-6.7B, with SoTA generalization 118

capabilities on multiple code-related tasks. 119

2 CodeOcean: Four-task Code-related 120

Instruction Data 121

2.1 Tasks Details 122

Given the code-related tasks from CodeXGLUE 123

(Lu et al., 2021), we select four of the most uni- 124

versally representative and common tasks from the 125

three generative tasks (code-to-text, text-to-code, 126

and code-to-code) for further exploration includ- 127

ing Code Summarization, Code Generation, Code 128

Translation, and Code Repair. Detailed descrip- 129

tions of these tasks can be found below. 130

Code Summarization (code-to-text). This task 131

aims to create a brief summary of a given code. The 132

raw code is used as input and the teacher model’s 133

response is reformulated into an instruction format. 134

Code Generation (text-to-code, code-to-code). 135

In this task, the model is expected to generate code 136

2https://huggingface.co/datasets/
ise-uiuc/Magicoder-Evol-Instruct-110K

2

https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K

Table 1: The proportion of generated data in generation phase.

Task Num Per(%) Prompt

Code Generation 11370 57.1 Implementing functions that perform specific operations given input.
Code Summarization 3165 15.8 Write clear and concise documentation for the given code.
Code Repair 3144 15.8 Identify and fix errors in the given code.
Code Translation 2236 11.2 Rewrite the given code from one programming language to another.

Table 2: The proportion of programming language in
raw code.

Task Percentage(%)

Python 29.44
PHP 21.34
Go 19.68
Java 18.53
JavaScript 5.56
Others (Ruby,C++,C#) 5.45

based on a user’s demand description. Therefore,137

the teacher model is expected to generate instruc-138

tions and solution code given the raw code as a139

instruction-solution pair. The generated solution140

code is then considered as the output.141

Code Translation (code-to-code). This task in-142

volves converting one programming language into143

another. The task-specific prompt and raw code are144

given to the teacher model, then the model gener-145

ates instructions and the translated code.146

Code Repair (code-to-code). The aim of this task147

is to provide correct code based on potential issues148

in the given code. The teacher model is expected to149

generate solutions for the incorrect code, typically150

with the correct code and some descriptions, which151

are then taken as the output.152

2.2 Widespread and Versatile Enhanced153

Instruction Generation154

In past research work (Zhou et al., 2023; Gupta155

et al., 2023), many researchers have discovered156

that data quality and diversity often play a more157

important role in instruction tuning process than158

data amount. The improvement of data quality and159

diversity are directly related to the performance160

of the fine-tuned LLM. Therefore, to ensure the161

data quality and diversity of instruction instance,162

we propose a widespread and versatile enhanced163

instruction generation method including two the164

following parts: 1) a method that can retain the di-165

versity of instruction data by retainig the diversity166

of raw code to the utmost extent. 2) a LLM-based167

Generator-Discriminator framework to stably gen-168

erate high-quality instruction data.169

2.2.1 Raw Code Collection 170

To ensure the quality and diversity of raw code, 171

we manually define some filtering rules and uti- 172

lize a cluster method KCenterGreedy (Sener and 173

Savarese, 2018; Chen et al., 2023) to get the raw 174

code collection from the open source code dataset. 175

In this work, we select CodeSearchNet 3, which 176

contains 2 million of <comment, code> pairs from 177

open-source libraries hosted on GitHub, as our 178

foundation dataset and process it with the following 179

steps: 180

Manually defined filtering rules. In order to se- 181

lect high-quality code for instruction-tuning, we 182

make the following rules to filter the foundation 183

dataset: i) In this work, we filtered the code to 184

make sure that the length of required code is nei- 185

ther too long nor too short. ii) Followed Code 186

Alpaca (Chaudhary, 2023), we have eliminated 187

the raw code containing words from the blacklist, 188

which could potentially reduce the performance of 189

the resulting model. 190

Coreset selection method. To ensure the data 191

diversity when select raw code samples, we em- 192

ployed KCenterGreedy (Sener and Savarese, 2018) 193

algorithm, which has been proven efficient in ob- 194

taining a set of core samples of one distribution, 195

to select representative samples from the open 196

source code dataset based on the code embed- 197

dings encoded by the same embedding model 198

(roberta-large-v1 (Liu et al., 2019)). 199

By incorporating such a method into the open 200

source code dataset, the diversity of the generated 201

data no longer relies solely on capability of the 202

teacher LLM itself or initial seed. Moreover, due 203

to the application of the KCenterGreedy algorithm, 204

the diversity of languages is also significantly re- 205

tained, as shown in Table 2. 206

2.2.2 LLM-based Generator-Discriminator 207

Framework 208

After the process of raw code collection, the data 209

diversity from raw code has been retained, where 210

3https://huggingface.co/datasets/code_
search_net

3

https://huggingface.co/datasets/code_search_net
https://huggingface.co/datasets/code_search_net

open source code
Generation

Convert/Rewrite the given code from one programming language to another.

Write clear and concise documentation for the given code.

Identify and fix errors in the given code.
LM

Each generated case needs to be provided with the following keys:
Ø Task Name
Ø Instruction
Ø Input
Ø Output
Here are some requirements you should allowed:
1. The Output is a specific resolution addressing Instruction and Input;
therefore, an Output must be relevant to both Instruction and Input.
2. The instruction should be one or two sentences.
3. In the Output, it should only contain the code. There should be no
explanations provided outside the code.
...

Each generated case needs to be provided with the following keys:
Ø Task Name
Ø Instruction
Ø Input
Ø Output
Here are some requirements you should allowed:
1. The Output is a specific resolution addressing Instruction and Input;
therefore, an Output must be relevant to both Instruction and Input.
2. The instruction should be one or two sentences.
3. In the Output, it should only contain the code. There should be no
explanations provided outside the code.
...

Each generated case needs to be provided with the following keys:
Ø Task Name
Ø Instruction
Ø Information
Ø Solution
Here are some requirements you should allowed:
1. The Output is a specific resolution addressing Instruction and Input;
therefore, an Output must be relevant to both Instruction and Input.
2. The instruction should be one or two sentences.
3. In the Output, it should only contain the code. There should be no
explanations provided outside the code.
...

ØTask Name
Ø Instruction
Ø Information
Ø Solution

LM

Analysis:
- step 1: check the code:
1. The Input should be code and cannot only
contain comments.
- step 2: check the Output:
1. Solution: Solution is related to instruction
and information. Solution is the specific
resolution to instruction and information.
2. Instruction: the programming language
should be specified in the instruction.
3. Solution: in the solution, it should only
contain the code and comments within the
code. There should be no explanations
provided outside the code.
4. Instruction: The content of the instruction
should be relevant to the Input and should be a
summary of the Input content, without any
additional unrelated information.
...

Model-Generated

Human-written

A BGeneration Phase Discrimination Phase

Figure 2: The overview of the our LLM-based Generator-Discriminator framework. In part A, the output of
Generator includes 4 keys: Task name, Instruction, Information, Solution. All keys will be analyzed in the
Discrimination Phase and the analysis can be reused as examples in next turn.

the next step is to generate instruction data for su-211

pervised fine-tuning from the raw code. To fur-212

ther ensure the quality of generated instruction213

data, shown in Figure 2, we propose a LLM-based214

Generator-Discriminator framework where the gen-215

erator can leverage an extensive amount of unsu-216

pervised open source code to generate supervised217

instruction data and the discriminator can generate218

analysis for each component in instruction data.219

Generation Phase. In the generation phase, we220

utilize GPT-4 to generate definitions for each code-221

related task. As shown in Figure 2, following222

the model-generated task definition, we manually223

develop the generation requirements for the each224

code-related task. Integrating both the task defini-225

tion and all associated requirements into the gen-226

eration prompt, we take the raw code as an input227

and select different examples from the example228

database to generate instruction data by GPT-3.5.229

Discrimination Phase. During the exploration of230

the instruction generation process, we noticed that231

the data quality of the instruction instances cannot232

be guaranteed through the generation phase alone.233

In order to enhance the controllability of data gener-234

ation and further ensure the data quality, we employ235

GPT-4 as a LLM-based discriminator to continue236

analyzing and filtering the instruction data. Subse-237

quently, inspired by Zero-shot-CoT (Kojima et al.,238

2022), we establish a series of rules, exemplified in239

Figure 4 and disassemble them to some subtopics240

to ensure the discriminating accuracy where the241

LLM-based discriminator can analyze the gener-242

ation step by step. By adopting this method, the243

discrimination rules can be modified partially to244

address certain issues. After the discrimination245

process, as shown in Figure 1, each instruction in-246

stance is classified as either a good or bad case 247

and the classification information is subsequently 248

random selected in the following generation as ex- 249

amples. For the reusage of these classified instruc- 250

tion instance, different from self-instruct (Wang 251

et al., 2023a) which solely utilize the initial seed 252

task as good example, we exploit both the good 253

generation and bad generation as few-shot example 254

so that the generator can learn from the mistake in 255

different bad example. Therefore, this framework 256

provides a comprehensive approach to generating 257

and evaluating instruction data, ensuring a high- 258

quality training dataset. 259

3 Experiments 260

3.1 Setup 261

Unlike the previous work (Luo et al., 2024; Shen 262

et al., 2023; Gunasekar et al., 2023) that mainly 263

focus on code generation task, we generate about 264

20K dataset covers 4 common code-related tasks to 265

enhance the geralization abilties of Code LLM. To 266

obtain WaveCoder models, We choose StarCoder- 267

15B, CodeLLaMa (7B and 13B), DeepseekCoder- 268

6.7B as the base model and fine-tune all the base 269

model for 3 epochs using NVIDIA A100-80GB 270

GPU. For StarCoder-15B, CodeLLaMa-7B and 271

CodeLLaMa-13B, we set the global batch size to 272

256 using Tensor Parallel and set the initial learn- 273

ing rate at 2e-5. For DeepseekCoder-6.7B, we set 274

the global batch size to 512 using the Fully Sharded 275

Data Parallel (FSDP) module from Pytorch and set 276

the initial learning rate at 5e-5. 277

Benchmarks and Baselines. To ensure a thorough 278

assessment of the model’s generalization ability, 279

we score our model on three code benchmarks 280

across different code related tasks: HumanEval 281

4

Table 3: Results of pass@1 on HumanEval and MBPP benchmark. We use self-reported scores whenever available.
The abbreviations "CL", "SC", "DS" refer to the base models CodeLLaMa and StarCoder and DeepseekCoder,
respectively. "WaveCoder-Pro-6.7B" and "WaveCoder-Ultra-6.7B" is detailed in the last paragraph of Section
1. Due to the difference in decoding strategies from previous evaluation work, we marked the results of greedy
decoding in blue and n = 200 samples in red . -: Not reported in their paper.

Model Params Base Model InsT Data HumanEval MBPP (500)

Proprietary Models

GPT-4 - - - 85.4 / 67.0 -
ChatGPT - - - 73.2 / 48.1 52.2

Open-Source Models

StarCoder 15B - ✘ 33.6 43.3
OctoCoder 15B StarCoder 13K 46.2 43.5
WizardCoder 15B StarCoder 78K 57.3 51.8
WaveCoder-SC-15B 15B StarCoder 20K 50.5 (+16.9) 51.0 (+7.4)

CodeLLaMa 7B - ✘ 33.5 41.4
CodeLLaMa-instruct 7B CodeLLaMa 14K 34.8 44.4
WaveCoder-CL-7B 7B CodeLLaMa 20K 48.1 (+14.6) 47.2 (+5.8)

CodeLLaMa 13B - ✘ 36.0 47.0
CodeLLaMa-instruct 13B CodeLLaMa 14K 42.5 49.4
WaveCoder-CL-13B 13B CodeLLaMa 20K 55.4 (+19.4) 49.6 (+2.6)

DeepseekCoder 6.7B - ✘ 49.4 60.6
Magicoder-DS 6.7B DeepseekCoder 75K 66.5 60.4
WaveCoder-DS-6.7B 6.7B DeepseekCoder 20K 64.0 (+14.6) 62.8 (+2.2)
WaveCoder-Pro-6.7B 6.7B DeepseekCoder 20K 72.0 (+22.6) 63.6 (+3.0)

SoTA Open-Source Models

DeepseekCoder-instruct∗ 6.7B DeepseekCoder - 73.8 62.8
Magicoder-S-DS 6.7B DeepseekCoder 185K 76.8 64.6
WaveCoder-Ultra-6.7B 6.7B DeepseekCoder 130K 78.6 (+29.2) 64.4 (+3.8)

(Chen et al., 2021), MBPP (Austin et al., 2021)282

and HumanEvalPack (Muennighoff et al., 2024),283

as illustrated in Appendix D.284

Proprietary Models. We present the self-reported285

results from an array of SoTA LLMs, including286

ChatGPT (gpt-3.5-turbo), GPT-4. If not re-287

ported, we use the results from Octopack (Muen-288

nighoff et al., 2024) or evaluate by ourselves.289

Open Source Models. To ensure an equitable com-290

parison, we opted to select models that have been291

trained with the similar amount of instruction in-292

stances for our comparative analysis.293

SoTA Open Source Models. We compared294

WaveCoder-6.7B with the SoTA open source295

Code LLM, includes Magicoder-S-DS (Wei et al.,296

2023) and DeepseekCoder-instruct-6.7B (Wei et al.,297

2023) on a wide range of code-related tasks. All298

the result of SoTA open source models is presented299

from EvalPlus. (Liu et al., 2023) If not reported,300

we evaluate it by ourselves.301

3.2 Result 302

Evaluation on Code Generation Task. Hu- 303

manEval and MBPP are two representative bench- 304

marks for code generation task, as illustrated in 305

Appendix D. Table 3 shows the pass@1 score of 306

different LLMs on both benchmarks. From the 307

results, We have the following observations: 308

1) WaveCoder-Pro-6.7B outperforms other open 309

source models with only 6.7B parameters and 20K 310

instruction data. Trained with GPT-4 enhanced 311

CodeOcean dataset, WaveCoder-Pro-6.7B achieve 312

72.0% pass@1 and on HumanEval and 63.6% on 313

MBPP, surpassing all open source models but still 314

behind proprietary models and the SoTA open 315

source models. 316

2) Refined and diverse instruction data can signifi- 317

cantly improve the efficiency of instruction tuning. 318

As delineated in Table 3, WaveCoder demonstrates 319

commendable performance, utilizing a dataset com- 320

prising merely about 20K Instruction Tuning Data 321

(InsT Data), which positions it on an equal foot- 322

ing with its contemporaries. Despite a discernible 323

5

Table 4: Results of pass@1 on HumanEvalFix benchmark. We use self-reported scores whenever available. Due to
the difference in decoding strategies from previous evaluation work, we marked the results of greedy decoding in
blue and n = 20 samples in red .

Model Python JavaScript Java Go C++ Rust Avg.

GPT-4 47.0 48.2 50.0 50.6 47.6 43.3 47.8

StarCoder 8.7 15.7 13.3 20.1 15.6 6.7 13.4
OctoCoder 30.4 28.4 30.6 30.2 26.1 16.5 27.0
WizardCoder 31.8 29.5 30.7 30.4 18.7 13.0 25.7
WaveCoder-SC-15B 39.3 35.1 34.8 36.2 30.2 22.5 33.0

CodeLLaMa-instruct-7B 28.0 23.2 23.2 18.3 0.1 0.1 15.5
CodeLLaMa-CodeAlpaca-7B 37.8 39.0 42.0 37.8 37.2 29.2 37.1
WaveCoder-CL-7B 41.4 41.4 42.0 47.1 42.7 34.7 41.5

CodeLLaMa-instruct-13B 29.2 19.5 32.3 24.4 12.8 0.1 19.7
CodeLLaMa-CodeAlpaca-13B 42.7 43.9 50.0 45.7 39.6 37.2 43.2
WaveCoder-CL-13B 48.8 48.2 50.6 51.8 45.1 40.2 47.4

DeepseekCoder-6.7B 29.9 29.2 39.0 29.2 25.0 21.9 29.0
Magicoder-DS 42.0 43.3 50.6 41.4 38.4 29.2 40.8
DeepseekCoder-CodeAlpaca-6.7B 49.4 51.8 45.1 48.8 44.5 31.7 45.2
WaveCoder-DS-6.7B 57.9 52.4 57.3 47.5 45.1 36.0 49.4
WaveCoder-Pro-6.7B 59.1 56.7 54.2 45.1 45.7 34.1 49.2

Deepseek-instruct-6.7B 56.1 58.5 57.3 49.4 45.1 36.6 50.5
Magicoder-S-DS 56.1 55.4 58.5 51.2 45.7 35.3 50.3
WaveCoder-Ultra-6.7B 58.5 57.3 61.0 53.0 50.0 37.2 52.8

shortfall in the code generation benchmarks relative324

to WizardCoder (50.5 vs 57.3) and Magicoder (64.0325

vs 66.5), it is imperative to consider the substantial326

disparity in the volume of training data. More-327

over, it is observed that WaveCoder-pro-6.7B sig-328

nificantly outperforms Magicoder-DS-6.7B (72.0329

vs 66.5), demonstrating the effectiveness of data330

quality and diversity in instruction tuning.331

Evaluation on Other Code-related Task. We332

score WaveCoder with state-of-the-art Code LLMs333

on HumanEvalPack (Muennighoff et al., 2024) in334

Table 4 and Table 5, highlighting the the following335

salient observations:336

1) WaveCoder models outperform all open source337

models on other code-related task. Building upon338

Starcoder, our proposed WaveCoder-SC has ex-339

hibited exceptional performance, transcending the340

capabilities of both WizardCoder and OctoCoder as341

evidenced by the HumanEvalFix (33.0 vs 25.7 vs342

27.0) and HumanEvalExplain (30.8 vs 27.5 vs 24.5)343

benchmarks, which is also shown in other base344

models. Notably, WaveCoder-DS-6.7B achieves345

49.4% average pass@1 score on HumanEvalFix346

and 41.3% on HumanEvalExplain, surpassing all347

open source models and demonstrating strong gen-348

eralization capabilities in multi-task scenarios.349

2) The enhancement in data refinement and di-350

versification can markedly bolster the efficacy of351

instruction tuning in multi-task scenarios. Such 352

data refinement, coupled with the categorization 353

of instructions into four code-related tasks, has 354

propelled our models to reach an unforeseen gener- 355

alization capabilities in various code-related tasks. 356

Remarkably, our WaveCoder-DS-6.7B model out- 357

performs GPT-4 (49.4 vs 47.8) on HumanEvalFix, 358

thereby underscoring the potential of smaller mod- 359

els to achieve near-parity with parameter-heavy 360

models when optimized efficiently. 361

WaveCoder-Ultra-6.7B. Inspired by Magicoder- 362

S-DS-6.7B (Wei et al., 2023), we combine CodeO- 363

cean with WaveCoder-evol-instruct to a 130K 364

dataset. Fine-tuned with this combination of two 365

datasets, we obtain WaveCoder-Ultra-6.7B. As il- 366

lustrated in Table 3, 4, 5, WaveCoder-Ultra-6.7B 367

has the state-of-the-art generalization abilities on a 368

wide range of code-related tasks, which highlights 369

the significance of our CodeOcean dataset again 370

and demonstrates the potential of larger datasets. 371

4 Ablation and Analysis 372

4.1 Ablation of Code-related Tasks 373

To explore the relationship between different tasks, 374

we conduct an ablation study about the task type 375

of instruction data. Using DeepseekCoder-Base- 376

6.7B as our base model and initial 20K CodeOcean 377

data as our base dataset, we have the following 378

6

Table 5: Results of pass@1 on HumanEvalExplain benchmark. We use self-reported scores whenever available. Due
to the difference in decoding strategies from previous evaluation work, we marked the results of greedy decoding in
blue and n = 20 samples in red .

Model Python JavaScript Java Go C++ Rust Avg.

GPT-4 64.6 57.3 51.2 58.5 38.4 42.7 52.1

StarCoder 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WizardCoder 32.5 33.0 27.4 26.7 28.2 16.9 27.5
OctoCoder 35.1 24.5 27.3 21.1 24.1 14.8 24.5
WaveCoder-SC-15B 37.1 33.3 40.5 23.3 31.8 19.3 30.8

CodeLLaMa-instruct-7B 33.5 36.0 31.7 21.3 25.0 16.4 27.3
CodeLLaMa-CodeAlpaca-7B 34.7 24.4 37.8 23.2 28.6 19.5 28.0
WaveCoder-CL-7B 41.4 31.7 39.0 25.0 34.1 23.2 32.4

CodeLLaMa-instruct-13B 40.2 26.8 37.2 22.5 28.0 14.6 28.2
CodeLLaMa-CodeAlpaca-13B 32.3 28.0 34.1 18.9 29.9 20.7 27.3
WaveCoder-CL-13B 45.7 42.0 48.2 32.3 38.4 20.7 37.9

DeepseekCoder-6.7B 43.9 40.2 37.8 29.2 34.1 22.5 34.6
Deepseek-CodeAlpaca-6.7B 40.8 37.2 42.1 29.9 31.7 22.5 34.0
Magicoder-DS 55.5 36.6 49.4 36.0 39.6 27.4 40.7
WaveCoder-DS-6.7B 48.2 47.5 49.4 32.3 48.2 22.0 41.3
WaveCoder-Pro-6.7B 53.0 43.3 54.9 34.1 42.7 20.0 41.3

Magicoder-S-DS 60.3 46.3 54.3 38.4 48.1 29.2 46.1
Deepseek-instruct-6.7B 62.2 54.3 61.0 39.6 55.5 33.5 51.0
WaveCoder-Ultra-6.7B 56.7 50.0 54.3 34.8 51.2 36.6 47.3

Table 6: Ablation study on different code-related tasks: CG (Code Generation), CS (Code Summarization), CT
(Code Translation), CR (Code Repair). WaveCoder-DS-6.7B utilizes all 4 code-related tasks.

Model CG CS CT CR HumanEval HumanEval
Fix (Avg.)

HumanEval
Explain (Avg.)

DeepseekCoder-Base-6.7B ✘ ✘ ✘ ✘ 49.4 29.0 34.6
WaveCoder-DS-6.7B ✔ ✔ ✔ ✔ 64.0 (+14.6) 49.4 (+20.4) 41.3 (+7.3)

-Without Repair ✔ ✔ ✔ ✘ 60.9 (-3.1) 15.7 (-33.7) 41.2 (-0.1)
-Without Generation ✘ ✔ ✔ ✔ 53.6 (-10.4) 47.4 (-2.0) 40.5 (-0.8)
-Without Translation ✔ ✔ ✘ ✔ 60.9 (-3.1) 49.3 (-0.1) 41.6 (+0.3)
-Without Summarization ✔ ✘ ✔ ✔ 61.5 (-2.5) 45.6 (-3.8) 28.4 (-12.9)

observations from Table 6:379

1) Refined instruction data can significantly im-380

prove the generalization ability of pre-trained mod-381

els without a tradeoff. As shown in Table 6, in-382

corporating all 4 code-related tasks into training383

data, WaveCoder-DS-6.7B achieves the best perfor-384

mance on benchmark of all tasks. For example, the385

participation of the Code Repair task yields a con-386

siderable average improvement of 33.7% absolute387

for HumanEvalFix without any significant decline388

in other tasks, and even improved by 3.1% absolute389

for HumanEval benchmark.390

2) Different tasks can promote each other so that391

the model can show a generalization ability. From392

Table 6, we can observe that any combination of393

three tasks resulted in a lower score than all tasks.394

For example, the addition of the code summariza-395

tion task offers a modest yet significant average396

improvement on all benchmarks. Moreover, the 397

absence of any task will cause the score of Hu- 398

manEval to drop, which also reflects the mutual 399

promotion between different tasks. 400

4.2 Discussion about Data Leakage 401

In this section, we explore the potential leak- 402

age through three instruction datasets about 403

code (i.e. Code Alpaca, CodeOcean, Magicoder- 404

evol-instruct). To ensure an accurate analysis, we 405

employ SoTA embedding model GTE-Large (Li 406

et al., 2023b) to encode the canonical code in test 407

benchmarks and all code in training set. Subse- 408

quently, we find the nearest neighbour in train set 409

for each questions in test benchmark. As illustrated 410

in Figure 3, CodeOcean has the lower average co- 411

sine similarity than other datasets. Figure 6 in Ap- 412

pendix presents two examples about the data leak- 413

7

0 41 82 123 164
HumanEval ID

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Si
m

ila
rit

y
Data Leakage

Magicoder-evol-codealpaca (Avg:0.944)
WaveCoder-evol-codealpaca (Avg:0.925)
CodeAlpaca (Avg:0.903)
CodeOcean (Avg:0.88)
Magicoder-evol-codealpaca
CodeAlpaca
CodeOcean
WaveCoder-evol-codealpaca

0 100 200 300 400 500
MBPP ID

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Si
m

ila
rit

y

Data Leakage

Magicoder-evol-codealpaca (Avg:0.899)
WaveCoder-evol-codealpaca (Avg:0.899)
CodeAlpaca (Avg:0.904)
CodeOcean (Avg:0.877)
Magicoder-evol-codealpaca
CodeAlpaca
CodeOcean
WaveCoder-evol-codealpaca

Figure 3: Discussion about data leakage in different
training dataset. WaveCoder-evol-instruct indicates the
decontaminated Magicoder-evol-instruct dataset under
our strategy.

age in these training set. Moreover, we analyze all414

benchmarks and notice a serious data leakage issue415

between HumanEval and Magicoder-evol-instruct416

dataset. Therefore, we decontaminate Magicoder-417

evol-instruct for each evaluation problem in Hu-418

manEval and obtain WaveCoder-evol-instruct. As419

illustrated in Figure 3, WaveCoder-evol-instruct420

has lower similarity than Magicoder-evol-instruct.421

5 Related Work422

Instruction Tuning. Recent studies, such as FLAN423

(Wei et al., 2022), ExT5 (Aribandi et al., 2022),424

and FLANT5 (Chung et al., 2022), have under-425

scored the efficacy of integrating diverse tasks426

within training process to bolster the adaptability of427

pre-trained models for downstream tasks. Specif-428

ically, Flan-PaLM 540B’s (Chung et al., 2022)429

instruction-tuning over 1.8K tasks has demon-430

strated that a widespread and versatile enhanced431

instruction dataset markedly enhances language432

model performance. InstructGPT (Ouyang et al., 433

2022), with its incorporation of premium instruc- 434

tion data crafted by human annotators, has shown 435

significant promise in aligning model outputs with 436

user intents, prompting further investigation into 437

instruction-tuning mechanisms. Additionally, Stan- 438

ford Alpaca (Taori et al., 2023) has innovatively 439

employed GPT-generated instruction data via self- 440

instruct (Wang et al., 2023a) for instruction tuning 441

process. WizardLM (Xu et al., 2024) has built upon 442

these advancements by applying the evol-instruct 443

methodology, collectively illuminating the transfor- 444

mative impact of instruction tuning on the overall 445

capabilities of LLM. 446

Code Large Language Models. Recent advance- 447

ments in code generation have been propelled by 448

Code LLMs such as CodeGen (Nijkamp et al., 449

2022), CodeT5 (Wang et al., 2021), StarCoder (Li 450

et al., 2023a), CodeLLaMa (Roziere et al., 2023) 451

and Deepseek-Coder (Guo et al., 2024), which 452

benefit from extensive pre-training on expansive 453

code corpora. Efforts to further enhance efficiency 454

and problem-solving capabilities have led to the 455

development of instruction-tuned models like In- 456

structCodeT5+ (Wang et al., 2023b), WizardCoder 457

(Luo et al., 2024), Pangu-coder2 (Shen et al., 2023), 458

However, all the instruction data they used is from 459

Code Alpaca, which is not refined enough in the 460

context of multi-task environment, which drives us 461

to propose new methods for instruction data gen- 462

eration. Concurrently, with the release of our con- 463

temporaneous work Magicoder (Wei et al., 2023), 464

we offer a concise analysis in Section 3. 465

6 Conclusion 466

This paper presents WaveCoder, a Code LLM fine- 467

tuned with widespread and versatile enhanced in- 468

struction data. By enabling language models to 469

effectively tackle complex code-related tasks, our 470

approach demonstrates the potential of integrating 471

multiple code-related tasks into instruction tuning 472

for Code LLM and generating high-quality and di- 473

verse instruction data for specific task requirements 474

in multi-task scenarios. WaveCoder achieves state- 475

of-the-art generalization performance on different 476

code-related tasks surpassing existing open source 477

Code LLMs. Furthermore, our analysis of the re- 478

lationship of different tasks provides valuable in- 479

sights for future research, paving the way for more 480

extensive code-related tasks and larger dataset. 481

8

Limitations482

We present WaveCoder and propose a data genera-483

tion method which can stably generate high-quality484

and diversity instruction data from open source485

dataset in multi-task scenario. One limitation of486

our work is that the training dataset we used only in-487

cludes 19,915 instructions, which produces limited488

enhancements to the model. As illustrated Sec-489

tion 3, we expand the training dataset to a larger490

amount and the resulted model still have significant491

improvement. Therefore, future work should focus492

on more code-related task types and larger dataset.493

Ethics Statement494

We constructed our CodeOcean dataset from open495

source code. For each code snippet we used, we are496

committed to adhering to the terms of its license,497

which includes proper attribution ensuring that any498

modifications or derivative works are also shared499

under the compatible terms. Moreover, we notice a500

serious data leakage issue in the Magicoder-evol-501

instruct dataset. To ensure a fair comparison, we502

remove three nearest neighbours of each question503

in test benchmark from train set. However, if all504

similar samples are accidentally removed, the in-505

tegrity of the data will be damaged, which is harm-506

ful to model training. Therefore, this phenomenon507

should be attributed to the fact that the problems in508

the current test benchmarks are some of the most509

basic algorithm logic. To this end, we call for more510

comprehensive and complex test benchmarks for511

Code LLMs which will not easily cause data leak-512

age problem.513

References514

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao,515
Huaixiu Steven Zheng, Sanket Vaibhav Mehta, Hon-516
glei Zhuang, Vinh Q. Tran, Dara Bahri, Jianmo Ni,517
Jai Gupta, Kai Hui, Sebastian Ruder, and Donald518
Metzler. 2022. Ext5: Towards extreme multi-task519
scaling for transfer learning. In International Confer-520
ence on Learning Representations (ICLR).521

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten522
Bosma, Henryk Michalewski, David Dohan, Ellen523
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.524
Program synthesis with large language models. arXiv525
preprint arXiv:2108.07732.526

Sahil Chaudhary. 2023. Code alpaca: An527
instruction-following llama model for code genera-528
tion. https://github.com/sahil280114/529
codealpaca.530

Hao Chen, Yiming Zhang, Qi Zhang, Hantao Yang, Xi- 531
aomeng Hu, Xuetao Ma, Yifan Yanggong, and Junbo 532
Zhao. 2023. Maybe only 0.5% data is needed: A pre- 533
liminary exploration of low training data instruction 534
tuning. arXiv preprint arXiv:2305.09246. 535

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 536
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 537
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 538
Greg Brockman, et al. 2021. Evaluating large 539
language models trained on code. arXiv preprint 540
arXiv:2107.03374. 541

Hyung Won Chung, Le Hou, Shayne Longpre, Bar- 542
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi 543
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 544
2022. Scaling instruction-finetuned language models. 545
arXiv preprint arXiv:2210.11416. 546

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio 547
César Teodoro Mendes, Allie Del Giorno, Sivakanth 548
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo 549
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all 550
you need. arXiv preprint arXiv:2306.11644. 551

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 552
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 553
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the 554
large language model meets programming–the rise of 555
code intelligence. arXiv preprint arXiv:2401.14196. 556

Himanshu Gupta, Saurabh Arjun Sawant, Swaroop 557
Mishra, Mutsumi Nakamura, Arindam Mitra, San- 558
tosh Mashetty, and Chitta Baral. 2023. Instruction 559
tuned models are quick learners. arXiv preprint 560
arXiv:2306.05539. 561

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 562
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 563
Chen. 2022. LoRA: Low-rank adaptation of large 564
language models. In International Conference on 565
Learning Representations (ICLR). 566

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 567
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 568
guage models are zero-shot reasoners. Advances 569
in neural information processing systems (NIPS), 570
35:22199–22213. 571

Katherine Lee, Daphne Ippolito, Andrew Nystrom, 572
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch, 573
and Nicholas Carlini. 2022. Deduplicating training 574
data makes language models better. In Proceedings 575
of the 60th Annual Meeting of the Association for 576
Computational Linguistics (Volume 1: Long Papers), 577
pages 8424–8445. 578

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 579
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 580
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 581
2023a. Starcoder: may the source be with you! 582
arXiv preprint arXiv:2305.06161. 583

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, 584
Pengjun Xie, and Meishan Zhang. 2023b. Towards 585
general text embeddings with multi-stage contrastive 586
learning. arXiv preprint arXiv:2308.03281. 587

9

https://openreview.net/forum?id=Vzh1BFUCiIX
https://openreview.net/forum?id=Vzh1BFUCiIX
https://openreview.net/forum?id=Vzh1BFUCiIX
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and588
LINGMING ZHANG. 2023. Is your code gener-589
ated by chatGPT really correct? rigorous evalua-590
tion of large language models for code generation.591
In Thirty-seventh Conference on Neural Information592
Processing Systems.593

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-594
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,595
Luke Zettlemoyer, and Veselin Stoyanov. 2019.596
Roberta: A robustly optimized bert pretraining ap-597
proach. arXiv preprint arXiv:1907.11692.598

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey599
Svyatkovskiy, Ambrosio Blanco, Colin Clement,600
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.601
Codexglue: A machine learning benchmark dataset602
for code understanding and generation. In Thirty-603
fifth Conference on Neural Information Processing604
Systems Datasets and Benchmarks Track (Round 1).605

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-606
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,607
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:608
Empowering code large language models with evol-609
instruct. International Conference on Learning Rep-610
resentations (ICLR).611

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai612
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam613
Singh, Xiangru Tang, Leandro von Werra, and614
Shayne Longpre. 2024. Octopack: Instruction tuning615
code large language models. International Confer-616
ence on Learning Representations (ICLR).617

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan618
Wang, Yingbo Zhou, Silvio Savarese, and Caiming619
Xiong. 2022. Codegen: An open large language620
model for code with multi-turn program synthesis.621
arXiv preprint arXiv:2203.13474.622

OpenAI. 2023. Gpt-4 technical report.623

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,624
Carroll Wainwright, Pamela Mishkin, Chong Zhang,625
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.626
2022. Training language models to follow instruc-627
tions with human feedback. Advances in Neural628
Information Processing Systems (NIPS), 35:27730–629
27744.630

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten631
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,632
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.633
Code llama: Open foundation models for code. arXiv634
preprint arXiv:2308.12950.635

Ozan Sener and Silvio Savarese. 2018. Active learn-636
ing for convolutional neural networks: A core-set637
approach. In International Conference on Learning638
Representations (ICLR).639

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan,640
Bing Geng, An Fu, Muhan Zeng, Ailun Yu, Jichuan641
Ji, Jingyang Zhao, et al. 2023. Pangu-coder2: Boost-642
ing large language models for code with ranking feed-643
back. arXiv preprint arXiv:2307.14936.644

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 645
Dubois, Xuechen Li, Carlos Guestrin, Percy 646
Liang, and Tatsunori B. Hashimoto. 2023. Stan- 647
ford alpaca: An instruction-following llama 648
model. https://github.com/tatsu-lab/ 649
stanford_alpaca. 650

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa 651
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh 652
Hajishirzi. 2023a. Self-instruct: Aligning language 653
models with self-generated instructions. In Proceed- 654
ings of the 61st Annual Meeting of the Association for 655
Computational Linguistics (ACL) (Volume 1: Long 656
Papers), pages 13484–13508. 657

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, 658
Nghi D.Q. Bui, Junnan Li, and Steven C. H. Hoi. 659
2023b. Codet5+: Open code large language mod- 660
els for code understanding and generation. arXiv 661
preprint. 662

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH 663
Hoi. 2021. Codet5: Identifier-aware unified pre- 664
trained encoder-decoder models for code understand- 665
ing and generation. In Proceedings of the 2021 Con- 666
ference on Empirical Methods in Natural Language 667
Processing (EMNLP), pages 8696–8708. 668

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, 669
Adams Wei Yu, Brian Lester, Nan Du, Andrew M. 670
Dai, and Quoc V Le. 2022. Finetuned language mod- 671
els are zero-shot learners. In International Confer- 672
ence on Learning Representations (ICLR). 673

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 674
Lingming Zhang. 2023. Magicoder: Source code is 675
all you need. arXiv preprint arXiv:2312.02120. 676

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 677
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 678
Jiang. 2024. Wizardlm: Empowering large language 679
models to follow complex instructions. International 680
Conference on Learning Representations (ICLR). 681

Jin Xu, Xiaojiang Liu, Jianhao Yan, Deng Cai, Huayang 682
Li, and Jian Li. 2022. Learning to break the loop: 683
Analyzing and mitigating repetitions for neural text 684
generation. Advances in Neural Information Process- 685
ing Systems (NIPS), 35:3082–3095. 686

Jianhao Yan, Jin Xu, Chiyu Song, Chenming Wu, 687
Yafu Li, and Yue Zhang. 2023. Understanding in- 688
context learning from repetitions. arXiv preprint 689
arXiv:2310.00297. 690

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao 691
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, 692
Lili Yu, et al. 2023. Lima: Less is more for alignment. 693
arXiv preprint arXiv:2305.11206. 694

10

https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
http://arxiv.org/abs/2303.08774
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

A Prompt 695

Followed Alpaca (Taori et al., 2023), we set the fine-tuning prompt as follows: 696

Prompt with Input:
Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.
Instruction:{instruction}
Input:{input}
Response:

Prompt without Input:
Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.
Instruction:{instruction}
Response:

697

B An example of the LLM-based Generator-Discriminator framework 698

Raw Code
#!/usr/bin/env python
-*- coding: utf-8 -*-
"""
Simple server which adds a DocumentWordsProvider to the
CodeCompletion worker.

On Windows, this script is frozen by freeze_setup.py (cx_Freeze).
"""
from pyqode.core import backend

if __name__ == '__main__':
 backend.CodeCompletionWorker.providers.append(backend.DocumentWordsProvider())
 backend.serve_forever()

Generation

Task_name: Adding a DocumentWordsProvider to a CodeCompletion worker
Instruction: Write a Python code that adds a DocumentWordsProvider to a CodeCompletion worker.
Information: The CodeCompletion worker is from the pyqode.core.backend module. The
DocumentWordsProvider is used to provide word completion suggestions for a given document.
Solution:
from pyqode.core import backend

if __name__ == '__main__':
 backend.CodeCompletionWorker.providers.append(backend.DocumentWordsProvider())
 backend.serve_forever()

a

b

Analysis
- step 1: check the Input:
1. The Input should be code and cannot only contain comments.
<answer: yes, the Input includes both the code and comments, not just the
comments>

- step 2: check the Output:
1. Solution: Solution is related to instruction and information. Solution is the
specific resolution to instruction and information.
<answer: yes>

2. Instruction: the programming language should be specified in the instruction.
<answer: yes, the instruction specifies the use of Python>

3. Solution: in the solution, it should only contain the code and comments within
the code. There should be no explanations provided outside the code.
<answer: no, in the solution, it is reasonable to include the code and comments
within the code. However, the Note section belongs to explanations provided
outside the code, which is not allowed>

4. Instruction: The content of the instruction should be relevant to the Input and
should be a summary of the Input content, without any additional unrelated
information.
<answer: yes, the Instruction is related to the Input>

- Overall answer: no
- reasons: In the solution, it is reasonable to include the code and comments
within the code. However, the Note section belongs to explanations provided
outside the code, which is not allowed. So the overall answer is no.

c

Figure 4: An example of LLM-based Generator-Discriminator framework on code generation task. The generator
produce the instruction data based on the input (a). Subsequently, the discriminator accept the output and generated
analysis for it. The output (b) includes four keys, we take the information as input and solution as output in our
instruction tuning. The analysis (c) consists of the detailed reason for each rule and an overall answer to check if the
sample meet all the requirements.

C Comparison with CodeAlpaca 699

CodeAlpaca dataset contains 20K multi-task instruction-following data generated by the techniques in 700

the self-instruct (Taori et al., 2023). To ensure a fair and multidimensional comparison, we randomly 701

sampled 1K and 5K from both datasets (CodeAlpaca and CodeOcean), set the same set of training 702

hyper-parameters set (epoch = 3, learning rate = 1e-4, LoRA rank = 8) and used the same training prompts. 703

To prevent overfitting, we use Low-Rank Adaption (LoRA) (Hu et al., 2022) for fine-tuning if the size of 704

instruction-follow training dataset is less than 5K and perform full fine-tuning on whole 20K dataset. 705

1) After being fine-tuned with 1K, 5K and 20K of instructional data respectively, the performance of 706

base model improves significantly on HumanEval shown in Figure 5. Taking Starcoder as the base model, 707

CodeOcean surpasses the CodeAlpaca (44.9% vs 41.7%, 45.7% vs 48.1% and 47.0% vs 50.5%) shown in 708

Figure 5 (a), which emphasizes the effectiveness of our method on refining instruction data. As shown in 709

11

Figure 5 (b), The results of different base models on CodeOcean surpasses the results on CodeAlpaca,710

which emphasizes the effectiveness of CodeOcean dataset in enhancing the instruction-following ability711

of the base model.712

2) According to Table 4 and Table 5, All WaveCoder models significantly outperform the model713

fine-tuned with CodeAlpaca. Remarkably, The pass@1 score of WaveCoder-CL-13B outperforms714

CodeLLaMa-CodeAlpaca-13B achieving 10.6% absolute improvements on HumanEvalExplain. This715

emphasizes the effectiveness of defining and classifying code-related tasks on enhancing the generalization716

ability of Code LLMs.717

30

35

40

45

50

55

60

1K (LoRA) 5K (LoRA) 20K (Fully)

41.741.7

45.745.7
4747

44.944.9

48.148.1

50.550.5

CodeAlpaca CodeOcean

0

10

20

30

40

50

60

70

Starcoder CodeLLaMa-7B CodeLLaMa-13B DeepseekCoder-6.7B

33.6 33.5
36

49.4
47

39

46.3

60.9

50.5
48.1

55.4

64

BaseModel CodeAlpaca CodeOcean

p
a
ss
@
1

p
a
s
s@

1

(a) HumanEval (Base Model:Starcoder) (b) HumanEval (Different Models)

Figure 5: Comparision with CodeAlpaca with different dataset size(a) and different base models(b). CodeOcean
outpeforms CodeAlpaca on HumanEval multidimensionally, more detailed analysis is shown in Section 3.3.

D Evaluation Benchmark718

HumanEval 4, which consists of 164 manually-written Python programming problems and an average of719

9.6 test cases allocated to each problem is now the most extensively adopted benchmark for Code LLMs.720

MBPP 5 consists of around 1,000 crowd-sourced Python programming problems, designed to be solvable721

by entry level programmers, covering programming fundamentals, standard library functionality, and722

so on. In this paper, we choose the 500 problems test dataset to evaluate both few-shot inference of723

fine-tuned models. For whose MBPP (500) result is not reported or not used, we reproduced for them724

using bigcode-evaluation-harness 6.725

HumanEvalPack 7 is an extension of OpenAI’s HumanEval to cover 6 total languages across 3 tasks. In726

this paper, we select the HumanEvalFix to evaluate the code to code ability especially on code repair task727

and HumanEvalExplain benchmarks to evaluate the code to text ability especially on code summarization728

task.729

4https://huggingface.co/datasets/openai_humaneval
5https://huggingface.co/datasets/mbpp
6https://github.com/bigcode-project/bigcode-evaluation-harness
7https://huggingface.co/datasets/bigcode/humanevalpack

12

https://huggingface.co/datasets/openai_humaneval
https://huggingface.co/datasets/mbpp
https://github.com/bigcode-project/bigcode-evaluation-harness
https://huggingface.co/datasets/bigcode/humanevalpack

HumanEval/1(canonical code):

from typing import List

def has_close_elements(numbers: List[float], threshold: float)
-> bool:
""" Check if in given list of numbers, are any two numbers
closer to each other than given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""

for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):

if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:

return True

return False

Here is the function written in Python:

```python
def has_close_elements(list_of_numbers, threshold):

for i in range(len(list_of_numbers)):
for j in range(i + 1, len(list_of_numbers)):

if abs(list_of_numbers[i] - list_of_numbers[j]) < threshold:
return True

return False
```

Cosine Similarity: 94.3

def closest_pair(arr, target):
min_difference = 999999
min_pair = (-1, -1)
Iterate through all elements
for i in range(len(arr)):
Loop through rest of elements
for j in range(i + 1, len(arr)):

diff = abs(arr[i] + arr[j] - target)
Check for maximum difference
if diff < min_difference:

min_difference = diff
min_pair = (i, j)

return min_pair

Cosine Similarity: 87.5

import math

def find_closest_component(components):
def _bounds(component):

xmin, ymin, xmax, ymax = component["xmin"], component["ymin"],
component["xmax"], component["ymax"]

return math.sqrt(xmin**2 + ymin**2)
return min(components, key=_bounds)

Cosine Similarity: 86.9

Evol-codealpaca-v1

CodeAlpaca

CodeOcean

HumanEval/101(canonical code):

def make_a_pile(n):
"""
Given a positive integer n, you have to make a pile of n
levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in a list, where
element at index i represents the number of stones in the level
(i+1).

Examples:
>>> make_a_pile(3)
[3, 5, 7]
"""

return [n + 2*i for i in range(n)]

def make_a_pile(n, pattern):
if pattern == 'odd’:

p = [3]
stone = 3
for i in range(n-1):

stone += 2
p.append(stone)

elif pattern == 'even’:
p = [3]
stone = 3
for i in range(n-1):

stone += 2
p.append(stone)

return p

print(make_a_pile(3, 'odd'))
print(make_a_pile(3, 'even’))

Cosine Similarity: 94.4

def generate_list(n):

"""This function takes an integer n and returns a list with length
n of numbers from 0 to n-1.""”

return [i for i in range(n)]

Cosine Similarity: 85.0

def inventory_levels(arr)
levels = Hash.new(0)
arr.each do |type, quantity|

levels[type] += quantity
end
return levels
end

Cosine Similarity: 83.2

Evol-codealpaca-v1

CodeAlpacaCodeOcean

Figure 6: Examples about data leakage.

13

