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ABSTRACT

Despite their advances and success, real-world deep neural networks are known to
be vulnerable to adversarial attacks. Universal adversarial perturbation, an input-
agnostic attack, poses a serious threat for them to be deployed in security-sensitive
systems. In this case, a single universal adversarial perturbation deceives the
model on a range of clean inputs without requiring input-specific optimization,
which makes it particularly threatening. In this work, we observe that univer-
sal adversarial perturbations usually lead to abnormal entropy spectrum in hidden
layers, which suggests that the prediction is dominated by a small number of “fea-
ture” in such cases (rather than democratically by many features). Inspired by
this, we propose an efficient yet effective defense method for mitigating UAPs
called Democratic Training by performing entropy-based model enhancement to
suppress the effect of the universal adversarial perturbations in a given model.
Democratic Training is evaluated with 7 neural networks trained on 5 benchmark
datasets and 5 types of state-of-the-art universal adversarial attack methods. The
results show that it effectively reduces the attack success rate, improves model
robustness and preserves the model accuracy on clean samples.

1 INTRODUCTION

Advances and success in deep learning have enabled the widespread use of Deep Neural Networks
(DNNs) based machine learning models. DNNs become the algorithm of choice for a wide range of
applications (Fu et al., 2016; Schroff et al., 2015; Bojarski et al., 2016; Vieira et al., 2017). How-
ever, despite their success, DNNs are found to make erroneous predictions when a carefully crafted,
small magnitude human-imperceptible perturbation is added to an input (Goodfellow et al., 2015;
Dong et al., 2018; Madry et al., 2018; Moosavi-Dezfooli et al., 2017). One can easily conduct
adversarial attacks against the target network by generating adversarial examples utilizing such per-
turbations. The existence of adversarial examples has become a serious concern to systems based
on DNNs especially in safety-critical applications. Neural network adversarial attacks can be input-
specific (Goodfellow et al., 2015; Dong et al., 2018; Madry et al., 2018; Wang et al., 2021b; Zhang
et al., 2022; Ganeshan et al., 2019) or input-agnostic (Moosavi-Dezfooli et al., 2017; Shafahi et al.,
2020; Zhang et al., 2020b; Mopuri et al., 2018; Poursaeed et al., 2018; Hayes & Danezis, 2018;
Liu et al., 2019). In the case of input-specific attacks or per-instance attacks, perturbations are in-
dividually optimized for each input to produce the corresponding adversarial example. In contrast,
in input-agnostic attacks, a single perturbation is optimized for a set of inputs to produce an uni-
versal perturbation to generate a set of adversarial examples. Such perturbations are often referred
to as universal adversarial perturbations (UAP), where the same perturbation applied to a range of
clean inputs will cause the model to misclassify. Compared to input-specific adversarial attacks,
UAPs could be considered more threatening since they are more efficient in terms of computation
cost from the attack point of view. Furthermore, defending against UAPs poses a significant chal-
lenge, as it is hypothesized that they exploit and amplify legitimate features essential to the model’s
performance (Moosavi-Dezfooli et al., 2017; Zhang et al., 2020b; Borkar et al., 2020).
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Figure 1: An overview of our framework

A number of practical and realistic attacks based on UAPs have been successfully conducted in var-
ious scenarios, i.e., image classification (Moosavi-Dezfooli et al., 2017), facial recognition (Sharif
et al., 2016), object detection (Eykholt et al., 2018; Song et al., 2018), etc. Moosavi-Dezfooli et al.
(2017) first explore the existence of UAPs. For a given set of training inputs, the proposed algorithm
iteratively computes the perturbation to make an adversarial example across the decision boundary
of the expected predicted category. Following this work, several different approaches have been
proposed to generate UAPs from different aspects, utilizing different loss functions. These can be
categorized into two main groups (Weng et al., 2024): 1) noise-based (Moosavi-Dezfooli et al.,
2017; Zhang et al., 2020b;a; Mummadi et al., 2019), and 2) generator-based methods (Poursaeed
et al., 2018; Mopuri et al., 2018; Naseer et al., 2021). Noise-based methods directly update the
perturbation through optimization. On the other hand, generator-based methods train a generative
network in prior to obtain the perturbation indirectly. UAP becomes a relevant threat in practice
and it is important to manage such security risk and ensure neural networks are robust against such
attacks. A range of existing works have been proposed to address the problem of defending machine
learning models against UAPs. These include finetuning a given model’s parameters with UAP
perturbed samples (Moosavi-Dezfooli et al., 2017; Mummadi et al., 2019), inserting feature regen-
eration layers (Borkar et al., 2020), applying feature norm clipping techniques (Yu et al., 2021), etc.
However, existing methods mainly focus on non-targeted attacks (Moosavi-Dezfooli et al., 2017;
Shafahi et al., 2020; Benz et al., 2021) and often require to craft a large number of UAPs (Moosavi-
Dezfooli et al., 2017; Mummadi et al., 2019; Shafahi et al., 2020; Benz et al., 2021; Borkar et al.,
2020) or change the architecture of the original model (Borkar et al., 2020; Yu et al., 2021; 2023).

In this work, we focus on targeted universal adversarial attack which is both more relevant from
an attacker point of view (i.e., so that the attacker can trigger specific target outcome) and more
challenging from a defender point of view. Our approach does not require constructing UAPs or
modifying the model architecture. We propose a scalable algorithm that mitigates the effect of
UAPs through entropy based model enhancement. Specifically, as described in Figure 1 we propose
Democratic Training with the key idea of enhancing a given neural network by adjusting the weights
of hidden neurons towards the correct predictions in the presence of UAPs. We first analyze the
distribution of hidden neuron activation when an input perturbed with UAP is supplied to a model
and compare that with the activation when clean samples are supplied. We study the entropy of such
hidden neuron activation and our empirical results suggest that the presence of UAP causes layer-
wise entropy to drop and such effect becomes more severe at deeper layers. We conjecture that
this is because the UAP enforces the “power” of certain features, which subsequently dominates
the prediction. Base on such result, we propose to mitigate the effect of UAPs through adversarial
finetuning guided by hidden layer entropy, or philosophically speaking, enforcing democracy in the
decision making. We compare the performance of our work with existing solutions on UAP defense
and show that Democratic Training improves existing approaches significantly.

2 PRELIMINARIES

2.1 UNIVERSAL ADVERSARIAL PERTURBATION

We start with introducing the notation for targeted UAP attacks. Given a trained neural network N , a
test dataset X and let yt represent the attacker-chosen target class. A targeted UAP is a perturbation
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δ that satisfies the following:

N(x + δ) = yt

∥ δ ∥p ≤ ϵ
(1)

where x ∈ X and |X| is sufficiently large and δ is bounded by certain lp norm (∥ δ ∥p ≤ ϵ). We
remark that here we focus on a definition of vicinity based on lp norm. In general, it can be defined
in other forms as well. For instance, a UAP can take the form of a patch that is small in size but
applying it to a range of clean inputs, the model will classify the perturbed inputs as the target class.

The existence of UAP shows that there are systemic vulnerabilities in the model which can be ex-
ploited by an attacker regardless of the input. Hence, UAP attacks pose serious threats in real-world
applications of neural networks such as attacking facial recognition systems where incorrect iden-
tity is returned (Amada et al., 2021; Zolfi et al., 2022), autonomous driving systems where a wrong
traffic sign or road condition is misidentified (Benz et al., 2020; Eykholt et al., 2018), speech recog-
nition systems which may cause various systems to interpret human commands wrongly (Sun et al.,
2024), malware detection systems where suspicious programs may bypass the detection (Castro
et al., 2021) and many others (Moosavi-Dezfooli et al., 2017; Zhang et al., 2020b; Metzen et al.,
2017; Wallace et al., 2019).

2.2 EVALUATION METRICS

Attack Success Rate (SR): This metric measures the percentage of adversarial samples (except the
samples of the target class yt) classified to the target class yt:

SR =
∑

x∈(X−Xt)

|N(x+ δ) = yt|
|X| − |Xt|

(2)

where x ∈ X represents a clean input from dataset X , Xt ⊂ X represents a set of samples from the
target class yt.

Adversarial Accuracy (AAcc.): This metric measures the accuracy of adversarial examples (where
yx represents the label of sample x):

AAcc. =
∑
x∈X

|N(x+ δ) = yx|
|X|

(3)

2.3 ENTROPY

Shannon Entropy: In information theory, the entropy of a random variable represents the average
amount of “information” or “uncertainty” associated with the variable’s possible outcomes. The
concept of information entropy was introduced by Claude Shannon (Shin & Kim, 1949), where
the Shannon entropy is proposed to quantify the amount of information carried by a variable. For
a random variable v, which takes values from the set V that follows the probability distribution
p : V → [0, 1] the entropy of v is defined as:

H(v) = −
∑
v∈V

p(v) log p(v) (4)

where the summation denotes the sum over the variable’s possible values.

Measure the Entropy of A Neural Network: The concept of entropy can be applied in neural
networks for different purposes. Appendix 8.2 shows two methods proposed in existing works mea-
suring the entropy of a given neural network. In this work, we propose to measure layer-wise entropy
to understand how UAP fools a given neural network. The details are provided in Section 3.1.

2.4 THREAT MODEL

Our approach aims to mitigate the effect of UAPs for third-party trained neural networks. In this
work, we assume an evasion threat where a set of clean data is available to the adversary.
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• Adversary goals. The goal of the adversary is to generate UAPs such that once applied to a
range of clean inputs, the model will classify the perturbed inputs wrongly.

• Adversarial capabilities. We assume the adversary has white-box access to the model and
is capable of crafting UAPs.

• Adversarial knowledge. We assume that the adversary has the information on the target
model’s architecture, inner parameters and optimization algorithms.

Our goal is to mitigate the effect of UAPs on a given model with minimum assumptions. Specifically,
we assume the defender has the following knowledge about the neural network:

• Defense goals. We aim to design a strategy that can remove the effect of UAPs from the
model by adjusting the model parameters.

• Defender’s capabilities. We assume the defender has white-box access to the neural net-
work model. The defender has information about the model architecture but cannot inter-
fere with the training process.

• Defender’s knowledge. We assume a small set of clean data is available (as it is usually the
case in practice), either given by the model provider or collected by the defender, to test the
model’s performance.

2.5 OUR PROBLEM

Problem. Let N be a neural network which is assumed to be obtained from a third party; x is an
input and ϵ is a small positive threshold. The UAP defense problem is to mitigate the effect of UAPs
on N such that the predictions of inputs patched with UAPs stay robust. Furthermore, the UAPs
are bounded by lp norm where ∥ δ ∥p ≤ ϵ. We would also require that the model’s performance on
clean data is minimally affected after the mitigation process.

3 OUR APPROACH

To understand how UAPs deceive a model, we first conduct a systematic analysis of model behav-
iors from the lens of entropy. We study layer-wise entropy of a given model with and without the
presence of UAPs. As we shall show in Section 3.2, the presence of UAPs will cause the layer-
wise entropy to be abnormally lower than that on clean inputs. Furthermore, such effect becomes
more severe at deeper layers. Based on these findings, we propose Democratic Training which con-
ducts entropy-based model enhancement to repair the given model such that the effect of UAPs is
mitigated.

3.1 ENTROPY MEASUREMENT

Firstly, we present how entropy is measured in this work. For a given neural network N , con-
sisting of n layers, we treat each layer l as a single random variable, characterized by its in-
put xl and output xl+1. Thus, for a layer l containing dl neurons, given an input to this layer
xl = {x0

l , x
1
l , · · · , x

dl−1−1
l }, its layer-wise entropy is calculated as:

χl = σ(Wlxl + bl)

pl = softmax(χl)

Hl = −
k=dl−1∑
k=0

pl(k) log pl(k)

(5)

where Wl and bl are the weight and bias parameters of layer l and σ is the activation function of
layer l. Intuitively, we treat the activated value pl(k) of each neuron in layer l as the activation
probability for neuron k, and calculate the Shannon entropy of pl following Equation 4. For a given
input to layer l, higher layer entropy Hl indicates higher ambiguity and lower entropy Hl indicates
higher certainty.
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Figure 2: Layer-wise entropy. Enlarged view for shallow and middle layers is provided.

3.2 ENTROPY ANALYSIS

To understand how UAP fools a trained neural network, we conduct empirical study on the layer-
wise entropy of the model as follows:

• Step 1. Given a pretrained neural network, generate a UAP such that the model classifies
samples perturbed with the UAP as the target class.

• Step 2. Analyze the layer-wise entropy with clean samples only, i.e., we randomly select a
set of clean samples and calculate their layer-wise entropy defined in Equation 5.

• Step 3. Apply the UAP generated in Step 1 to the same set of clean samples selected in Step
2 and analyze the layer-wise entropy.

• Step 4. Take the UAP itself as an input to the model and analyze the layer-wise entropy.

We conduct the analysis on all models shown in Table 1 and for each model, multiple targeted UAPs
are generated using a state-of-the-art UAP attack method DF-UAP (Zhang et al., 2020b). We study
the entropy of the pooling layers and the last layer of each stage. We observe similar results across
all models and we show the results on NN1 for shallow 1 (max pooling layer of stage 1), shallow 2
(end of stage 2), middle 1 (end of stage 3), middle 2 (end of stage 4), deep 1 (end of stage 5) and deep
2 (last average pooling layer) layers for illustration purpose. As shown in Figure 2, at shallow layers,
the entropy spectrum for clean and UAP infected samples are quite similar. At middle layers, the
entropy of some UAP infected samples becomes smaller than that of the clean sample, but there is
no clear boundary for separating the two for all samples. At deep layers, we observe clear separation
between entropy from clean and perturbed samples, where UAP infected samples show abnormally
small entropy compared to that of clean samples. These results suggest that the presence of UAP
will cause layer-wise entropy to drop and such effect becomes more severe at deeper layers. We
interpret entropy as an indicator of the neural network’s uncertainty in classifying the intermediate
features. High entropy suggests the features are ambiguous while low entropy indicates the model
is more certain on classifying the features. Our analysis results show that the presence of UAP will
cause the layer-wise entropy to drop significantly, and such lower entropy indicates the model is
more certain on its classification at the same layer. As shown in Figure 2, the entropy distribution of
UAP perturbed samples leans towards the entropy of the UAP, i.e., the UAP dominates layer-wise
entropy rather than the original image. At deeper layers, the entropy of UAP itself drops and is much
lower than the entropy of clean samples, while the entropy of UAP perturbed samples follow such
trend closely. We believe that, UAPs contain dominant features that cause the model to be certain on
the prediction class at earlier layers, i.e., instead of features from the original sample, features from
UAP lead the model to predict the target class. Similar findings are reported in existing work (Zhang
et al., 2020b) that suggests UAPs contain dominant features and original images behave like noise to
them. We argue that such dominant features cause the layer-wise entropy to drop which dominates
the model prediction.

3.3 ENTROPY-BASED REPAIR

Based on our analysis results presented in Section 3.2, we design a general approach for mitigating
UAPs called Democratic Training, which aims to finetune the model such that it learns to predict
low-entropy samples (by effectively reducing the presence of certain dominate features in these
samples). During this process, we introduce a Sample Generator that will craft low entropy samples
from clean samples to mimic the effect of UAPs and guide the model to the correct prediction. Note
that, the Sample Generator does not require information about the attack target class unlike existing
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Algorithm 1: Remove(I,N,m, ϵ)

1 for n epochs do
2 for each batch b do
3 Ienb ←

SampleGenerator(Ib, N,m, ϵ);
4 L(i, ien) =

αLcce(ien) + (1− α)Lcce(i);
5 J(θ) = ∂L(.)

∂θ ;
6 θ ← θ − γθ · SGD(J(θ));

7 return θ;

Algorithm 2: SampleGenerator(I,N,m, ϵ)

1 for m iterations do
2 L(i) = H(i);
3 i ← i+ ϵ

4 · sign(∇iL(i));
4 i = Clamp(i, ϵ);
5 return i;

works that rely on pre-computed perturbations (Moosavi-Dezfooli et al., 2017). As described in
Algorithm 1, Democratic Training requires a small set of clean sample i ∈ I (≤ 5% of training
set) to finetune the original model N . For each epoch and each batch during finetuning, the Sample
Generator transforms a batch of clean inputs (Ib) into low entropy samples (Ienb ) as described in
Algorithm 2. Starting from clean sample i, the perturbation is updated based on the projection of the
layer-wise entropy loss (H(i) = −Hl(i)) iteratively. At each step, a Clamp operation is applied to
the perturbed sample to keep it within the perturbation bound. Next, Democratic Training calculates
the loss of clean and low entropy samples as below:

L(i, ien) = αLcce(ien) + (1− α)Lcce(i) (6)

where Lcce represents the categorical cross entropy loss, i represents a clean sample and ien rep-
resents a low entropy example generated. In Equation 6, αLcce(ien) aims to guide low entropy
samples towards the correct prediction by minimizing their cross entropy loss and (1 − α)Lcce(i)
aims to keep the loss on clean samples low. Parameter α ∈ (0, 1) controls the trade-off between the
effectiveness of UAP removal and performance on unperturbed inputs during the optimization pro-
cess. To make sure the loss on the low-entropy samples is low, the model must learn to ignore those
dominating features present in the low-entropy samples, i.e., learn to predict based on many features
rather than a small number of dominating features. In Democratic Training, Back-propagation is
adopted using the projected gradient descent (PGD) method (Madry et al., 2018). Finally, Demo-
cratic Training returns the updated model parameter θ as the result. Different from exiting methods
(either generate UAPs in prior or on-the-fly), Democratic Training does not rely on generating UAPs
and are thus not limited to specific UAP attacks.

The overall time complexity of Algorithm 1 is O(n ·m · |I|), where |I| is the size of the clean dataset
used, n is the number of epochs to finetune and m represents number of iterations required to gen-
erate low entropy samples. Although Democratic Training requires multiple iterations to transform
clean samples into low entropy samples, converting clean samples into low entropy samples is much
simpler than generating UAPs and the total amount of samples to transform (n · |I|) does not de-
pends on the number of classes in a given dataset since the Sample Generator does not require any
information on the target class. This is a clear advantage over multiple existing UAP defense meth-
ods relying on generating UAPs (e.g., (Akhtar et al., 2018; Mummadi et al., 2019; Borkar et al.,
2020) etc.), for which, perturbations are generated for each target class. For datasets that contains a
large number of classes (e.g., ImageNet dataset contains 1000 classes, JFT-300M dataset (Sun et al.,
2017) contains 18k classes), a large number of perturbations shall be generated in order to achieve
acceptable defense performance. Unlike these methods, Democratic Training transforms some clean
samples into low-entropy samples and and it does not require the size of clean set to be large (≤ 5%
of training set).

4 IMPLEMENTATION AND EVALUATION

In the following, we conduct multiple experiments to evaluate the effectiveness of Democratic Train-
ing by answering multiple research questions (RQs). All experiments are conducted on a machine
with 96-Core 1.4GHz CPU and 60GB system memory with an NVIDIA 24GB RTX 4090 GPU.
Our approach has been implemented as a self-contained toolkit in Python and is open-sourced
(https://gitlab.com/sunbing7/democratic_training).
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Table 1: Neutral Networks Used.

Net Dataset Architecture Acc

NN1 ImageNet ResNet50 0.73
NN2 ImageNet VGG19 0.70
NN3 ImageNet GoogleNet 0.69
NN4 ASL MobileNet 0.99
NN5 CalTech101 ShuffleNetV2 0.85
NN6 EuroSAT ResNet50 0.89
NN7 CIFAR-10 WideResNet 0.93

Table 2: UAP Defense Performance.

Model Before After
AAcc. SR AAcc. SR ∆CAcc. Time

NN1 0.134 0.714 0.617 0.002 -0.02 8
NN2 0.067 0.701 0.431 0.077 -0.04 36
NN3 0.195 0.584 0.549 0.004 -0.03 7
NN4 0.035 0.997 0.894 0.004 -0.02 18
NN5 0.059 0.842 0.715 0.018 -0.01 30
NN6 0.236 0.784 0.786 0.048 -0.01 16
NN7 0.154 0.933 0.860 0.031 -0.03 21
Avg 0.126 0.794 0.693 0.028 -0.02 19

We report attack success rate (SR), adversarial accuracy
(AAcc.), change in accuracy on clean inputs (∆CAcc.) and
execution time (Time) in minutes.
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Figure 3: Change in layer-wise entropy.

4.1 EXPERIMENT SETUP

We conduct our experiments with 7 neural network models trained over 5 benchmark datasets:
1) ImageNet (Deng et al., 2009), 2) ASL Alphabet (Sau, 2018), 3) Caltech101 (Li et al., 2022),
4) EuroSAT (Helber et al., 2019) and 5) CIFAR-10 (Krizhevsky, 2009). Details can be found in
Appendix 8.3. For experiments with the ImageNet dataset, we adopt the pretrained models from
PyTorch (Paszke et al., 2019). For experiments with ASL, Caltech101, EuroSAT and CIFAR-10
datasets, we train CNN models following standard model training process. Details of the models are
summarized in Table 1. When applying Democratic Training, we focus on the last pooling or dense
layer for the entropy calculation since the effect of UAP on layer-wise entropy is stronger in deep
layers as shown in Section 2. A small set of clean data (≤ 5% of the training set) is used during the
model enhancement.

4.2 RESEARCH QUESTIONS AND ANSWERS

RQ1: Is Democratic Training effective in defending against UAP attacks?

For each neural network, we train eight UAPs for randomly selected targets. The details of the
UAP attacks are summarized in Table 2. We systematically apply Democratic Training to all the
above-mentioned models and return the repaired models NN ′

1 to NN ′
7.

Firstly, we measure the layer-wise entropy of clean and UAP perturbed inputs on the repaired mod-
els. Figure 3 shows the box plot for the layer-wise entropy of clean samples and UAP infected
samples before and after applying Democratic Training. On average, across all original models and
attack target classes, the layer-wise entropy difference between clean inputs and those perturbed by
UAPs is 16.7%. After applying Democratic Training, such difference is reduced to 0.2%. Thus,
Democratic Training is able to reduce the effect of UAPs in terms of layer-wise entropy effectively.

Next, we show the change in UAP attack success rate (SR) and model accuracy (on clean inputs
(Clean Acc.) and perturbed inputs (AAcc.)). As shown in Table 2, on average, across all original
models and attack target classes, the attack success rate is reduced from 79.4% to 2.8% after apply-
ing Democratic Training. In addition, the adversarial accuracy is improved from 12.6% to 69.3%.
Hence, by reducing the effect of UAPs on layer-wise entropy, the effectiveness of UAPs is reduced
significantly. In terms of clean sample accuracy, it is minimally affected. On average, the model
accuracy is reduced by about 2%. Thus, Democratic Training is able to focus on removing the effect
of UAPs while the model functionality is maintained.
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Table 3: Performance of Democratic Training on UAPs generated using sPGD, LaVAN, GAP and
SGA.

Model
sPGD LaVAN GAP SGA

Before After Before After Before After Before After
AAcc. SR AAcc. SR AAcc. SR AAcc. SR AAcc. SR AAcc. SR AAcc. SR AAcc. SR

NN1 0.231 0.594 0.629 0.007 0.152 0.790 0.677 0.005 0.229 0.512 0.575 0.002 0.133 0.722 0.592 0.004
NN2 0.248 0.484 0.552 0.016 0.058 0.506 0.343 0.041 0.144 0.393 0.482 0.001 0.067 0.806 0.415 0.096
NN3 0.388 0.281 0.592 0.000 0.086 0.848 0.621 0.002 0.226 0.460 0.614 0.000 0.147 0.640 0.510 0.010
NN4 0.045 0.980 0.981 0.000 0.537 0.271 0.678 0.033 0.031 0.921 0.984 0.034 0.034 0.999 0.904 0.009
NN5 0.326 0.270 0.790 0.008 0.337 0.449 0.867 0.001 0.128 0.751 0.725 0.006 0.106 0.797 0.743 0.020
NN6 0.401 0.375 0.861 0.022 0.224 0.743 0.925 0.004 0.274 0.757 0.900 0.106 0.227 0.776 0.811 0.033
Avg 0.273 0.497 0.734 0.009 0.232 0.601 0.685 0.014 0.172 0.632 0.713 0.025 0.119 0.790 0.662 0.029

Hence, to answer RQ1, Democratic Training is able to reduce the attack success rate of UAP attacks
and improve the robustness against adversarial samples effectively, and at the same time, the model
accuracy is maintained at a high level.

RQ2: Is Democratic Training effective in mitigating UAPs crafted from different attack methods?

There are many UAP generation algorithms proposed in existing works and we further evaluate
Democratic Training against another four types of UAP attacks: 1) sPGD (Mummadi et al., 2019)
which adopts PGD to update the perturbations iteratively to generate UAPs, 2) LaVAN (Karmon
et al., 2018) which is proposed as a method to generate image-agnostic localized adversarial noise
that covers only 2% of the image but fool the neural network, 3) GAP (Poursaeed et al., 2018)
as a generator-based UAP attack method which adopts generative model for crafting UAPs and 4)
SGA (Liu et al., 2023) which alleviates the gradient vanishing and escapes from poor local op-
tima when generating UAP. For each method, we randomly select eight attack target classes and
train UAPs for NN1 to NN6 and evaluate their attack success rate and model accuracy before and
after applying Democratic Training. The average results across all models and target classes are
summarized in Table 3. For all models, on average, sPGD attack achieves 49.7% targeted success
rate and the adversarial accuracy is below 27.3%. LaVAN attack achieves 60.1% success rate with
adversarial accuracy of 23.2%. GAP attack achieves 63.2% success rate and the adversarial accu-
racy is below 17.2%. SGA attack achieves 79.0% success rate and the adversarial accuracy is below
11.9%. When tested on Democratic Training enhanced models, the adversarial accuracy is improved
to 73.4%, 68.5%, 71.3% and 66.2% for sPGD, LaVAN, GAP and SGA attacks respectively, and the
attack success rate is below 0.9%, 1.4%, 2.5% and 2.9%. Thus, models enhanced by Democratic
Training are robust against UAPs generated in different ways. We further analyze the change in
layer-wise entropy before and after applying Democratic Training. The results are summarized in
Appendix 8.6. These results suggest that, regardless of the generation method, the effect of targeted
UAP on a model can be revealed by layer-wise entropy and such effect can be suppressed via our
entropy based model enhancement effectively.

Thus, to answer RQ2, Democratic Training is effective at defending UAPs generated with various
algorithms.

RQ3: How does Democratic Training compare with adversarial training?

Adversarial training can be a useful method to improve model robustness against UAPs (Mummadi
et al., 2019; Shafahi et al., 2020; Benz et al., 2021). We evaluate the effectiveness of low-entropy
samples and adversarial samples in finetuning a given model three settings: 1) non-targeted adver-
sarial training, i.e., adversarial examples are not targeted and are generated on-the-fly , 2) targeted
adversarial training, i.e., adversarial examples are targeted and are generated on-the-fly and 3) fine-
tuning with pretrained targeted UAP. While there are various options of adversarial training algo-
rithm for the first two settings, we adopt PGD based adversarial training (Madry et al., 2018) as it
provides a good trade-off between being computationally efficient and powerful (Mummadi et al.,
2019). We finetune the model with adversarial samples generated with the same number of iterations
as in Democratic Training for a fair comparison. Furthermore, we assume the attack target class is
known for targeted-adversarial finetuning (which gives the defender some unrealistic advantage).
For finetuning with pretrained UAPs, similarly we assume the target class is known and train a set of
10 UAPs to be used together with a set of clean samples. During the finetuning, we add a randomly
chosen pretrained UAP to a clean sample with 50% probability. We keep the number of clean exam-
ples used in finetuning the same as Democratic Training as well. The average performance over all
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Table 4: Performance of adversarial training.

Setting AAcc. SR ∆CAcc.

Targeted 0.464 0.167 -0.104
Non-targeted 0.295 0.455 -0.168
Known UAP 0.476 0.223 0.0
TRADES 0.816 0.022 -0.110

Table 5: Performance of existing methods.

Method AAcc. SR ∆CAcc.

SFR 0.468 0.011 -0.022
CFN 0.150 0.559 -0.073
FNS 0.149 0.623 -0.013
DensePure 0.802 0.010 -0.121

6 models is shown in Table 4. All three methods are not that effective in UAP defense, i.e., the attack
success rate remains high (> 16%) and adversarial accuracy is lower than 50% after the finetuning.
In comparison, Democratic Training is able to reduce the attack success rate to < 3% and improve
the adversarial accuracy to 69% on average. We believe this is due to the fact that adversarial train-
ing aims to direct adversarial examples towards their correct predictions while Democratic Training
focuses on guiding low-entropy samples. Based on our experimental results, low-entropy samples
are more efficient in guiding the model enhancement process.

Moreover, we evaluate the performance of a well-recognized adversarial training method
TRADES (Zhang et al., 2019) on UAP defense. As shown in the last row of Table 4. TRADES
is effective in defending against UAPs but sacrifices model accuracy for over 10%.

Hence, to answer this RQ3, Democratic Training is more effective in defending against UAPs when
compared to adversarial training with equivalent parameter settings.

RQ4: How does Democratic Training compare with other existing neural network UAP defense
methods?

We further compare the performance of Democratic Training with four state-of-the-art UAP defense
methods, i.e., selective feature regeneration (SFR) (Borkar et al., 2020), clipping feature norms
(CFN) (Yu et al., 2021), feature norm suppressing (FNS) (Yu et al., 2023) and DensPure (Xiao et al.,
2023). SFR is an approach proposed to defend against UAPs from feature-level. It deploys feature
regeneration units in a given model aiming to transform vulnerable features into resilient features
against UAPs. CFN is proposed based on the fact that universal adversarial patches usually lead to
deep feature vectors with very large norms (Yu et al., 2021). It introduces a feature norm clipping
layer to be inserted into the original model that aims to adaptively suppress the generation of large
norm deep feature vectors. Similarly, FNS is designed on top of CFN which is able to renormalize
the feature norm by non-increasing functions. FNS can be adaptively inserted in to a given model
to achieve multistage suppression of the generation of large norm feature vectors. No training is
required for such feature norm suppressing layer. DensPure employs iterative denoising to an input
image to get multiple reversed samples with different random seeds. Next, the samples are given
to the model to make final decision via majority voting. The results of the average performance for
SFR, CFN, FNS and DensPure are summarized in Table 5. Both CFN and FNS are not effective
in defending against UAPs, i.e., the attack success rates remain above 50%. Thus, suppressing
or clipping feature norms of a given model has limited effect on weakening the impact of targeted
UAPs. Furthermore, both CFN and FNS modify the original neural network architecture by inserting
an additional feature norm clipping / suppression layer. Although SFR achieves comparable UAP
defense performance as Democratic Training, it modifies the architecture of the original model
which is often not preferred in real-life application (as this might prolong development cycles and
bring in integration challenges (Hutter et al., 2019)). Furthermore, SFR requires to pretrain 25
UAPs (and 2000 synthetic UAPs) to train the additional layers, which is rather time consuming (it
takes > 40 min to train one UAP based on method proposed in (Moosavi-Dezfooli et al., 2017)
following open-source implementation1 while Democratic Training repairs the same model within
10 min). DensePure is effective in improving the model robustness against UAPs but model accuracy
is affected which drops by 12.1%. Moreover, it introduces overhead in inference time for reversed
samples.

Hence, to answer RQ4, Democratic Training is more effective in mitigating the impact of UAPs on
trained neural networks, which does not require to change the original model architecture.

1https://github.com/qilong-zhang/Pytorch Universal-adversarial-perturbation
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5 RELATED WORKS

Adversarial attacks. Neural networks are highly vulnerable to adversarial attacks, which are small,
deliberately crafted perturbations to input data that can fool the model into making incorrect pre-
dictions. Such perturbation can be 1) image-specific where the attacker computes a perturbation for
every clean input and 2) image-agnostic where a single perturbation will cause majority of clean
samples to fool a given model. In recent years, many input-specific adversarial attacks are proposed
to generate disruptive perturbations. Goodfellow et al. (2015) introduce Fast Gradient Sign Method
(FGSM) that generates adversarial examples. Subsequently, Basic Iterative Method (BIM) is pro-
posed (Kurakin et al., 2017) as an extension of FGSM which applies small FGSM steps iteratively
aiming to generate higher quality perturbations. Madry et al. (2018) propose PGD which optimizes
the perturbation at each iteration based on gradient of loss function. Furthermore, Carlini & Wagner
(2017) propose C&W attack which formulates the adversarial example generation as an optimiza-
tion problem aiming at minimal perturbation. Together with many others, e.g., (Wang et al., 2021a;
Wu et al., 2020; Zhong & Deng, 2021; Dong et al., 2019; Wang et al., 2022; Peng et al., 2021),
adversarial attacks pose a significant threat to real-world applications in different domains.

Universal adversarial attacks. Unlike per-instance perturbations, UAPs work for the majority of
clean samples, i.e., adding a single perturbation to majority of clean samples, the neural network
will response with incorrect predictions. Such attacks can be broadly classified in to noise-based
and generator-based attacks. Noise-based attack methods directly train a UAP that can be applied
to all inputs while generator-based methods train an extra generative model as a bridge to craft he
perturbation indirectly (Weng et al., 2024). Moosavi-Dezfooli et al. (2017) first explore the exis-
tence of such input-agnostic adversarial perturbations. Furthermore, Khrulkov & Oseledets (2018)
propose to craft UAPs by maximizing the difference between the activations of a hidden layer for
clean and perturbed inputs. Later on, many noise-based methods are proposed with good perfor-
mance (Mopuri et al., 2017; Zhang et al., 2020b). On the other hand, Poursaeed et al. (2018) firstly
apply generative model for crafting UAPs. NAG is proposed (Mopuri et al., 2018) with a novel loss
function for training the perturbation generator. Beyond above mentioned methods, there are many
other UAP attacks, e.g., (Benz et al., 2020; Khrulkov & Oseledets, 2018; Zhang et al., 2020a; Amada
et al., 2021; Sun et al., 2024). Compared to input-specific perturbations, UAPs are more efficient in
terms of computation cost and become a more significant threat in practice.

Defense against adversarial attacks. Defense against adversarial attacks can be grouped into six
domains (Costa et al., 2024): 1) adversarial training which augments the training data with adver-
sarial examples to make the model more robust (Goodfellow et al., 2015; Madry et al., 2018; Wong
et al., 2020; Zhang et al., 2019; Mummadi et al., 2019; Chen et al., 2022), 2) modifying the train-
ing process which adjusts the training process to improve robustness (Papernot et al., 2016; Shafahi
et al., 2020; Huang et al., 2020; Chen & Lee, 2021; Pang et al., 2022; Akhtar et al., 2018), 3) use of
supplementary networks which add extra networks on top of the original model to remove the effect
of adversarial perturbations (Liu et al., 2020; Liao et al., 2018; Li et al., 2021; Abusnaina et al., 2021;
Ho & Vasconcelos, 2022; Borkar et al., 2020), 4) changing network architecture which modifies the
architecture of the original model for robustness (Xie et al., 2019; Guo et al., 2020; Xie et al., 2018;
Atzmon et al., 2019; Yu et al., 2021; 2023), 5) performing network validation which validates and
certifies the robustness of a given model (Pei et al., 2019; Ma et al., 2018; Kim et al., 2019) and 6)
adversarial purification which removes adversarial perturbations of input samples and recovers the
clean image (Gowal et al., 2021; Ho et al., 2020; Sehwag et al., 2022; Nie et al., 2022; Xiao et al.,
2023). Among them, there are multiple works proposed to defense against UAPs (Moosavi-Dezfooli
et al., 2017; Akhtar et al., 2018; Mummadi et al., 2019; Borkar et al., 2020; Yu et al., 2021; 2023).

6 CONCLUSION

In conclusion, we propose Democratic Training as an efficient and effective defense method against
targeted UAP attacks for neural networks. Democratic Training first analyzes the layer-wise entropy
to understand how UAP deceive the model and conducts entropy-based model enhancement to
mitigate the effect of UAP. Our experimental results show that Democratic Training is effective in
removing the effects of UAPs from a given model and it outperforms existing state-of-the-art UAP
attack defense methods.
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8 APPENDIX

8.1 FUTURE WORKS

In our future works, we would like to extend Democratic Training to other model architectures (e.g.,
transformer based models) and non-vision tasks (e.g., language models, audio tasks). Moreover,
we would like to integrate Democratic Training with adversarial training, i.e., apply low-entropy
samples in adversarial training. We would like to explore if the performance can be further improved
and whether the method can be extended to other types of adversarial attacks.

8.2 MEASURING ENTROPY IN NEURAL NETWORKS

Barbiero et al. (2022) proposed to apply an entropy-based layer to conduct logic explanations of
neural networks. For a concept-based classifier where human-understandable input concepts are
mapped to output predictions, the relevance of an input concept j to a prediction class i can be
approximated by the weight connecting jth input to ith class embedding, i.e.,

γi
j = ||W i

j ||1

βi
j =

e
γi
j
τ∑

l e
γi
l
τ

(7)

where W represents the weight matrix and τ is a user-defined temperature parameter to tune the
softmax function. The entropy of distribution βi

H(βi) = −
∑
j

βi
j log β

i
j (8)

is minimized when a single input concept dominates the prediction and it is maximized when all
concepts are equally important.

Wan et al. (2019) proposed entropy-based pooling for CNNs that helps the network to concentrate
on semantically important image regions. In CNN architecture, a global averaging pooling (GAP)
layer is typically connected to a fully connected (FC) layer with softmax activation to produce the
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class scores. The input to GAP layer is the last convolutional feature maps U ∈ Rh×w×c consisting
of local feature vectors vi ∈ R|i = 1, 2, · · · , hw, and the final prediction scores are computed as

fGAP (U) =
1

hw

∑
i

vi

F = WT fGAP (U)

=
1

hw

∑
i

WT vi

(9)

The entropy of the localized class probability for location i is then measured by

pi = softmax(WT vi)

H(pi) = −
∑
k

pi(k) log pi(k)
(10)

where WT vi ∈ RK . For a feature location i, if its receptive field is centered on a specific object,
the localized class prediction of vi should probably be highly confident leading to a low entropy
value measured using Equation 10. Otherwise, if its receptive field is centered on image textures or
patterns that frequently occurred in other image classes, the corresponding entropy should generally
be high (Wan et al., 2019).

8.3 DATASETS USED IN OUR EXPERIMENTS

• ImageNet (Deng et al., 2009): The ImageNet 2012 dataset, also known as the ILSVRC
2012 (ImageNet Large Scale Visual Recognition Challenge), is a large-scale dataset used
for visual object recognition tasks. It contains over 1.2 million images for training, 50,000
for validation, and 100,000 for testing. There are 1,000 different classes, which include
a wide variety of objects, animals, and scenes. Each class has hundreds to thousands of
images. We focus on image classification task in this work.

• ASL Alphabet (Sau, 2018): This dataset is a collection of images of alphabets from the
American Sign Language. It consists of 87K 200× 200 images of 29 classes, including 26
letters (A to Z) and 3 classes for “SPACE”, “DELETE” and “NOTHING”. The task is to
identify the 29 alphabets.

• Caltech101 (Li et al., 2022): This dataset contains of 9k pictures of objects belonging to
101 categories. There are 40 to 800 images per category. Images are of variable sizes with
typical edge lengths of 200 to 300 pixels. The task is to recognize the 101 different objects.

• EuroSAT (Helber et al., 2019): This dataset is a benchmark dataset in the field of remote
sensing and geospatial analysis for the classification of land use and land cover from satel-
lite imagery. It contains 27k 64 × 64 labeled images of 10 different classes representing
various land use and land cover types, including: forest, highway, river etc. The task is to
classify the land usage types.

• CIFAR-10 (Krizhevsky, 2009): This dataset is a widely used benchmark dataset for image
classification in machine learning. It contains 60k color images, each with a resolution of
32x32 pixels. The task is for image recognition of 10 catagories.

8.4 PERFORMANCE ON UAPS GENERATED WITH DIFFERENT ϵ.

To further evaluate Democratic Training, we generate UAPs with different ϵ settings. We train UAPs
with ϵ = 5/255 and eight with ϵ = 15/255 for NN1 with the same set of target classes selected in
RQ1 and evaluates the attack success rate and model accuracy on the Democratic Training repaired
model (repaired with ϵ = 10/255). The average results are summarized in Table 6. For a smaller
perturbation budget (ϵ = 5/255) the repaired model stays robust against the generated UAPs. The
attack success rate is below 1% for all targeted classes. For a larger perturbation budget (ϵ is larger
than the value used during the finetuning process) where ϵ = 15/255, the repaired model still
remains robust to a certain level. The average attack success rate drops from 91.3% to 11.5%. For
the adversarial examples to be human-imperceptible, the ϵ shall not be large. Hence, by setting it
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Table 6: Performance of Democratic Training on
UAPs generated with different ϵ.

ϵ
Before After

AAcc. SR AAcc. SR

5/255 0.468 0.274 0.699 0.000
10/255 0.134 0.714 0.617 0.002
15/255 0.027 0.913 0.364 0.115

Table 7: Adaptive attack performance.

Model AAcc. SR

NN ′
1 0.480 0.115

NN ′
2 0.344 0.288

NN ′
3 0.491 0.058

NN ′
4 0.655 0.174

NN ′
5 0.385 0.409

NN ′
6 0.559 0.369

to a reasonable value, e.g., ϵ = 10, the Democratic Training repaired model will be robust against
UAPs generated with various perturbation budgets.

Thus, Democratic Training repaired model stays robust against UAP attacked samples generated
with different perturbation budgets (ϵ).

8.5 ADAPTIVE ATTACKS

In this section, we evaluate Democratic Training on two types of adaptive UAP attacks: 1) secondary
white-box attacks, where the attacker has full access to the Democratic Training repaired model, and
2) advanced attacks where the attacker is capable of tailoring the UAP trying to bypass our defense.

Firstly, for secondary attacks, for pretrained model NN1 to NN6 described in Table 1, we apply
Democratic Training to repair it as in RQ1 to mitigate the effect of UAPs and obtain the repaired
models. Next, we apply the method DF-UAP proposed in (Zhang et al., 2020b) on all the repaired
models (NN ′

1, NN ′
2, NN ′

3, NN ′
4, NN ′

5 and NN ′
6.) to generate new sets of UAPs accordingly.

We keep all the attack parameters the same as the initial attack including the attack target classes.
The secondary attack performance is show in Table 7. As described in Section 4, before applying
Democratic Training, the UAP attack (Zhang et al., 2020b) can easily achieve an average of 81.3%
targeted attack success rates and 14.7% adversarial accuracy. After applying Democratic Training,
a subsequent attack can achieve an average attack success rate of 23.6% (with highest attack success
rate of 40.9% on NN ′

5 and lowest of 5.8% on NN ′
3). The average adversarial accuracy on the sub-

sequent attack is 48.6%. Furthermore, we apply sPGD and GAP attacks on NN ′
1 as well. Adaptive

sPGD is able to achieve 16.5% attack success rate and 48.7% adversarial accuracy. Adaptive GAP
only manages to achieve an average success rate of 1.1% and the adversarial accuracy stays above
50%. Hence, similar to DF-UAP, subsequent UAP attacks such as sPGD and GAP are no longer
effective on Democratic Training repaired models. Based on such result, we believe that, as UAPs
exploit large correlations and redundancies in the decision boundary of a given model (Moosavi-
Dezfooli et al., 2017), Democratic Training is able to reduce such correlations and redundancies so
that it is much more difficult to find highly effective UAPs on the Democratic Training enhanced
models.

Thus, although secondary UAP attacks on Democratic Training repaired models can still generate
UAPs that successfully fool the models, our defense keeps the secondary attack success rate to a very
low level while keeping the adversarial accuracy high. Hence, based on above results, Democratic
Training repaired model is able to stay robust against adaptive UAP attacks.

Secondly, for advanced attacks we conduct experiments such that when generating UAPs, the at-
tacker further controls the change in layer-wise entropy. Based on DF-UAP, the optimization loss
function used for crafting an UAP is modified as:

L(i) = (1− ρ) · Lcce(i, yt)− ρ ·H(i) (11)

where i represents a training sample, yt represents the attack target class and H(i) represents the
layer-wise entropy loss for i. We use H(i) to control the entropy change caused by the UAP and
parameter ρ is used to control the importance of H(i) over attack success rate. We conduct such
advanced attack on model NN1 to NN6 with ρ set to 0.1 to 0.9. All models show similar results
and for illustration purpose, results on NN1 are summarized Table 8. Increasing ρ causes the attack
performance to drop, i.e., the attack success rate starts to drop when ρ > 0.5 and the attack SR is
below 60% when ρ = 0.9. Our defense stays effective across different ρ settings where the attack
SR is reduced to < 1% for all scenarios. Hence, knowing how Democratic Training enhance the

20



Published as a conference paper at ICLR 2025

Table 8: Advanced attack performance on NN1. We report the Adversarial accuracy (AAcc.), attack
success rate (SR) and layer-wise entropy (Entropy) of UAP infected samples. Note that clean sample
layer-wise entropy is 7.1

ρ
Before After

AAcc. SR Entropy AAcc. SR Entropy

0.0 0.118 0.764 5.62 0.619 0.001 7.39
0.1 0.121 0.775 6.07 0.619 0.001 7.39
0.2 0.118 0.759 6.29 0.619 0.001 7.40
0.3 0.128 0.764 6.35 0.613 0.001 7.39
0.4 0.127 0.761 6.89 0.612 0.001 7.40
0.5 0.125 0.759 7.07 0.608 0.0 7.39
0.6 0.141 0.745 7.13 0.618 0.0 7.39
0.7 0.161 0.693 7.16 0.599 0.001 7.39
0.8 0.185 0.657 7.33 0.609 0.001 7.40
0.9 0.207 0.568 7.43 0.628 0.0 7.39
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Figure 4: Change in layer-wise entropy of other UAPs.

model and control the change in layer-wise entropy during attack process, the adversary is still not
able to bypass our defense effectively.

8.6 ENTROPY ANALYSIS ON OTHER UAPS

As part of RQ2, we further analyze the change in layer-wise entropy of clean and UAP infected
samples for other types of UAP attacks, i.e., sPGD, LaVAN, GAP and SGA. The results are summa-
rized in Figure 4, which show that similar to DF-UAP, UAPs generated with above mentioned four
methods also cause the layer-wise entropy to drop and Democratic Training is able to mitigate such
effect effectively.

8.7 NON-TARGETED UAP ATTACKS

We further evaluate Democratic Training on non-targeted UAP attacks. We generate non-targeted
UAPs following DF-UAP for NN1 to NN6 and report the adversarial accuracy and attack success
rate on original models (NN1 to NN6) and repaired models (NN ′

1 to NN ′
6). For non-targeted

attacks, the attack success rate (SR) is calculated as SR =
∑

x∈X
|N(x+δ)̸=N(x)|

|X| , where x ∈ X

represents a clean sample, δ is the UAP. The results are summarized in Table 9.

Although not designed for non-targeted UAPs, Democratic Training manages to reduce the attack
SR from over 90% to 30% on average. This is indeed not as effective as targeted UAP defense and
we believe this is due to the different entropy spectrum caused by the two types of UAPs. Figure 5
shows the entropy spectrum of clean and non-targeted UAP infected samples for NN2 where no
clear separation of the two is observed.
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Table 9: Performance on non-targeted UAP attacks.

Model Before After
AAcc. SR AAcc. SR ∆CAcc.

NN1 0.057 0.939 0.594 0.267 -0.047
NN2 0.056 0.943 0.369 0.559 -0.066
NN3 0.098 0.888 0.469 0.408 -0.035
NN4 0.002 0.981 0.918 0.066 -0.031
NN5 0.053 0.958 0.607 0.374 -0.019
NN6 0.289 0.737 0.801 0.129 -0.008
Avg 0.092 0.907 0.626 0.300 -0.034
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Figure 5: Layer-wise entropy of NN2.
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