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Abstract

During periods of quiescence, such as sleep, neural activity in many brain circuits
resembles that observed during periods of task engagement. However, the precise
conditions under which task-optimized networks can autonomously reactivate the
same network states responsible for online behavior are poorly understood. In this
study, we develop a mathematical framework that outlines sufficient conditions for
the emergence of neural reactivation in circuits that encode features of smoothly
varying stimuli. We demonstrate mathematically that noisy recurrent networks
optimized to track environmental state variables using change-based sensory in-
formation naturally develop denoising dynamics, which, in the absence of input,
cause the network to revisit state configurations observed during periods of online
activity. We validate our findings using numerical experiments on two canonical
neuroscience tasks: spatial position estimation based on self-motion cues, and head
direction estimation based on angular velocity cues. Overall, our work provides
theoretical support for modeling offline reactivation as an emergent consequence
of task optimization in noisy neural circuits.

1 Introduction

Neural circuits in the brain are known to recapitulate task-like activity during periods of quiescence,
such as sleep [1]. For example, the hippocampus “replays” sequences of represented spatial locations
akin to behavioral trajectories during wakefulness [2—4]. Furthermore, frontal [5, 6], sensory [7, 8],
and motor [9] cortices reactivate representations associated with recent experiences; and sleep activity
in the anterior thalamus [10] and entorhinal cortex [11] is constrained to the same neural manifolds
that represent head direction and spatial position in those circuits during wakefulness.

This neural reactivation phenomenon is thought to have a number of functional benefits, including
the formation of long term memories [12, 13], abstraction of general rules or “schema” [14], and
offline planning of future actions [15, 16]. Similarly, replay in artificial systems has been shown to
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be valuable in reinforcement learning, when training is sparse or expensive [17], and in supervised
learning, to prevent catastrophic forgetting in continual learning tasks [18]. However, where machine
learning approaches tend to save sensory inputs from individual experiences in an external memory
buffer, or use external networks that are explicitly trained to generate artificial training data [19],
reactivation in the brain is autonomously generated in the same circuits that operate during active
perception and action. Currently, it is unknown how reactivation can emerge in the same networks
that encode information during active behavior, or why it is so widespread in neural circuits.

Previous approaches to modeling reactivation in neural circuits fall into two broad categories: genera-
tive models that have been explicitly trained to reproduce realistic sensory inputs [20], and models
in which replay is an emergent consequence of the architecture of network models with a particular
connectivity structure [21, 22] or local synaptic plasticity mechanism [23-26]. Generative modeling
approaches have strong theoretical guarantees that reactivation will occur, because networks are
explicitly optimized to provide this functionality. However, modeling approaches that argue for
emergent reactivation typically rely on empirical results, and lack rigorous mathematical justification.

In this study, we demonstrate that a certain type of reactivation—diffusive reactivation—can emerge
from a system attempting to optimally encode features of its environment in the presence of internal
noise. We observe that continuous-time recurrent neural networks (RNNs), trained to optimally
integrate and track perceptual variables based on sensations of change (angular velocity, motion
through space, etc.), will naturally exhibit reactivation during quiescent states (when subject to noise
but in the absence of perceptual inputs). We explain these phenomena by demonstrating that noise
compensation dynamics naturally induce diffusion on task-relevant neural manifolds in optimally
trained networks. We provide a mathematical derivation that outlines sufficient conditions for this
phenomenon to occur. Subsequently, we follow with a series of empirical validations in the context
of two ecologically relevant tasks: a spatial navigation task, and a head direction integration task.

2 Mathematical Results

In this study, we will consider a noisy discrete-time approximation of a continuous-time RNN,
receiving change-based information dZ—(tt) about an Ny-dimensional environmental state vector s(t).
The network’s objective will be to reconstruct some function of these environmental state variables,
f(s(t)) : RNs — RNe, where N, is the number of stimulus dimensions and N,, is the number of
output dimensions. An underlying demand for this family of tasks is that path integration needs to be
performed, possibly followed by some computations based on that integration. These requirements
are often met in natural settings, as it is widely believed that animals are able to estimate their location
in space s(t) through path integration based exclusively on local motion cues d5() " and neural
circuits in the brain that perform this computation have been identified (specifically the entorhinal
cortex [27]). For our analysis, we will assume that the stimuli the network receives are drawn from a
stationary distribution, such that p(s(¢)) does not depend on time—for navigation, this amounts to
ignoring the effects of initial conditions on an animal’s state occupancy statistics, and assumes that

the animal’s navigation policy remains constant throughout time. The RNN’s dynamics are given by:
r(t + At) = r(t) + Ar(¢) 1)

Ar(t) = ¢ <r(t), s(t), dz(tt)> At + on(b), ?)

where Ar(t) is a function that describes the network’s update dynamics as a function of the stimulus,
¢(-) is a sufficiently expressive nonlinearity, n(t) ~ A(0, At) is Brownian noise, and At is taken to
be small as to approximate corresponding continuous-time dynamics. We work with a discrete-time
approximation here for the sake of simplicity, and also to illustrate how the equations are implemented
in practice during simulations. Suppose that the network’s output is given by o = Dr(t), where D is
an N, x N, matrix that maps neural activity to outputs, and NN, is the number of neurons in the RNN.

We formalize our loss function for each time point as follows:
L(t) = Eqy| f(s(t)) — Dr(t)]2, 3)

so that as the loss is minimized over timesteps, the system is optimized to match its target at every
timestep while compensating for its own intrinsic noise. We find that the greedily optimal dynamics,



in the presence of noise, for an upper bound of this loss are given by:

denoising state updation

At + on(t). )

These dynamics are interpretable: any system attempting to maintain a relationship to a stimulus in
the presence of noise must first perform denoising, and then use instantaneous changes in the state

variable (dsd(:)) to update state information. A detailed derivation is provided in Appendix A.

We are now in a position to ask: what happens in the absence of any input to the system, as would be
observed in a quiescent state? We will make two assumptions for our model of the quiescent state:

1) dz(tt) = 0, so that no time-varying input is being provided to the system, and 2) the variance of

the noise is increased by a factor of two (deviating from this factor is not catastrophic as discussed
below). This gives the following quiescent dynamics ¥

AF(t) = |o? log p(r(t)) | At + V20n(t). )

dr(t)
Interestingly, this corresponds to Langevin sampling of p(r). Therefore, we can predict an equivalence
between the steady-state quiescent sampling distribution p(r) and the active probability distribution
over neural states p(r) (so that p(r) = p(r), and consequently p(o) = p(0)). There are two key
components that made this occur: first, the system needed to be performing near-optimal noisy
state estimation; second, the system state needed to be determined purely by integrating changes in
sensory variables of interest. The final assumption—that noise is doubled during quiescent states—is
necessary only to produce sampling from the exact same distribution p(r). Different noise variances
will result in sampling from similar steady-state distributions with different temperature parameters.
When these conditions are present, we can expect to see reactivation phenomena during quiescence
in optimally trained networks.

3 Numerical Experiments

To validate our mathematical results, we consider numerical experiments with noisy “vanilla”
continuous-time RNNs on two canonical neuroscience tasks: spatial position estimation using
motion cues, and head direction estimation using angular velocity cues. We provide task and network
details in Appendix B. Both of these tasks conform to the structure of the general estimation task
considered in our mathematical analysis. For each task, we minimize the mean-squared error between
the network output o and the task-specific target given by f(s(¢)), summed across timesteps. In this
section and Appendix C.1, we discuss the analyses associated with the spatial position estimation
task. We refer the reader to Appendix C.2 for experiments on the head direction estimation task.

First, we visualized the decoded output activity for the active and quiescent phases (Fig. 1a-b). It is
clear that decoded output activity during the quiescent phase is smooth, and tiles output space similarly
to trajectories sampled during the waking phase. To quantify the similarity in the distributions of
activity during the active and quiescent phases, we computed 2D kernel density estimates' (KDEs) on
the output trajectories (Fig. 1e-f). We indeed found that the distribution of activity was similar across
active and quiescent phases, as predicted by our mathematical results. However, output trajectories in
the quiescent phase do not tile space as uniformly as those in the active phase.

Our theory additionally predicts that if the distribution of network states during the active phase is
biased in some way during training, the distribution during the quiescent phase should also be biased
accordingly. To test this, we modified the behavioral policy of our agent during training, introducing
a drift term that caused it to occupy a ring of spatial locations in the center of the field rather than
uniformly tiling space. We found again a close correspondence between decoded output trajectories
of the active and quiescent phases (Fig. 1c-d), which was also reflected in the KDEs (Fig. 1g-h).

We carried out several additional analyses in order to validate our mathematical results, and these are
presented in Appendix C. Our results collectively verify that during quiescence, our trained networks
do indeed approximately sample from the waking trajectory distribution.

'We used the stats.gaussian_kde () method from scipy [28], with default values for its parameters.
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Figure 1: Reactivation in a spatial position estimation task. a-b) Sample decoded outputs during
active (a) and quiescent (b) behavior for networks trained under uniform trajectories. Circles indicate
the initial location, triangles indicate the final location. ¢-d) Same as (a-b), but for biased trajectories.
e-f) 2D kernel density estimate (KDE) plot for decoded outputs in the active (e) and quiescent (f)
phases, for 500 uniform trajectories. g-h) Same as (e-f) but for biased trajectories.

4 Discussion

In this study, we have provided mathematical conditions under which reactivation is expected to
emerge in task-optimized recurrent neural circuits. Our criteria are as follows: first, the network must
implement a noisy, continuous-time dynamical system; second, the network must be solving a state
variable estimation task near-optimally, by integrating exclusively change-based inputs (dz(tt)) to
reconstruct some function of the state variables (f(s(¢))). Under these conditions, we demonstrated
that a greedily optimal solution to the task involves a combination of integrating the state variables

and denoising. In absence of inputs (quiescent phase), we assumed that the system would receive

no stimuli (dz(tt) = 0) so that the system is dominated by its denoising dynamics, and that noise
variance would increase slightly (by a factor of 2). Under these conditions, we showed that the
steady-state probability distribution of network states during quiescence (p(r)) should be equivalent
to the distribution of network states during active task performance (p(r)). Thus, these conditions

constitute criteria for a form of reactivation to emerge in trained neural systems.

We have validated our mathematical results empirically in two tasks with neuroscientific relevance.
The first, a path integration task, required the network to identify its location in space based on motion
cues. This form of path integration has been used to model the entorhinal cortex [27], a key brain area
in which reactivation dynamics have been observed [11, 29]. The second task required the network to
estimate a head direction orientation based on angular velocity cues. This function in the mammalian
brain has been attributed to the anterodorsal thalamic nucleus (ADn) and post-subiculum (PoS) [30-
32], another critical locus for reactivation dynamics [10]. Previous attempts to model these systems
that have relied on hand-crafted network models have been able to reproduce reactivation dynamics.
This was done by embedding a smooth attractor structure in the network’s recurrent connectivity
along which activity may diffuse during quiescence [33]. Similarly, we have identified attractors
in our trained networks’ latent activation space—we found a smooth map of space in the spatial
navigation task (Fig. C.1) and a ring attractor in the head direction task (Fig. C.3). In our case, these
attractors proved to be optimal for task performance, and consequently did not require hand crafting.
Furthermore, beyond previous studies, we were able to show that the statistics of reactivation in our
trained networks mimicked the statistics of activity during waking behavior, and that manipulation of



waking behavioral statistics was directly reflected in offline reactivation dynamics. Thus, our work
complements these previous studies by providing a mathematical justification for the emergence of
reactivation dynamics in terms of optimal task performance.

Our results suggest that reactivation in the brain could be a natural consequence of learning in
the presence of noise, rather than the product of an explicit generative demand [20, 34]. Thus,
reactivation during quiescence in a brain area should not be taken as evidence exclusively in favor
of generative modeling: the alternative possibility, as identified by our work, is that reactivation
could be an emergent consequence of optimization for certain tasks (though it could be used for
other computations). Our hypothesis and generative modeling hypotheses may be experimentally
dissociable: while generative models necessarily recapitulate the moment-to-moment transition
statistics of sensory data, our approach only predicts that the stationary distribution will be identical.
This opens the possibility for reactivation of sequences that do not respect the ordering of states
observed during waking (e.g. reverse replay [35, 36]), as well as changes in the timescale of
reactivation [2].

In addition to the tasks discussed in our numerical experiments, our work has the potential to function
as a justification for a wide variety of reactivation phenomena observed in the brain. Further details
have been provided in Appendix D. Beyond this, it may further provide a mechanism for inducing
reactivation in neural circuits in order to support critical maintenance functions, such as memory
consolidation or learning.
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A Derivation of greedily optimal RNN dynamics

Our analysis proceeds as follows. We first derive an upper bound for the loss in Eq. 3 that partitions
the optimal update Ar into two terms: one which requires the RNN to estimate the predicted change
in the target function, and one which requires the RNN to compensate for the presence of noise.
Then, we derive closed-form optimal dynamics for an upper bound of this loss, which reveals a
decomposition of neural dynamics into state estimation and denoising terms. As discussed earlier,
these optimal dynamics can produce offline sampling of states visited during training in the absence

of stimuli (dfl(tt) = 0) but in the presence of noise.

A.1 Upper bound of the loss

To derive our upper bound, we first assume that ¢(r(t),s(t), dz(:)) can be decomposed into two
different functions so that Eq. 2 becomes:
ds(t)
Ar(t) = Ary(r(t)) + Ars ( r(t),s(t), T + on(t), (A1)

where we will ultimately show that both functions scale with At. We are assuming that these two terms
have different functional dependencies; however, for notational conciseness, we will subsequently
refer to both updates as Arq(¢) and Ara(t). The first, Ary (), is a function of r(t¢) only, and will be
used to denoise r(t) such that the approximate equality r(t) + Ar () + on(t) ~ DT f(s(t)) still
holds (Ar; (t) cancels out the noise corruption on(t)), where D is the right pseudoinverse of D. This
maintains optimality in the presence of noise. The second, Ars(t), is also a function of the input, and
will build upon the first update to derive a simple state update such that D (r(t+At)) ~ f(s(t+At)).
To construct this two-step solution, we first consider an upper bound on our original loss, which we
will label £,,,per. Exploiting the fact that At? is infinitesimally small relative to other terms, we will
Taylor expand Eq. 3 to first order about a small timestep increment At:

L(t+ At) =Ey| f(s(t+ At)) —D(r(t) + Ar(t)) |l (A.2)
~ Eqll(f(s()) + dﬁ(ss((f)))As(t» —D(r(t) + Ar(t)) |2 (A3)
= ]E,,||dj;1(ss((:)))As(t) — DAry(t) + f(s(t)) = D(x(t) + Ari(t) + on(t)) |2, (A4)

where As(t) = dZ—(tt)At. Next, using the triangle inequality, we note that the loss is upper bounded
by a new loss L5, given by:
L< Ly =Ey IICU;(SS((;;)AS(O — DA ()2 + [1£(s(t) = D(r(t) + Ary(t) +on(t)) |2
(A.5)
= IIGU;(SS((;)))AS@) — DAy (t)]2 + Enllf (s(t)) = D(x(t) + Ars(t) + on(t)) 2,

(A.6)

which separates the loss into two independent terms: one which is a function of Ars(¢) and the signal,
while the other is a function of Arq(¢) and the noise. The latter, Ar; (¢)-dependent term, allows Ar;
to correct for noise-driven deviations between f (s(t)) and Dr(t). Here, we will assume that this
optimization has been successful for previous timesteps, such that r(¢) ~ DT f (s(t)), where DT is
the right pseudoinverse of D. By this assumption, we have the following approximation:

Lo~ ||dfd(ss((t§))As<t> ~DAra(t)]z + Byl (s()) — D(DT£(s(0)) + Ars(t) + om(1)
(A7)
- ||(”;(SS((f)))As<t> — DAra(t)]2 + By ID(Ar1(6) + on(0) |2 (A8)



Thus, the second term in Lo trains Ar; to greedily cancel out noise in the system on(t). To show
that this is quite similar to correcting for deviations between DT f (s(t)) and r in neural space (as
opposed to output space), we use the Cauchy-Schwarz inequality to develop the following upper
bound:

df(s(t))
ds(t)

This allows the system to optimize for denoising without having access to its outputs, allowing for
computations that are more localized to the circuit. As our final step, we use Jensen’s inequality for
expectations to derive the final form of our loss upper bound:

AEE) As(t) - DA + IDlaEllAra() +onE A1)

= ‘Csignal (ArQ) + Enoise(Arl); (Al 1)

Ly < Ly=| As(t) = DArs(t)[|2 + [ID|2Eq[|Ary (8) + on(t)]2- (A9)

£3 S l:upper - ||

where Lgignar = || d’;(:(gf)) As(t) — DAry(t)||2 is dedicated to tracking the state variable s(¢), and

Loise = ||DH2\/IE,7HAI'1( ) 4+ on(t)||3 is dedicated to denoising the network state. In the next
section, we will describe how this objective function can be analytically optimized in terms of Ary (¢)
and Ar,(t) in a way that decomposes the trajectory tracking problem into a combination of state
estimation and denoising.

A.2 Optimizing the upper bound

Our optimization will be greedy, so that for each loss £(t+ At) we will optimize only Ar(¢), ignoring
dependencies on updates from previous time steps. L,,,is¢ is the only term in our loss that depends
on Ary (). Ignoring proportionality constants and the square root (which do not affect the location
of minima), we have:

Luoise = Ep||Ari(t) + on(t)|3. (A.12)
Essentially, the objective of Ar(t) is to cancel out the noise on)(t) as efficiently as possible, given
access to information about r(¢). This is a standard denoising objective function, where an input
signal is corrupted by additive Gaussian noise, with the following well-known solution [37]:

Ari(t) = o? log p(r(t))At, (A.13)

d
dr(t)
where p(r) = [ p(r(t)|s(t))p(s(t))ds(t) is the probability distribution over noisy network states
given 1nput stimulus s(t), prior to the application of state updates Arq (¢) and Ara(t). By assumption,
p(r(t)|s(t)) ~ N (DT f(s(t)), 0> At). We note that dr(t) log p(r(t)) is the same function for all time
points ¢, because for the stimulus sets we consider, p(s(t)) does not depend on time (it is a stationary
distribution); this demonstrates that the optimal greedy denoising update is not time-dependent. These
dynamics move the network state towards states with higher probability, and do not require explicit
access to noise information 7(t).

Next, we optimize for Ary(t). Lgigna is the only term in Ly, that depends on Ary(t), so we
minimize:

Lsignar = || df(s(t ))As(t) — DAry(t)]]2. (A.14)
ds(t)

By inspection, the optimum is given by: Arj(t) = DT <L =20 df As( ). Thus the full greedily optimal
dynamics, in the presence of noise, are given by:

d 1df(s(?)) ds(t)
Ar*(t) = |o? 1 t)) + Dt
(1) = |0 qoegy oap(r(t) + DTSR
This heuristic solution provides interpretability to any system attempting to maintain a relationship
to a stimulus in the presence of noise. First, denoise the system (Ar}). Second, use instantaneous

changes in the state variable (dz(tt)) to update state information.

At +on(t). (A.15)




B Implementation Details

Spatial Position Estimation. In this task, the network must learn to path integrate motion cues
in order to estimate an animal’s spatial location in a 2D environment. We first generate an animal’s
motion trajectories sg p () using a model described in prior work [38]. Next, we simulate the activities
of ngp place cells for all positions visited. The simulated place cells’ receptive field centers c(¥

(where i = 1,...,ngp) are randomly and uniformly scattered across the 2D environment, and the
activity of each for a position s is given by the following Gaussian tuning curve:
, —c®]2
i s—c
fih(s) = exp (—H 57 |2), (B.1)
Isp

where ogp is the scale. We then train our network to output these simulated place cell activities based
on velocity inputs (Asgp(t)) from the simulated trajectories. To estimate the actual position in the
environment from the network’s outputs, we average the centers associated with the top k£ most active
place cells. Our implementation is consistent with prior work [27, 39] and all task hyperparameters
are listed in Table B.1.

Head Direction Estimation. The network’s goal in this task is to estimate an animal’s bearing
sp p(t) in space based on angular velocity cues Asgp(t), where s(t) is a 1-dimensional circular
variable with domain [—m, 7). As in the previous task, we first generate random head rotation
trajectories. The initial bearing is sampled from a uniform distribution U (—, 7), and random turns
are sampled from a normal distribution A/(0, 11.52)—this is consistent with the trajectories used in
the previous task, but we do not simulate any spatial information. We then simulate the activities of
ngp head direction cells whose preferred angles 6; (where ¢ = 1, ..., nyp) are uniformly spaced
between — and 7, using an implementation similar to the RatinABox package [40]. The activity of
the i head direction cell for a bearing s is given by the following von Mises tuning curve:

_exp (o cos (s — W)
271']0 (U;I2D)

where o p is the spread parameter for the von Mises distribution. With these simulated trajectories,
we train the network to estimate the simulated head direction cell activities using angular velocity as
input. We estimate the actual bearing from the network’s outputs by taking the circular mean of the
top k most active cells’ preferred angles. All hyperparameters associated with this task are provided
in Table B.2.

, (B.2)

Continuous-time RNNs. For all our numerical experiments, we use noisy “vanilla” continuous-
time RNNs with linear readouts. The equations for network updates and output estimates are as
follows:

Ar(t) = = [~r(t) + ReLU (W"r(t) + W™ As(t))] At + on(t) (B.3)

o = Dr(?), (B.4)

=

where r(t) represents the network activity at time ¢, As(t) is a change-based input to the network,
W7e¢ and W are the recurrent and input weight matrices respectively, 7 is the RNN time constant,
and n(t) ~ N(0, At) is Brownian noise. The continuous-time dynamics are approximated using
the Euler-Maruyama method with integration timestep At = 0.02 s. The network’s activity is
transformed by a linear mapping D to predicted place cell or head direction cell activities o. During
the quiescent phase, we simulated network activity in the absence of stimuli (As(t) = 0), and
increased the noise variance by a factor of two, as prescribed by our mathematical analysis.

We tune the value of 7 for each task to ensure optimal performance. Further, for each task we choose
different training values for o to scale the Brownian noise to establish an effective signal-to-noise
ratio that is high enough to accurately solve the task. From this baseline noise level, quiescent
trajectories were calculated with doubled variance.
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Table B.1: Hyperparameters for the spatial position estimation task.

Category Hyperparameter Value
Environment size (2.2m x 2.2m)
Border region 0.03m
Border slowdown factor 0.25
Position initialization random uniform
Rotation velocity bias 0 rad/s
Rotation velocity std. dev.  11.52 rad/s
Task Rayleigh forward velocity 0.2 m/s
Biasing anchor point 0, 0)
Biasing drift constant 0.05
# place cells 512
osp 0.2
Sequence length active = 200; quiescent = 1000
0.01
o 005 0.0707
Network # recurrent units 512
0.1
Batch size 200
Trainin # batches 2500
g Optimizer Adam
Learning rate 0.001
Table B.2: Hyperparameters for the head direction estimation task.
Category Hyperparameter Value
Position initialization random uniform
Rotation velocity bias 0 rad/s
Rotation velocity std. dev. 11.52 rad/s
Task # head direction cells 512
OHD 5
Sequence length active = 200; quiescent = 1000
0.1
o T505 0.7071
# recurrent units 128
Network 0.04
Batch size 200
Trainin # batches 20000
g Optimizer Adam
Learning rate 0.001

C Additional Experiments

C.1 Spatial Position Estimation

We found that the explained variance curves as a function of ordered principal components (PCs) for
both the active and quiescent phases were highly overlapping and indicated that the activity manifold
in both tasks was low-dimensional. The quiescent neural activity projected onto the first two PCs
calculated during the active phase is smooth, just as with the decoded output trajectories (Fig. C.1a-b).
Furthermore, the KDEs computed on neural activity projected onto the first two active phase PCs
(Fig. C.1c-d) show that the distribution of activity was similar across active and quiescent phases,
recapitulating the observations from Fig. 1.
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Figure C.1: Neural activity manifold visualization and distribution comparisons. a) Neural
activity projected onto the first two PCs during the active phase. Color intensity measures the decoded
output’s distance from the center in space. b) Neural activity during the quiescent phase projected
onto the same active PC axes as in (a). ¢-d) KDE plots for 500 decoded active (c) and quiescent (d)
neural activity projected onto the first two active phase PCs. e) KL divergence (nats) between KDE
estimates for active and quiescent phases. U = unbiased uniform networks, B = biased networks, I/
= the true uniform distribution, R = random networks, and the o superscript denotes networks that
are trained and tested in the presence of noise. Values are averaged over five trained networks. f)
Box and whisker plots of the total variance (variance summed over output dimensions) of quiescent
trajectories, averaged over 500 trajectories. Each plot (e-f) is for five trained networks.

To compare activity distributions more quantitatively, we estimated the KL-divergence of the dis-
tribution of active phase output positions to the distribution of quiescent phase decoded output
positions using Monte Carlo approximation (Fig. C.le). We compared outputs from both biased
and unbiased distributions, and as baselines, we compared to a true uniform distribution, as well as
decoded output trajectories generated by random networks. By our metric, we found that unbiased
quiescent outputs were almost as close to unbiased active outputs as a true uniform distribution.
Similarly, biased quiescent outputs closely resembled biased active outputs, while biased-to-unbiased,
biased-to-random, and unbiased-to-random comparisons all diverged.

We decided to further test the necessity of training and generating quiescent network activity in the
presence of noise. By the same KL divergence metric, we found that even trajectories generated
by networks that were not trained in the presence of noise, and also were not driven by noise in the
quiescent phase, still generated quiescent activity distributions that corresponded well to the active
phase distributions. This is likely due to the fact that even networks trained in the absence of noise
still learned attractive task manifolds that reflected the agent’s trajectory sampling statistics. However,
we found that networks without noise in the quiescent state exhibited less variable trajectories, as
measured by their steady-state total variance (Fig. C.1f). This demonstrates that individual quiescent
noiseless trajectories explored a smaller portion of the task manifold than did noisy trajectories (see
Fig. C.2a-d for a comparison of example noisy and noiseless quiescent trajectories). This failure of
exploration could not be resolved by adding additional noise to networks during the quiescent phase:
we found that without training in the presence of noise, quiescent phase activity with an equivalent
noise level generated erratic, non-smooth decoded output trajectories (Fig. C.2e-f). Therefore, noisy
training stabilizes noisy quiescent activity, which in turn explores more of the task manifold than
noiseless quiescent activity.
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Figure C.2: Example decoded trajectories under different noise conditions. a-b) Example noisy
quiescent trajectories for a network trained in the presence of noise, for the unbiased (a) and biased
(b) spatial position estimation tasks. ¢-d) Same as (a-b), but for noiseless quiescent trajectories for a
network trained without noise. e-f) Same as (a-b), but for noisy quiescent trajectories for a network
trained without noise.
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Figure C.3: Reactivation in a head direction estimation task. a-b) Distribution of decoded head
direction bearing angles during the active (a) and quiescent (b) phases. ¢-d) Neural network activity
projected onto the first two active phase PCs for active (c) and quiescent (d) phase trajectories. Color
bars indicate the decoded output head direction.

C.2 Head Direction Estimation

To demonstrate that our results empirically extend beyond the spatial position estimation task, we
also examined the reactivation phenomenon in the context of our head direction estimation task. Here,
as in the previous task, we found that the distribution of decoded head direction bearings closely
corresponded across the active and quiescent phases (Fig. C.3a-b). Furthermore, we found that the
distributions of neural trajectories, projected onto the first two active phase PCs, closely corresponded
across both phases (Fig. C.3c-d), showing apparent sampling along a ring attractor manifold. These
results collectively demonstrate that reactivation also emerges from training our networks on our
head direction estimation task.
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D Applicability to other reactivation phenomena

While the experiments explored in this study focus on self-localization and head direction estimation,
there are many more systems in which our results may be applicable. In particular, while the
early visual system does not require sensory estimation from exclusively change-based information,
denoising is a critical aspect of visual computation, having been used for deblurring, occlusion
inpainting, and diffusion-based image generation [41]—the mathematical principles used for these
applications are deeply related to those used to derive our denoising dynamics. As a consequence, it
is possible that with further development our results could also be used to explain similar reactivation
dynamics observed in the visual cortex [7, 8]. Furthermore, the task computations involved in head
direction estimation are nearly identical to those used in canonical visual working memory tasks
in neuroscience (both develop ring attractor structures) [42]. In addition, evidence integration in
decision making involves similar state-variable integration dynamics as used in spatial navigation,
where under many conditions the evidence in favor of two opposing decisions is integrated along
a line attractor rather than a 2D spatial map [43, 44]. Thus our results could potentially be used to
model reactivation dynamics observed in areas of the brain dedicated to higher-order cognition and
decision making, such as the prefrontal cortex [6].
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