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Abstract

Pre-trained Large Language Models (LLMs)001
have demonstrated remarkable capabilities but002
also pose risks by learning and generating003
copyrighted material, leading to significant le-004
gal and ethical concerns. To address these005
issues, it is critical for model owners to be006
able to unlearn copyrighted content at vari-007
ous time steps. We explore the setting of se-008
quential unlearning, where copyrighted content009
is removed over multiple time steps—a sce-010
nario that has not been rigorously addressed.011
To tackle this challenge, we propose Stable012
Sequential Unlearning (SSU), a novel unlearn-013
ing framework for LLMs, designed to have a014
more stable process to remove copyrighted con-015
tent from LLMs throughout different time steps016
using task vectors, by incorporating additional017
random labeling loss and applying gradient-018
based weight saliency mapping. Experiments019
demonstrate that SSU finds a good balance020
between unlearning efficacy and maintaining021
model’s general knowledge compared to exist-022
ing baselines. 1023

1 Introduction024

Large Language Models (LLMs) (Brown et al.,025

2020; Chowdhery et al., 2023; Touvron et al., 2023)026

have made significant progress through pre-training027

on extensive transformer-based architectures and028

learning from diverse text data (Ouyang et al., 2022;029

Kojima et al., 2022; Qin et al., 2023; Lewkowycz030

et al., 2022; Roziere et al., 2023; Lyu et al., 2023;031

Li et al., 2024). However, LLMs inadvertently in-032

corporate and learn from copyrighted material (Min033

et al., 2023; Brittain, 2023; Rahman and Santacana,034

2023). These issues have led to a lawsuit filed by035

the New York Times2 and eight U.S. newspaper036

publishers3. These issues not only pose significant037

1Code avilable at https://anonymous.4open.science/r/SSU-
E419/README.md.

2NYT Complaint, Dec 2023
3CNBC, April 2024

privacy concerns but also raise broader questions 038

regarding responsible AI usage. 039

In response to these, General Data Protection 040

Regulation of the European Union (Hoofnagle 041

et al., 2019) and the California Consumer Privacy 042

Act (Pardau, 2018) have mandated the right to be 043

forgotten (Dang, 2021; Bourtoule et al., 2021). One 044

naive approach is to exclude copyrighted data from 045

training corpus and retrain it from scratch. How- 046

ever, this method is computationally expensive and 047

impractical, as it requires retraining the model each 048

time a copyright violation is identified. 049

An alternative solution is machine unlearn- 050

ing (Cao and Yang, 2015), which removes un- 051

wanted knowledge, reconfiguring the model as if 052

it had never learned that data. Recent works pro- 053

posed practical machine unlearning algorithms for 054

LLMs, discussing the trade-off between privacy 055

and utility (Liu et al., 2024a; Yao et al., 2023; 056

Zhang et al., 2024; Chen and Yang, 2023; Eldan 057

and Russinovich, 2023; Jang et al., 2023; Zhao 058

et al., 2024). However, few have addressed the 059

challenge of sequentially unlearning literary copy- 060

righted works. This scenario involves unlearn- 061

ing specific books over time, followed by subse- 062

quent unlearning requests. An effective algorithm 063

should be stable, meaning it should ensure unlearn- 064

ing efficacy—removing unwanted knowledge ef- 065

fectively—while maintaining locality, preserving 066

non-targeted knowledge and the model’s reason- 067

ing ability. Few works have studied this setting, 068

leaving it unclear if existing methods are suitable. 069

Many previous works have used Gradient As- 070

cent (GA)-based approaches (Zhang et al., 2024; 071

Maini et al., 2024; Zhao et al., 2024; Liu et al., 072

2024b), often leading to catastrophic collapse — 073

drastically degrading the model’s reasoning ability 074

and violating the locality property we desire. This 075

issue is particularly problematic for copyright un- 076

learning, where preserving model performance is 077

crucial. Furthermore, the Task Vector (TV) (Ilharco 078
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et al., 2022) approach fails to achieve a good trade-079

off among unlearning efficacy, knowledge reten-080

tion (keeping knowledge of non-unlearned books),081

and capability retention (maintaining the model’s082

reasoning ability). This failure can degrade the083

model’s overall performance by unintentionally un-084

learning books that should be retained, leading to a085

loss of valuable knowledge.086

To address these challenges, we propose a Stable087

Sequential Unlearning (SSU), marking an initial088

step toward a better trade-off between effective un-089

learning and maintaining knowledge and capability090

retention in sequential settings. SSU is designed091

to unlearn copyrighted content, thereby avoiding092

copyright infringement in LLMs. Specifically, we093

first fine-tune the model with copyrighted books to094

ensure unlearning efficacy, incorporating a random095

labeling loss term to enhance stability and applying096

weight saliency mapping to maintain locality. Then,097

we negate the learned knowledge during fine-tuning098

on the original model to obtain a modified model099

that forgets copyrighted content. Unlike GA-based100

methods, SSU does not require additional data col-101

lection to maintain its performance on other tasks,102

thereby avoiding the complexity and overhead as-103

sociated with mitigating catastrophic forgetting. In-104

stead, it leverages internal model mechanisms and105

loss functions to ensure performance stability.106

Our experiments on the Llama3-8B model107

(AI@Meta, 2024) to sequentially unlearn copy-108

righted books demonstrate that stable unlearning109

provides a better trade-off between unlearning effi-110

cacy and the retention of model locality compared111

to baseline methods. This approach alleviates the112

instability commonly encountered during the un-113

learning process. Our main contributions are:114

• To the best of our knowledge, this is the first115

work investigating the sequential unlearning116

of copyrighted literary books to address copy-117

right infringement.118

• We systematically evaluate existing algo-119

rithms in our sequential unlearning setting120

and highlight that they either encounter catas-121

trophic collapse or fail to achieve good trade-122

offs among unlearning efficacy, knowledge123

retention and capability retention during the124

unlearning process.125

• We propose SSU, a stable unlearning algo-126

rithm for sequential setting. Our experiments127

demonstrate that SSU provides a better trade- 128

off between avoiding copyright infringement 129

and preserving the model’s reasoning ability 130

compared to existing methods. 131

2 Related Work 132

Machine unlearning was first introduced by Cao 133

and Yang (2015), who proposed using a sharded, 134

isolated, sliced, aggregated (SISA) framework to 135

split the model into smaller sub-models, each learn- 136

ing from a portion of the data. This allows for 137

easier modification of individual sub-models when 138

unlearning is required. There are two main types 139

of unlearning: Exact Unlearning and Approximate 140

Unlearning. Exact unlearning typically applies to 141

convex settings where all information related to the 142

unwanted data can be completely removed (Ginart 143

et al., 2019; Bourtoule et al., 2021). In contrast, 144

approximate unlearning is used in non-convex set- 145

tings and requires the output distribution of the 146

unlearned model to be similar to that of a retrained 147

model from scratch (Guo et al., 2020; Sekhari et al., 148

2021; Liu et al., 2024a; Chien et al., 2022; Pan et al., 149

2023; Guo et al., 2020). However, neither exact 150

nor approximate unlearning is applicable to LLMs, 151

as it is infeasible to estimate the output distribution 152

of a LLM. 153

Some studies have specifically addressed un- 154

learning copyrighted content for LLMs. Yao et al. 155

(2023) used a gradient ascent-based approach to un- 156

learn copyrighted contents, while Eldan and Russi- 157

novich (2023) explored unlearning the Harry Potter 158

series. However, Shostack (2024) noted that rem- 159

nants of the Harry Potter books remained in the 160

modified model. Chen and Yang (2023) proposed 161

adding unlearning layers in transformer blocks for 162

sequential data forgetting, but this approach was 163

tested on a smaller model focused on movie re- 164

views in a simulated setting. In contrast, our work 165

targets the sequential unlearning of extensive liter- 166

ary works, a more practical scenario, and addresses 167

the trade-offs between knowledge retention and 168

capability retention more comprehensively. 169

Furthermore, Chu et al. (2024) proposed a 170

method using softmax regression to prevent large 171

language models from generating copyrighted texts. 172

Fan et al. (2023) studied the instability of some un- 173

learning algorithms for image classification and 174

generation tasks and proposed a gradient-based 175

weight saliency map. Lastly, Maini et al. (2024) 176

and Yao et al. (2024) examined "the right to be 177

forgotten" and provided benchmarks for evaluating 178
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the unlearning effectiveness of private data. How-179

ever, none of these works addressed unlearning180

copyrighted literary works in a sequential setting181

or the limitations of existing methods.182

3 Preliminaries183

3.1 Machine Unlearning for LLMs184

Consider the original model and its weights, de-185

noted as θo. Machine unlearning involves the prob-186

lem where, given a dataset D = {(xi, yi)}Ni=1 that187

θo was trained on, we aim to intentionally forget a188

subset of data, denoted as Df , to obtain a modified189

model, denoted as θu.190

In the context of machine unlearning, we often191

use a retrained model excluding Df during pre-192

training as a gold baseline. However, retraining a193

model for LLMs is extremely expensive and im-194

practical in real-world settings.195

A naive and feasible approach is to perform196

Gradient Ascent (GA) (Thudi et al., 2022) on Df .197

However, previous literature has demonstrated that198

GA-based methods are prone to catastrophic col-199

lapse (Zhang et al., 2024; Liu et al., 2024a; Zhao200

et al., 2024), even when including gradient descent201

loss to maintain knowledge retention ability (Liu202

et al., 2024b). This phenomenon is analogous to203

catastrophic forgetting in continual learning (Mc-204

Closkey and Cohen, 1989).205

3.2 Task Arithmetic206

Unlearning via negating task vectors has recently207

gained attention (Ilharco et al., 2022; Liu et al.,208

2024b) and has become an important baseline ap-209

proach for many unlearning tasks. The rationale210

behind this approach is that by negating the gradi-211

ent updates of the unwanted data, we can achieve a212

more localized unlearning algorithm to effectively213

erase Df from θo.214

Specifically, our goal is to forget the dataset215

Df . The process involves two stages. First, we216

perform standard gradient descent to fine-tune θo217

on Df , resulting in θft. Next, we calculate the218

task vector as the element-wise difference θft − θo.219

We then negate this task vector from θo to de-220

rive the unlearned model θu, expressed as θu =221

θo − (θft − θo).222

3.3 Unlearning with Multiple Time Steps223

This section generalizes the unlearning process to224

multiple time steps. Let D be the original dataset225

on which the model was trained. Define the set226

of all data to be forgotten across all time steps 227

T as Df =
⋃T

t=1D
t
f , where Dt

f represents the 228

subset of data to be forgotten at time step t. Let 229

Dr represent the subset of data to be retained, such 230

that Dr = D \Df . By definition, Df ∩Dr = ∅ 231

and Df ∪Dr = D. 232

At each time step t, we aim to unlearn a specific 233

subset of data Dt
f , resulting in a sequence of mod- 234

ified models {θ1, θ2, . . . , θT }. Here, θ0 denotes 235

the original model trained on the dataset D, and 236

θt denotes the model obtained after unlearning the 237

subsets D1
f , D

2
f , . . . , D

t
f sequentially. The objec- 238

tive is to ensure that, after each unlearning step, 239

the model θt retains as much general knowledge 240

from Dr as possible while effectively forgetting the 241

data in Dt
f . This sequential unlearning process con- 242

tinues until all specified subsets D1
f , D

2
f , . . . , D

T
f 243

have been unlearned. 244

4 Methods 245

This section presents SSU, which performs a more 246

stable sequential unlearning and achieves a more 247

balanced trade-off between utility and unlearning 248

efficacy. Unlike the naive Task Vector (TV) ap- 249

proach, which often results in instability due to 250

larger model degradation, SSU leverages task vec- 251

tors, incorporates additional loss term for ensuring 252

stability and uses a gradient-based weight saliency 253

map to ensure locality. The overall process is 254

shown in Figure 1. 255

4.1 Learning Stable Task Vectors 256

First, we present the case of unlearning during 257

the first time step. This means that t = 1 and 258

D1
f = Df . Following the intuition from task 259

vectors, we first need to fine-tune a model that 260

effectively learns from Df . To do this, we de- 261

fine hθ(x, yy<i) = P(yi|(x, y<i); θ), which is 262

the probability of the token yi conditioned on 263

the prompt x and the already generated tokens 264

y<i = [y1, y2, ..., yi−1]. Next, we define the LLM’s 265

loss on y as: 266

L(x, y; θ) :=

|y|∑
i=1

ℓ(hθ(x, y<i), yi), (1) 267

in which l is the cross-entropy loss. 268

Suppose θt is the current LLM through unlearn- 269

ing process. The first goal is to obtain a model 270

that forgets Df . Specifically, we define our first 271
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Figure 1: Overall process of our unlearning framework. (a) At each time step t, an unlearning request is received
to forget the dataset Dt

f . The unlearning algorithm involves first fine-tuning θt−1
ft on Dt

f and then subtracting the
task vector from the pre-trained model θo. (b) At each time step t. we compute the gradient loss and random labeling
loss to obtain the objective Lf (θ

t−1
ft ) that will be used for fine-tuning. (c) We fine-tune θt−1

ft using the objective we
obtained in step (b), and only update model weights that are most salient using weight saliency mapping.

gradient descent loss term as:272

Lfgt =
∑

(xfgt,yfgt)∈Df

L(xfgt, yfgt, θo). (2)273

Random Labeling Loss. Inspired by previous274

works demonstrating that injecting noise during275

training improves robustness (Miyato et al., 2016;276

Srivastava et al., 2014; Neelakantan et al., 2015),277

we propose enhancing the stability of unlearning278

by introducing data augmentation. Specifically, we279

randomly mismatch the outputs of Df with the280

inputs of Df . During the first stage of the task281

vector approach, we include the following loss:282

Lrnd :=
∑

(xfgt,)∈Df

1

|Df |
∑

(,yrnd)∈Df

L(xfgt, yrnd, θt),

(3)283

in which yrnd is any output from Df and not neces-284

sarily corresponds to xfgt.285

By incorporating this random labeling loss, we286

introduce controlled noise into the unlearning pro-287

cess. This helps to prevent "overfitting" and en-288

hance the stability of unlearning. Combining two289

loss terms, the final objective can be expressed as:290

Lf (θt) = ϵ1Lfgt + ϵ2Lrnd. (4)291

Weight Saliency. Moreover, to enhance locality292

of unlearning, we should mitigate the risk of catas-293

trophic collapse during each time step of sequential 294

unlearning. We can achieve this by steering the 295

unlearning process towards specific parts of the 296

model weights that are most relevant to the data 297

to be forgotten. Inspired by this, we use a weight 298

saliency map during the first stage of fine-tuning 299

to further ensure localized unlearning by only ad- 300

justing specific weights that are most influenced by 301

the data to be forgotten. The weight saliency map 302

is defined as: 303

ms = 1(|∇θLf (θt)| ≥ γ), (5) 304

in which 1(f ≥ γ) is an element-wise indicator 305

function which outputs one for the i-th element 306

if fi ≥ γ, and 0 otherwise, and ∇θLf (θt) is a 307

gradient vector. 308

Next, we apply the weight saliency mapping on 309

the parameter that that are most salient to unlearn- 310

ing and have the learned model as at each gradient 311

accumulation step as: 312

θt+1 = ms ⊙ (∆θ + θt) + (1−ms)⊙ θt, (6) 313

where ∆θ indicates model updates. After training 314

for T gradient accumulation steps using Equation 315

6, we obtain a fine-tuned model θ1ft. Finally, we 316

obtain our modified model using task vector by 317

negating the knowledge of Df learned during the 318
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fine-tuning process from the original model as:319

θ1u = θo − (θ1ft − θo). (7)320

4.2 Sequential Unlearning321

Typically, to sequentially unlearn different data at322

different time steps, the modified model at previous323

step is used, and the same unlearning algorithm is324

applied. However, in SSU, we leverage the fine-325

tuned model from the previous time step to perform326

stable sequential unlearning. Specifically, at each327

time step t, we have the original model θo = θ0ft328

and the previously fine-tuned model θt−1
ft . For each329

sequential unlearning request, we fine-tune θt−1
ft on330

Dt
f using the objective described in Equation 6 in331

Section 4.1 to obtain θtft. Finally, we negate the332

knowledge learned during fine-tuning to obtain the333

unlearned model at time step t as:334

θtu = θtft − θ0ft.335

The reason we don’t use previously modified model336

θt−1
u as the reference model of task vector approach337

is that we want to avoid accumulated errors that338

come from each θt−1
u . If we use θt−1

u to perform339

negation difference, each subsequent unlearning340

step is built upon a potentially degraded model,341

amplifying any existing errors and making it harder342

to maintain overall model integrity. Moreover, if343

we were to reference θt−1
u , the task vector would344

reflect not only the new task but also the residual345

effects of previous tasks and unlearning steps.346

5 Experimental Setup347

In this section, we present experiments to validate348

the effectiveness of sequential unlearning of copy-349

righted books. Our goal is to unlearn copyrighted350

contents such that the model can avoid generating351

texts that could potentially infringe copyright laws.352

5.1 Settings353

To evaluate the effectiveness of sequential unlearn-354

ing of copyrighted books, we follow the experimen-355

tal design from (Zhou et al., 2023; Carlini et al.,356

2022). We unlearn a total of four books, one at each357

time step. For each book, we split the entire text358

into chunks of 350 tokens and randomly selected359

100 chunks for our experiment. For each chunk,360

we used the first 200 tokens as the prompt text and361

a system prompt to ask the model to continue the362

story, with the following 150 tokens serving as the363

correct label.364

To assess the amount of copyrighted information 365

being leaked, we compared the LLM’s completion 366

with the remaining 150 tokens of each chunk from 367

the original book using a greedy decoding strategy. 368

Besides books in Df , We specifically evaluated 369

performance on three groups of books: (a) books 370

in Dnor, (b) books that are not in Dnor but are 371

semantically similar any books in Df (denoted as 372

Dss), and (c) books that are not in Dnor and are 373

semantically dissimilar to Df (denoted as Dsd). In 374

subsequent sections, we refer to the performance on 375

books except Df as knowledge retention. Details 376

about experiment settings are in Appendix A.1. 377

5.2 Evaluation Metrics 378

For each prompt, we compared the completion’s 379

Jaccard Similarity score and Rouge-L score. In 380

our experiment, we evaluated these scores on both 381

the books to be forgotten and the books in the re- 382

tain set Dr, namely Dnor, Dss, and Dsd. In line 383

with previous unlearning evaluation metrics (Maini 384

et al., 2024; Yao et al., 2024; Chien et al., 2022) 385

and considering that semantic similarity does not 386

indicate copyright infringement, we do not use eval- 387

uation metrics that reflect semantic similarity. 388

In addition to evaluating the model’s unlearning 389

effectiveness, we also assessed its performance on 390

general downstream tasks after unlearning, which 391

we refer to as capability retention. The downstream 392

tasks considered include MathQA (Amini et al., 393

2019), Massive Multitask Language Understand- 394

ing (MMLU) (Hendrycks et al., 2020), and the 395

Graduate-Level Google-Proof Q&A Benchmark 396

(GPQA) (Rein et al., 2023). More details are pro- 397

vided in Appendix A.2. 398

5.3 Datasets and Models 399

We used the open-source Llama3-8B (AI@Meta, 400

2024) language model for our experiments. At time 401

step 1, we unlearned "Harry Potter and the Prisoner 402

of Azkaban" by J.K. Rowling (HP3). Subsequently, 403

we unlearned "Pride and Prejudice" by Jane Austen, 404

"The Adventures of Sherlock Holmes" by Arthur 405

Conan Doyle, and "The Great Gatsby" by F. Scott 406

Fitzgerald at time steps 2, 3, and 4, respectively. 407

These books were chosen due to high Jaccard Sim- 408

ilarity and ROUGE-L scores, indicating memoriza- 409

tion by the Llama3-8B model. 410

We initially collected 12 books from Project 411

Gutenberg’s "Top 100 EBooks last 30 days" as 412

Dnor. At each subsequent time step, the book to 413

be unlearned was removed from Dnor. Addition- 414
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(a) Jaccard Similarity on Df (b) Rouge-L on Df (c) Jaccard Similarity on Dss (d) Rouge-L on Dss

(e) Jaccard Similarity on Dsd (f) Rouge-L on Dsd (g) Jaccard Similarity on Dnor (h) Rouge-L on Dnor

Figure 2: The performance comparison of SSU with baseline methods on four groups of data: (a)(b) – books to
forget (Df ); (c)(d) – books that are not in Dnor but semantically similar (Dss); (e)(f) – books that are not in Dnor

but semantically dissimilar (Dsd); and (g)(h) – books in Dnor. The x-axis of each plots represents different time
steps of sequential unlearning. The y-axis shows either the average Jaccard similarity score or the average Rouge-L
score. SSU is represented in brown. The black dashed line indicates the random baseline for both Jaccard and
Rouge scores. For books to be unlearned, the goal is to approach the random baseline, whereas for other books, the
goal is to stay above this baseline.

ally, we included four books semantically similar to415

HP3 but not in Dnor as Dss, and four books not in416

Dnor and semantically dissimilar as Dsd. Detailed417

dataset information is in Appendix A.3.418

5.4 Baseline Methods419

We compared our approach with state-of-the-art420

unlearning methods, including GA (Thudi et al.,421

2022), Task Vectors (Ilharco et al., 2022), and GA422

with additional loss terms to maintain knowledge423

(Yao et al., 2023). Specifically, GA with additional424

loss terms involves using Dnor to maintain perfor-425

mance and a random mismatch loss to force LLM426

to generate random output for unlearned data. The427

random response could be any labels from Dnor or428

simply the response "I don’t know." (IDK) We con-429

sider both cases as our baseline methods, referring430

to them as GA + Mismatch + Maintain Loss and431

GA + IDK + Maintain Loss.432

Additionally, we derived a random baseline for433

each book type by mismatching the output of each434

book with random outputs from other book types435

and computing Jaccard and ROUGE scores. This436

approach ensures these random outputs do not in-437

fringe copyright, serving as a baseline for determin-438

ing copyright infringement. A successful unlearn-439

ing algorithm should aim to match this baseline440

for Df while maintaining higher performance on441

books not Df . Details are in Appendix A.4.442

6 Results 443

We present experimental results for different un- 444

learning time steps in Figure 2 and Figure 3. See 445

the full results with exact numbers in Appendix B. 446

6.1 Unlearning Books Sequentially 447

First, We evaluate the unlearning efficacy of each 448

method on a sequence of books. We task the pre- 449

trained Llama3-8B model to unlearn four books 450

in Df one at a time. This sequential unlearning 451

setting simulates the situation in which authors of 452

these four books requested model developers to 453

remove their books from the model parameters to 454

protect their copyright. 455

As shown in Figures 2a and 2b, GA and GA 456

variants have Jaccard and ROUGE scores near zero 457

most of the time. Specifically, the scores are 0 at 458

time steps 1, 3, and 4. At time step 2, the Jaccard 459

score is 0.02 for GA + IDK + Maintain Loss and 460

0.014 for GA + Mismatch + Maintain Loss, both 461

still well below the random baseline (0.054 for 462

Jaccard and 0.078 for ROUGE). For the naive TV 463

method, the Jaccard score is 0.064 and the ROUGE 464

score is 0.085 at time step 4, which are relatively 465

close to the random baseline. On the other hand, 466

SSU has a Jaccard score of 0.076 and a ROUGE 467

score of 0.099, which are slightly higher than those 468

of the TV method. However, compared to the orig- 469

inal model, SSU is already very close (the baseline 470
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Figure 3: Llama3-8B’s Benchmark performance across
different unlearing time steps. The x axis is the number
of beings unlearned, and the y axis is the average ac-
curacy of MathQA (0-shot), MMLU (0-shot), MMLU
(5-shot), and GPQA (0-shot) from main set.

is 28.9% lower) to the random baseline. In con-471

clusion, SSU effectively minimizes the risk of472

copyright infringement.473

6.2 Knowledge Retention During Unlearning474

This sections studs how unlearning affects the475

model’s knowledge on three groups of books:476

Dnor, Dss, and Dsd.477

Results for the performance on the additional478

books collected for GA-based methods Dnor are479

shown in Figures 2g and 2h. Until time step 2,480

GA + IDK + Maintain Loss and GA + Mismatch481

+ Maintain Loss have high Jaccard and ROUGE482

scores, which is reasonable as they are intention-483

ally trained on Dnor during unlearning process.484

However, at time steps 3 and 4, their scores drop485

significantly to near zero due to the unbounded loss486

function of GA methods, leading to catastrophic487

collapse (Zhang et al., 2024). As a result, the GA-488

based modified model loses the ability to gener-489

ate any coherent completions for books in Dnor490

after time step 3. The naive TV method’s perfor-491

mance on Dnor decreases by 35.85% throughout492

the time steps. In contrast, SSU preserves knowl-493

edge on Dnor 36.76% better than the naive TV and494

maintains the most stable performance, with only a495

26.19% decrease across all time steps.496

For books semantically similar to Harry Potter 3,497

results are shown in Figures 2c and 2d. Except for498

time step 2, where scores are close to the random499

baseline, GA-based methods score zero, indicating500

over-unlearning books that are semantically sim-501

ilar to the books to forget. The naive TV method502

performs better at time step 4, but SSU outperforms503

all baselines, with a Jaccard score 35% higher and504

a ROUGE score 47.5% higher than TV. At the last 505

time step, SSU’s Jaccard is 116.27% higher, and 506

ROUGE is 93.24% higher than the baseline. 507

Performance on books in Dsd is shown in Fig- 508

ures 2e and 2f. GA-based methods perform well 509

until time step 2, then catastrophic collapse occur. 510

The naive TV method’s performance on Dsd de- 511

creases throughout the time steps. At time step 512

4, TV’s Jaccard is 26.42% higher, and ROUGE is 513

16.46% higher than the baseline. SSU still outper- 514

forms all baselines, with a Jaccard 35.82% higher 515

than TV and a ROUGE 30.43% higher than TV. 516

Additionally, SSU’s Jaccard is 74.24% higher, and 517

ROUGE is 52.90% higher than the baseline. 518

In conclusion, compared to baseline methods, 519

SSU maximally preserves knowledge on books 520

in Dnor, Dss, and Dsd, making it more stable 521

and maintaining better locality throughout the 522

unlearning process. 523

6.3 Capability Retention During Unlearning 524

We present how sequential unlearning affects 525

model’s ability to perform general downstream 526

tasks in Figure 3. Both GA + IDK + Maintain 527

Loss and GA + Mismatch + Maintain Loss suffer 528

from catastrophic collapse at time step 3. Specif- 529

ically, the GA + IDK + Maintain Loss’s average 530

accuracy drops from 0.421 at time step 2 to 0.284 531

at time step 3, and the GA + Mismatch + Maintain 532

Loss’s accuracy drops from 0.408 at time step 2 to 533

0.233 at time step 3. This indicates a significant 534

loss in reasoning ability. 535

Meanwhile, SSU results in an average accuracy 536

of 0.436 at time step 3, compared to the TV’s 537

average accuracy of 0.391. At time step 4, our 538

model’s average accuracy is 0.410, whereas the 539

TV’s average accuracy is 0.372. Notably, as shown 540

in Appendix B, at time step 4, TV’s MMLU five- 541

shot performance (0.472) is worse than the MMLU 542

zero-shot performance (0.479), indicating that the 543

TV leads the model toward losing its in-context 544

learning ability over time, whereas SSU maintains 545

this capability. Overall, SSU achieves a better 546

trade-off among unlearning efficacy, knowledge 547

retention, and capability retention comparing 548

to existing baseline methods. 549

7 Analysis 550

In previous section, we demonstrate SSU achieves 551

better trade-off among unlearning efficacy, knowl- 552

edge retention, and capability retention than exist- 553

7



(a) Jaccard Score on Df (b) Rouge Score on Df (c) Jaccard Score on Dr (d) Rouge Score on Dr

Figure 4: Ablation study of SSU on each loss terms we introduced during the fine-tuning stage for each time step.
For orange line is when we fine-tune without weight saliency map, and green line is when we remove the random
labeling loss, and the red line is the case without both components, which is the same as the TV baseline. Lastly, the
purple line represents SSU.

Figure 5: Ablation study of Llama3-8B’s Benchmark
performance across different unlearing time steps. The
x axis is the number of being unlearned, and the y axis
is the average accuracy of MathQA (0-shot), MMLU
(0-shot), MMLU (5-shot), and GPQA (0-shot main set).

ing baseline methods. In this section, we exam-554

ine how different components of SSU, including555

weight saliency maps and random labeling loss,556

affect the sequential unlearning process. Figure 4557

compares unlearning efficacy and knowledge re-558

tention and Figure 5 compares capability retention.559

Note that because Dnor, Dss, and Dsd are indistin-560

guishable for TV-based methods, we combine all561

of these books and denote them as Dr.562

7.1 How Does Weight Saliency Affect563

Unlearning?564

We study how removing weight saliency during565

fine-tuning affects overall performance in var-566

ious aspects of unlearning. As seen in Fig-567

ure 4, the performance of SSU without weight568

saliency has a 2.17% lower Jccard score and 5%569

lower Rouge score on Dr. Moreover, as shown570

in Figure 5, the benchmark performance of the571

method without weight saliency decreases much572

faster at each time step.This suggests that without573

weight saliency, the risk of catastrophic collapse 574

increases, as the model’s reasoning ability deteri- 575

orates. By updating only certain parts of the 576

model weights, weight saliency helps preserve 577

the model’s knowledge retention and capability 578

retention, and hence maintains locality. 579

7.2 How Does Random Labeling Loss Affect 580

Unlearning? 581

To understand the role of random labeling loss 582

during sequential unlearning, we conduct an ab- 583

lation study by removing it from fine-tuning. As 584

seen in Figure 4a and 4b, the unlearning algorithm 585

without random labeling loss has a 17.41% higher 586

Jaccard and 23.30% higher Rouge score on Df . 587

The performance on Dr remains similar, but the 588

benchmark performance is 1.487% higher without 589

random labeling loss, This indicates that though 590

unlearning algorithm without random labeling loss 591

has a slightly higher benchmark performance, is 592

has a higher risk of copyright infringement. More- 593

over, the model without random labeling loss shows 594

greater variance across unlearning steps, suggest- 595

ing that random labeling loss provides more sta- 596

ble sequential unlearning. This results in a bet- 597

ter trade-off among unlearning efficacy, knowl- 598

edge retention, and capability retention. 599

8 Conclusion 600

In this work, we explore the practical setting of 601

unlearning copyrighted content sequentially from 602

LLMs to mitigate legal and ethical concerns. We 603

propose SSU, which utilizes random labeling loss 604

and gradient-based weight saliency to achieve more 605

stable sequential unlearning. Experiments demon- 606

strate that SSU achieves a better trade-off among 607

unlearning efficacy, knowledge retention, and ca- 608

pability retention compared to existing methods. 609

8



9 Limitation610

In this work, we primarily use lexical-based evalu-611

ation metrics to evaluate the algorithm. However,612

as Ippolito et al. (2023) notes, measuring verbatim613

memorization might provide a false sense of pri-614

vacy. Therefore, we should incorporate methods615

that can detect the leakage of training data. Mem-616

bership Inference Attacks (MIAs) (Shokri et al.,617

2017) offer a promising direction. Nonetheless,618

current research indicates that the performance619

of MIAs is near random guessing for pre-trained620

LLMs in various settings (Duan et al., 2024; Yao621

et al., 2024). We encourage future research to de-622

velop more effective MIAs and apply them to our623

sequential unlearning setting.624

Furthermore, although SSU achieves a better625

trade-off among unlearning efficacy, knowledge re-626

tention, and capability retention compared to state-627

of-the-art baseline methods, we still observe some628

loss of knowledge in books that are not meant to629

be unlearned, and a decrease in the model’s rea-630

soning ability. Future work should aim to further631

minimize the knowledge and capability retention632

gap between the modified model and the original633

model to ensure better locality during sequential634

unlearning.635
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A Appendix: Experiment Details 873

A.1 Experiment Settings 874

To evaluate the effectiveness of sequential un- 875

learning, we conduct experiments on several copy- 876

righted books. Our process involves the following 877

steps: 878

First, each book is split into 100 chunks of 350 879

tokens. For each chunk, the initial 200 tokens are 880

used as a prompt, which is fed into the LLM. The 881

remaining 150 tokens serve as the answer or con- 882

tinuation from the original book. This setup allows 883

us to assess how well the model can generate text 884

that follows the given prompt. 885

In addition to the prompt from the book, we use 886

a system prompt to guide the model in generating 887

the completion. The system prompt is designed 888

to instruct the model to continue the story in a co- 889

herent and engaging manner, ensuring consistency 890

with the plot, characters, and writing style of the 891

original book. The complete prompt given to the 892

model is: 893

"Continue the story based on the given 894

context from the book. Generate a coher- 895

ent and engaging continuation that fol- 896

lows the plot, maintains consistency with 897

the characters, and captures the writing 898

style of the original book." 899

For each prompt, the model generates a comple- 900

tion using a greedy decoding strategy by setting the 901

temperature to 0. This method involves selecting 902

the most likely next word at each step, ensuring 903

that the generated text is a plausible continuation 904

of the prompt. 905

To evaluate the generated completions, we 906

use several metrics, including Jaccard Similarity, 907

ROUGE-L score, and Perplexity. These metrics 908

allow us to compare the LLM’s completions with 909

the original text and assess the model’s ability to 910

unlearn specific content while retaining its overall 911

language capabilities. 912

Specifically, we evaluate the scores on the fol- 913

lowing sets of books: 914

• Books to be forgotten (Df ) 915

• Books in Dnor (those not to be forgotten but 916

used for maintaining knowledge) 917

• Books not in Dnor but semantically similar 918

• Books not in Dnor and semantically dissimilar 919

11



We test books in Dnor separately because GA +920

Mismatch + Maintain Loss and GA + IDK + Main-921

tain Loss learn these books during the unlearning922

process. In subsequent sections, we refer to the923

performance on books other than Df as knowledge924

retention.925

Additionally, we evaluate the model’s perfor-926

mance on general downstream tasks to assess its927

capability retention. The downstream tasks con-928

sidered include MathQA (0-shot) (Amini et al.,929

2019), Massive Multitask Language Understand-930

ing (MMLU) (0-shot and 5-shots) (Hendrycks et al.,931

2020), and Graduate-Level Google-Proof Q&A932

Benchmark (GPQA) (0-shot on main set) (Rein933

et al., 2023).934

A.2 Evaluation Metrics935

A.2.1 Jaccard Similarity936

Jaccard similarity is a measure of similarity be-937

tween two sets. It is defined as the size of the938

intersection divided by the size of the union of the939

sets. The Jaccard similarity score ranges from 0940

to 1, where 0 means no similarity and 1 means941

complete similarity.942

To compute the Jaccard similarity between the943

LLM’s completion (hypothesis text) and the origi-944

nal book (reference text), we follow these steps:945

First, we tokenize both texts into sets of words:946

set1 = set of words in the hypothesis text (8)947
948

set2 = set of words in the reference text (9)949

Next, we define the intersection as the set of950

words common to both texts:951

Intersection = set1 ∩ set2 (10)952

We also define the union as the set of all unique953

words present in either of the texts:954

Union = set1 ∪ set2 (11)955

The Jaccard similarity is then calculated as the956

ratio of the size of the intersection to the size of the957

union:958

Jaccard Similarity =
|Intersection|
|Union|

(12)959

Here, |Intersection| represents the number of960

words that appear in both the hypothesis and refer-961

ence texts, and |Union| represents the total number962

of unique words in both texts combined.963

This metric helps us understand the extent of964

overlap between the LLM’s completion and the965

original book, providing a measure of how similar966

the two texts are in terms of their word content.967

A.2.2 Rouge-L 968

Recall-Oriented Understudy for Gisting Evalua- 969

tion (Rouge) measures the longest common subse- 970

quence (LCS) between the LLM’s completion and 971

original books. In detail, LCS is a sequence that 972

appears in both the completion (hypothesis text) 973

and original book (reference text) in the same order 974

but not necessarily contiguously. 975

Next, we define the recall as the ratio of the 976

length of the LCS to the total length of the reference 977

text: 978

Recall =
LCS

length of the reference text
. (13) 979

We also define the precision as the ratio of the 980

length of the LCS to the total length of the hypoth- 981

esis text: 982

Precision =
LCS

length of the hypothesis text
.

(14) 983

Lastly, the Rouge-L score we used in our experi- 984

ments is defined as: 985

F1 = 2 · Precision ·Recall

Precision+Recall
(15) 986

A.3 Datasets 987

This section provides detailed information about 988

the books used in the experiment. 989

A.3.1 Books to Forget 990

At time step 1, we unlearn the third book of the 991

Harry Potter series (HP3) by J.K. Rowling. Sub- 992

sequently, we unlearn Pride and Prejudice by Jane 993

Austen, The Adventures of Sherlock Holmes by 994

Arthur Conan Doyle, and The Great Gatsby by F. 995

Scott Fitzgerald at time steps 2, 3, and 4, respec- 996

tively. 997

A.3.2 Books not in Dnor 998

Throughout the experiments, we collect four books 999

that are semantically similar to HP3 but not in 1000

Dnor: Harry Potter 2, Harry Potter 6, The Tales of 1001

Beedle the Bard, and Short Stories from Hogwarts 1002

of Heroism, Hardship, and Dangerous Hobbies, all 1003

written by J.K. Rowling. The last two are stories 1004

closely related to the Harry Potter series and hence 1005

are also semantically similar. 1006

In addition to the semantically similar books, 1007

we collect four books from Project Gutenberg that 1008

are semantically dissimilar and not in Dnor: Meta- 1009

morphosis by Franz Kafka, Cranford by Elizabeth 1010

Cleghorn Gaskell, A Doll’s House: a play by Hen- 1011

rik Ibsen, and Little Women by Louisa May Alcott. 1012
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A.3.3 Books in Dnor1013

At time step 1 (unlearning Harry Potter 3), the1014

12 books collected from Project Gutenberg to be1015

initially used as Dnor are: Alice’s Adventures in1016

Wonderland by Lewis Carroll, Adventures of Huck-1017

leberry Finn by Mark Twain, The Enchanted April1018

by Elizabeth Von Arnim, The Scarlet Letter by1019

Nathaniel Hawthorne, The Great Gatsby by F. Scott1020

Fitzgerald, The Adventures of Sherlock Holmes by1021

Arthur Conan Doyle, Jane Eyre: An Autobiogra-1022

phy by Charlotte Brontë, My Life — Volume 1 by1023

Richard Wagner, The Blue Castle: a novel by L.M.1024

Montgomery, Romeo and Juliet by William Shake-1025

speare, Twenty Years After by Alexandre Dumas1026

and Auguste Maquet, and Pride and Prejudice by1027

Jane Austen.1028

At time step 2, since we are unlearning Pride and1029

Prejudice, we remove Pride and Prejudice from1030

Dnor. Similarly, we remove The Adventures of1031

Sherlock Holmes and The Great Gatsby at time1032

steps 3 and 4, respectively.1033

A.3.4 Preparing the Dataset1034

For books in Df and Dr, we split the entire texts1035

into chunks of 400 tokens and format the dataset1036

as QA pairs, in which the first 200 tokens are con-1037

sidered the Question, and the next 200 tokens are1038

considered the Answer. We include all the texts1039

from the book and format them into JSON files.1040

A.4 Baseline Methods1041

A.4.1 Unlearning via Gradient Ascent with1042

Other Loss Terms1043

In this work, we use the method proposed by (Yao1044

et al., 2023) as one of the baseline methods. We1045

first discuss the case of time step 1 and then cover1046

sequential unlearning in section A.4.3.1047

Specifically, let θo denote the original model1048

weight of LLM, θt the current LLM through un-1049

learning process, D1
f = Df the dataset represent-1050

ing the book we want to forget, and Dnor to a set1051

of book corpora that does not contain the book to1052

be forgotten. Moreover, we define hθ(x, yy<i) =1053

P(yi|(x, y<i); θ), which is the probability of the to-1054

ken yi conditioned on the prompt x and the already1055

generated tokens y<i = [y1, y2, ..., yi−1]. Next, we1056

define the LLM’s loss on y as:1057

L(x, y; θ) :=

|y|∑
i=1

ℓ(hθ(x, y<i), yi) (16)1058

The GA + Mismatch based method has three 1059

loss terms, defined as follows: 1060

Lfgt = −
∑

(xfgt,yfgt)∈Df

L(xfgt, yfgt, θt) (17) 1061

1062

Lrnd :=
∑

(xfgt,)∈Df

1

|Yrnd|
∑

(,yrnd)∈Yrnd

L(xfgt, yrnd, θt)

(18) 10631064

ϕθ = hθ(xnor, ynor<i) (19) 1065
1066

Lnor :=
∑

(xnor,ynor)∈Dnor

|ynor|∑
i=1

KL(ϕθo ∥ ϕθt). (20) 1067

in which Yrnd is a set of responses irrelevant to 1068

responses of Df . 1069

Lastly, the GA approach is trying to minimize 1070

the following loss to obtain the unlearned model: 1071

L = ϵ1Lfgt + ϵ2Lrnd + ϵ3Lnor (21) 1072

1073
θt+1 ← θt −∇L. 1074

in which Lfgt is a gradient ascent loss on Df , which 1075

tries to make the model perform poorly on the 1076

Df . Next, Lrnd tries to randomly mismatch the 1077

labels from non-relevant dataset to the inputs of 1078

the dataset we want to forget. Lastly, Lnor tries to 1079

maintain the performance on the normal dataset. In 1080

the end, after T gradient accumulation steps, we 1081

obtain the unlearned model θ1u. 1082

In our work, we consider two different settings 1083

for the Yrnd in the loss term Lrnd. Frist case is 1084

when we consider all the responses in Dnor as Yrnd, 1085

and we refer this as GA + Mismatch + Maintain 1086

Loss. The second setting is we consider the answer 1087

"I don’t know" as Yrnd, and we refer the second 1088

setting as GA + IDK + Maintain Loss. 1089

A.4.2 Unlearning via Task Vector 1090

We also use the task vector method as one of the 1091

baseline approaches, which typically involves a 1092

two-stage process. Considering the case of t = 1, 1093

we denote θo as the original model weights. We 1094

intentionally fine-tune the model on Df to obtain 1095

θ1ft. This fine-tuning process is defined as follows: 1096

Lfgt =
∑

(xfgt,yfgt)∈Df

L(xfgt, yfgt, θt) (22) 1097

1098
θt+1 ← θt − ϵ∇θtLfgt (23) 1099

Next, we define the task vector τ as the element- 1100

wise difference between θft and θo: 1101
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τ = θ1ft − θo (24)1102

Finally, the unlearned model θu at time step t is1103

obtained by:1104

θ1u = θo − τ (25)1105

The general intuition behind this method is to1106

first obtain a model that is specialized in the dataset1107

we aim to forget. The task vector τ represents the1108

changes in weights required to acquire this spe-1109

cific knowledge. By subtracting these "knowledge"1110

weights from the original model, we effectively1111

unlearn the targeted information.1112

A.4.3 Sequential Unlearning1113

For GA, GA + Mismatch + Maintain Loss, and1114

GA + IDK + Maintain Loss, we apply the same1115

algorithm described in Appendix A.4.1 to the pre-1116

viously unlearned model θt−1
u at each time step t1117

to perform sequential unlearning. For the TV ap-1118

proach, we use the previously fine-tuned model1119

weights and follow the method described in section1120

4.1 to perform sequential unlearning.1121

A.5 Implementation Details1122

The experiments are conducted on four RTX A60001123

GPUs. For all unlearning algorithms, at each time1124

step, we perform 200 gradient accumulation steps.1125

The batch size is set to 4, and the learning rate1126

is maintained at 0.001 throughout the experiment.1127

Additionally, we set γ to the mean of the gradient1128

vector ∇θLf (θt).1129

B Appendix: Complete Experiment1130

Results1131

In this section, we present our experimental results1132

numerically. Table 1 shows the results of unlearn-1133

ing "Harry Potter and the Prisoner of Azkaban"1134

(HP3) at the first time step. Table 2 provides the1135

results when we continuously unlearn "Pride and1136

Prejudice." Table 3 displays the results of further1137

unlearning "The Adventures of Sherlock Holmes,"1138

and Table 4 presents the results of unlearning "The1139

Great Gatsby" at the final time step. As described in1140

Appendix A.3, we adjust Dnor at each subsequent1141

time step, resulting in different numbers for the1142

original model. For each set of books, we present1143

the average score.1144

At time step 2, the 5-shot performance of GA1145

+ IDK + Maintain Loss is lower than the 0-shot1146

performance, indicating that the model has deteri- 1147

orated in its ability to follow instructions and per- 1148

form in-context learning. At time step 3, catas- 1149

trophic collapse occurs for both GA-based meth- 1150

ods. Moreover, SSU consistently performs better in 1151

terms of achieving a better trade-off among unlearn- 1152

ing efficacy, the model’s performance on Dnor, 1153

Dss, Dsd, and benchmark performance across all 1154

time steps compared to baseline methods. 1155
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Df Dnor Dss Dsd Benchmark

Jaccard Rouge Jaccard Rouge Jaccard Rouge Jaccard Rouge MathQA
MMLU
(0-shot)

MMLU
(5-shot)

GPQA Avg

Original 0.165 0.221 0.164 0.212 0.151 0.200 0.153 0.196 0.402 0.618 0.648 0.306 0.494
GA 0 0 0.013 0.016 0.006 0.004 0.005 0.004 0.188 0.247 0.247 0.234 0.229
Task Vector 0.076 0.102 0.106 0.137 0.091 0.118 0.090 0.117 0.359 0.573 0.603 0.250 0.446
GA + IDK + Maintain Loss 0 0 0.153 0.197 0.004 0.003 0.134 0.170 0.381 0.587 0.617 0.268 0.463
GA + Mismatch + Maintain Loss 0.011 0 0.135 0.180 0.014 0.002 0.122 0.157 0.350 0.566 0.603 0.284 0.451
SSU 0.090 0.125 0.126 0.162 0.107 0.142 0.106 0.135 384 0.590 0.614 0.286 0.469

Table 1: Overall results of our proposed method compared with several baselines at time step 1. Df consists of HP3,
while Dnor includes the books collected for GA-based methods. Dss comprises books that are not in Dnor but
are semantically similar to HP3, and Dsd includes books that are not in Dnor and are semantically dissimilar. For
each type of book, we present the average score. For benchmark performance, we present the accuracy of MathQA,
MMLU under 0-shot and 5-shot settings, and GPQA’s main set under the 0-shot setting.

Df Dnor Dss Dsd Benchmark

Jaccard Rouge Jaccard Rouge Jaccard Rouge Jaccard Rouge MathQA
MMLU
(0-shot)

MMLU
(5-shot)

GPQA Avg

Original 0.161 0.217 0.164 0.212 0.151 0.200 0.153 0.196 0.402 0.618 0.648 0.306 0.494
GA 0 0 0.002 0 0.006 0 0.001 0.004 0.187 0.246 0.247 0.234 0.228
Task Vector 0.079 0.098 0.084 0.109 0.078 0.102 0.079 0.105 0.338 0.541 0.552 0.253 0.421
GA + IDK + Maintain Loss 0.019 0.024 0.128 0.166 0.056 0.069 0.121 0.156 0.366 0.541 0.519 0.257 0.421
GA + Mismatch + Maintain Loss 0.014 0.010 0.137 0.143 0.032 0.028 0.121 0.158 0.344 0.477 0.525 0.285 0.408
SSU 0.084 0.112 0.095 0.124 0.095 0.121 0.101 0.128 0.362 0.573 0.594 0.288 0.454

Table 2: Overall results of our proposed method compared with several baselines at time step 2. Df consists of HP3
and Pride and Prejudice, while Dnor includes the books collected for GA-based methods and adjusted accordingly.
Dss comprises books that are not in Dnor but are semantically similar to HP3, and Dsd includes books that are
not in Dnor and are semantically dissimilar. For each type of book, we present the average score. For benchmark
performance, we present the accuracy of MathQA, MMLU under 0-shot and 5-shot settings, and GPQA’s main set
under the 0-shot setting.

Df Dnor Dss Dsd Benchmark

Jaccard Rouge Jaccard Rouge Jaccard Rouge Jaccard Rouge MathQA
MMLU
(0-shot)

MMLU
(5-shot)

GPQA Avg

Original 0.161 0.220 0.164 0.209 0.151 0.200 0.153 0.196 0.402 0.618 0.648 0.306 0.494
GA 0 0 0 0 0 0 0 0 0.187 0.247 0.247 0.234 0.229
Task Vector 0.071 0.097 0.080 0.107 0.066 0.102 0.076 0.100 0.321 0.507 0.494 0.243 0.391
GA + IDK + Maintain Loss 0.006 0.010 0.024 0.034 0.006 0.069 0.028 0.041 0.291 0.324 0.252 0.268 0.284
GA + Mismatch + Maintain Loss 0 0 0.010 0.011 0.002 0.028 0.003 0.002 0.201 0.229 0.243 0.261 0.233
SSU 0.081 0.106 0.094 0.122 0.086 0.121 0.090 0.116 0.343 0.543 0.554 0.3013 0.436

Table 3: Overall results of our proposed method compared with several baselines at time step 3. Df consists of HP3,
Pride and Prejudice, and Adventures of Sherlock Holmes, while Dnor includes the books collected for GA-based
methods and adjusted accordingly. Dss comprises books that are not in Dnor but are semantically similar to HP3,
and Dsd includes books that are not in Dnor and are semantically dissimilar. For each type of book, we present the
average score. For benchmark performance, we present the accuracy of MathQA, MMLU under 0-shot and 5-shot
settings, and GPQA’s main set under the 0-shot setting.

Df Dnor Dss Dsd Benchmark

Jaccard Rouge Jaccard Rouge Jaccard Rouge Jaccard Rouge MathQA
MMLU
(0-shot)

MMLU
(5-shot)

GPQA Avg

Original 0.156 0.215 0.170 0.211 0.151 0.200 0.153 0.196 0.402 0.618 0.648 0.306 0.494
GA 0.001 0 0 0 0 0 0 0 0.188 0.247 0.247 0.234 0.229
Task Vector 0.064 0.085 0.068 0.916 0.067 0.805 0.067 0.092 0.303 0.479 0.472 0.234 0.372
GA + IDK + Maintain Loss 0 0 0 0.034 0.006 0 0.001 0 0.211 0.289 0.256 0.243 0.250
GA + Mismatch + Maintain Loss 0 0 0 0.011 0.002 0 0.001 0 0.266 0.276 0.329 0.259 0.283
SSU 0.076 0.099 0.093 0.120 0.091 0.118 0.092 0.120 0.328 0.512 0.532 0.270 0.410

Table 4: Overall results of our proposed method compared with several baselines at time step 4. Df consists of HP3,
Pride and Prejudice, Adventures of Sherlock Holmes, and the Great Gatsby, while Dnor includes the books collected
for GA-based methods and adjusted accordingly. Dss comprises books that are not in Dnor but are semantically
similar to HP3, and Dsd includes books that are not in Dnor and are semantically dissimilar. For each type of book,
we present the average score. For benchmark performance, we present the accuracy of MathQA, MMLU under
0-shot and 5-shot settings, and GPQA’s main set under the 0-shot setting.
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