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Abstract

Consistency regularization methods, such as001
R-Drop (Liang et al., 2021) and CrossConST002
(Gao et al., 2023), have achieved impressive003
supervised and zero-shot performance in the004
neural machine translation (NMT) field. Can005
we also boost end-to-end (E2E) speech-to-text006
translation (ST) by leveraging consistency regu-007
larization? In this paper, we conduct empirical008
studies on intra-modal and cross-modal consis-009
tency and propose two training strategies, Sim-010
RegCR and SimZeroCR, for E2E ST in regular011
and zero-shot scenarios. Experiments on the012
MuST-C benchmark show that our approaches013
achieve state-of-the-art (SOTA) performance in014
most translation directions. The analyses prove015
that regularization brought by the intra-modal016
consistency, instead of modality gap, is crucial017
for the regular E2E ST, and the cross-modal018
consistency could close the modality gap and019
boost the zero-shot E2E ST performance.020

1 Introduction021

Speech-to-text translation takes acoustic speech022

signals as input and outputs text translations in the023

target language. The conventional cascaded ST024

system consists of an automatic speech recognition025

(ASR) system and a machine translation (MT) mod-026

ule in a pipeline manner (Sperber et al., 2017, 2019;027

Zhang et al., 2019). Recent works on ST have fo-028

cused on the end-to-end system, which learns a029

unified model that directly generates text transla-030

tions from speech without any intermediate outputs031

(Duong et al., 2016; Berard et al., 2016). E2E ST032

is a cross-modal task, where the major challenges033

include parallel ST data scarcity and representation034

discrepancy between speech and text modalities.035

In order to boost E2E ST training, the techniques036

utilized by existing approaches include pretraining037

(Wang et al., 2020b; Xu et al., 2021), multi-task038

learning (Ye et al., 2021; Tang et al., 2021a), knowl-039

edge distillation (Liu et al., 2019; Inaguma et al.,040

2021), and cross-modal representation learning (Ye041

et al., 2022; Wang et al., 2022; Fang and Feng, 042

2023b). However, most methods are far from being 043

widely used due to the sophisticated model architec- 044

ture, complicated algorithm implementation, and 045

tedious hyperparameter search. 046

Consistency regularization has been widely 047

adopted and shown great promise to improve NMT 048

performance (Sato et al., 2019; Chen et al., 2021; 049

Liang et al., 2021; Gao et al., 2022, 2023). Specifi- 050

cally, Liang et al. (2021) introduce an intra-lingual 051

consistency, R-Drop, to regularize dropout and im- 052

prove the supervised NMT performance, and Gao 053

et al. (2023) propose a cross-lingual consistency, 054

CrossConST, to learn universal representations and 055

boost the zero-shot NMT performance. Given the 056

similar problem formulations between NMT and 057

E2E ST, a natural question arises: Can we signifi- 058

cantly improve E2E ST performance by leveraging 059

simple consistency regularization? 060

In this paper, our primary goal is to provide a 061

simple, easy-to-reproduce, but tough-to-beat strat- 062

egy for learning E2E ST models. Inspired by Liang 063

et al. (2021) and Gao et al. (2023), we propose two 064

strategies, SimRegCR and SimZeroCR, for training 065

E2E ST models in regular and zero-shot scenarios. 066

We show that intra-modal consistency is crucial for 067

the regular setting, and cross-modal consistency is 068

the key for closing the modality gap and boosting 069

the zero-shot performance. The contributions of 070

this paper can be summarized as follows: 071

• We conduct empirical studies on consistency 072

regularization and propose two simple but ef- 073

fective strategies for learning E2E ST models 074

in regular and zero-shot scenarios. 075

• Experimental results show that our ap- 076

proaches achieve significant improvements 077

on the MuST-C benchmark and outperform 078

the current SOTA methods CRESS (Fang and 079

Feng, 2023b) and DCMA (Wang et al., 2022). 080
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2 Background081

2.1 End-to-End Speech-to-Text Translation082

Speech translation corpora usually contain speech-083

transcription-translation triples, which can be de-084

noted as S = {si,xi,yi}|S|i=1. s denotes the085

sequence of the audio wave, x is the transcrip-086

tion in the source language, and y represents087

the translation in the target language. S could088

be pairwise combined into three parallel corpora,089

Sasr = {si,xi}|S|i=1, Smt = {xi,yi}|S|i=1, and090

Sst = {si,yi}|S|i=1, for ASR, MT, and ST tasks091

respectively. The goal of E2E ST is to generate092

translation y directly from the speech s without093

generating transcription x, and the standard train-094

ing objective is to minimize the empirical risk:095

Lst
ce(θ) = ℓ(f(s,y; θ), ÿ), (1)096

where ℓ denotes the cross-entropy loss, θ is a set of097

model parameters, f(s,y; θ) is a sequence of prob-098

ability predictions, and ÿ is a sequence of one-hot099

label vectors for y. Directly modeling the speech-100

to-text mapping is nontrivial due to the representa-101

tion discrepancy between speech and text modali-102

ties. To alleviate ST data sparsity, people usually103

include ASR and MT supervisions from Sasr and104

Smt as well as external corpora for E2E ST task.105

2.2 Consistency Regularization for Neural106

Machine Translation107

Liang et al. (2021) propose an intra-lingual consis-108

tency regularization, R-Drop, for boosting NMT109

performance by forcing the output distributions of110

different sub-models generated by dropout to be111

consistent with each other. For each sentence pair112

(x,y), the training objective is defined as:113

LR−Drop(θ) = Lmt
ce (θ) + αLmt

intra(θ), (2)114

where115

Lmt
ce (θ) = ℓ(f(x,y; θ), ÿ), (3)116

117
Lmt
intra(θ) = biKL(f1(x,y; θ), f2(x,y; θ)), (4)118

f1(·) and f2(·) denote the two forward passes of119

the same model f(·) with the dropout operation,120

biKL(·, ·) is the bidirectional Kullback-Leibler121

(KL) divergence of two distributions,122

biKL(a, b) = (KL(a∥b) + KL(b∥a))/2, (5)123

KL(·∥·) denotes the KL divergence of two distribu-124

tions, and α is a scalar hyper-parameter.125

Gao et al. (2023) introduce a cross-lingual con- 126

sistency regularization, CrossConST, for bridging 127

the representation gap among different languages 128

and improving zero-shot translation in multilingual 129

NMT. For each sentence pair (x,y), the training 130

objective is defined as: 131

LCrossConST (θ) = Lmt
ce (θ) + βLmt

cross(θ), (6) 132

where 133

Lmt
cross(θ) = KL(f(x,y; θ)∥f(y,y; θ)), (7) 134

and β is a scalar hyper-parameter. 135

3 Datasets and Baseline Settings 136

3.1 Dataset Description 137

We initially consider en→de translation for empir- 138

ical study on consistency regularization in Section 139

4 and then show further experiments for other trans- 140

lation directions in Section 5. The detailed statistics 141

of all datasets are summarized in Table 8. 142

3.1.1 ST Datasets 143

We conduct experiments on MuST-C (Di Gangi 144

et al., 2019), which is a multilingual speech trans- 145

lation dataset containing audio recordings with 146

the corresponding transcriptions and translations 147

from English (en) to 8 languages: German (de), 148

Spanish (es), French (fr), Italian (it), Dutch 149

(nl), Portuguese (pt), Romanian (ro), and Rus- 150

sian (ru). We use dev and tst-COMMON as the 151

validation and test sets respectively. 152

3.1.2 MT Datasets 153

We utilize external MT datasets to boost the E2E ST 154

performance. Specifically, we incorporate WMT13 155

(Bojar et al., 2013) dataset for en→es, WMT14 156

(Bojar et al., 2014) dataset for en→fr, WMT16 157

(Bojar et al., 2016) datasets for en→de/ro/ru, 158

and OPUS100 (Zhang et al., 2020) datasets for 159

en→it/nl/pt. Note that we also use dev and 160

tst-COMMON in the MuST-C dataset as the vali- 161

dation and test sets for the MT tasks. 162

3.2 Baseline Settings 163

We adopt a widely used baseline model, W2V2- 164

Transformer (Ye et al., 2021) in our empirical study 165

(Figure 1), which consists of a learnable acoustic 166

feature extractor before two 1-dimensional convo- 167

lutional layers and the standard Transformer archi- 168

tecture (Vaswani et al., 2017). We use different 169

language tags at the decoder input to distinguish 170
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Figure 1: Illustration of the intra-modal and cross-modal consistency regularization. For Lst
intra(θ), the Speech-

German pair (Speech, "Das Wetter heute ist gut") goes through the E2E ST model twice and obtain two output
distributions f(s,y; θ). For Lasr

cross(θ), the original Speech-English pair (Speech, "The weather is good today") and
the copied English-English pair ("The weather is good today", "The weather is good today") go through the E2E ST
model and the NMT model respectively and obtain two output distributions f(s,x; θ) and f(x,x; θ).

the target languages. During inference, the lan-171

guage tag serves as the initial token to predict the172

output text. For example, if the speech input for the173

sentence “The weather is good today” is in English,174

to perform ASR, we use <en> as the initial token175

and decode “The weather is good today”, while to176

translate into German, we use <de> as the initial177

token and decode “Das Wetter heute ist gut”.178

Pre-processing For speech input, we utilize the179

raw 16-bit 16kHz mono-channel audio wave. Fol-180

lowing common practice, utterances with less than181

1000 frames are removed, and utterances with more182

than 480000 frames are removed in the training set183

for GPU efficiency. For each translation direction,184

we jointly learn a unigram SentencePiece (Kudo185

and Richardson, 2018) model with size 10K on186

both the source and target sentences and use it to187

segment sentences into subwords for MT and ST188

tasks. For the external MT datasets, we filter out189

parallel sentences which length ratio exceeds 1.5.190

Model Configuration We use wav2vec2.01191

(Baevski et al., 2020) as the acoustic feature ex-192

tractor, which is pretrained on the audio data from193

LibriSpeech (Panayotov et al., 2015). Two 1-194

dimensional convolutional layers are added follow-195

ing the acoustic feature extractor, with kernel size196

5, stride size 2, padding 2, and hidden dimension197

1024. We utilize 6-layer transformer encoder and198

6-layer transformer decoder. Each of the trans-199

former layers comprises 512 hidden units, 8 atten-200

tion heads, and 2048 feed-forward hidden units.201

Training Configuration We apply cross-entropy202

loss with label smoothing rate 0.1 and set max to-203

1https://dl.fbaipublicfiles.com/
fairseq/wav2vec/wav2vec_small.pt

kens per batch to be 4096 for the MT task and 204

2000000 for the ASR and ST tasks. We use the 205

Adam optimizer with Beta (0.9, 0.98), 4000, 8000, 206

and 4000 warmup updates, and inverse square root 207

learning rate scheduler with initial learning rate 208

1e−4, 1e−3, and 1e−4 for the ASR, MT, and ST 209

tasks respectively. We apply the same configura- 210

tion in each stage of the training procedure. During 211

inference, we use beam search decoding with a 212

beam size of 8 with length penalty 1.2, 0.6, 1.8, 213

1.0, 1.0, 1.4, 1.4, and 0.8 for en→de, es, fr, it, 214

nl, pt, ro, and ru, respectively. We evaluate 215

the MT and ST tasks by case-sensitive sacreBLEU 216

(Post, 2018). We train all models until convergence 217

on 8 NVIDIA Tesla V100 GPUs. For all the exper- 218

iments below, we select the saved model state with 219

the best validation performance. 220

4 Methodology 221

In this section, we formally propose SimRegCR 222

and SimZeroCR, the consistency-based strategies 223

for learning E2E ST models in regular (Section 4.1) 224

and zero-shot (Section 4.2) scenarios respectively. 225

We introduce the details of each part below. 226

4.1 Consistency Regularization for Regular 227

End-to-End Speech Translation 228

We here investigate the performance of consistency 229

regularization for the regular scenario, where we 230

learn the E2E ST model by utilizing MT and ST 231

datasets. For each training sample, the loss func- 232

tions include: Lmt
ce (θ), Lmt

intra(θ), Lst
ce(θ), 233

Lst
intra(θ) = biKL(f1(s,y; θ), f2(s,y; θ)), (8) 234

and 235

Lmt−st
cross (θ) = KL(f(x,y; θ)∥f(s,y; θ)), (9) 236
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ID Training Stage Loss Function MT BLEU ST BLEU
1 MT train from scratch Lmt

ce 29.33 -
2 MT train from scratch Lmt

ce + αLmt
intra 32.76 -

3 ST train from scratch Lst
ce - 23.49

4 ST train from scratch Lst
ce + αLst

intra - 26.77
5 ST finetune on 1 Lst

ce - 24.38
6 ST finetune on 1 Lst

ce + αLst
intra - 27.35

7 ST finetune on 2 Lst
ce + αLst

intra - 27.91
8 MT & ST train from scratch Lmt

ce + Lst
ce 28.54 23.75

9 MT & ST finetune on 1 Lmt
ce + Lst

ce 29.73 23.82
10 MT & ST finetune on 1 Lmt

ce + Lst
ce + βLmt−st

cross 30.66 26.87
11 MT & ST finetune on 2 Lmt

ce + αLmt
intra + Lst

ce + αLst
intra 32.70 27.48

12 MT & ST finetune on 11 Lmt
ce + αLmt

intra + Lst
ce + αLst

intra + βLmt−st
cross 31.00 27.57

13 MT train from scratch† Lmt
ce 29.61 -

14 MT train from scratch† Lmt
ce + αLmt

intra 30.02 -
15 MT finetune on 13 Lmt

ce 33.59 -
16 MT finetune on 14 Lmt

ce + αLmt
intra 34.11 -

17 ST finetune on 15 Lst
ce - 27.33

18 ST finetune on 15 Lst
ce + αLst

intra - 28.96
19 ST finetune on 16 Lst

ce + αLst
intra - 29.23

Table 1: Case-sensitive detokenized BLEU scores on the MuST-C en→de tst-COMMON set. † denotes the MT
training is performed on the WMT16 dataset, other MT training is performed on the MuST-C dataset. We mark the
best ST BLEU scores in two experimental setups in bold. The choices for α and β are summarized in Table 9.

where (1) and (3) are the cross-entropy loss for the237

ST and MT tasks respectively, (4) and (8) are the238

intra-modal consistency regularization for the MT239

and ST tasks respectively, and (9) denotes the cross-240

modal consistency regularization between the MT241

and ST tasks, which could also be regarded as the242

sequence-level knowledge distillation from the MT243

model to the ST model (Liu et al., 2019).244

4.1.1 Experimental Results245

We consider two experimental setups: without ex-246

ternal MT data ( 1 - 12 ) and with external MT247

data ( 13 - 19 ), and summarize the experimental248

results in Table 1. Note that 5 and 17 corre-249

spond to the W2V2-Transformer baselines in the250

settings of without and with external MT data re-251

spectively. By checking model performance under252

different combinations of loss function and train-253

ing strategy, we have the following observations:254

1) The intra-modal consistency, Lmt
intra and Lst

intra,255

could boost the MT ( 1 vs 2 ; 13 vs 14 ) and256

ST ( 3 vs 4 ) performance. 2) The paradigm257

of pretraining-finetuning could further improve the258

ST performance ( 3 vs 5 ; 4 vs 7 ). 3) The259

multi-task learning achieves similar performance260

compared with the pretraining-finetuning strategy261

( 3 vs 8 ; 5 vs 9 ). 4) The cross-modal262

consistency, Lmt−st
cross , could improve the ST perfor-263

mance ( 9 vs 10 ; 11 vs 12 ) but still achieve264

the sub-optimal performance ( 7 vs 12 ).265

4.1.2 Does Intra-modal Consistency Implicitly 266

Bridge the Modality Gap? 267

Figure 2: The ST BLEU score and similarity search
accuracy of each model in Table 1 on the MuST-C
en→de tst-COMMON set. The blue circles denote
the pretraining-finetuning experiments without external
MT data. The green circles denote the multi-task learn-
ing experiments without external MT data. The orange
circles denote the experiments with external MT data.

One interesting finding from the empirical study 268

is that the strategies ( 7 and 19 ) only utiliz- 269

ing the intra-modal consistency achieve the best 270

ST performance instead of explicitly leveraging 271

the cross-modal consistency. We here investigate 272

the impact of the consistency regularization on the 273

modality gap and the E2E ST performance. We 274

conduct a multimodal similarity search experiment 275

and use the averaged bidirectional similarity search 276
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accuracy as the metric to evaluate the modality277

gap. Given parallel speech-transcription pairs, we278

find the nearest neighbor for each one in the other279

modality according to the representation cosine280

similarity and compute the corresponding accuracy,281

where the speech and transcription representations282

are calculated by max-pooling the encoder outputs.283

The evaluation results are reported in Figure 2. By284

checking the relationship between ST BLEU score285

and multimodal similarity search accuracy, we have286

the following observations: 1) The intra-modal con-287

sistency, Lmt
intra and Lst

intra, implicitly closes the288

modality gap ( 5 vs 6 vs 7 ; 17 vs 18289

vs 19 ). 2) The cross-modal consistency, Lmt−st
cross ,290

explicitly bridges the modality gap ( 9 vs 10 ;291

11 vs 12 ). 3) A closer modality gap does not292

guarantee a better ST performance ( 6 vs 10 ;293

7 vs 12 ), and the regularization effect intro-294

duced by the intra-modal consistency seems to be295

more crucial for the regular E2E ST task which is296

in line with Han et al. (2023).297

4.1.3 Training Strategy298

We here summarize the multi-stage training strat-299

egy, SimRegCR ( 19 in Table 1), consisting of MT300

pretraining and ST finetuning with the intra-modal301

consistency regularization in Figure 3. The setting302

without external MT data only differs by removing303

the first step of external MT pretraining.304

Figure 3: The training steps of SimRegCR by utiliz-
ing the intra-modal consistency regularization. In each
step, the modules that contribute to the final E2E ST
model are pointed out by arrow lines. We also consider
SimRegCR− ( 18 in Table 1) in this paper, which trains
MT model only with Lmt

ce in the first two steps.

Comparison with Existing Methods We sum-305

marize the recent results of several existing works306

on the MuST-C en→de benchmark in Table 2.307

The existing methods vary from different aspects,308

including cross-modal progressive training (XST-309

Net) (Ye et al., 2021), cross-modal manifold mixup310

(STEMM) (Fang et al., 2022), cross-modal con-311

trastive learning (ConST) (Ye et al., 2022), cross-312

modal mixup via optimal transport (CMOT) (Zhou313

Method BLEU
w/o WMT16 w/ WMT16

XSTNet† 25.2 27.1
STEMM† 25.6 28.7
ConST† 25.7 28.3
CMOT† 27.0 29.0 / 28.5∗

CRESS† 27.2 29.4 / 28.9∗

W2V2-Transformer 24.4 27.3
+ SimRegCR− 27.4 29.0
+ SimRegCR 27.9 29.2

Table 2: Our method achieves the superior or compara-
ble performance over the existing methods on the MuST-
C en→de benchmark. ∗ denotes the performance of
CMOT and CRESS using wav2vec2.0 instead of Hu-
BERT as the acoustic feature extractor. † denotes the
numbers are reported from the corresponding papers,
others are based on our runs.

et al., 2023), and cross-modal regularization with 314

scheduled sampling (CRESS) (Fang and Feng, 315

2023b). Note that XSTNet, STEMM, and ConST 316

adopt wav2vec2.0 as the acoustic feature extrac- 317

tor, while CMOT and CRESS use HuBERT (Hsu 318

et al., 2021) which could achieve slightly stronger 319

baseline. We can see that SimRegCR− achieves 320

an improvement of 2.35 BLEU score on average 321

over W2V2-Transformer, and SimRegCR achieves 322

the superior or comparable performance over the 323

current SOTA method CRESS that incorporates 324

cross-modal regularization, scheduled sampling, 325

token-level adaptive training, and a stronger acous- 326

tic feature extractor. 327

4.2 Consistency Regularization for Zero-shot 328

End-to-End Speech Translation 329

We here investigate the performance of consistency 330

regularization for the zero-shot scenario, where 331

we learn the E2E ST model by utilizing ASR and 332

MT datasets. For each training sample, the loss 333

functions include: Lmt
ce (θ), Lmt

intra(θ), 334

Lasr
ce (θ) = ℓ(f(s,x; θ), ẍ), (10) 335

336
Lasr
intra(θ) = biKL(f1(s,x; θ), f2(s,x; θ)), (11) 337

and 338

Lasr
cross(θ) = KL(f(s,x; θ)∥f(x,x; θ)), (12) 339

where (3) and (10) are the cross-entropy loss for the 340

MT and ASR tasks respectively, (4) and (11) are the 341

intra-modal consistency regularization for the MT 342

and ASR tasks respectively, and (12) denotes the 343

cross-modal consistency regularization for the ASR 344

task, which could be regarded as the multimodal 345

version of CrossConST (Gao et al., 2023). 346
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ID Training Stage Loss Function MT BLEU ST BLEU
1 MT train from scratch† Lmt

ce 29.61 -
2 MT train from scratch† Lmt

ce + αLmt
intra 30.02 -

3 MT Finetune on 1 Lmt
ce 33.59 -

4 MT Finetune on 2 Lmt
ce + αLmt

intra 34.11 -
5 ASR & MT finetune on 3 Lasr

ce + Lmt
ce 33.99 0.46

6 ASR & MT finetune on 3 Lasr
ce + Lmt

ce + βLasr
cross 32.82 25.10

7 ASR & MT finetune on 4 Lasr
ce + αLasr

intra + Lmt
ce + αLmt

intra 34.35 0.56
8 ASR & MT finetune on 7 Lasr

ce + αLasr
intra + Lmt

ce + αLmt
intra + βLasr

cross 33.25 24.86

Table 3: Case-sensitive detokenized BLEU scores on the MuST-C en→de tst-COMMON set. † denotes the MT
training is performed on the WMT16 dataset, other MT training is performed on the MuST-C dataset. We mark the
best ST BLEU score in bold. The choices for α and β are summarized in Table 10.

4.2.1 Experimental Results347

We consider the experimental setup with external348

MT data and summarize the experimental results in349

Table 3. Note that 5 corresponds to the W2V2-350

Transformer baseline. By checking model perfor-351

mance under different combinations of loss func-352

tion and training strategy, we have the following ob-353

servations: 1) The cross-modal consistency, Lasr
cross,354

could boost the zero-shot ST performance ( 5 vs355

6 ; 7 vs 8 ). 2) Leveraging the intra-modal356

consistency, Lasr
intra and Lmt

intra, could improve the357

corresponding MT performance ( 5 vs 7 ; 6358

vs 8 ), but could not achieve the superior perfor-359

mance in the zero-shot ST direction ( 6 vs 8 ).360

4.2.2 Does the Cross-modal Consistency361

Really Close the Modality Gap?362

Figure 4: Bivariate kernel density estimation plots of
the speech and transcription representations after using
T-SNE dimensionality reduction, where the max-pooled
outputs of the W2V2-Transformer encoder are applied
as the speech and transcription representations.

To verify whether the cross-modal consistency363

regularization can better align the modality repre-364

sentation space, we visualize the speech and tran-365

scription representations of the MuST-C en→de366

tst-COMMON set. We apply dimension reduc-367

tion on the 512-dimensional representations with368

T-SNE (Hinton and Roweis, 2002) and then depict369

the bivariate kernel density estimation based on370

Method Training Data BLEU
Speech ASR MT

MultiSLT† - ✓ ✓ 6.8
Chimera† ✓ ✓ ✓ 13.5
DCMA† ✓ ✓ ✓ 24.0
W2V2-Transformer ✓ ✓ ✓ 0.5

+ SimZeroCR ✓ ✓ ✓ 25.1

Table 4: Our method achieves the superior performance
over the existing methods on the MuST-C en→de
benchmark. † denotes the numbers are reported from
Wang et al. (2022), others are based on our runs.

the 2-dimensional representations in Figure 4. Fig- 371

ure 4 shows that the W2V2-Transformer baseline 372

( 5 ) cannot align speech and transcription well 373

in the representation space, while the cross-modal 374

consistency ( 6 ) draws the representations across 375

different modalities much closer. 376

4.2.3 Training Strategy 377

We here summarize the multi-stage training strat- 378

egy, SimZeroCR ( 6 in Table 3), consisting of 379

MT pretraining and ASR & MT finetuning with the 380

cross-modal consistency regularization in Figure 5. 381

Figure 5: The training steps of SimZeroCR by utilizing
the cross-modal consistency regularization. In each step,
the modules that contribute to the final E2E ST model
are pointed out by arrow lines.

Comparison with Existing Methods We sum- 382

marize the recent results of several existing works 383

on MuST-C en→de benchmark in Table 4. The 384
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Method External BLEU
Speech de es fr it nl pt ro ru

Fairseq ST (Wang et al., 2020a) - 22.7 27.2 32.9 22.7 27.3 28.1 21.9 15.3
Dual Decoder (Le et al., 2020) - 23.6 28.1 33.5 24.2 27.6 30.0 22.9 15.2
Speechformer (Papi et al., 2021) - 23.6 28.5 - - 27.7 - - -
SATE (Xu et al., 2021) - 25.2 - - - - - - -
BiKD (Inaguma et al., 2021) - 25.3 - 35.3 - - - - -
XSTNet (Ye et al., 2021) ✓ 25.5 29.6 36.0 25.5 30.0 31.3 25.1 16.9
STEMM (Fang et al., 2022) ✓ 25.6 30.3 36.1 25.6 30.1 31.0 24.3 17.1
ConST (Ye et al., 2022) ✓ 25.7 30.4 36.8 26.3 30.6 32.0 24.8 17.3
FCCLm (Zhang et al., 2023) ✓ 25.9 30.7 36.8 26.4 30.5 31.8 25.0 17.6
M3ST (Cheng et al., 2023) ✓ 26.4 31.0 37.2 26.6 30.9 32.8 25.4 18.3
CMOT (Zhou et al., 2023) ✓ 27.0 31.1 37.3 26.9 31.2 32.7 25.3 17.9
CRESS (Fang and Feng, 2023b) ✓ 27.2 31.9 37.8 27.3 31.6 33.0 25.9 18.7
W2V2-Transformer ✓ 24.4 29.9 34.7 25.1 29.3 30.3 23.4 16.5

+ SimRegCR− ✓ 27.4 31.5 38.1 27.2 32.0 33.3 25.9 18.8
+ SimRegCR ✓ 27.9∗ 32.1∗ 39.0∗ 27.7∗ 32.4∗ 34.0∗ 26.3∗ 19.0∗

Table 5: Case-sensitive detokenized BLEU scores on MuST-C tst-COMMON set without external MT datasets.
"External speech" denotes unlabeled speech data. * indicates the improvements over W2V2-Transformer are
statistically significant with p < 0.01. The highest BLEU scores are marked in bold for all methods in each column.

existing methods vary from different aspects, in-385

cluding language-specific encoders-decoders archi-386

tecture (MultiSLT) (Escolano et al., 2021), con-387

tinuous cross-modal alignment (Chimera) (Han388

et al., 2021), and discrete cross-modal alignment389

(DCMA) (Wang et al., 2022). SimZeroCR achieves390

an improvement of 24.6 BLEU score over W2V2-391

Transformer and outperforms the current SOTA392

method DCMA2 that incorporates shared memory393

and vector quantization modules.394

5 Experiments on More Languages395

5.1 Regular End-to-End Speech Translation396

We consider two experimental setups: without ex-397

ternal MT data and with external MT data. The398

detailed information of the baseline methods are399

summarized in Appendix C, and the BLEU scores400

of the baseline methods are reported from the corre-401

sponding papers. The choice for hyperparameters402

and the corresponding model performance in each403

training step of our approaches are summarized in404

Tables 11, 12, 13, and 14.405

When there is no external MT data (Table 5),406

SimRegCR− gains an average improvement of407

2.6 BLEU scores over the W2V2-Transformer408

baseline and can achieve comparable performance409

to the current SOTA method CRESS. It is also410

worth mentioning that SimRegCR gains an aver-411

age improvement of 3.1 BLEU scores over the412

W2V2-Transformer baseline and achieves an aver-413

2Note that the external MT dataset and the inference con-
figurations used in this section are slightly different from those
used in Wang et al. (2022). Please check the experimental
results in Section 5.2 for more fair comparison.

age improvement of 0.6 BLEU scores over CRESS 414

that incorporates cross-modal regularization, sched- 415

uled sampling, token-level adaptive training, and a 416

stronger acoustic feature extractor, which clearly 417

shows the effectiveness of our methods. When ex- 418

ternal MT data is included (Table 7), SimRegCR− 419

and SimRegCR gain average improvement of 1.7 420

and 2.2 BLEU scores over the W2V2-Transformer 421

baseline respectively, and SimRegCR achieves an 422

average improvement of 0.2 BLEU scores over 423

CRESS, which implies that we could easily achieve 424

SOTA performance for E2E ST task by leveraging 425

simple intra-modal consistency regularization. 426

5.2 Zero-shot End-to-End Speech Translation 427

The experimental results with external MT data 428

are summarized in Table 7. For fair compari- 429

son, we keep our experimental settings consistent 430

with Wang et al. (2022) to use WMT14 dataset 431

for en→de/es/fr/ru as the external MT data3. 432

During inference, we use beam search decoding 433

with a beam size of 5 with length penalty 1.0. The 434

detailed information of the baseline methods are 435

summarized in Appendix D, and the correspond- 436

ing BLEU scores are reported from Wang et al. 437

(2022). The choice for hyperparameters and the 438

corresponding model performance in each training 439

step of our approach are summarized in Table 15. 440

Despite the language tag is properly set during in- 441

ference, W2V2-Transformer is still not capable of 442

translating into specific language and only generat- 443

ing English text. We can see that SimZeroCR gains 444

3We only use europarl v7, commoncrawl, and news com-
mentary subsets of WMT14 dataset for en→fr.
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Method External BLEU
Speech de es fr it nl pt ro ru

MTL (Tang et al., 2021b) - 23.9 28.6 33.1 - - - - -
JT-S-MT (Tang et al., 2021a) - 26.8 31.0 37.4 - - - - -
Chimera (Han et al., 2021) ✓ 27.1 30.6 35.6 25.0 29.2 30.2 24.0 17.4
XSTNet (Ye et al., 2021) ✓ 27.1 30.8 38.0 26.4 31.2 32.4 25.7 18.5
STEMM (Fang et al., 2022) ✓ 28.7 31.0 37.4 25.8 30.5 31.7 24.5 17.8
ConST (Ye et al., 2022) ✓ 28.3 32.0 38.3 27.2 31.7 33.1 25.6 18.9
SpeechUT (Zhang et al., 2022)† ✓ 30.1 33.6 41.4 - - - - -
WACO (Ouyang et al., 2023) ✓ 28.1 32.0 38.1 - - - - -
M3ST (Cheng et al., 2023) ✓ 29.3 32.4 38.5 27.5 32.5 33.4 25.9 19.3
FCCLm (Zhang et al., 2023) ✓ 29.0 31.9 38.3 27.3 31.6 32.7 26.8 19.7
CMOT (Zhou et al., 2023) ✓ 29.0 32.8 39.5 27.5 32.1 33.5 26.0 19.2
CRESS (Fang and Feng, 2023b) ✓ 29.4 33.2 40.1 27.6 32.3 33.6 26.4 19.7
W2V2-Transformer ✓ 27.3 31.7 38.0 26.3 29.8 31.7 23.4 18.2

+ SimRegCR− ✓ 29.0 33.0 39.4 27.3 32.2 33.5 26.0 19.4
+ SimRegCR ✓ 29.2∗ 33.0∗ 40.0∗ 28.2∗ 32.7∗ 34.2∗ 26.7∗ 20.1∗

Table 6: Case-sensitive detokenized BLEU scores on MuST-C tst-COMMON set with external MT datasets.
"External speech" denotes unlabeled speech data. † is a speech-unit-text pretraining model whose training costs
are much higher than ours. * indicates the improvements over W2V2-Transformer are statistically significant with
p < 0.01. The highest BLEU scores are marked in bold for all methods in each column.

Method BLEU
de es fr ru

MultiSLT 6.8 6.8 10.9 -
Chimera 13.5 15.3 22.2 8.3
DCMA 24.0 26.2 33.1 16.0
W2V2-Transformer 0.5 0.4 0.4 0.1

+ SimZeroCR 25.1 27.0 34.6 15.6

Table 7: Case-sensitive detokenized BLEU scores on
MuST-C tst-COMMON set with external MT datasets.
The highest BLEU scores are marked in bold for all
methods in each column.

an average improvement of 25.2 BLEU scores over445

the W2V2-Transformer baseline and achieves an446

average improvement of 0.8 BLEU scores over the447

current SOTA method DCMA that incorporates448

shared memory and vector quantization modules,449

clearly showing the effectiveness of our method.450

6 Related Work451

E2E ST is a cross-modal task, and one major chal-452

lenge is direct ST data scarcity. To address such453

problem, people usually adopt MT data by lever-454

aging the techniques such as pretraining (Bansal455

et al., 2019; Alinejad and Sarkar, 2020; Le et al.,456

2021; Tang et al., 2022), multi-task learning (Le457

et al., 2020; Dong et al., 2021; Indurthi et al., 2021),458

knowledge distillation (Liu et al., 2019; Gaido et al.,459

2020; Inaguma et al., 2021), and data augmenta-460

tion (Lam et al., 2022; Fang and Feng, 2023a). Due461

to the representation discrepancy between speech462

and text modalities, people also utilize cross-modal463

alignment (Han et al., 2021; Fang et al., 2022; Ye464

et al., 2022; Ouyang et al., 2023) to fully exploit465

MT data. Specifically, Wang et al. (2022) employ 466

a shared discrete vocabulary space to accommo- 467

date both modalities of speech and text and achieve 468

SOTA performance in the zero-shot setting. We 469

show that the zero-shot E2E ST performance could 470

be boosted by leveraging simple cross-modal con- 471

sistency regularization. Fang and Feng (2023b) 472

propose the cross-modal regularization with sched- 473

uled sampling method to bridge the modality gap 474

and achieve the SOTA performance in the regular 475

setting. We find that the regularization is more cru- 476

cial than modality adaption, which is in line with 477

Han et al. (2023), and achieve the SOTA perfor- 478

mance in the regular setting by leveraging simple 479

intra-modal consistency regularization. 480

7 Conclusion 481

In this paper, we propose two simple but effec- 482

tive consistency regularization based strategies for 483

learning E2E ST models. We analyze the regular- 484

ization effect of SimRegCR on the regular E2E ST 485

performance and show that SimZeroCR could ef- 486

fectively close the modality gap. Experiments on 487

the MuST-C benchmark demonstrate the capabili- 488

ties of our approaches to improve translation perfor- 489

mance in both regular and zero-shot settings. Given 490

the universality and simplicity of SimRegCR and 491

SimZeroCR, we believe they can serve as strong 492

baselines for future E2E ST research. For future 493

work, we will explore the effectiveness of consis- 494

tency regularization on more speech related tasks, 495

such as speech-to-speech translation, speech lan- 496

guage modeling, etc. 497
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Limitations498

While our approach achieves promising perfor-499

mance by leveraging simple consistency regular-500

ization, it still has some limitations: 1) The perfor-501

mance of our approach still lags behind SpeechUT,502

although the training cost of our approach is much503

lower. 2) We mainly focus on evaluating our ap-504

proach on the MuST-C benchmark in this paper.505

Future research could consider more speech trans-506

lation benchmarks with more diverse languages,507

larger ST datasets, and larger models.508
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Appendix876

A Statistics of All Datasets877

B The Choice for Hyperparameters in878

Tables 1 and 3879

C Regular E2E ST Methods880

We compare our approach with the following meth-881

ods on the MuST-C benchmark:882

• Fairseq ST (Wang et al., 2020a): Fairseq ST is883

a fairseq extension4 for speech-to-text modeling884

4https://github.com/facebookresearch/
fairseq/tree/main/examples/speech_to_
text

MuST-C External MT
en→ hours #sents name #sents
de 408 234K WMT16 4.6M
es 504 270K WMT13 15.2M
fr 492 292K WMT14 40.8M
it 465 258K OPUS100 1.0M
nl 442 253K OPUS100 1.0M
pt 385 211K OPUS100 1.0M
ro 432 240K WMT16 0.6M
ru 489 270K WMT16 2.5M

Table 8: Statistics of all datasets. #sents refers to the
number of parallel sentence pairs.

ID α β ID α β

1 - - 2 5.0 -
3 - - 4 5.0 -
5 - - 6 5.0 -
7 4.0 - 8 - -
9 - - 10 - 5.0
11 3.0 - 12 3.0 5.0
13 - - 14 0.5 -
15 - - 16 1.0 -
17 - - 18 3.0 -
19 3.0 -

Table 9: The choice for hyperparameters in Table 1.

tasks such as speech translation, which includes 885

end-to-end workflows and SOTA models with 886

scalability and extensibility design. 887

• Dual Decoder (Le et al., 2020): This paper intro- 888

duces a dual-decoder Transformer architecture 889

for synchronous speech recognition and multilin- 890

gual speech translation. 891

• Speechformer (Papi et al., 2021): This paper in- 892

troduces a Transformer-based ST model that able 893

to encode the whole raw audio features without 894

any sub-optimal initial sub-sampling. 895

• SATE (Xu et al., 2021): This paper proposes a 896

stacked acoustic-and-textual encoding method, 897

which is straightforward to incorporate the pre- 898

trained models into ST. 899

• BiKD (Inaguma et al., 2021): To fully leverage 900

knowledge in both source and target language di- 901

rections for bilingual E2E ST models, this paper 902

proposes bidirectional sequence-level knowledge 903

distillation, in which both forward sequence-level 904

knowledge distillation from a source-to-target 905
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ID α β ID α β

1 - - 2 0.5 -
3 - - 4 1.0 -
5 - - 6 - 45.0
7 2.0 - 8 2.0 120.0

Table 10: The choice for hyperparameters in Table 3.

NMT model and backward sequence-level knowl-906

edge distillation from a target-to-source NMT907

model are combined.908

• XSTNet (Ye et al., 2021): This paper proposes909

cross speech-text network, an extremely concise910

model which can accept bi-modal inputs and911

jointly train ST, ASR and MT tasks.912

• MTL (Tang et al., 2021b): This paper proposes913

a general multi-task learning framework to lever-914

age text data for ASR and ST tasks.915

• JT-S-MT (Tang et al., 2021a): This paper pro-916

poses three techniques to increase knowledge917

transfer from the MT task to the ST task, which918

include parameter sharing and initialization strat-919

egy to improve the information sharing between920

tasks, cross-attentive regularization and online921

knowledge distillation to encourage the ST sys-922

tem to learn more from the auxiliary MT task and923

then generate similar model representations from924

different modalities.925

• STEMM (Fang et al., 2022): This paper pro-926

poses a speech-text manifold mixup method to927

mix up the speech representation sequences and928

word embedding sequences.929

• ConST (Ye et al., 2022): This paper proposes a930

simple yet effective contrastive learning frame-931

work bridging the speech-text representation gap932

and facilitating the ST with limited data.933

• SpeechUT (Zhang et al., 2022): This paper pro-934

poses a unified-modal speech-unit-text pretrain-935

ing model, which bridges the modality gap be-936

tween speech and text representations with hid-937

den units.938

• WACO (Ouyang et al., 2023): This paper pro-939

poses a simple and effective method for ex-940

tremely low-resource speech-to-text translation,941

where the key idea is bridging word-level repre-942

sentations for both speech and text modalities via943

contrastive learning.944

• M3ST (Cheng et al., 2023): This paper proposes 945

a method to mix the training corpus at three 946

levels, including word level, sentence level and 947

frame level. 948

• FCCLm (Zhang et al., 2023): This paper pro- 949

poses a cross-modal multi-grained contrast learn- 950

ing method for explicit knowledge transfer from 951

the MT to the ST model. 952

• CMOT (Zhou et al., 2023): This paper proposes 953

cross-modal mixup via optimal transport to adap- 954

tively find the alignment between speech and text 955

sequences, and to mix up the sequences of differ- 956

ent modalities at the token level. 957

• CRESS (Fang and Feng, 2023b): This paper pro- 958

poses a simple yet effective method to regular- 959

ize the model predictions of ST and MT, whose 960

target-side contexts contain both ground truth 961

words and self-generated words with scheduled 962

sampling. 963

D Zero-shot E2E ST Methods 964

We compare our approach with the following meth- 965

ods on the MuST-C benchmark: 966

• MultiSLT (Escolano et al., 2021): This paper 967

extends the multilingual NMT system to perform 968

spoken language translation and zero-shot multi- 969

lingual spoken language translation by coupling 970

language-specific encoder-decoders, even from 971

monolingual ASR data only. 972

• Chimera (Han et al., 2021): This paper proposes 973

a model capable of learning a text-speech shared 974

semantic memory network for bridging the gap 975

between speech and text representations. 976

• DCMA (Wang et al., 2022): This paper pro- 977

poses an alignment method to enable zero-shot 978

ST, where the key part is to discretize the contin- 979

uous vectors to a finite set of virtual tokens and 980

use ASR data to map the corresponding speech 981

and text to the same virtual token in the shared 982

codebook. 983

E The Choice for Hyperparameters in 984

Section 5 985
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Training Stage de es fr it nl pt ro ru

MT pretrain Baseline 29.33 34.61 41.47 31.25 34.41 35.80 28.13 19.40

ST finetune
Baseline 24.38 29.92 34.73 25.13 29.29 30.32 23.39 16.45
BLEU 27.35 31.53 38.10 27.24 32.00 33.30 25.89 18.83
α 5 4 4 5 4 5 4 4

Table 11: The choice for hyperparameters and the corresponding MT & ST performance in the training steps of
SimRegCR− without external MT datasets.

Training Stage de es fr it nl pt ro ru

MT pretrain
BLEU 32.76 37.10 45.68 33.31 37.89 39.12 31.60 21.60
α 5 5 5 5 5 5 5 5

ST finetune
BLEU 27.91 32.12 39.04 27.69 32.39 33.96 26.30 19.02
α 4 4 5 4 4 4 4 3

Table 12: The choice for hyperparameters and the corresponding MT & ST performance in the training steps of
SimRegCR without external MT datasets.

Training Stage de es fr it nl pt ro ru

MT pretrain† Baseline 29.61 31.98 40.59 26.30 30.58 31.83 23.48 18.65
MT finetune Baseline 33.59 37.78 45.93 32.74 37.06 38.81 29.05 22.11

ST finetune
Baseline 27.33 31.70 38.04 26.29 29.77 31.73 23.43 18.23
BLEU 28.96 33.04 39.37 27.30 32.22 33.51 26.00 19.41
α 3 3 2 3 3 4 4 3

Table 13: The choice for hyperparameters and the corresponding MT & ST performance in the training steps of
SimRegCR− with external MT datasets. † denotes the training procedure is performed on the external MT dataset.

Training Stage de es fr it nl pt ro ru

MT pretrain†
BLEU 30.02 32.10 40.62 28.24 33.08 34.02 24.99 19.28
α 0.5 0.25 0.125 3 3 2 2 0.5

MT finetune
BLEU 34.11 37.97 46.95 33.86 38.67 40.09 32.23 22.45
α 1 0.25 3 5 5 3 3 3

ST finetune
BLEU 29.23 32.97 39.98 28.16 32.68 34.24 26.66 20.09
α 3 3 3 3 3 4 3 4

Table 14: The choice for hyperparameters and the corresponding MT & ST performance in the training steps of
SimRegCR with external MT datasets. † denotes the training procedure is performed on the external MT dataset.

Training Stage de es fr ru

MT pretrain† Baseline 29.37 32.91 41.33 18.07
MT finetune Baseline 33.78 37.53 45.99 21.67

ASR & MT finetune
Baseline 0.47 0.43 0.43 0.07
BLEU 25.10 26.99 34.59 15.56
β 30 45 20 35

Table 15: The choice for hyperparameters and the corresponding MT & ST performance in the training steps of
SimZeroCR with external MT datasets. † denotes the training procedure is performed on the external MT dataset.
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