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Abstract

We address the problem of looking into the water from the air, where we seek to
remove image distortions caused by refractions at the water surface. Our approach
is based on modeling the different water surface structures at various points in time,
assuming the underlying image is constant. To this end, we propose a model that
consists of two neural-field networks. The first network predicts the height of the
water surface at each spatial position and time, and the second network predicts the
image color at each position. Using both networks, we reconstruct the observed
sequence of images and can therefore use unsupervised training. We show that
using implicit neural representations with periodic activation functions (SIREN)
leads to effective modeling of the surface height spatio-temporal signal and its
derivative, as required for image reconstruction. Using both simulated and real data
we show that our method outperforms the latest unsupervised image restoration
approach. In addition, it provides an estimate of the water surface.
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Figure 1: Surface waves distort the appearance of underwater scenes viewed from the air due to
refractions following Snell’s law as seen in the distorted frame on the left. Our method aims at
reconstructing the original scene and performs better than NDIR [11]]. For example, the numbers
marked in blue and the grid marked in green. In addition, our method outputs the surface height. The
height presented on the right corresponds to the distorted frame on the left. Example taken from the
elephant dataset from [9].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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1 Introduction

Observing objects in the ocean from aerial platforms can significantly increase the observation scale
and speed since underwater vehicle operation is complex and expensive. Therefore, it is used in a
variety of scientific and operational applications. For example, measuring the scale of coral bleaching
after a warming event or a storm [3]]. However, the effects of refraction between the air and water can
strongly distort the apparent position and shape of objects and features below the water’s surface,
hindering the observations. The distortion is directly related to the surface shape through its gradients,
connecting the water surface with the underlying scene in a single image. Ocean wave measurements
are very useful for coastal and ocean science and engineering and represent an active research field in
physical oceanography [1}[15]. Measurement of sea surface height also informs studies of the sea
surface microlayer [24].

Here, using a short input sequence of an underwater object seen from above, we aim to reconstruct
its fine details and undistorted structure, as well as the surface height in each point. An example is
shown in Fig.|l} Real waves are a superposition of several types of wave from various sources with
different wave periods and amplitudes. Large-scale ground truth for this problem is only available by
simulations that do not encompass this range of surface waves. Thus, it is difficult for supervised
methods to generalize to real-world examples. However, distorted sequences contain a wealth of
information on the constant underlying scene that can be leveraged in an unsupervised method.

We formulate the unsupervised learning signal of reconstructing the observed distorted images by
first estimating the water surface height and then using the estimation and its spatial derivatives to
compute the pixel distortion map. We implement this using a neural representation network based on
periodic activation functions (SIREN [17]]), which has proven to be effective and efficient in modeling
continuous signals and their derivatives.

Our method outperforms previous unsupervised methods using a simpler training setup and addition-
ally provides surface height estimation. We demonstrate this both on real-world and simulated data.
All our code and data will be made available upon publication.

2 Related work

2.1 Imaging through turbulent water.

The problem of looking through water has attracted attention since the earlier days of computer
vision [14]] as it poses interesting and applicative physics-based challenges. Early works [5} (8} 23]
were based on finding and stitching together distortion-free patches from the distorted image sequence.
In [8]] the authors formulate the reconstruction problem as a manifold embedding problem and propose
a modified convex flows technique to robustly recover global distances on the manifold. In [5] the
authors suggest a multistage clustering algorithm combined with frequency domain measurements.
In [23] the authors propose to first find an ensemble of distortion free ("lucky") patches and then
proceed to estimate the Fourier phase and the Fourier magnitude of the clean image.

A different line of techniques is based on model-based tracking to reconstruct the clean image. In [22]
the authors propose building a spatial distortion model of the water surface using the wave equation.
The model enables them to design a tracking technique tailored for water surfaces. Using their
method, they were able to use a shorter sequence of 61 frames instead of the long sequences required
by the lucky patches techniques e.g. 800 in [8] or 120 in [23].

A refracted image sequence contains strong physics cues on the underlying scene and the water
surface. This was used by [9]] who estimated optical flow between key feature points to estimate object
trajectories within the sequence. Using a compressive sensing solver they used these trajectories
to estimate the entire motion field and reconstruct the scenes. Alternatively, [25] used the fact that
water refraction changes the viewpoint to develop a structure-from-motion like solver for an image
sequence captured by a stationary camera. They are able to simultaneously retrieve the structure of
the water surface and the static underwater scene geometry.

Supervised deep learning methods require a training dataset. In [[12] a dataset was acquired using a
computer monitor displaying images from ImageNet [4] placed under a transparent water tank with a
pump to generate water surface movements. Their network consists of two parts, a warping net to
remove geometric distortion and a color predictor net to further refine the restoration.
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Figure 2: Our architecture. From the left, regularized 2D spatial grids z,¢; and time ¢ are inputs
to a SIREN [[17]] network that outputs surface height per frame. The gradient of the output heights,
along with its average across ¢, is used for calculating distortions as in Eq.[I] These are then used in
another SIREN network to output the reconstructed image /(g ) and the distorted images I &

The predicted distorted images and the observed distorted images I? are used in the loss calculation.

Thapa et al. [20] generated a synthetic dataset using the wave equation for three types of waves:
ripple waves, ocean waves, and Gaussian waves. The dataset was then used to train the following
network: three parallel CNNs that generalize features from each input (consecutive distorted frames),
and then uses recurrent layers to refine the CNN-predicted distortion maps by enforcing the temporal
consistency among them. Then, a GAN is used to predict the distortion-free image. FSRN [19] was
trained to estimate the water surface based on a known reference background in the water.

Li et al. [11] present a two-stage unsupervised network. The first stage consists of a grid deformed for
every input image that estimates the distortion field. Then, an image generator outputs the distortion-
free image. The optimizer for generating the distortion-free image by minimizing pairwise differences
between the captured input images, the network’s predicted distorted images, and resampled distorted
images from the distortion-free image. Our model is also based on unsupervised reconstruction,
modeling the image and the distortions using different networks, however we use a single SIREN [[17]]
network conditioned on time that outputs the surface height. Using the height we compute the
offset of each pixel in order to reconstruct the observed images. The advantage is that the predicted
distortion is grounded in the temporal process of moving waves, and in addition this enables a direct
prediction of the water surface.

2.2 Neural fields

Representing data using neural fields has gained significant focus in recent years. These models,
also known as implicit neural representations are used to model a continuous signal by predicting
the value of the signal given a position in space as input. For example in images this corresponds to
predicting pixel color given the 2D pixel position. This representation has proven effective for image
compression 6], 3D modeling [13]], PDE dynamics forcasting [26] and as a basic representation for
different downstream tasks [7]].

One implementation of neural fields that we adopt in this work is SIREN [17]]. This model is an MLP
with sinusoidal activation functions, which was proven to be both effective and efficient for image
modeling, achieving high accuracy with smaller networks and faster training times. One advantage
of using periodic activation functions, is that the signal and its derivatives become similar in nature.
To demonstrate this Sitzmann ef al. [17] train a model to predict a signal by supervising the training
loss with the gradients of the signal. In our work we show that this arises naturally from the physical
formulation of the problem, as the image distortion caused by the water surface is directly related to
the spatial derivatives of the surface height.



3 Method

Fig. 2] summarizes our method. Given an arbitrary number of video frames taken from air, we train
our model per sequence to reconstruct the distorted frames and can then use our model structure
to remove the distortion caused by the water surface. This is achieved by modeling the underlying
image and the water surface separately.

3.1 Assumptions

We assume a static planar underwater scene at an unknown depth hy below a water surface. The
scene is fronto-parallel to an orthographic camera and the camera is held in air outside of water.
The interface between the refractive medium (water) and air is dynamic, i.e., wavy water-surface.
Like [9} [16} 20} 21] we also assume small fluctuating water-waves, i.e., the maximum surface
fluctuation, max ; |h(x,t) — hol, is small compared to the average water-height ho. This is a
reasonable assumption for many marine environments such as river beds and shallow coral reefs.
If the camera exposure time is not sufficiently short in relation to the wave phase-velocity then the
resulting image will suffer from motion-blur. While we do not make explicit assumptions regarding
shutter speed, camera frame rate and the water-surface waves phase speed, our proposed method
can handle the motion-blur commonly occurring in James Reall dataset [9] which is considered a
hard dataset for underwater refractive distortion removal due to large frame-to-frame motion and
motion-blur. In Fig.[7| we present real-world results where our assumptions do not fully hold and
show that our method is able to reconstruct a plausible underlying clean image, see Sec. [5]for further
discussion.

3.2 Surface Gradient

By modeling the surface of the water above the image we can compute the refraction offset of
every pixel based on Snell’s law (illustrated in Fig.[3). According to Snell’s law, under first-order
approximation [21]], the distortion function (warping) d(z,t) can be related to the height of water
surface h(z,t) at the 2D spatial position x and time ¢:

d(z,1) = (1 - 1) hoVh(z,1) | )

n

where h is the average water height above the scene, and n is the relative refraction index between
air and water.

3.3 Architecture

The architecture (Fig.[2) of our model consists of two parts. Both parts are implemented using SIREN
models [17]] which are used as neural fields to model both the water surface height at different times
points h(x,t), and the fixed underlying image.

Surface height model Hy. The first part of our model is a SIREN neural field that models the
2D surface height signal across different time points. This model takes as input a two dimensional
position in the image space z, and one-dimensional point in time ¢, and predicts the surface height at
that position and time Hy(x,t). Using a SIREN architecture is well-suited for modeling distortions
through surface height as it allows for the efficient prediction of a signal and its spatial derivatives
simultaneously. We use a single SIREN to 1) predict the water surface height h(x, t) which is used to
compute hg by averaging the outputs across the 2D space « and time ¢; and 2) predict Vhi(z,t) by
computing the gradients of the output of the network with respect to its spatial input x. Given the
computed hg and Vh(x,t) we compute the pixel distortions d(x,t) due to light refraction for each
observed image at time ¢ using Eq. |1|and use it to reconstruct the observed images. We then compare
this prediction with the observed images to compute the loss that we use to optimize the weights of
the networks.

Image model ;. This is implemented using a standard neural field SIREN where each pixel
position is fed to the network along with a positional encoding using random Fourier features [18]],
and is trained to predict the pixel values I (z). Feeding this model with a set pixel positions on the
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Figure 3: According to Snell’s law light passing through an interface between media with different
refraction indices changes its angle (refracts). Thus, when an orthographic camera views an object
submerged in water from air, the object changes its geometrical appearance as a function of the
normals to the surface.

image’s regular grid x,.; will output the set of pixel values for the distortion-free image Iy (reg),
and feeding the model with a set of distorted pixel positions z; = Zyeg + d(Zreg, ) Will result in a
distorted image which we denote by I, 57 > since it is generated using both models Hy and I, and
therefore depends on both sets of weights. To formulate this explicitly,

I 4 = I (@rog + d (Ho(@reg, 1)) @
where d(H (-)) corresponds to using Eq. E]on the height prediction.

3.4 Training

Given a set of distorted frames across time I;, we follow the training paradigm in [11]] consisting
of two stages. The first training stage can be seen as an initialization of the weights, by training the
height network Hy to output a height that corresponds to zero distortion for all pixels, and training
the image network I to predict the average distorted image. This is implemented using the loss (| - |
represents the L; norm):

Linit (8, 9) = |d (Hp(Treg, )| + D 1o (reg) — Ll - Q)
t

In the second stage of training the loss is computed by the reconstruction of all the distorted images.
The loss is given by:

L0,¢)=> |T5s— 1T (4)
t

This is a significant simplification compared to [11] which required 3 different loss terms for training.
We note that both the reconstructed and observed images inherently involve the gradient of the surface
height signal computed through Eq. [I] for the reconstruction and through the physical process of
refraction in the observed image. Therefore this loss forms a real world application of the ability of
SIREN to model a signal by supervising it with the derivatives.

4 Experiments

To test our method we use three datasets. We use the James Reall dataset [9], which contains 7
sequences of images acquired in a water tank using 50 fps acquisition rate (examples in Fig. [).
Additionally, we use the TianSet, which is also a real captured dataset by Tian and Narasimhan [22]]
using a 125 fps camera. We note that Reall is considered a more challenging dataset as it has larger
frame-to-frame motion and includes motion blur (due to water-waves). We also generate a synthetic
dataset using the method in [19]], with 3 wave types, resulting in 11 sequences of images. We compare
our method to NDIR [[L1], which is our unsupervised baseline and to Li et al. [12] which is the
state-of-the-art supervised method on single images. In all experiments we use a sequence size of
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Figure 4: Results on the Reall dataset [9]. Marked squares indicate areas where our results are
sharper than the baseline. Note sharper details in the carfoon and dice sequences, as well as straighter
squares in the checkers sequence in our method.

10 frames (except for the batch-size ablation). We conduct ablation studies to validate benefits of
modeling surface-height and spatio-temporal information, to examine design choices and to evaluate
the impact of the input sequence size (Sec.[4.3). Additional results and videos are provided in the
supplementary material.

Implementation details. In all experiments we use a 2-layer network for Hy and a 3-layer network
for Iy, both trained with the Adam optimizer. The input to I is augmented with random Fourier
positional encoding with the bandwidth factor set to 8. We use two sets of hyperparameters. One set
for both real datasets (Reall and TianSet) and the other for the synthetic dataset. More details on
the configurations of the hyperparameters, the amount of iterations on each training stage, hardware
setup, memory usage, runtime, and reproducibility scripts are provided in the supplementary material
("Implementation Details"). Our implementation is based on the code of [11]].

4.1 Image restoration

A qualitative comparison of our results on the Reall dataset is shown in Figs. [T|and [ where green
and blue rectangles mark areas of interest. In the cartoon sequence our method better aligns several
areas, e.g., the numbers, elephant, hand, and as a result reconstruct more details in these drawings. In
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Figure 5: Examples from the simulated dataset following [19]. Our results have less distortions,
manifesting in straighter lines. The estimated distortions match the apparent distortions in the
acquired frames.

Table 1: Quantitative comparison results on the Reall dataset from [9] and TianSet [22]. We compare
our method with NDIR [[11]], Li et al. [12], and NeRT [10]]. Our method achieves the best overall
performance on Reall, with the best SSIM and LPIPS across both datasets. It outperforms prior
methods on most individual sequences and metrics, demonstrating consistent superiority. Minor
exceptions include NDIR achieving slightly higher PSNR and SSIM on Math, Li et al. obtaining
the best SSIM in isolated TianSet cases, and NeRT occasionally strong in PSNR and SSIM but
substantially worse LPIPS.

NDIR Lietal. [12] NeRT [10] Ours
Dataset - Sequence PSNRT  SSIM+ LPIPS| PSNRT SSIMt LPIPS| PSNRT SSIMt LPIPS| PSNRT SSIMT  LPIPS |
Bricks 20.83 0.55 0.21 19.71 0.55 0.18 20.48 0.68 0.35 21.34 0.59 0.16
Ej Cartoon 21.86 0.77 0.16 18.75 0.71 0.19 21.63 0.84 0.37 22.37 0.79 0.12
3 Checker 14.10 0.55 0.12 12.36 0.45 0.26 16.03 0.72 0.09 14.27 0.58 0.10
% Dices 18.50 0.51 0.11 16.23 0.41 0.24 18.27 0.59 021 19.15 0.57 0.09
§ Elephant 15.63 0.31 0.19 14.63 0.23 0.26 15.91 0.41 0.38 15.95 0.33 0.17
= Eye 21.10 0.82 0.10 18.36 0.78 0.12 15.75 0.51 021 21.42 0.83 0.10
5 Math 24.07 0.62 0.11 19.92 0.55 0.13 2334 0.55 0.39 23.98 0.60 0.11
Average 19.44 0.59 0.14 17.14 0.53 0.20 18.77 0.61 0.29 19.78 0.61 0.12
E Small 19.67 0.33 0.26 18.42 0.34 0.22 19.82 0.37 0.33 19.90 0.36 0.22
= Middle 16.76 0.41 0.15 15.82 0.45 0.21 17.37 0.44 0.25 17.10 0.43 0.13
5]
T Average 18.22 0.37 0.20 17.12 0.39 0.22 18.60 0.40 0.29 18.50 0.40 0.17
&

the dice sequence our method compensates better for the distortion and as a result reveals more fine
details in the letters. In the checkers sequence the motion of the squares in the bottom right corner
is better compensated. Fig.[5]displays results from two simulated scenes where our result shows
straighter lines and less distortions. The estimated distortion matches the apparent distortions in the
acquired frame.

Tab. |I| summarizes quantitative results for all three methods, ours and [[9} [11]], on the real datasets [9]
[22]]. Our approach achieves the highest overall metrics. Detailed per-sequence evaluations are also
presented along with the standard deviation for each sequence. In Eye and Math our method is on-par
with NDIR [11]. In all other sequences in both datasets, our method achieves the best LPIPS, while
also providing surface-height prediction. Our method achieves the best PSNR and SSIM values,
with only one exception on the Math sequence. We note that PSNR often favors overly smooth
reconstructions and is thus less indicative of perceptual quality, whereas LPIPS aligns more closely
with sharpness and fidelity, as can be seen in the qualitative comparison (Fig. d). Finally, Tab. 2]
shows results on the simulated dataset, where our method is superior in all metrics compared to the
baseline method on every wave-type.

4.2 Water surface estimation

In addition to reconstructing the underlying image, our method estimates the water surface height
of every frame in the sequence. Examples are shown qualitatively on sequences from the Reall



Table 2: Quantitative comparison results on a simulated dataset following [19] on three wave types.
Our method performs better than NDIR [11]], as can also be seen in Fig. E}

Wave type ~ Method PSNRT SSIM?T LPIPS |

. NDIR 2070 0.64 0.12
Gaussian 3§ 2092 0.65 011
4 NDIR 2150 0.846 0.07
Ripple Ours 23.07 0.92 0.05
N NDIR 15.52 0.54 0.15
Ocean Ours 16.07 0.58 0.14

Ours
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Figure 6: Examples of surface height reconstructions. a) Checkers set from the Reall dataset [9].
The strong curvatures in the surface match the strong distortions in the input image. b) A ripple wave
from the simulated dataset based on [[19]. We show reconstructions of four frames evolving with
time, where our reconstruction closely matches the ground truth used for simulation.

GT

dataset [9]] in Figs. [T} [Bh. The estimated surface curves match large distortions and blurs in the input
image. For a quantitative comparison, we use the estimated depth in the Synthetic dataset. The
average root mean square errors (RMSE) and absolute relative errors (Abs Rel) are 0.115 and 0.0635,
respectively. These results are on par with previous methods shown in the supplementary of [23].
Fig.[6b shows surface height estimations on a ripple sequence evolving with time. We see that our
estimations closely follow the ground-truth height shape over time.

4.3 Ablations.

All ablations were performed using the more challenging Reall dataset. The quantitative results
presented in Tables[3]and @ are the average over the entire dataset.

Modeling surface-height and spatio-temporal information. We compare our final architecture
with two ablations of our method (Tab.[3). In ablation 1, we predict per-frame pixel distortions
using separate networks for each time step instead of a single, time-conditioned network. Ablation 2
employs a shared network across time while still predicting x;, ignoring surface height. Both ablations
use SIRENS for sub-networks and neglect refraction modeling, precluding surface height estimation.
The key distinction is that ablation 2 incorporates temporal conditioning. Our final proposed method
(Our method) integrates surface-height prediction and temporal conditioning, achieving the best
PSNR, LPIPS and SSIM, aligning well with qualitative results.

Design choices. We conduct ablation studies to validate our design choices (Tab. [3). In NDIR [11]
the authors use in the second stage of training a loss function composed of three terms which are based
on two different ways to compute predictions of the distorted images. The first way is computing 7, 57 o
using Eq. 2| and the second way is to generate the regular image I (2es) and then use the distortion
to warp the image W , = warp (I(2reg), d (Hp(reg, t))). Using these two predictions and the
observed image, they compute the loss by comparing the three possible pairs for each observed frame
in time:

L£(0,9) :Z|Ié,¢*ft| + Wy — Lt + |16, — W5 4] (%)

t

We test different combinations of these 3 loss terms, and find that for our model, using only the first
term as formulated in Eq. @] results in better performance. This shows that our model can attain better



Table 3: Design-choice ablations. We examine the loss terms. No init skips the first training stage
(initialization). No positional encoding replaces the positional encoding module with another SIREN
layer as suggested by [2]]. Ablations 1 and 2 are discussed in[4.3] The results are the average results
on Reall dataset.

Metric L1 L2 L3 L1+ L2+ L3 L1 L1 No Ablation 1~ Ablation 2
Our Method Noinit  positional encoding

PSNR 1 19.78 1879 1532 19.42 19.42 19.07 19.42 19.47

SSIM 1 0.613 0.54 0.49 0.60 0.58 0.57 0.59 0.59

LPIPS | 0.121 0.15 0.77 0.13 0.19 0.25 0.18 0.18

Table 4: Comparison of different batch sizes. Presented are the average results on Reall.
Batch size PSNR 1 SSIM 1 LPIPS |
NDIR Ours NDIR Ours NDIR Ours

17.81 17.69 0.54 0.54 0.17 0.14
17.90  18.56 0.55 0.55 0.16 0.15
18.04  18.87 0.56 0.57 0.16 0.15
18.15 18.98 0.56 0.57 0.15 0.15
18.18 19.15 0.57 0.58 0.16 0.15
19.14  19.78 0.58 0.613 0.14 0.121

—_
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results while using a simplified training setup compared to NDIR, for which it was shown that all 3
loss terms are required for training stability. We also test against training without the initialization
phase and without positional encodings and find them beneficial.

Input sequence size. We perform batch size ablations (Tab. ), showing our method consistently
achieves the best LPIPS and SSIM across all tested sizes. For PSNR, our approach also outperforms
NDIR [[11]] starting from six frames. Interestingly, for a batch size of five, the competing method
achieves higher PSNR but 0.03 worse LPIPS. Given LPIPS’ stronger correlation with perceptual
quality, even a 0.03 difference is often visually noticeable.

4.4 A Real-World Scene with Partial Fulfillment of Assumptions

We test our method in a real-world setting (Fig.[7) without an orthographic camera and with a non-
fronto-parallel scene due to complex object geometry. Motion blur is present (e.g., green rectangle),
yet our method reconstructs both the planar grid-like structure and non-planar corals, demonstrating
robustness to assumption violations.

5 Summary

Looking into the water from air is an interesting physics-based problem where image distortion is tied
to the surface shape through Snell’s law. Since the water surface is changing temporally, a sequence

Distorted Input Image

Figure 7: Real-world scene in a coral tank, in which distortions in 3D objects are corrected. Some
loss of detail stems from limited network resolution.
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of images acquired from the same viewpoint provides different distorted views of the same scene.
Our method leverages this information to reconstruct a single image of the undistorted scene.

Real-world acquisition of such scenes and their ground-truth is very challenging. Several methods
simulated datasets using different formulations of wave equations. Nevertheless, in the real-world
the actual waves are a super position of different wave-forms with multiple amplitudes and periods,
and also depend on the bottom type. Thus, there is strong advantage for developing unsupervised
methods that leverage the physical cues from the image sequences and do not rely on pre-training.

We present an unsupervised method that both reconstructs the underlying distorted scene and the
surface shape in each temporal frame. With the exploding popularity of aerial drones our method has
numerous applications in ocean surveys, fish farm monitoring, and also drowning detection both in
the ocean and in swimming pools.

Beyond these positive impacts, potential negative implications may include misuse for unauthorized
surveillance in underwater settings or misinterpretation of reconstructions in safety-critical scenarios.
Our work is primarily foundational and aimed at environmental, marine research and safety applica-
tions. Such concerns highlight the need for responsible deployment and further investigation into
failure modes.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: The claims established in the abstract and introduction are supported by
the technical sections (Sec. [3)) and validated through experiments and analysis (Sec. ).
Assumptions are discussed (Sec. [3.1)) and real-world applicability is tested (Sec. 4.4).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .

Justification: Assumptions and limitations are discussed in a separate section (Sec.[3.1). We
perform a qualitative experiment to validate the applicability of our proposed solution when
our assumptions are only partially fulfilled in a real-world setting (Sec.[.4). As discussed
in the paper, for real-world setting it is very difficult to produce ground truth data of the
water-surface geometry paired with a distorted image caused by refraction due to wavy
air-water interface, as far as we know no such dataset exists yet.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .
Justification: [NA] .
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: We fully describe our architecture and provide all hyperparameters used. See
Sec.[3|in the main paper and in the supplementary material under "Implementation Details".
We provide code, datasets and scripts to run exeperiments in the supplementary material
.zip file.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: We provide as much information as possible in supplemental material (ap-
pended to the paper), an online repository will be made available online upon publication
of the paper. The repository will contain the code, datasets and script provided in the
supplementary material submitted for review.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .
Justification: We explicitly specify all training and test details in the main paper (Sec. [4).
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .
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Justification: We accompany the main results of this paper with statistical significance by
reporting standard deviation on each sequence of each dataset, along with the standard
deviation of the mean over the entire dataset. This statistical analysis supports the reliability
of the core quantitative results reported in Table|[T] and the calculation is based on training
the parameters with different sets of observed images (i.e., no random seeds were involved).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify information regarding compute resources in the provided supple-
mentary material (under "Implementation Details").

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes] .

Justification: We have read the NeurIPS Code of Ethic and declare that our reseearch and
this paper fully conform in every respect with the NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: The paper explicitly discusses both potential positive and negative societal
impacts in the Summary section (Sec. [5).

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: All datasets used in this paper do not require any safeguards, no pretrained
models were used thus making the work in this paper based purely on safe-to-use datasets.
In this manner the authos discouraged possible misuse of the work in this paper. The risk
for misuse lies with a future downstream application that deploys the proposed solution,
generating safeguards against such misuse is difficult.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: All original owners are properly credited and terms of use are explicitly
mentioned where applicable.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] .

Justification: Details regarding all new assets are thoroughly discussed in the paper, the
provided supplementary material and the published code and datasets.

Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: [NA] .
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: [NA] .
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .
Justification: [NA] .
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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