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ABSTRACT

A recent paper of Braverman & Zamir (2024) gave a lower bound of Ω( 1
ϵ2 log n)

for estimating the F2 moment of a stream to within 1 ± ϵ multiplicative error,
resolving the complexity of F2 estimation for constant δ in the insertion-only
model. Using the same techniques, we show that their argument can be adapted
to achieve tight δ dependence. Our key step is to replace the “Exam Set Disjoint-
ness” problem with a version that we call “Exam Mostly Set Disjointness.” This
is the exam version of the Mostly Set Disjointness problem introduced in Kamath
et al. (2021).

1 INTRODUCTION

Data streams present a unique challenge in modern computing. Massive datasets, often arriving at
high velocity, necessitate algorithms that process information in a single pass with limited memory.
These are known as streaming algorithms. For us, a stream consists of increment updates to the
coordinates of an underlying frequency vector x. This is the insertion-only model of streaming. If
decrements are allowed as well, then we refer to this as the turnstile model.

A fundamental task in this setting is the estimation of frequency moments, which summarize the
distribution of data items. The k-th frequency moment, Fk, of a stream with frequency vector x
(where xi is the count of item i) is defined as Fk =

∑
i x

k
i . The second frequency moment, F2

(also known as the squared ℓ2 norm, ∥x∥22), is particularly important, capturing the skewness of the
data and finding applications in database query optimization, network traffic analysis, and machine
learning Krishnamurthy et al. (2003); Muthukrishnan (2005); Woodruff et al. (2014).

In the F2 estimation problem, the goal is to approximate F2 within a (1 ± ϵ) multiplicative factor,
with a success probability of at least 1− δ, using minimal space. The celebrated AMS sketch Alon
et al. (1996) provides an upper bound of O( 1

ϵ2 log(
1
δ ) log n) space for streams over a universe of

size n.

Establishing matching lower bounds has been a long-standing research area. Recent work by Braver-
man and Zamir Braverman & Zamir (2024) resolved the complexity of F2 estimation for constant
failure probability δ in the insertion-only model, showing a lower bound of Ω( 1

ϵ2 log n). However,
this result did not capture the optimal dependence on the failure probability δ.

In this work, we adapt the techniques of Braverman and Zamir (2024) to achieve tight dependence
on the failure probability δ. Our key contribution is the introduction of the “Exam Mostly Set Dis-
jointness” (EMostlyDISJ) problem, which is a variant of the“Exam Set Disjointness” problem used
in Braverman & Zamir (2024). EMostlyDISJ is the “exam” version of the Mostly Set Disjointness
problem introduced by Kamath et al. (2021) Kamath et al. (2021). We establish the following main
result.

Theorem 1. Let A be a streaming algorithm that, for any data stream of length polynomial in n over
a universe of size polynomial in n, computes an estimate F̂2 such that Pr[|F̂2−F2| ≤ ϵF2] ≥ 1− δ.
For ϵ

√
n ≥ log 1

δ , the space used by A is at least:

Ω

(
log

(
ϵ
√
n

log 1
δ

)
1

ϵ2
log

(
1

δ

))
.
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In the ExamSetDisjointness problem which is a variant of the classical SetDisjointness problem
Håstad & Wigderson (2007), each of n players is given a set with elements from some universe.
Either (i) all of the sets are disjoint, or (ii) they share a common element, which is also held by a
referee. The players communicate sequentially in a one-way fashion and then send a message to the
referee who must decide between (i) and (ii).

They show that this implies a lower bound for F2 estimation by a type of direct sum argument. We
will follow this argument below, however we refer the reader to Braverman & Zamir (2024) for
additional details.

Unfortunately, SetDisjointness does not yield moment estimation lower bounds with the correct
log 1

δ dependence on the failure probability. This inspired Kamath et al. (2021) to introduce a variant
called AlmostSetDisjointness where the players must distinguish between their sets being disjoint,
and some item occurring in at least half of their sets. This version of the problem allows for moment
estimation lower bounds with the correct failure probability dependence.

In this work, we observe that by combining AlmostSetDisjointess with the analysis of Braverman &
Zamir (2024), one can obtain a lower bound for F2 estimation in insertion-only streams with optimal
dependence on the failure probability.

1.1 RESULTS AND OVERVIEW

Lower bounds for F2 estimation. We adapt the argument of Braverman & Zamir (2024) to obtain
tight failure probability dependence for F2 estimation in the insertion-only model. Specicically, we
show
Theorem 2. Let A be a streaming algorithm that, for any data stream of length polynomial in n over
a universe of size polynomial in n, computes an estimate F̂2 such that Pr[|F̂2−F2| ≤ ϵF2] ≥ 1n−δ.
For ϵ

√
n ≥ log 1

δ , the space used by A is at least:

Ω

(
log

(
ϵ
√
n

log 1
δ

)
1

ϵ2
log

(
1

δ

))
.

To show this result, we use the Exam Set Disjointness problem of Braverman & Zamir (2024), but
replace Set Disjointess with the Mostly Set Disjointess problem of Kamath et al. (2021). Specifi-
cally, we conisder the following communication game:
Definition 1 (Exam Mostly Set Disjointness (EMostlyDISJ)). The setup involves t players and one
referee. Let U be a universe of size |U |. The inputs are sets S1, . . . , St ⊆ U for the players and
an element j ∈ U for the referee. The input sets are promised to be either (i) M -almost disjoint
or (ii) to have a unique element j0 ∈ U that is common to at least ct of the sets for some constant
c ∈ (0, 1). The communication is one-way from player i to player i + 1, and finally to the referee.
With failure probability at most δ, the referee must decide if the input is an instance of case (i) with
the intersecting element j0 is equal to its element j.

We follow the argument of Braverman & Zamir (2024) to show that this communication game
requires Ω(mt log 1

δ ) communication where m is the sum of the sizes of the players’ sets and M =

O(log 1
δ ). Note that in n order to allow for small δ, we allow for a small relaxation of the game.

Namely, we allow for a small number of repeated elements.

Given this, we give a lower bound for F2 estimation following the argument of Braverman & Zamir
(2024). We briefly describe how the reduction works for t players. Let n be the length of the
stream. The stream is then divided into t blocks each of size roughly n/t. (In fact the size of each
block is n/(4t).) We divide the universe into super-items of size d = ϵ2n

t2 , where n is the length
of the stream. At the end of the stream, if a super-item is repeated among half of the players,
then the F2 of the stream changes by Ω(ϵn) more than in the no instance where no item occurs
more than M = O(log 1

δ ) times. Combining our lower bound for ExamMostlySetDisjointness
with the direct sum argument of Braverman & Zamir (2024), this gives a lower bound of roughly
(log n) 1

ϵ2 log(1/δ), for reasonably large ϵ and δ. We give a more refined bound below, which takes
into account that there may be items repeated roughly log 1

δ times with probability δ (note that
repeats only occur for very small δ, i.e. δ < 1/poly(n), since we may choose our universe size m
to be poly(n).
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Bounded and sparse streams. We consider two classes of insertion-only streams for which the
lower bound above does not apply. In fact, in these cases, we show that it is possible to beat the
lower bound with a better algorithm.

The first situation is streams with entries bounded by B. The main observation is that when B
is small, we obtain a good estimate of F2(x) by subsampling entries from the support of x. This
reduces the size of the vector dramatically, and so the AMS sketch of Alon et al. (1996) has lower
bit complexity per entries, reducing the dependence on log n to roughly logB. A full statement
is given in Theorem 4. There are several complications in following the outlined procedure. In
particular the subsampling rate needs to depend on the support size, which we do not have access to
at the start of the stream. To handle this, we use a continuous F0 tracker, to estimate the sparsity at
all points in time.

We also consider sparse streams, where we can first hash the universe items into buckets, while
approximately preserving F2 since there are few collisions if we use enough buckets. We then
compose with an AMS sketch on the resulting compressed vector. To save space, we do not store
the entries of the AMS sketch exactly, but rather use Morris Counters Morris (1978) to separately
estimate the positive and negative contributions to each bucket. This roughly allows us to replace
the log n dependence with log k, where k is the sparsity. A full statement is given in Theorem 5.

2 INSERTION-ONLY LOWER BOUNDS FOR F2 ESTIMATION.

We present a strengthened space lower bound for the problem of F2 estimation, which is the problem
of returning a (1± ϵ)-approximation to ∥v∥22 with failure probability δ in the insertion-only model.
The proof largely follows the ideas of Braverman & Zamir (2024), but substitutes the underlying
Set Disjointness communication problem with a variant called Mostly Set Disjointness, which is a
problem introduced in Kamath et al. (2021). Our improvement is the incorporation of the failure
probability δ into the lower bound, namely, we will show:
Theorem 3. Let A be a streaming algorithm that, for any data stream of length polynomial in n over
a universe of size polynomial in n, computes an estimate F̂2 such that Pr[|F̂2−F2| ≤ ϵF2] ≥ 1n−δ.
For ϵ

√
n ≥ log 1

δ , the space used by A is at least:

Ω

(
log

(
ϵ
√
n

log 1
δ

)
1

ϵ2
log

(
1

δ

))
For a communication protocol Π with inputs X drawn from a distribution µ and public randomness
P , the conditional information cost is the mutual information I(X; Π(X)|P ) between the input and
the protocol transcript. The communication cost of any protocol is an upper bound on its informa-
tion cost. For a streaming algorithm processing a random stream X , we consider the information
I(X;M) that the memory state M contains about the stream. We first define the communication
problem at the center of our reduction.

In the following definition we will say that sets S1, . . . , St are M -almost-disjoint if
#{(i, x) : x ∈ Si andx ∈ Sj for some j ̸= i} ≤ M.

This is a minor technical relaxation of disjointness that we will use to allow for negligible amounts
of overlap among the sets.
Definition 2 (Exam Mostly Set Disjointness (EMostlyDISJ)). The setup involves t players and one
referee. Let U be a universe of size |U |. The inputs are sets S1, . . . , St ⊆ U for the players and
an element j ∈ U for the referee. The input sets are promised to be either (i) M -almost disjoint
or (ii) to have a unique element j0 ∈ U that is common to at least ct of the sets for some constant
c ∈ (0, 1). The communication is one-way from player i to player i + 1, and finally to the referee.
With failure probability at most δ, the referee must decide if the input is an instance of case (i) with
the intersecting element j0 is equal to its element j.

By a standard direct sum argument, the conditional information cost of the problem on universe U
will be at least |U | times the cost of a 1-bit version, which we call the Fct,t problem. In the Fct,t

problem, each of t players receive bits Yi ∈ {0, 1} and must distinguish between the Hamming
weight of Y being at most 1 from the Hamming weight of Y being at least ct. Our first goal is to
lower-bound the conditional information cost of a protocol for Fct,t.
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Definition 3 (Hard Distribution ν). Let P be a public random variable uniform in [t] =
{1, 2, . . . , t}. The distribution ν over inputs Y ∈ {0, 1}t is defined as follows: conditioned on
P = i, the input Y is the all-zeros vector 0t with probability 1/2 and the standard basis vector ei
with probability 1/2. All inputs drawn from ν are valid NO instances for Fct,t.

We note that ν is the distribution µ0 in the notation of Kamath et al. (2021).
Lemma 1 (Conditional Information Cost on ν, see Kamath et al. (2021)). . Let Π be a protocol
that solves Fct,t with failure probability δ. Let Y be drawn from the distribution ν above. The
conditional information cost with respect to the NO-instance distribution ν is lower-bounded by:

I(Y ; Π|P ) ≥ Ω

(
1

t
log

(
1

δ

))
Proof. Lemma 3.7 of Kamath et al. (2021) shows a conditional information cost lower bound of

I(Y ; Π|P ) ≥ Ω(1),

as long as δ is small enough so that t ≤ c log( 1
2eδ ). Similar to the later argument of Kamath et al.

(2021), we boost the failure probability to get a bound for larger δ.

Now suppose we have a protocol Π with failure probability δ1 (which does not necessarily satisfy the
constraint above). We boost this protocol to construct a protocol Π′ with smaller failure probability.
Specifically, consider running the protocol r times and taking a majority vote. Then the probability
of failure for Π′ is at most

2r

r
δ
r/2
1 ≤ (4δ1)

r/2.

So by taking r = ct
log 1

δ

, we ensure that the failure probability satisfies the bound above. This implies
that

Ω(1) = I(Π1, . . . ,Πr;Y |D) =
∑
i

I(Πi;Y |D,Π<i),

so by averaging there exists an i for which
I(Πi;Y |Π<i, D) = Ω(1/r).

But
I(Πi;Y |Π<i, D) = H(Πi|Π<i, D)−H(Πi|Π<i, D, Y ) = H(Πi|Π<i, D)−H(Πi|D,Y )

since Πi is independent of Π<i conditioned on D and the inputs. Further, H(Πi|Π<i, D) ≤
H(Πi|D) since conditioning cannot increase entropy. Thus, I(Πi;Y |D) = H(Πi|D) −
H(Πi|D,Y ) = Ω(1/r) = Ω( 1t log

1
δ ) and Πi is just our base protocol Π.

We now use the technique of Braverman & Zamir (2024) to relate the conditional information cost
on ν to the information cost on the distribution µp, where each bit is 1 with probability p.
Lemma 2 (Braverman & Zamir (2024) Lemma 4.3, adapted for Fct,t). Let Π be a communica-
tion protocol for Fct,t that is correct on all inputs satisfying the promise Let p < 1/t. For an
input distribution µp where each bit is 1 independently with probability p, the information cost is
Iµp

(Y ; Π) ≥ Ω(p log(1/δ)).

Proof. The proof follows the structure of Lemma 4.3 in Braverman & Zamir (2024). First, we relate
the unconditional and conditional information costs for the distribution ν for P as defined above.
By the chain rule for mutual information: I(Y, P ; Π) = I(Y ; Π) + I(P ; Π|Y ) = I(Y ; Π), since
I(P ; Π|Y ) = 0. Also, I(Y, P ; Π) = I(P ; Π) + I(Y ; Π|P ) ≥ I(Y ; Π|P ). Therefore, I(Y ; Π) ≥
I(Y ; Π|P ).

Using the chain rule for mutual information and the derivation involving D as in the proof of Lemma
4.3 in Braverman & Zamir (2024), we have Iµp(Y ; Π) ≥ Θ(p · t) · Iν(Y ; Π). Combining with the
above and Lemma 1:

Iµp
(Y ; Π) ≥ Θ(p · t) · I(Y ; Π|P ) ≥ Θ(p · t) · Ω

(
1

t
log

(
1

δ

))
= Ω

(
p log

(
1

δ

))
.
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We now apply the reduction from an m-element problem to |U | parallel 1-bit instances, as in Section
4.2 of Braverman & Zamir (2024).

We also note the following simple fact, which will show that accidental duplications do not affect
the F2 substantially.
Proposition 1. Let p = m/(2t|U |) as above. Suppose that each player samples m/t elements
uniformly from U. Let xj

i be the ith item sampled by player j. Then with probability at least 1− δ,

#{(i, j) : xj
i sampled by another player} ≤ c log

1

δ
.

Proof. The probability that a given set of pairs (i, j), of size c log 1
δ , all contain repetitions of some

other element is at most ( 1
m2 )

−c log 1
δ by our choice of |U |. There are at most

(
m

c log 1
δ

)
≤ em

c log 1
δ

c log 1
δ

ways to choose such a set of pairs, so the claim follows by a union bound.

Corollary 1. Suppose that δ ≤ t exp−m/(2t) . The information cost of an O(δ)-error protocol for
t-party EMostlyDISJ with M = c log 1

δ , total set size m, over universe U of size at least m4 is

Ω

(
min(m,

m

t
log

(
1

δ

)
)

)
.

Proof. The reduction creates player sets from |U | parallel instances of the 1-bit problem. The inputs
for these instances are drawn i.i.d. from µp, where p = m/(2t|U |). Following the proof of Lemma
4.4 and Lemma 4.5 of Braverman & Zamir (2024), the total information cost is the sum over the |U |
parallel instances, which gives:

I(X ′; Π) ≥
|U |∑
j=1

Iµp
(Y j ; Π) ≥ |U | · Ω(p log(1/δ))

Substituting p = m/(2t|U |) gives a total cost of:

|U | · Ω
(

m

2t|U |
log(1/δ)

)
= Ω

(m
t
log(1/δ)

)
.

Note that the proof of Lemma 4.5 of Braverman & Zamir (2024) has a failure event, which
is that one of the players’ sets is larger than m/t. However this only happens with probability
t exp(−m/(2t)) ≤ δ by Lemma 4.4 of Braverman & Zamir (2024), and our assumption. Finally,
the conclusion of the previous proposition holds with failure probability at most δ.

2.1 F2 ESTIMATION LOWER BOUND.

We now follow the structure of Section 5 in Braverman & Zamir (2024), with essentially no changes.
For the multi-scale argument, we use a reduction parameterized by t ≤ ϵ

√
n, M ≤ O(log 1

δ ) (our
almost-disjointness parameter), and d := ⌊ ϵ2n

t2 ⌋ (the super-element size). The EMostlyDISJ instance
here has a total set size parameter of m = n/d = Θ(t2/ϵ2).

We construct a stream of length n encoding EMostlyDISJ instances at multiple scales. As in the
proof of Braverman & Zamir (2024) we can have at most ϵ

√
n players or the super-element size

becomes smaller than 1. We choose levels in powers of 2 as in Braverman & Zamir (2024), and the
number of such levels is Ω(log n) given that ϵ

√
n

log(1/δ) = nΩ(1).

For each level l, we set t = 2l. The stream is partitioned into “active buckets” for each level’s
problem. The rest of the stream is filled with elements drawn i.i.d. from a uniform distribution over
U . As in Braverman & Zamir (2024), we analyze the performance of a streaming algorithm on this
random stream distribution, which is identical to a stream where every element is drawn i.i.d. from
U given that the universe size is at least m4 and so the F2 of the resulting stream changes by at most
a constant factor with failure probability at most δ.

At each level, there are at most M = log 1
δ repeated items, which contribute at most log2(1/δ)d to

F2. As long as t ≥
√
ϵ log 1

δ , this is at most an additive ϵF2 contribution to the overall F2.

5
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Given the above, say that a level ℓ is good if for that level, t = 2ℓ/4 satisfies t ≥ log c
δ (and

consequently δ ≥ exp(−m/(2t))), and also t ≤ ϵ
√
n. The former condition guarantees a lower

bound of t
ϵ2 log

1
δ ) at each level, and the latter condition guarantees that our super-item size is at

least one. We assume that log 1
δ ≤

√
n so that there are still Θ(log n) good levels.

As we have seen, the information complexity of a single level-l communication phase, where the
protocol is an execution of the streaming algorithm over the corresponding stream segment, is lower-
bounded by:

Ω

(
t

ϵ2
log

(
1

δ

))
,

for a good level. This follows directly from the definition of the reduction and our bounds for
EMostlyDisj above.

Now we observe that an F2 estimation scheme can solve EMostlyDisj via the current reduction.
Faced with a configuration corresponding to a NO instance of our exam-mostly-set-disjointness
problem there is a superitem that is repeated t/2 times. So if we append k = t/ϵ copies of the
super-item to the end of the stream, this increases the F2 by at least (k + t/2)2 − (t/2)2. On the
other hand, in a NO instance, this increases the F2 of the stream by at most (k + log 1

δ )
2 − log2 1

δ .

The former is at least ϵn, and the latter is at most ϵ
2n, by our assumption that t ≥ c log 1

δ .

Definition 4. As in Braverman & Zamir (2024), for a level l, with t = 2l, let

Il :=

n∑
j=1

I
(
X(j−n

t ,j]
;Mj | Mj−n

t

)
.

Lemma 3 (Essentially Lemma 5.7 of Braverman & Zamir (2024)). For each good level l, we have
Il ≥ Ω

(
n
ϵ2 log

(
1
δ

))
.

Proof. The proof is identical to Lemma 5.7 of Braverman & Zamir (2024), with an extra log 1
δ factor

throughout.

As in Braverman & Zamir (2024), let Ī := 1
n

∑n
j=1 I(X<j ;Mj). We also have the following fact

from Braverman & Zamir (2024)
Lemma 4 (Braverman & Zamir (2024) Lemma 5.10). Ī ≥ 1

n

∑
ℓ Il.

Proof of Theorem 3. By combining Lemma 3 and Lemma 4:

Ī ≥ 1

n

∑
ℓ

Il

≥ 1

n

∑
ℓ

Ω

(
n

ϵ2
log

(
1

δ

))
=

∑
ℓ

Ω

(
1

ϵ2
log

(
1

δ

))
,

where the sum is over good levels. The number of terms in the summation is Ω(log ϵ
√
n

log 1
δ

). Therefore,

Ī ≥ Ω(log
ϵ
√
n

log 1
δ

) · Ω
(

1

ϵ2
log

(
1

δ

))
The space M of the algorithm must be at least the average information it stores, M ≥ Ī .

3 BOUNDED AND SPARSE FREQUENCIES

We present an ℓ2-estimation algorithm for insertion-only streams where the frequencies are bounded
by B. The goal is to achieve a space complexity where the dependence on B is only logarithmic,
and the dependence on n is also logarithmic, independent of 1/ε2.

6
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Theorem 4. Let x ∈ Zn
≥0 be the frequency vector of an insertion-only stream of length m. Suppose

that 0 ≤ xi ≤ B for all i ∈ [n]. Then there is a streaming algorithm that computes a (1 ± ε)-
approximation to ∥x∥22 with probability 1− δ using

O

(
1

ε2
log2

(
B

ϵ

)
log

(
1

δ

)(
logB + log

(
1

ε

))
+ log n · polylog(n,B, 1/δ)

)
bits of space.

Proof. The strategy is to use subsampling to reduce the effective dimension of the problem to a size
that depends polynomially on B and 1/ε, but only logarithmically on n. Then, we apply an efficient
ℓ2 estimator on this reduced stream.

We use a pairwise independent hash function h : [n] → [2L] (where L = O(log n)). We define
levels of sampling based on the number of trailing zeros in the hash value h(i). Let z(i) be the
number of trailing zeros of h(i). We aim to find a sampling level ℓ such that the number of distinct
items i with z(i) ≥ ℓ is approximately K, where K = O(B

2

ε2 log(1/δ)).

We first utilize an F0 estimation algorithm Kane et al. (2010) to estimate the total number of distinct
elements F0. By setting the failure probability of the F0 estimator to δ/ log n, we may assume that
the F0-estimator yields a constant factor approximation to F0 at all times throughout the stream
(since the stream is insertion-only it only need be correct at checkpoints where the F0 changes by a
constant factor). Let F0,t be the number of nonzero entries at time t of the stream, and let F̂0,t be
the corresponding estimator, which is a constant factor approximation of F0,t. We first describe a
two pass version of our algorithm, and then in the following paragraph explain how to extend it to a
single pass.

A two-pass algorithm On the first pass we compute F̂0. We choose the sampling level ℓ such
that 2ℓ ≈ F̂0/K. This ensures that the expected number of items surviving the sampling is within
a constant factor of K. In other words, let S be the set of surviving coordinates: S = {i ∈ [n] |
z(i) ≥ ℓ}. The expected size of S is F0/2

ℓ ≈ K.

We define the natural estimator based on the sampled set S: Y = 2ℓ
∑

i∈S x2
i .

Let p = 2−ℓ, so that Y = 1
p

∑
i∈S x2

i . Since Y is a sampling estimator, we have E[Y ] = ∥x∥22, and

Var(Y ) = 1−p
p ∥x∥44 ≤ 1

p∥x∥
4
4. Since xi ≤ B, ∥x∥44 ≤ B2∥x∥22. Var(Y ) ≤ B2

p ∥x∥22.

To achieve our guarantee it suffices to have Var(Y ) ≤ ε2∥x∥42. This holds if p ≥ B2

ε2∥x∥2
2

. Since

∥x∥22 ≥ F0, it suffices to have p ≥ Ω( B2

ε2F0
). Our choice of ℓ (and thus p) ensures this, assuming the

constants are set appropriately.

Implementation and Space Complexity

We need to implement the estimation of Y in the streaming model. We do not explicitly store the
set S. Instead, we observe that the stream restricted to the coordinates in S is itself a stream. Let
x|S be this restricted vector. We want to estimate ∥x|S∥22.

The vector x|S has an expected dimension of K. The frequencies are still bounded by B. The ℓ1
norm of x|S is ∥x|S∥1 ≤ B|S|. In expectation, ∥x|S∥1 ≤ BK.

We apply the standard AMS sketch to the substream corresponding to S. When an update (i,∆)
arrives, we check if z(i) ≥ ℓ. If so, we update the AMS sketch.

The AMS sketch requires O( 1
ε2 log(1/δ)) counters. The maximum value of a counter is bounded

by ∥x|S∥1. With high probability (using Markov’s inequality and concentration bounds on |S|),
∥x|S∥1 = O(BK).

The space required for the AMS sketch on the substream is:

O

(
1

ε2
log

(
1

δ

)
log(BK)

)
.
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Substituting K = O(B
2

ε2 log(1/δ)):

O

(
1

ε2
log

(
1

δ

)
log

(
B3

ε2
log(1/δ)

))
= O

(
1

ε2
log

(
1

δ

)
(logB + log(1/ε) + log log(1/δ))

)
.

We also need space for the F0 estimator and the hash function h. The F0 estimator uses
O(log n · polylog(n, 1/δ)) space (to ensure high probability success throughout the stream). The
hash function h uses O(log n) space.

The total space complexity is dominated by the AMS sketch on the subsampled stream and the F0

estimator:

O

(
1

ε2
· polylog(B, 1/ε, 1/δ) + log n · polylog(n, 1/δ)

)
.

This satisfies the requirement that the dependence on n and B is logarithmic, and the main factor is
1/ε2.

Extension to a single pass. To extend to a single pass, one could run O(log n) instances of the
above single pass algorithm in parallel, using one p at every scale. Then at the end of the al-
gorithm, we have access to F̂0 and can use the instance that chose the appropriate value for p.
This would increase the overall space by a log n factor. To do better, we use our continuous F0

tracker. Let t0 < t1 < . . . be the first times for which F̂0,ti ≥ 2i. At each time ti we create
N = ⌈log B2

ϵ2 ⌉ new instances of our single pass sketch using the values of p corresponding to F0

estimates of 20F̂0,ti , . . . 2
N−1F̂0,ti . Moreover we only maintain this collection of sketches corre-

sponding to times ti, . . . , ti−N , so in total this increases our space by a factor of N2 = O(log2 B
ϵ ).

Now at the end of the algorithm, we use one of the N sketches in the from the earliest remaining
group of non-discarded sketches. Among the N sketches in this group, we choose the one that used
the correct value of p given our estimate of F0. This guarantees a (1± ϵ) approximation to F2 for a
suffix of the stream x2. Let x1 be the updates from the corresponding prefix so that x = x1 + x2.

Then by our construction ∥x1∥0 ≤ ϵ2

B2 ∥x∥0, which by the bounded entry assumption, and the fact
that all nonzero entries are at least one, implies that ∥x1∥2 ≤ ϵ∥x∥2. By the triangle inequality, ∥x∥2
and ∥x2∥2 are within ϵ∥x∥2 of one another. Adjusting ϵ by a constant factor then yields the desired
guarantee.

3.1 AN ℓ2-ESTIMATION ALGORITHM FOR SPARSE STREAMS

We present an ℓ2-estimation algorithm for insertion-only streams where the frequency vector x is
k-sparse (∥x∥0 ≤ k). This algorithm achieves space complexity where k appears only in loga-
rithmic factors. The idea is that we can first hash the coordinates of x into buckets to reduce the
dimensionality of x. Then we run AMS sketch on the resulting vector, using Morris counters to
keep approximate counts of the positive and negative components to each coordinate of the AMS
sketch.
Theorem 5. Let x ∈ Zn

≥0 be the frequency vector of an insertion-only stream of length m. Suppose
that ∥x∥0 ≤ k. Then there is a streaming algorithm that computes a (1± ε)-approximation to ∥x∥22
with probability 1− δ using a total space of

O

(
1

ε2
log

(
1

δ

)(
log

(
k

ε

)
+ log logm

)
+ log n

)
.

Proof. The strategy involves dimensionality reduction tailored for sparse vectors, followed by ap-
plying the AMS sketch on the reduced vector, where the sketch counters are maintained approxi-
mately using Morris counters.

We first reduce the dimension by hashing coordinates of x into random buckets. Let M = C(k/ε2)
for a sufficiently large constant C. We use a pairwise independent hash function h : [n] → [M ],
requiring O(log n) space. We define the reduced vector y ∈ RM where yj =

∑
i:h(i)=j xi. Since

the stream is insertion-only, yj ≥ 0. Due to the k-sparsity of x, with constant probability, ∥y∥22 =
(1± ε/4)∥x∥22.
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We apply the AMS sketch to the vector y. We use R = O(1/ε2) estimators and T = O(log(1/δ))
repetitions. Let Ar,t be the counters:

Ar,t =

M∑
j=1

σr,t(j)yj ,

where σr,t : [M ] → {−1, 1} is a 4-wise independent hash function.

We maintain these counters approximately using the classical Morris counters (Morris (1978)) on
the positive and negative components. We decompose Ar,t into positive and negative parts: Ar,t =
A+

r,t −A−
r,t. Note that A+

r,t +A−
r,t =

∑
j yj = ∥x∥1 = m.

We use Morris counters for A+
r,t and A−

r,t with an error parameter ε′. Let Âr,t be the resulting
estimate of Ar,t. The absolute error is bounded by: |Âr,t −Ar,t| ≤ ε′(A+

r,t +A−
r,t) ≤ ε′m.

Let Ŷ be the final AMS estimator computed using the approximate counters Âr,t. We analyze
the error introduced by the approximation in a single estimator. Let Y ′ = 1

R

∑
r A

2
r and Ŷ ′ =

1
R

∑
r Â

2
r .

The error in the squared estimate is |Â2
r − A2

r| = |Âr − Ar||Âr + Ar|. Since |Ar| ≤ m and
|Âr −Ar| ≤ ε′m, we have |Âr| ≤ m(1 + ε′). Thus, |Â2

r −A2
r| ≤ (ε′m)(2m+ ε′m) = O(ε′m2).

The total error due to approximation is |Ŷ ′ − Y ′| ≤ O(ε′m2). We require this error to be small
relative to the quantity being estimated: |Ŷ ′ − Y ′| ≤ ε

4∥y∥
2
2.

Since x is k-sparse and ∥x∥1 = m, by Cauchy-Schwarz, ∥x∥22 ≥ m2/k. Since ∥y∥22 ≈ ∥x∥22, we
have ∥y∥22 ≥ Ω(m2/k) with good probability.

We set ε′ such that O(ε′m2) ≤ ε
4Ω(m

2/k). This requires ε′ = O(ε/k).

Space Complexity The space required for a Morris counter with error parameter ε′ = O(ε/k) up
to a maximum count m is O(log(1/ε′) + log logm) = O(log(k/ε) + log logm) bits.

We have 2RT = O( 1
ε2 log(1/δ)) such counters in total. The total space for the counters is:

O

(
1

ε2
log

(
1

δ

)(
log

(
k

ε

)
+ log logm

))
.

The space for the hash function h : [n] → [M ] is O(log n). The space for the AMS hash functions
is subsumed by the counter space.

The total space complexity is:

O

(
1

ε2
log

(
1

δ

)(
log

(
k

ε

)
+ log logm

)
+ log n

)
.

This achieves the desired complexity where both n and k appear only in logarithmic factors relative
to the 1/ε2 term.
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4 LLM USE

LLMs were used to polish the writing in the introduction, as well as to expand proof outlines. All
arguments were subsequently edited by hand.
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