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ABSTRACT

Parameter-efficient fine-tuning aims to reduce the computational cost of adapt-
ing foundational models to downstream tasks. Low-rank matrix based adaptation
(LoRA) techniques are popular for this purpose. We propose XoRA, an efficient
fine-tuning scheme, which sparsifies the low-rank matrices even further using ex-
pander masks. The mask is generated using extremal expander graphs (Ramanujan
graphs) to maintain high edge connectivity even at a very high sparsity. Experi-
mental results demonstrate that this method has comparable performance with the
LoRA fine-tuning method while retaining much fewer number of parameters.

1 INTRODUCTION

Large language models are often fine-tuned for improving their performance on downstream tasks.
Computational and memory requirement of such retraining is reduced by using parameter-efficient
fine-tuning (PEFT) (Ding et al., 2023; Lialin et al., 2023; Han et al., 2024). Most popular among
them are the reparameterization based techniques, pioneered by the Low-Rank Adaptation (LoRA)
algorithm (Hu et al., 2021). It adapts the original set of weights (W0) using a rank constrained
decomposition of the weight update (∆W = A×B) matrix into up and down projection matrices A
and B. Various modifications to LoRA has been recently suggested in literature (Mao et al., 2024).

It has been observed that the LoRA low-rank matrices has a considerable redundancy. They can
be sparsified further (Wu et al., 2024) without significant loss of performance. Sparsification of the
LoRA up and down projection matrices has been attempted in LoRA-Prune (Zhang et al., 2023b),
and Bonsai (Dery et al., 2024). Robust sparse regularizers has been applied during the low-rank
matrix decomposition process in RoSA (Nikdan et al., 2024) to reduce the number of non-zero
parameters. The LoTA algorithm (Panda et al., 2024) utilises iterative magnitude pruning to identify
sparse winning lottery tickets for the transformers during fine-tuning in LoRA. Random selection of
trainable weights have also been shown to be effective for fine-tuning (Xu & Zhang, 2024).

Masking or parameter selection is a popular parameter-efficient fine-tuning method which updates
only a subset of the parameters of the original network (Ploner & Akbik, 2024), while keeping the
large majority of weights unchanged. This is usually done by applying a binary mask on the weight
update matrix. The mask is designed using various criteria like Fisher information (Das et al., 2023),
weight magnitudes (Liao et al., 2023), or the change in weight magnitude (Ansell et al., 2021) etc.
However, many of the sophisticated weight pruning algorithms are difficult to use for this purpose
because of the high computational requirements. Similarly, iterative pruning is time consuming
for very large models. Random masks are experimentally found to be less effective at a very high
sparsity. This motivates the need for effective structural sparsification algorithms that can be applied
on the LoRA low-rank matrices.

Expander graphs are sparse but well connected graphs that are useful in designing resilient network
structures (Lubotzky, 1994). They have been found to be useful in designing sparse neural networks
(Pal et al., 2022; Laenen, 2023) which can be trained to achieve a performance close to that of a
dense network.

In this study, we propose an expander graph based structural masking technique on the LoRA pro-
jection matrices (XoRA). A block diagram of the proposed approach is shown in Figure 1. We
experimentally observe that the LoRA low-rank matrices (A and B) can be further sparsified while
maintaining the performance. The masking needs to preserve the network connectivity even at a
very high sparsity. This can be achieved using a expander graph based mask generation techniques.
A significantly higher parameter efficiency is experimentally observed as compared to LoRA.
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Figure 1: Schematic of the proposed XoRA adaptation algorithm.

2 RELATED WORK

Parameter-efficient fine-tuning (PEFT) of transformers has been widely studied in literature (Ding
et al., 2023; Lialin et al., 2023; Han et al., 2024). Major approaches can be categorized as additive,
selective, and reparameterized. While additive techniques use additional parameters for fine-tuning
to newer tasks, the selective method fine-tune only a subset of the model parameters. Reparameter-
ized methods transform the parameters into equivalent low dimensional forms that are fine-tuned for
downstream tasks. Hybrid schemes combine the above approaches.

Low-rank adaptation (LoRA) (Hu et al., 2021) is perhaps the most popular reparameterization based
technique. Numerous modifications of LoRA has been suggested in literature (Mao et al., 2024). The
strategies include quantization, scaling, and singular value decomposition of the low rank matrices.
The VeRA method (Kopiczko et al., 2023) uses a trainable random scaling vector for the shared
weights across the layers to achieve a high degree of parameter efficiency. Modifying the low rank
matrices by transforming their eigenvectors has been found to be useful for attaining extremely
low number of trainable parameters (Bałazy et al., 2024). Spectral adaptation is also used for this
purpose (Zhang & Pilanci, 2024).

Selection methods use structured or unstructured masking to determine a subset of the parameters
for fine-tuning. The subset is commonly selected using pruning techniques based on the weight
magnitude or other information criteria (Liao et al., 2023; Das et al., 2023). Regularization is used
during training to obtain a sparse wright distribution in some of these approaches Guo et al. (2021).
Structurally selecting some of the parameters like the bias terms also shows promise for PEFT
(Zaken et al., 2021). Recently, neural architecture search is being employed to find the optimum set
of parameters to be selected (Zhou et al., 2024).

Graph structure of the underlying network is analysed by few of the fine-tuning techniques. It has
been observed that maintaining connectivity is an important factor in fine-tuning process of a neural
network (Liu et al., 2023). Connectivity patterns are found to encode a particular task and may be
considered for successful fine-tuning (Xi et al., 2023). Expander graphs have been recently utilized
in efficient transformer models. The Diffuser architecture (Feng et al., 2023) uses the expander
graph structure to develop sparse attention models over long sequences.

3 BACKGROUND

3.1 LOW-RANK ADAPTATIONS

Low-rank adaptations (LoRA) reduces the number of trainable parameters in large models by inject-
ing low-rank matrices into the model’s architecture (Hu et al., 2021). Specifically, it decomposes the
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weight matrices W into a sum of a frozen pre-trained matrix W0 and a learnable low-rank matrix
∆W = BA.

LoRA defines the weight update for a pre-trained weight matrix W0 ∈ Rd×k, as:

W = W0 +∆W = W0 +BA, (1)

where B ∈ Rd×r and A ∈ Rr×k are low-rank matrices, and r ≪ min(d, k) is the rank.

A low-rank matrix ∆W ∈ Rm×n, with r ≪ min(m,n), can be expressed as ∆W = UΣV ⊤,
where U ∈ Rm×r, V ∈ Rr×n, and Σ ∈ Rr×r is a diagonal matrix with non-singular values.
LoRA is inspired from the studies in Li & Liang (2018) and Aghajanyan et al. (2020) which showed
over-parameterized models reside on a low intrinsic dimension. LoRA further hypothesized that the
changes in weight ∆W also has low intrinsic dimension during the model adaptation. Consequently,
it uses two learned low-rank matrices B ∈ Rd×r and A ∈ Rr×k to approximate the weight change
∆W during adaptation (∆W = BA). This technique has been exceptionally effective in allowing
fine-tuning on low-cost GPU configurations. The optimal dimension r is dependent on the data and
determines the number of trainable parameters. Lower the value of r lesser the number of trainable
parameters. In our work, XoRA, we experimentally show that the LoRA’s low-rank matrices (B and
A), for a given dimensionality, can be further sparsified while maintaining the performance.

3.2 EXPANDER GRAPHS

An expander graph is a sparse graph that has strong connectivity properties, quantified using vertex,
edge or spectral expansion. Intuitively, an expander graph is a finite, undirected multigraph in which
every subset of the vertices that is not “too large” has a “large” boundary. Different formalisations
of these notions give rise to different notions of expanders: edge expanders, vertex expanders, and
spectral expanders. Intimately connected with expander graphs is the notion of Cheeger constant.
Definition 3.1 (Expander and Cheeger constant). A graph Γ = (V,E) is an ϵ-vertex expander if for
every non-empty subset X ⊂ V with |X| ≤ |V |

2 , we have |δ(X)|
|X| ≥ ϵ, where δ(X) denotes the outer

vertex boundary of X i.e., the set of vertices in Γ which are connected to a vertex in X but do not
lie in X . As X runs over all subsets of V , the infimum of |δ(X)|

|X| satisfying the conditions above is
known as the vertex Cheeger constant and is denoted by h(Γ).

The Cheeger constant, as an expansion parameter, effectively measures how well-connected the
graph is, and thus a disconnected graph has zero expansion. In contrast, a graph with a high Cheeger
constant, or equivalently, a large spectral gap, exhibits strong expansion, meaning that it remains
well-connected even after the removal of some edges or vertices. For details on expanders and its
various properties, we refer the reader to the following works Alon (1986); Nilli (1991); Hoory et al.
(2006) etc. For relations between expansion parameters and spectrum in various classes of graphs
see Biswas (2019); Biswas & Saha (2021; 2022; 2023) etc.

Complete graph represents the best possible expander, as it has the maximum possible connectivity.
However, the complete graph also has the highest possible degree, which makes it impractical in
many applications that require sparse connections. Therefore, a “good expander” is one that balances
low degree with high expansion properties. Ramanujan graphs serve as a prime example of such
an optimal balance, making them highly valuable in both theoretical and practical contexts where
efficient and robust network structures are needed.

4 PROPOSED METHODOLOGY

We first generate bipartite expander graphs with desired number of edges for each of the layers
that would be fine-tuned. Their adjacency matrices are then used to mask low-rank weight update
matrices (A and B) for the corresponding layers of the transformers.

4.1 GENERATION OF EXPANDER MASKS

Given an (n1, n2) complete bipartite graph, we generate a good expander mask for it. According to
the discussion in the previous section, we wish to ensure that this mask has a low degree (in this case
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(d1, d2) bi-degree with n1d1 = n2d2 and high Cheeger constant). This brings us to the notion of
Ramanujan masks. A Ramaunjan graph is an extremal expander graph in the sense that its spectral
gap (and hence also the Cheeger constant) is almost as large as possible. Here, we shall be concerned
with bipartite Ramanujan graphs. Recall that a bi-partite graph is said to be balanced if the number
of vertices in each of the partitions are the same and it is said to be unbalanced otherwise.
Definition 4.1 (Bipartite Ramanujan graphs). Let Γ = (V,E) be a d-regular (d ≥ 3) balanced
bipartite graph. Let the eigenvalues of its adjacency matrix be λn ≤ λn−1 ≤ . . . ≤ λ2 ≤ λ1.
Then Γ is said to be Ramanujan iff |λi| ≤ 2

√
d− 1, for i = 2, . . . , (n − 1). For an unbalanced

(d1, d2)−biregular bipartite graph (d1, d2 ≥ 3), the condition of being Ramanujan changes to |λi| ≤√
d1 − 1 +

√
d2 − 1, for i = 2, . . . , (n− 1).

A detailed description of Ramanujan graphs can be found in (Hoory et al., 2006, sec. 5.3). One can
generate the expander (Ramanujan) masks through the following two approaches.

1. Deterministic generation using Lubotzky–Phillips–Sarnak (LPS) construction and using
Ramanujan r-coverings.

2. Random generation of bi-regular bipartite graphs and checking for Ramanujan criteria.

4.2 XORA: EXPANDER LOW-RANK ADAPTATION

In the proposed method XoRA, structural sparsity is achieved by introducing sparse expander
masked low-rank matrices Ã, B̃, where only the non-masked weights in these matrices are train-
able. During backpropagation, only these weights receive gradient updates.

Using the methodology described in described in Section 4.1, we generate two bipartite expander
graphs GA(VA1

, VA2
, EA) and GB(VB1

, VB2
, EB). For the graphs GA and GB we have the follow-

ing cardinality properties:

GA : |VA1 | = r, |VA2 | = k

GB : |VB1
| = d, |VB2

| = r

EA ⊆ VA1
× VA2

and EB ⊆ VB1
× VB2

(2)

We also ensure that n1× d1 = n2× d2. Where n1 and n2 are the cardinalities of the two vertex sets
VA, VB , and d1 and d2 are their respective degrees.

Two expander masks MA ∈ {0, 1}r×k for matrix A, and MB ∈ {0, 1}d×r for matrix B are used
for adaptation. The expander masks are defined using the expander graphs GA(VA1

, VA2
, EA) and

GB(VB1
, VB2

, EB) as:

MAij =

{
1 if (i, j) ∈ EA

0 otherwise
, MBij =

{
1 if (i, j) ∈ EB

0 otherwise
(3)

Sparse trainable low-rank matrices are created by applying the expander masks to the original low-
rank matrices:

B̃ = MB ⊙B, Ã = MA ⊙A, (4)
where ⊙ denotes the Hadamard (element-wise) product. The forward pass use the sparse expander
masked trainable matrices:

h = Wx+ B̃Ãx (5)

Gradients are computed and applied only for the trainable elements as determined by the expander
masks:

∇Aij
L(θ) =

{
∇Ãij

L(θ) if MAij = 1

0 if MAij
= 0

, ∇Bij
L(θ) =

{
∇B̃ij

L(θ) if MBij = 1

0 if MBij
= 0

(6)

The objective function in XoRA is similar to the original loss function L(θ) (θ represents the base
model parameters), but here update is constrained to the sparse expander masked weights as follows.

Aij ←

{
Aij − η∇Ãij

L(θ) if MAij
= 1

Aij if MAij
= 0

, Bij ←

{
Bij − η∇B̃ij

L(θ) if MBij
= 1

Bij if MBij
= 0,

(7)
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where η is the learning rate and L(θ) is the loss function. The structural sparsity of expander masks
helps XoRA to significantly reduce the number of trainable parameters, it also found to improve
generalization.

5 EXPERIMENTAL RESULTS

5.1 DATASETS AND EXPERIMENTAL SETUP

Evaluation of the proposed XoRA method is done on the General Language Understanding Eval-
uation (GLUE) benchmark Wang (2018) using RoBERTa base and RoBERTa large models (Liu,
2019). Only the following GLUE benchmark tasks are reported in our study. Their performance
metrics are mentioned alongside. For each of the metric a higher value is better.

• CoLA (Corpus of Linguistic Acceptability): Matthews Correlation Coefficient

• SST-2 (Stanford Sentiment Treebank): Accuracy

• MRPC (Microsoft Research Paraphrase Corpus): Accuracy

• STS-B (Semantic Textual Similarity Benchmark): Pearson correlation

• RTE (Recognizing Textual Entailment): Accuracy

Due to computational limitations we did limited number of experiments on the resource and time
intensive tasks MNLI, QQP and QNLI. Since we do not fine-tune MNLI, the MNLI initialization
trick which involves fine-tuning the model on the MNLI dataset before fine-tuning on the target task
(MRPC , STSB and RTE) is also not used. For RoBERTa base model, experiments are reported
for MRPC, STS-B, and RTE with LoRA without the MNLI trick (LoRA•) for a fairer comparison
with XoRA. Without the MNLI trick, the performance difference for MRPC and STS-B is less
pronounced. However RTE suffers more without the MNLI trick, likely due to the small training
set. For RoBERTa-large, the original LoRA paper reported metrics both with and without the MNLI
trick (LoRA◦ and LoRA•)

We used RoBERTa-base and RoBERTa-large from Hugging Face with the same setup as in the
original LoRA paper for all our experiments. Sparsification is performed only for the LoRA matrices
corresponding to the Query (Q) and Value (V) layers. We perform 5 runs with different random
seeds, recording the best epoch’s outcome for each run. The median and standard deviation of these
values are reported. The same hyperparameters as in the original LoRA paper (Hu et al., 2021) is
used as shown in Table 1.

Table 1: Hyperparameters for RoBERTa base XoRA / RoBERTa large XoRA, on GLUE benchmark.

Task Batch Size Epochs Learning Rate
SST-2 16 / 4 60 / 10 5e-4 / 4e-4
MRPC 16 / 4 30 / 20 4e-4 / 3e-4
STS-B 16 / 4 40 / 10 4e-4 / 2e-4
RTE 32 / 4 80 / 20 5e-4 / 4e-4
CoLA 32 / 4 80 / 20 4e-4 / 2e-4

Optimizer: AdamW
Warmup ratio: 0.06
LR schedule: Linear
Max sequence length: 512 (RoBERTa base) / 128 (RoBERTa large)
LoRA config: rq = rv = 8, α = 8 (base) / 4 (large)

The expander mask configurations used in our experiments are shown in Table 2. Here, sparsity is
defined as the ratio of number of zero elements in the masked LoRA matrices to the total number of
elements. Note that, the sparsity levels can be varied as we consider LoRA matrices with different
ranks. Maximum sparsity levels achieved by the expander mask generation process for a particular
rank configuration is mentioned in Table 3. XoRA variant with the highest sparsity (75%) is used
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for fine-tuning in our experiments for the RoBERTa base and RoBERTa-large (rank-8). In the case
of a rank-8 configuration, this 75% sparsity is the maximum achievable structured sparsity from an
expander. For higher ranks, such as rank 32, the maximum structured sparsity from the expander
mask would be higher (93.75%).

Table 2: Bipartite expander mask configuration for rank-8 low-rank matrices in LoRA. Matrices for
the Query and Value layers are sparsified. Expander Size refers to the number of vertices of the
corresponding bipartite expander graphs. The numbers (dL, dR) indicates degrees of the dL-left-
regular and dR-right-regular bipartite graphs.

Model Layer Size Expander Size (dL, dR) Sparsity
RoBERTa Base 768× 768 768× 8 (2, 192) 75.0%
RoBERTa Base 768× 768 768× 8 (3, 288) 62.5%
RoBERTa Base 768× 768 768× 8 (4, 384) 50.0%
RoBERTa Large 1024× 1024 1024× 8 (2, 256) 75.0%
RoBERTa Large 1024× 1024 1024× 8 (3, 384) 62.5%
RoBERTa Large 1024× 1024 1024× 8 (4, 512) 50.0%

Table 3: Maximum sparsity levels for bipartite expander graphs with varying ranks and expander
sizes. The maximum sparsity is achieved (left degree dL = 2) when number of edges are minimized
while maintaining the expander properties.

Layer Size LoRA Rank Expander Size (dL, dR) Max Sparsity Trainable Param
768 × 768 8 768 × 8 (2, 192) 75% (6/8) 25% (2/8)
768 × 768 16 768 × 16 (2, 96) 87.5% (14/16) 12.5% (2/16)
768 × 768 32 768 × 32 (2, 48) 93.75% (30/32) 6.25% (2/32)
768 × 768 64 768 × 64 (2, 24) 96.88% (62/64) 3.12% (2/64)

1024 × 1024 8 1024 × 8 (2, 256) 75% (6/8) 25% (2/8)
1024 × 1024 16 1024 × 16 (2, 128) 87.5% (14/16) 12.5% (2/16)
1024 × 1024 32 1024 × 32 (2, 64) 93.75% (30/32) 6.25% (2/32)
1024 × 1024 64 1024 × 64 (2, 32) 96.88% (62/64) 3.12% (2/64)

5.2 RESULTS AND DISCUSSION

5.2.1 COMPARISON BETWEEN RANDOM MASKING AND EXPANDER MASKING

It is observed that the expander masks outperform the random masks at a high sparsity level.
Table 4 compares Randomly masked LoRA and XoRA performance on MRPC (Accuracy) and
RTE(Accuracy) tasks for RoBERTa base model. XoRA is shown at different sparsity levels: 50%,
62.5%, and 75%. The random masking method has a high variability of performance for the 5 runs,
whereas the expander mask provides a stable performance over these runs. Especially at higher
sparsity levels the random masked LoRA is unstable and performance drop sharply. XoRA has
consistent and stable performance across all sparsity levels. Some key observations are:

• At 50% sparsity (0.15M parameters), it outperforms LoRA’s MRPC accuracy (89.7±0.6)
and matches RTE accuracy (78.7±0.9).

• At 62.5% sparsity (0.1125M parameters), it still maintains competive performance against
with LoRA.

• At 75% sparsity (0.075M parameters), it maintains performance close to LoRA on MRPC
(89.5± 0.7) and RTE (76.9± 1.3)

• At all sparsity levels XoRA outperforms the randomly masked LoRA. Also it has lower
variability than random masking.

The XoRA variant with 75% sparsity is selected for further experiments due to its efficient parameter
usage (0.075M trainable parameters) while maintaining performance close to LoRA.
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Table 4: Comparison of randomly masked LoRA and XoRA for MRPC and RTE tasks using the
RoBERTa base model.

Method Trainable
Params

Sparsity
Level

MRPC
(Acc)

RTE
(Acc)

FT 125M - 90.2 91.2
LoRA• 0.3M 0% 89.5±0.8 78.7±1.3
Random 0.15M 50% 87.3±2.5 75.5±2.8
Random 0.075M 75% 85.3±3.4 73.3±2.2
XoRA 0.15M 50% 89.7±0.6 78.7±0.9
XoRA 0.1125M 62.5% 89.2±0.9 77.6±1.3
XoRA 0.075M 75% 89.5±0.7 76.9±1.3

5.2.2 COMPARISON BETWEEN XORA AND OTHER ADAPTATION METHODS

We now compare the performance of XoRA with LoRA and other parameter-efficient fine-tuning
(PEFT) baselines for the RoBERTa models on the GLUE tasks. The methods compared are FT (Full
fine-tuning), BitFit (Zaken et al., 2021), AdptD (Rücklé et al., 2020), AdptH (Houlsby et al., 2019),
AdptP (Pfeiffer et al., 2020), LoRA-FA (Zhang et al., 2023a), and LoRA (Hu et al., 2021).

Tables 5 and 6 presents GLUE benchmark results for the RoBERTa base and RoBERTa large models
respectively. Results of all methods except XoRA are sourced from prior work (Hu et al. (2021);
Zhang et al. (2023b)). For RoBERTa base model, we repeated the LoRA experiments for MRPC,
STS-B, and RTE without the MNLI trick (LoRA•) for a fairer comparison with XoRA.

Table 5: Performance comparison of XoRA and other adaptation methods on the GLUE benchmark
for RoBERTa base.

Method Trainable
Params

SST-2
(Acc)

CoLA
(MCC)

MRPC
(Acc)

STS-B
(Pear)

RTE
(Acc) Avg.

FT 125M 94.8 63.6 90.2 91.2 78.7 83.7
BitFit 0.1M 93.7 62.0 92.7 90.8 81.5 84.1
AdptD 0.3M 94.2±0.1 60.8±0.4 88.5±1.1 89.7±0.3 71.5±2.7 80.9
AdptD 0.9M 94.7±0.3 62.6±0.9 88.4±0.1 90.3±0.1 75.9±2.2 82.4
LoRA◦ 0.3M 95.1±0.2 63.4±1.2 89.7±0.7 91.5±0.2 86.6±0.7 85.3
LoRA• 0.3M 95.1±0.2 63.4±1.2 89.5±0.8 90.1±0.2 78.7±1.3 83.4
XoRA 0.075M 94.8±0.2 61.5±0.9 89.5±0.7 90.1±0.3 76.9±1.3 82.6

Table 6: Performance comparison of XoRA and other adaptation methods on the GLUE benchmark
for RoBERTa large.

Method Trainable
Parameters

SST-2
(Acc)

CoLA
(MCC)

MRPC
(Acc)

STS-B
(Pear)

RTE
(Acc) Avg.

FT 355.0M 96.4 68.0 90.9 92.4 86.6 86.9
AdptP 3.0M 96.1±0.3 68.3±1.0 90.2±0.7 92.1±0.7 83.8±2.9 86.1
AdptP 0.8M 96.6±0.2 67.8±2.5 89.7±1.2 91.9±0.4 80.1±2.9 85.2
AdptH 6.0M 96.2±0.3 66.5±4.4 88.7±2.9 91.0±1.7 83.4±1.1 85.2
AdptH 0.8M 96.3±0.5 66.3±2.0 87.7±1.7 91.5±0.5 72.9±0.5 82.9
LoRA-FA 3.7M 96.0 68.0 90.0 92.0 86.1 86.4
LoRA◦ 0.8M 96.2±0.5 68.2±1.9 90.9±1.2 92.6±0.2 87.4±2.5 87.1
LoRA• 0.8M 96.2±0.5 68.2±1.9 90.2±1.0 92.3±0.5 85.2±1.1 86.4
XoRA 0.2M 96.1±0.1 67.8±1.6 90.0±0.6 91.9±0.2 85.6±1.3 86.3

Using only about 25% of the trainable parameters of LoRA, the proposed method attains comparable
performance across GLUE tasks. At a very high sparsity XoRA’s average score 82.6 and 86.3,
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is only 0.8 and 0.1 lower than LoRA for RoBERTa base and RoBERTa large respectively. This
underscores the effectiveness of using structured sparsity from expander graphs. The proposed
method has outperforms other adaptation methods at high sparsity.

6 CONCLUSION

In this work, we introduce XoRA (Expander-based Low-Rank Adaptation), a novel approach that
integrates structural sparsity into the low-rank matrices of the LoRA adaptation method using bi-
partite expander graphs. XoRA effectively addresses the over-parameterization often present in
low-rank update matrices, by masking majority of the elements.

The proposed XoRA method achieves comparable or superior performance to LoRA while utilizing
significantly fewer parameters. This efficiency is particularly valuable in resource-constrained com-
putational environments. Our experiments show that XoRA exhibits robust performance at higher
sparsity levels compared to random masking. The expander graph structure ensures maintained
connectivity of the network despite a high sparsity and thus preserving the performance.

The expander masking inherent in XoRA offers regularization benefits during the fine-tuning pro-
cess. This can improve generalization and reduce overfitting. The XoRA approach shows promise
for integration with other parameter-efficient fine-tuning techniques, potentially leading to even
greater parameter efficiency and adaptability.
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