
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Polynomial Selection in Spectral Graph Neural Networks: An
Error-Sum of Function Slices Approach

Anonymous Author(s)

ABSTRACT
Spectral graph neural networks are proposed to harness spectral

information inherent in graph-structured data through the applica-

tion of polynomial-defined graph filters, recently achieving notable

success in graph-based web applications. Existing studies reveal

that various polynomial choices greatly impact spectral GNN per-

formance, underscoring the importance of polynomial selection.

However, this selection process remains a critical and unresolved

challenge. Although prior work suggests a connection between

the approximation capabilities of polynomials and the efficacy of

spectral GNNs, there is a lack of theoretical insights into this rela-

tionship, rendering polynomial selection a largely heuristic process.

To address the issue, this paper examines polynomial selection

from an error-sum of function slices perspective. Inspired by the

conventional signal decomposition, we represent graph filters as a

sum of disjoint function slices. Building on this, we then bridge the

polynomial capability and spectral GNN efficacy by proving that

the construction error of graph convolution layer is bounded by the

sum of polynomial approximation errors on function slices. This

result leads us to develop an advanced filter based on trigonometric

polynomials, a widely adopted option for approximating narrow

signal slices. The proposed filter remains provable parameter effi-

ciency, with a novel Taylor-based parameter decomposition that

achieves streamlined, effective implementation. With this foun-

dation, we propose TFGNN, a scalable spectral GNN operating

in a decoupled paradigm. We validate the efficacy of TFGNN via

benchmark node classification tasks, along with an example graph

anomaly detection application to show its practical utility.

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
Spectral graph neural networks, Polynomial graph filters, Polyno-

mial approximation, Node classification

ACM Reference Format:
Anonymous Author(s). 2018. Polynomial Selection in Spectral Graph Neural

Networks: An Error-Sum of Function Slices Approach. In Proceedings of
Make sure to enter the correct conference title from your rights confirmation
emai (Conference acronym ’XX). ACM, New York, NY, USA, 17 pages. https:

//doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Graph neural networks (GNNs) [73, 84] have emerged as powerful

tools to capture structural information from graph data, facilitating

advanced performance across numerous web applications, such as

web search [5, 79], recommender system [27, 74], social network

analysis [9], anomaly detection [14, 18, 46], etc. Among GNN vari-

eties, spectral GNNs stand out for their ability to exploit the spectral

properties of graph data using polynomial-defined graph filters,

recently achieving notable success in graph-related tasks [73].

Numerous existing studies have empirically revealed that various

polynomial choices greatly impact spectral GNN performance [24–

26, 31, 38, 72], underscoring the importance of polynomial selection.

However, despite the various works that incorporate different poly-

nomials, their primary focus has been on other factors, such as

convergence rate [24, 72], rather than explicitly targeting the en-

hancement of spectral GNN efficacy. As far as we are aware, there

is no existing work that directly associates spectral GNN efficacy

with polynomial capability, which renders polynomial selection a

crucial yet unresolved challenge, often approached heuristically.

To tackle this issue, we investigate polynomial selection through

a novel lens of error-sum of function slices in this paper. Drawing

inspiration from signal decomposition techniques [21], we uni-

formly represent graph filters as a sum of disjoint function slices.

We present the first proof establishing that the construction error

of graph convolution layers is bounded by the sum of polynomial

approximation errors on these function slices. This explicitly links

the capability of polynomials to the effectiveness of spectral GNNs,

supported by intuitive numerical validations that affirm the practi-

cality of our theoretical framework. This finding emphasizes that

enhanced spectral GNN efficacy can be attained by utilizing graph

filters created with “narrow slice-preferred polynomials”. Conse-

quently, we introduce an innovative filter based on trigonometric

polynomials [86], a standard approach for approximating narrow

signal slices in the signal processing domain. Our proposed filter

showcases proven parameter efficiency, leveraging a novel Taylor-

based parameter decomposition that facilitates streamlined and

effective implementation. Building upon this foundation, we intro-

duce TFGNN, a scalable spectral GNN operating in a widely adopted

decoupled GNN architecture [10, 19, 25, 38, 81]. Empirically, we vali-

date TFGNN’s capacity via benchmark node classification tasks and

highlight its real-world efficacy with an example graph anomaly

detection application. Our contributions are summarized below:

• We provide the inaugural proof that connects the efficacy of

spectral GNN to their polynomial capabilities, framed through

the lens of approximation error on function slices. Our numeri-

cal experiments reinforce the practical utility of this connection.

This finding offers an informed strategy to refine polynomial

selection, leading to enhanced spectral GNNs.

• We introduce an advanced graph filter based on trigonometric

polynomials, showcasing provable parameter efficiency. Our

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

novel approach incorporates a Taylor-based parameter decom-

position to achieve a streamlined implementation. Based on

this filter, we further develop TFGNN, a scalable spectral GNN

characterized by its decoupled architecture.

• We validate TFGNN’s effectiveness with extensive experiments

in benchmark node classification and an illustrative application

in graph anomaly detection. The results reveal that TFGNN

not only exceeds previous methods in standard tasks but also

yields results comparable to specialized models in real-world

settings, demonstrating its significant practical value.

2 BACKGROUNDS AND PRELIMINARIES
Graphnotations. LetG = (𝑨,𝑿) be an undirected and unweighted
graph with adjacency matrix 𝑨 ∈ {0, 1}𝑛×𝑛 and node feature

𝑿 ∈ R𝑛×𝑚 . In addition, 𝑳 = 𝑰 − 𝑫− 1

2𝑨𝑫− 1

2 is the normalized
graph Laplacian [11], with 𝑰 , 𝑫 being the identity matrix and the

degree matrix, respectively. The eigen-decomposition of 𝑳 is given

by 𝑳 = 𝑼𝑑𝑖𝑎𝑔(𝝀)𝑼𝑇 , where 𝑼 ∈ R𝑛×𝑛 denotes the eigenvectors,

and 𝝀 ∈ [0, 2]𝑛 represents the corresponding eigenvalues.

Graph filters. The concept of graph filters originates in the field

of Graph Signal Processing (GSP) [55, 61, 64], a field dedicated to

developing specialized tools for processing signals generated on

graphs, grounded in spectral graph theory [11]. A graph filter is

specifically a point-wise mapping 𝑓 : [0, 2] ↦→ R applied to graph

Laplacian’s eigenvalues, 𝝀, facilitating the processing of the graph

signal 𝒙 ∈ R𝑛 through a filtering operation as shown below [62]:

𝒛 ≜ 𝑼𝑑𝑖𝑎𝑔(𝑓 (𝝀))𝑼𝑇 𝒙 , (1)

where 𝒛 ∈ R𝑛 represents the filtered output. This formulation is

often identified as the graph convolution [61] operation. Due to the

intensive computation cost associatedwith eigendecomposition, the

mapping 𝑓 is typically implemented via polynomial approximations

in practice, resulting in the derivation of Eq. 1 as below:

𝒛 = 𝑼𝑑𝑖𝑎𝑔

(
𝐷∑︁
𝑑=0

𝜃𝑑T𝑑 (𝝀)
)
𝑼𝑇 𝒙 =

𝐷∑︁
𝑑=0

𝜃𝑑T𝑑 (𝑳)𝒙 . (2)

T𝑑 denotes the 𝑑-th term of a polynomial, with coefficient 𝜃𝑑 .

Spectral-based GNNs. Spectral-based GNNs emerge from the in-

tegration of graph filters with graph-structured data. By treating

each column of the node feature matrix 𝑿 as an individual graph

signal, a 𝐿-layer spectral GNN is architected as multi-layer neu-

ral network that processes the hidden feature through filtering

operations, as formulated below [3]:

𝑯 (𝑙+1) = 𝜎 (𝑙)
[
𝐷∑︁
𝑑=0

𝜃𝑑𝑙T𝑑 (𝑳)𝑯 (𝑙)𝑾 (𝑙)
]
, 𝑯 (0) ≜ 𝑿 . (3)

Here, 𝑯 (𝑙)
and𝑾 (𝑙)

correspond to the hidden layer representation

and weight matrix at the 𝑙-th layer, respectively, with 𝜎 (𝑙) represent-
ing a non-linear function commonly applied in neural networks.

Each 𝑙-th layer is termed a graph convolution layer, representing a

critical building block in spectral GNNs and the subsequent devel-

opments in the field [13, 23, 24, 26, 30, 31, 38, 39, 72, 81].

= ++

Figure 1: Example of function slicing. 𝑓 (𝑥) is dissected into
three components, determined by its eigenvalues.

3 CONNECTING POLYNOMIAL CAPABILITY
WITH SPECTRAL GNN EFFICACY

This section seeks to connect polynomial capabilitywith the efficacy

of spectral GNN. We examine the relationship between polynomial

approximation errors and feature construction errors in graph con-

volution layer, providing theoretical analysis alongside intuitive

numerical evaluations. This exploration yields vital insights that

contribute to the progression of spectral GNNs in a polynomial

context. We begin by defining several essential concepts.

Definition 3.1. (Function slices). Let 𝑓 : [0, 2] ↦→ R be a con-

tinuous and differentiable filter mapping. Denote the eigenvalues

𝜆1, 𝜆2, ..., 𝜆𝑛 of 𝑳, satisfying 0 = 𝜆1 ≤ 𝜆2 ≤ ... ≤ 𝜆𝑛 ≤ 2. The

function slices of 𝑓 (𝑥) are given by a set of disjoint functions 𝑓𝑠 ,

𝑠 = 1, 2, ..., 𝑛, satisfying the following conditions:

𝑓𝑠 (𝑥) =
{
𝑓 (𝑥) 𝑥 ∈ [𝜆𝑠−1, 𝜆𝑠] ,
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

(4)

Therefore, for any arbitrary function 𝑓 , we can represent it by

summing its slices, as illustrated below:

𝑓 (𝑥) =
𝑛∑︁
𝑠=1

𝑓𝑠 (𝑥) . (5)

Figure 3.1 provides an intuitive example of function slicing. This

concept parallels the signal decomposition techniques found in the

conventional signal processing field [21].

Definition 3.2. (Polynomial’s approximation error). Let T0:𝐷 (𝑥 ; 𝑓)
represent a polynomial function of degree 𝐷 that achieves the least

squares error (LSE) [58, 65] in approximating a specified function

𝑓 (𝑥). Accordingly, we can define both continuous and discrete

forms of the approximation error relative to the target filter function

𝑓 (𝑥) using T0:𝐷 as follows:

(Continuous) 𝜖 ≜
∫

2

0

| |T0:𝐷 (𝑥 ; 𝑓) − 𝑓 (𝑥) | |2 𝑑𝑥 , (6)

(Discrete) 𝜖 ≜ ∥|T0:𝐷 (𝝀; 𝑓) − 𝑓 (𝝀)∥ |𝐹 , (7)

where ∥·∥𝐹 denotes Frobenius norm [67].

Our analysis centers on the continuous form, with derived in-

sights adapted to the discrete form for application in spectral GNNs.

Definition 3.3. (Construction error of graph convolution layer). Let
𝒀 denote the target output of a graph convolution layer, expressed

as 𝒀 = 𝑼𝑑𝑖𝑎𝑔(𝑓 (𝝀))𝑼𝑇𝑿𝑾 , where 𝑓 serves as the “optimal” filter

function for constructing 𝒀 . The construction error of the graph

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Polynomial Selection in Spectral Graph Neural Networks: An Error-Sum of Function Slices Approach Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

convolution layer on 𝒀 through a 𝐷-degree polynomial filter func-

tion T0:𝐷 is defined as:

𝜉 ≜ ∥𝑼𝑑𝑖𝑎𝑔(T0:𝐷 (𝝀; 𝑓) − 𝑓 (𝝀))𝑼𝑇𝑿𝑾 ∥𝐹 . (8)

Note that the error 𝜉 , analogous to 𝜖 in Definition 3.2, is measured

as the difference between the target function 𝑓 and the polynomial

T0:𝐷 that achieves the least squares error (LSE) approximation. The

graph convolution layer introduced in Definition 3.3 aligns with a

one-layer linear GNN, a configuration similarly explored in previous

studies [72, 76]. These prior works have examined the effectiveness

of a one-layer linear GNN in constructing node labels to evaluate

the overall performance of GNNs, which inspired us to examine

the construction error within the graph convolution layer.

3.1 Theoretical insights
Polynomial capability is quantified by the function approximation

error [58, 65], whereas spectral GNN efficacy is typically reflected

by prediction error in downstream tasks [10, 30, 35, 38, 68, 72, 81].

Consequently, a natural step toward linking polynomial capabilities

with spectral GNN efficacy is to establish a bridge between the

polynomial approximation error, 𝜖 , as defined in Definition 3.2, and

the graph convolution layer’s construction error, 𝜉 .

In particular, as described in Definition 3.1, for an “optimal” filter

function 𝑓 (𝑥), the approximation error of a 𝐷-degree polynomial

T0:𝐷 (𝑥 ; 𝑓) satisfies the conditions outlined in the following Lemma:

Lemma 3.4. Let 𝑓 (𝑥) be a function composed of function slices
𝑓𝑠 (𝑥), 𝑠 = 1, 2, ..., 𝑛. Let T0:𝐷 (𝑥 ; 𝑓) be a 𝐷-degree polynomial that
provides LSE approximation of 𝑓 (𝑥) with error 𝜖 . Specially, define
𝜖𝑠 , 𝑠 = 1, 2, ..., 𝑛, as the polynomial approximation error of each slice
𝑓𝑠 (𝑥) when approximated by the 𝐷-degree polynomial T0:𝐷 (𝑥 ; 𝑓𝑠).
An inequality that bounds 𝜖 in terms of 𝜖𝑠 are formulated below:

𝑛∑︁
𝑠=1

𝜖𝑠 ≤ 𝜖 ≤ (
𝑛∑︁
𝑠=1

√
𝜖𝑠)2 . (9)

Proof can be found in Appendix B. Lemma 3.4 establishes both

upper and lower bounds for the approximation error of a poly-

nomial in relation to an arbitrary function 𝑓 , based on the errors

associated with its slices 𝑓𝑠 . This result suggests that the capac-

ity of the polynomial can be equivalently evaluated through the

approximation error of its slices.

Drawing from the insights of bounded error above, we can now

propose an inequality that bounds the construction error of the

graph convolution layer, utilizing the polynomial approximation

error as outlined in the theorem below:

Theorem 3.5. Let 𝛿𝑿 and 𝛿𝑾 denote theminimum singular values
of 𝑿 and 𝑾 , respectively. Consider a regularization on the weight
matrix 𝑾 , namely L2 regularization, expressed as ∥𝑾 ∥𝐹 ≤ 𝑟 . The
construction error 𝜉 , satisfies the following inequality:

𝛿𝑿𝛿𝑾

𝑛∑︁
𝑠=1

𝜖𝑠 ≤ 𝜉 ≤ 𝑟 ∥𝑿 ∥𝐹 (
𝑛∑︁
𝑠=1

√
𝜖𝑠)2 . (10)

Proof can be found in Appendix C. Theorem 3.5 establishes a

direct connection between the polynomial approximation error and

the construction error of the graph convolution layer through the

approximation error of function slices, 𝜖𝑠 . This insight is novel and,

to our knowledge, has not been documented before.

0 0.5 1.0 1.5 2.0
x

f(x
)

(a) 𝑓1 (𝑥) .

0 0.5 1.0 1.5 2.0
x

f(x
)

(b) 𝑓2 (𝑥) .

0 0.5 1.0 1.5 2.0
x

f(x
)

(c) 𝑓3 (𝑥) .

0 0.5 1.0 1.5 2.0
x

f(x
)

(d) 𝑓4 (𝑥) .

0 0.5 1.0 1.5 2.0
x

f(x
)

(e) 𝑓5 (𝑥) .

0 0.5 1.0 1.5 2.0
x

f(x
)

(f) 𝑓6 (𝑥) .

Figure 2: The functions served as target filters. Additional
mathematical details are available in Appendix E.1.

3.2 Numerical validation
We conduct extensive numerical experiments to validate our theo-

retical findings. Inspired by filter learning experiments from prior

spectral GNN studies [24, 25, 47, 70], we design more challenging

tasks with (i) increased graph sizes and (ii) complex target functions

for learning. Specifically, we generate random graphs with 50, 000

nodes, substantially larger than the typical 10, 000-node setups in

previous studies. Additionally, we utilize six intricate target filter

functions, visualized in Figure 2. The experiments comprise two

primary tasks:

• Using eigenvalue-based slices of each function, we assess the

approximation quality of five polynomials commonly adopted

in spectral GNN literature, with the sum of squared errors (SSE)

across 50000 slices as the metric.

• With a random 50000 × 100 matrix as node feature 𝑿 , we apply

six target functions as filters, obtaining output 𝒀 1 to 𝒀 6. We

train spectral GNNs on (𝑿 , 𝒀) to learn the target functions with

polynomial filters, with the Frobenius norm of the difference

between the learned and target filters as the metric.

Numerical insights. Table 1 reveals that reducing the sum of

the polynomial approximation error over function slices yields

lower filter learning errors in spectral GNNs, consistently rank-

ing both tasks. Although these results are derived from numerical

experiments and may introduce certain biases, they confirm our

theoretical analysis, showing a strong positive relationship between

the polynomial’s capability and the efficacy of spectral GNNs.

3.3 Summary
In this section, we summarize the significant findings from the

preceding analysis and delve into discussions on enhancing spectral

GNNs through the introduction of informed polynomial selection.

Specifically, as discussed in Section 3.1 and 3.2, the construction

error of spectral GNNs is intricately connected to the polynomial

approximation error summed over function slices. Moreover, refer-

ring to Theorem 3.5, note that 𝑿 is typically a constant property of

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 1: Numerical experiment results. # Avg Rank 1 denotes the average rank in polynomial approximation, and # Avg Rank 2
refers to the average rank in filter learning.

Method Slice-wise approximation Filter Learning # Avg

Rank 1

Avg

Rank 2Polynomial GNN 𝑓1 (𝑥) 𝑓2 (𝑥) 𝑓3 (𝑥) 𝑓4 (𝑥) 𝑓5 (𝑥) 𝑓6 (𝑥) 𝑓1 (𝑥) 𝑓2 (𝑥) 𝑓3 (𝑥) 𝑓4 (𝑥) 𝑓5 (𝑥) 𝑓6 (𝑥)
Monomial GPRGNN [10] 139.9 289.1 466.1 398.3 1.83 97.83 167.2 366.4 566.3 468.7 15.91 139.2 5 5

Bernstein BernNet [25] 32.78 247.3 398.5 306.5 0.058 22.92 68.23 313.2 448.2 415.2 7.79 95.84 4 4

Chebyshev ChebNetII [26] 23.45 85.19 244.8 187.2 0.018 13.13 64.22 168.4 402.5 347.5 6.83 86.25 3 3

Jacobian JacobiConv [72] 22.18 80.77 239.2 155.3 0.017 11.82 48.56 95.92 338.1 266.4 5.33 65.13 2 2

Learnable OptBasis [24] 20.75 80.53 225.7 152.7 0.017 11.20 43.44 89.48 289.5 238.1 4.98 61.70 1 1

the graph data, the construction error of graph convolution layer, 𝜉 ,

therefore depends entirely on the slice-wise errors 𝜖𝑠 , 𝑠 = 1, 2, ..., 𝑛.

Consequently, for a graph data G = (𝑨,𝑿) with node label 𝒀 , an
intuitive solution to reduce spectral GNN construction error is to

utilize polynomials adept at approximating these slices.

Furthermore, practical graphs often containmillions of nodes [29,

44] and complex target filters [10, 25, 45, 75]. These characteris-

tics result in very narrow and sharp slices of the target functions.

Consequently, to minimize construction errors in spectral GNNs

and improve their effectiveness, it is vital to incorporate “narrow

function-preferred” polynomials in the development of graph filters.

This insight not only represents a key contribution of this paper

but also illuminates potential avenues for advancing spectral GNNs,

paving the way for the introduction of a more sophisticated method

in the subsequent section.

4 THE PROPOSED TFGNN
Building on our previous analysis, this section introduces a novel

trigonometric polynomial-based graph filter to enhance spectral

GNNs. We begin with the trigonometric filter, discuss its efficient

implementation through Taylor-based parameter decomposition

(TPD), and present our Trigonometric FilterGraphNeuralNetwork
(TFGNN) as a decoupled GNN. A complexity analysis concludes

the section.

4.1 Parameter-efficient trigonometric filter
Trigonometric polynomials, among the most extensively utilized,

have found widespread applications in approximating the functions

with complicated patterns [21, 63, 86]. More importantly, extensive

prior studies in traditional signal processing domain have consis-

tently highlighted the effectiveness of trigonometric polynomials

over other polynomial types in modeling the functions localized

within narrow intervals [12, 16, 22, 71, 78, 80]. This prompts us to

pioneer the development of graph filters through leveraging the

power of trigonometric polynomials. Explicitly, the definition of

our trigonometric graph filter is as follows:

𝑓Trigo (𝝀) =
𝐾∑︁
𝑘=0

[𝛼𝑘 sin(𝑘𝜔𝝀) + 𝛽𝑘 cos(𝑘𝜔𝝀)] . (11)

Here, 𝐾 denotes the order of the truncated trigonometric polyno-

mial. The coefficients 𝛼𝑘 , and 𝛽𝑘 are parameterized, while the hyper-

parameter𝜔 (base frequency) is chosen fromwithin the range (0, 𝜋),
enabling the trigonometric polynomial approximation to cover the

interval [0, 2], which corresponds to the range of 𝝀. similar to other

types of polynomials, trigonometric polynomials offer considerable

approximation capability for arbitrary functions, thus ensuring

comprehensive filter coverage in practical applications [63, 86].

Guaranteed parameter-efficiency. Apart from their recognized

approximation capabilities, trigonometric polynomials grant the

trigonometric graph filter 𝑓Trigo with a unique, provable efficiency

regarding its parameters (𝛼𝑘 , 𝛽𝑘), 𝑘 ∈ N, as demonstrated in the

theorem below.

Theorem 4.1. (Parameter-efficiency). Given a 𝑓 (𝑥) formulated as
𝑓Trigo (𝑥), its coefficients 𝛼𝑘 and 𝛽𝑘 satisfies:

lim

𝑘→+∞
𝛼𝑘 = 0 , lim

𝑘→+∞
𝛽𝑘 = 0 . (12)

Proof can be found in Appendix D. Theorem 4.1 establishes a

solid basis by revealing that polynomial terms with larger values

of 𝑘 within 𝑓Trigo (𝑥) correspond to smaller weights. This insight

indicates that the contribution of high-order terms is relatively in-

significant, allowing for their practical omission without substantial

loss in approximation accuracy. As a result, 𝑓Trigo (𝑥) can achieve

substantial effectiveness with only a small 𝐾 , reducing the com-

plexity of the trigonometric graph filters while retaining significant

accuracy. This reinforces the superiority of 𝑓Trigo (𝑥) over other
graph filter designs.

4.2 Taylor-based parameter decomposition
As detailed in Eq. 11, implementing the standard 𝑓Trigo (𝑥) requires
an eigen-decomposition, which imposes substantial computational

complexity and limits scalability compared to alternative meth-

ods. We tackle this challenge through the introduction of Taylor-

based parameter decomposition (TPD). TPD first reformulates the

trigonometric terms sin(𝑘𝜔𝝀) and cos(𝑘𝜔𝝀) into polynomial forms

through the Taylor expansion [1, 58, 65], as shown below:

sin(𝑘𝜔𝝀) =
𝐷∑︁
𝑑=0

𝛾𝑘𝑑𝝀
𝑑 , cos(𝑘𝜔𝝀) =

𝐷∑︁
𝑑=0

𝜃𝑘𝑑𝝀
𝑑 . (13)

The constants 𝛾𝑘𝑑 and 𝜃𝑘𝑑 depend exclusively on the types of

functions (sine and cosine), the index 𝑘 , and the hyperparame-

ter 𝜔 . The effectiveness of Taylor expansion for modeling functions

within localized intervals has been thoroughly established in the

literature [32, 50, 52, 54, 57, 83], especially for trigonometric func-

tions [7, 33, 36]. Since 𝝀 is restricted to the range [0, 2], the Taylor
expansion emerges as a viable and crucial strategy for efficiently

approximating these trigonometric functions.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Polynomial Selection in Spectral Graph Neural Networks: An Error-Sum of Function Slices Approach Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

With the updated formulations, TPD alters the convolution op-

eration with 𝑓Trigo (𝑥) on the node feature 𝑿 as detailed below:

𝒁 = 𝑼
𝐾∑︁
𝑘=0

[
𝛼𝑘

𝐷∑︁
𝑑=0

𝛾𝑘𝑑𝑑𝑖𝑎𝑔(𝝀𝑑) + 𝛽𝑘
𝐷∑︁
𝑑=0

𝜃𝑘𝑑𝑑𝑖𝑎𝑔(𝝀𝑑)
]
𝑼𝑇𝑿 ,

=

𝐷∑︁
𝑑=0

𝑳𝑑𝑿 (𝜶 𝚪
:𝑑 + 𝜷𝚯

:𝑑) . (14)

Here, 𝜶 and 𝜷 denote the 𝐾 + 1-dimensional vectors with elements

being 𝛼𝑘 and 𝛽𝑘 , respectively. 𝚪 and 𝚯 refer to the (𝐾 + 1) × (𝐷 + 1)
matrices formed with 𝛾𝑘𝑑 , 𝜃𝑘𝑑 . Eq. 14 illustrates a streamlined

convolution with 𝑓Trigo (𝑥), offering two significant benefits:

• Reduced complexity. Utilizing the TPD, the graph convolution

with 𝑓Trigo (𝑥) eliminates the need for computation-intensive

eigen-decomposition. This reduction in computational overhead

brings the costs in line with those of standard polynomial-based

filters, leading to significant efficiency gains.

• Parameter decomposition. TPD integrates all trigonometric

functions into polynomial forms, allowing for increases in 𝐾 to

only influence trivial computations of 𝜶 𝚪 and 𝜷𝚯, enhancing
precision of 𝑓Trigo (𝑥) with negligible additional cost.

4.3 Modeling TFGNN as decoupled paradigm
TFGNN is a decoupled GNN architecture that separates graph

convolution from feature transformation. This design principle,

first proposed by [19], has become a de facto choice in modern

spectral GNNs for its significant efficacy and computational effi-

ciency [10, 24–26, 30, 31, 37–39, 72], and even stands out as a promis-

ing solution for scalable GNNs [42, 43]. Specifically, incorporating

the trigonometric filter 𝑓Trigo (𝑥) with the introduced Taylor-based

parameter decomposition, we present two versions of TFGNN to

cater to different graph sizes:

❶ In the case of medium-to-large graphs like Cora [77] and
Arxiv [29], TFGNN operates as described below:

𝒁 =

𝐷∑︁
𝑑=0

𝑳𝑑𝑯 (𝜶 𝚪
:𝑑 + 𝜷𝚯

:𝑑) , 𝑯 = MLP(𝑿) . (15)

MLP(·) denotes a multi-layer perceptron for feature transformation.

❷ In the case of exceptionally large graphs, such as Wiki [44]

and Papers100M [29], TFGNN is implemented as follows:

𝒁 = MLP(𝑯), 𝑯 =

𝐷∑︁
𝑑=0

𝑳𝑑𝑿 (𝜶 𝚪
:𝑑 + 𝜷𝚯

:𝑑) , (16)

The different implementations of TFGNN come from hardware

constraints and introduce notable benefits: (i) for medium-to-large

graphs, the graph data can be fully stored on GPUs; therefore,

by simply reducing the feature dimensions with MLP, the subse-

quent convolution process could achieves high efficiency; (ii) for

exceptionally large graphs, where GPU memory limitations be-

come a substantial challenge, TFGNN precomputes features, 𝑳𝑘𝑿 ,

𝑘 = 1, 2, ...𝐾 , and stores them as static data files. This allows for

efficient graph convolution operation via repeated reads of precom-

puted features, mitigating the intense computational complexity

associated with GNN training; an efficient MLP is applied later.

Table 2: Complexity comparison of TFGNN against others.
The complexity pertains to the graph convolution layers.

Method Computation Parameter

GPRGNN [10] O(𝑚𝐸𝐷) O(𝐾 + 1)
ChebNetII [26] O(𝑚𝐸𝐷) O(𝐾 + 1)
OptBasis [24] O(𝑚𝐸𝐷) O(𝐾 + 1)

JacobiConv [72] O(𝑚𝐸𝐷) O(𝐾 + 1)
UniFilter [31] O(𝑚𝐸𝐷) O(𝐾 + 1)
TFGNN (ours) O(𝑚𝐸𝐷) O(2(𝐾 + 1))

4.4 Complexity analysis of TFGNN
This subsection presents the complexity analysis of TFGNN, with a

particular emphasis on graph convolution layers, as the complexity

of feature transformation MLPs is already well-understood. To

start, we consider a graph G with 𝑛 nodes, 𝐸 edges, and𝑚 feature

dimensions. Across all spectral GNNs, the maximum polynomial

order is set to 𝐷 . The trigonometric polynomial degree is capped at

𝐾 . A summary of the complexity analysis is outlined in Table 2.

Computational complexity. As shown in Eq. 14, for each order 𝑑 ,
TFGNNfirst computes𝜶 𝚪

:𝑑 and 𝜷𝚯:𝑑 , requiring 2(𝐾+1) operations,
followed by propagating with 𝑳, which requires𝑚𝐸 computations.

Since the number of edges 𝐸 is millions of times larger than both 𝐾

and 𝐷 , the practical complexity is governed by𝑚𝐸 for each order

𝑑 , leading to an overall complexity of O(𝑚𝐸𝐷). This is comparable

to other spectral GNNs like GPRGNN [10], which utilizes recursive

computation of the propagated feature 𝑳𝑑𝑿 . Thus, our TFGNN

achieves complexity on par with prior methods. Additionally, for

exceptionally large graphs, TFGNN reduces complexity further by

precomputing all 𝑳𝑑𝑿 , thus avoiding redundant repeated computa-

tions during training.

Parameter complexity. Our TFGNN achieves a parameter com-

plexity of O(2(𝐾 + 1)), in contrast to traditional spectral GNNs’

O(𝐾 + 1), where each polynomial basis order is assigned a parame-

terized coefficient. This increase is, however, trivial, as the feature

transformation MLP constitutes the majority of parameters, greatly

outweighing the graph convolution layers. As such, TFGNN’s pa-

rameter complexity remains effectively on par with that of other

spectral GNNs when considering the entire model.

5 EMPIRICAL STUDIES
This section details the empirical evaluations, including numerical

experiments same as those in Section 3.2, a benchmark node classifi-

cation task, and a practical application in graph anomaly detection.

A demo code implementation is available through the anonymous

link https://anonymous.4open.science/r/TFGNN-7ED8/.

5.1 Slice approximation and filter learning
We conduct the same numerical experiments as outlined in Sec-

tion 3.2 to evaluate the proposed trigonometric graph filters and

TFGNN. To ensure a fair and informative comparison, the trigono-

metric polynomial used in our numerical experiments is not in its

naive form; rather, we employ the formulation that incorporates

a 10 degree Taylor-based parameter decomposition (TPD), akin in

that of Section 4.2. The trigonometric polynomial degree, 𝐾 , is set

5

https://anonymous.4open.science/r/TFGNN-7ED8/

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 3: Node classification results on medium-to-large graphs. #Improv. denotes the performance gain of TFGNN over the best
baseline result. Boldface represents the first result, while underlined indicates the runner-up.

GNN

Type

Method

homophilic graphs heterophilic graphs

Cora Cite. Pubmed Arxiv Roman. Amazon. Ques. Gamers Genius

i

H2GCN 87.33±0.6 75.11±1.2 88.39±0.6 71.93±0.4 61.38±1.2 37.17±0.5 64.42±1.3 64.71±0.4 90.12±0.2
GLOGNN 88.12±0.4 76.23±1.4 88.83±0.2 72.08±0.3 71.17±1.2 42.19±0.6 74.42±1.3 65.62±0.3 90.39±0.3
LINKX 84.51±0.6 73.25±1.5 86.36±0.6 71.14±0.2 67.55±1.2 41.57±0.6 63.85±0.8 65.82±0.4 91.12±0.5

OrderGNN 87.55±0.2 75.46±1.2 88.31±0.3 71.90±0.5 71.69±1.6 40.93±0.5 70.82±1.0 66.09±0.3 89.45±0.4
LRGNN 87.48±0.3 75.29±1.0 88.65±0.4 71.69±0.3 72.35±1.4 42.56±0.4 71.82±1.1 66.29±0.5 90.38±0.7

ii

GCN 86.48±0.4 75.23±1.0 87.29±0.2 71.77±0.1 72.33±1.6 42.09±0.6 75.17±0.8 63.29±0.5 86.73±0.5
GCNII 86.77±0.2 76.57±1.5 88.86±0.4 71.72±0.4 71.62±1.7 40.89±0.4 72.32±1.0 65.11±0.3 90.60±0.6
ChebNet 86.83±0.7 74.39±1.3 85.92±0.5 71.52±0.3 64.44±1.5 38.81±0.7 70.42±1.2 63.62±0.4 87.42±0.2
ACMGCN 87.21±0.4 76.03±1.4 87.37±0.4 71.70±0.3 66.48±1.2 39.53±0.9 67.84±0.5 64.73±0.3 83.45±0.7
Specformer 88.19±0.6 75.87±1.5 88.74±0.2 71.88±0.2 71.69±1.4 42.06±0.8 70.75±1.2 65.80±0.2 89.39±0.6

iii

GPRGNN 88.26±0.5 76.24±1.2 88.81±0.2 71.89±0.2 64.49±1.6 41.48±0.6 64.58±1.2 66.23±0.1 90.92±0.6
BernNet 87.57±0.4 75.81±1.8 88.48±0.3 71.72±0.3 65.44±1.4 40.74±0.7 65.53±1.6 65.74±0.3 89.75±0.3
ChebNetII 88.17±0.4 76.41±1.3 88.98±0.4 72.13±0.3 66.77±1.2 42.44±0.9 71.28±0.6 66.44±0.5 90.60±0.2
OptBasis 88.35±0.6 76.22±1.4 89.38±0.3 72.10±0.2 64.28±1.8 41.63±0.8 69.60±1.2 66.81±0.4 90.97±0.5

JacobiConv 88.53±0.8 76.27±1.3 89.51±0.2 71.87±0.3 70.10±1.7 42.18±0.4 72.16±1.3 64.17±0.3 89.32±0.5
NFGNN 88.06±0.4 76.22±1.4 88.43±0.4 72.15±0.3 72.46±1.2 42.19±0.3 75.49±0.9 66.64±0.4 90.87±0.5
AdaptKry 88.23±0.7 76.54±1.2 88.38±0.6 72.33±0.3 71.40±1.3 42.31±1.1 72.55±1.0 66.27±0.3 90.55±0.3
UniFilter 88.31±0.7 76.38±1.1 89.30±0.4 72.87±0.4 71.22±1.5 41.37±0.6 73.83±0.8 65.75±0.4 90.66±0.2

TFGNN (Ours) 89.21±0.4 77.68±0.8 90.00±0.2 75.23±0.2 74.94±1.1 45.04±0.6 81.55±0.9 69.46±0.2 92.40±0.2
#Improv. 0.68% 1.11% 0.49% 2.36% 2.48% 2.48% 6.06% 2.65% 1.28%

Table 4: Comparison of trigonometric filter with counter-
parts. Full results are presented in Table 12.

Method Poly. approx. Filter Learn.

Poly. GNN 𝑓2 (𝑥) 𝑓3 (𝑥) 𝑓4 (𝑥) 𝑓2 (𝑥) 𝑓3 (𝑥) 𝑓4 (𝑥)
Cheby. ChebNetII 85.19 244.8 187.2 168.4 402.5 347.5

Jacobi. JacobiConv 80.77 239.2 155.3 95.92 338.1 266.4

Learn. OptBasis 80.53 225.7 152.7 89.48 289.5 238.1

Trigo. TFGNN 23.69 71.13 59.88 65.19 102.3 105.3

to 10, yielding 𝐾 + 1 coefficients in total. Thus, TFGNN preserves

both the maximum order of 𝝀 and the number of coefficients used

by other counterparts.

Results. Table 4 summarizes the performance of TFGNN alongside

the three leading alternatives—Chebyshev, Jacobian, and Learn-

able—with boldface marking the highest scores due to space con-

straints. A comprehensive comparison can be found in Appendix F.1.

According to these results, Trigonometric polynomials (with our

TPD) and TFGNN consistently outperform other methods. Partic-

ularly, for target functions exhibiting complex patterns, such as

𝑓2 (𝑥), 𝑓3 (𝑥), and 𝑓4 (𝑥), TFGNN obtains notable improvements over

competitors, showing the efficacy of our method.

The following sections will show how TFGNN attains leading

performance on real-world datasets, affirming that the numerical

outcomes correspond well to real-world scenarios.

5.2 Benchmark node classification tasks
This section evaluates TFGNN against counterparts through bench-

mark node classification tasks.

5.2.1 Datasets and baselines.

Datasets. We utilize 13 benchmark datasets with varied sizes and

heterophily levels [82]. For homophilic datasets, we comprise cita-

tion graphs (Cora, CiteSeer, PubMed)[77] and large OGB graphs

(ogbn-Arxiv, ogbn-Products, ogbn-Papers100M)[29]. For heterophilic

datasets, we select three latest datasets (Roman-empire, Amazon-

ratings, Questions) [59] and four large ones (Gamers, Genius, Snap-

patent, Pokec) [44]. (We exclude conventional dataset choices [56]

due to the recognized data-leakage issues in these datasets [59].)

Baselines and settings. We include 18 advanced baselines tai-

lored for both heterophilic and homophilic scenarios, which can be

categorized into three classes as follows:

• Non-spectral GNNs: H2GCN [85], GLOGNN [40], LINKX [44],

OrderGNN [66], LRGNN [41].

• Non-decoupled spectral GNNs: GCN [35], GCNII [8], Cheb-

Net [13], ACMGCN [49], Specformer [2].

• Decoupled spectral GNNs: GPRGNN [10], BernNet [25], Cheb-

NetII [26], OptBasis [24], NFGNN [81], JacobiConv [72], Adap-

tKry [30], UniFilter [31].

For the widely adopted baselines (GCN and ChebNet), we adopt

consistent implementations drawn from previous research [24–

26, 30, 39, 68, 72, 81]. For the remaining baselines, we inherit the

hyperparameter tuning settings from their original publications.

Implementation of TFGNN. To ensure experimental fairness, we

fix the order of the Trigonometric Polynomial Decomposition (TPD),

denoted as 𝐷 , to 10, aligning with other baselines such as GPRGNN

and ChebNetII. We employ a grid search to optimize the parameters

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Polynomial Selection in Spectral Graph Neural Networks: An Error-Sum of Function Slices Approach Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 5: Node classification and runtime (hours) results on exceptionally large graphs. “OOM” denotes “Out-Of-Memory”.

Method

Products Papers100M Snap Pokec

Test acc Runtime Test acc Runtime Test acc Runtime Test acc Runtime

GCN 76.37±0.2 1.2 OOM - 46.66±0.1 1.9 74.78±0.2 1.2

SGC 75.16±0.2 0.9 64.02±0.2 10.2 31.11±0.2 1.6 60.29±0.1 0.9

GPRGNN 79.45±0.1 1.3 66.13±0.2 11.1 48.88±0.2 2.0 79.55±0.3 1.2

BernNet 79.82±0.2 1.3 66.08±0.2 11.2 47.48±0.3 2.1 80.55±0.2 1.3

ChebNetII 81.66±0.3 1.2 67.11±0.2 11.0 51.74±0.2 1.9 81.88±0.3 1.2

JacobiConv 79.35±0.2 1.0 65.45±0.2 10.5 50.66±0.2 1.7 73.83±0.2 1.0

OptBasis 81.33±0.2 1.3 67.03±0.3 11.2 53.55±0.1 2.1 82.09±0.3 1.3

NFGNN 81.11±0.2 1.3 66.38±0.2 11.3 57.83±0.3 2.1 81.56±0.3 1.4

AdaptKry 81.70±0.3 1.4 67.07±0.2 11.3 55.92±0.2 2.1 82.16±0.2 1.4

UniFilter 80.33±0.2 1.2 66.79±0.3 11.0 52.06±0.1 2.1 82.23±0.3 1.3

TFGNN (Ours) 84.05±0.2 1.2 68.65±0.2 11.0 64.38±0.2 1.9 85.55±0.2 1.2

#Improv. 2.35% - 1.54% - 6.55% - 3.32% -

2 4 6 8 10 15 20
K

.7

.5

.3

.2

(a) Cora.

2 4 6 8 10 15 20
K

.7

.5

.3

.2

(b) Citeseer.

2 4 6 8 10 15 20
K

.7

.5

.3

.2

(c) Roman.

2 4 6 8 10 15 20
K

.7

.5

.3

.2

(d) Amazon.

Figure 3: Ablation studies on 𝐾 and𝜔 . Darker shades indicate
higher results. Additional results are in Appendix F.2.

Table 6: Ablation studies on Taylor expansion degree.

Degree 5 10 15 20 25

Cora 88.66±0.3 89.21±0.4 89.15±0.2 89.53±0.3 89.28±0.3
Arxiv 73.14±0.2 75.23±0.2 74.74±0.2 75.06±0.2 74.92±0.2
Roman. 72.67±1.0 74.94±1.1 74.83±1.1 74.92±1.2 75.02±1.1
Genius 90.02±0.3 92.40±0.2 91.88±0.3 91.83±0.2 92.05±0.3

𝜔 within {0.2𝜋, 0.3𝜋, 0.5𝜋, 0.7𝜋} and 𝐾 from {2, 4, 6, 8, 10, 15, 20}.
Additional details are in Appendix E.2.

5.2.2 Main results and discussions.

Effectiveness of TFGNN. Our TFGNN achieves remarkable ad-

vancements in performance on both heterophilic and homophilic

graphs. Specifically, across all 13 datasets, TFGNN not only leads

in performance but does so with improvements of up to 6.55 over

the closest competitor on the Snap-patents dataset.

Furthermore, the advantages of TFGNN are significantly more

pronounced when evaluated on heterophilic datasets. This trend

is corroborated by the numerical findings in Table 4, which reveal

TFGNN’s enhanced capacity to construct functions that can ac-

commodate complex patterns. Existing studies have empirically

shown that heterophilic graphs generally require significantly more

complex target filters than the low-pass filters used for homophilic

graphs [25, 30, 75]. While these complex functions can compli-

cate performance for other methods, TFGNN utilizes its advanced

trigonometric filters to navigate these challenges, yielding substan-

tial improvements on heterophilic scenarios.

Scalability and Efficiency. Table 5 presents a comparative analy-

sis of our TFGNNmethod alongside leading counterparts, with each

baseline recognized for its exceptional scalability and efficiency on

large graphs. Notably, TFGNN demonstrates superior performance,

significantly exceeding all baselines across every dataset while

maintaining efficiency comparable to the top-performing methods.

These findings align with our expectations, as the model complex-

ity—both in terms of computation and parameters—of TFGNN is

on par with that of other approaches, as detailed in Section 4.4.

5.2.3 Ablation studies.

Ablation studies on 𝐾 and 𝜔 . We conduct ablation studies on

the two pivotal hyperparameters, 𝐾 and 𝜔 , associated with our

trigonometric filters. Partial results are illustrated in Figure 3, while

a more comprehensive analysis can be found in Appendix F.2.

The results reveal a notable trend: for all datasets, the optimal

values for 𝐾 and 𝜔 tend to fall within low ranges, specifically

𝐾 ∈ {2, 4, 6} and 𝜔 ∈ {0.2𝜋, 0.3𝜋, 0.5𝜋}. Furthermore, their product

𝐾 · 𝜔 consistently converges to a similar range across all datasets,

approximately 𝐾 · 𝜔 ∈ (0.6𝜋, 1.2𝜋). This finding aligns with Theo-

rem 4.1, which indicates that high-degree terms contribute unnec-

essary complexity. We thus recommend initializing 𝐾 , 𝜔 , and 𝐾 · 𝜔
within these ranges for efficient use of our models, with further

fine-tuning as needed for performance optimization.

Ablation studies on𝐷 . We perform ablation studies on the degree

of Taylor expansion, 𝐷 . Table 6 shows that while increasing the

degree improves performance to a certain extent, accuracy even-

tually stabilizes. This is consistent with prior studies and can be

understood in terms of polynomial approximation. Higher-degree

orthogonal bases tend to minimize approximation loss; however,

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 7: Graph anomaly detection results. ‡ Improvements are relative to general-purpose methods rather than GAD baselines.

Type

Dateset YelpChi (1%) Amazon (1%) T-Finance (1%)

Metric F1-macro AUROC F1-macro AUROC F1-macro AUROC

GAD Models

PC-GNN 60.55 75.29 82.62 91.61 83.40 91.85
CARE-GNN 61.68 73.95 75.78 88.79 86.03 91.17

GDN 65.72 75.33 90.49 92.07 77.38 89.42

GAD-specialized

spectral GNNs

BWGNN 66.52 77.23 90.28 89.19 85.56 91.38

GHRN 62.77 74.64 86.65 87.09 80.70 91.55

General-purpose

spectral GNNs

GCN 50.66 54.31 69.79 85.18 75.26 87.05

GPRGNN 60.45 67.44 83.71 85.28 77.53 85.69

OptBasis 62.03 68.32 86.12 85.02 79.28 86.22

AdaptKry 63.40 66.18 83.30 84.58 80.67 85.41

NFGNN 60.66 67.36 85.61 86.88 82.38 86.59

Ours TFGNN 65.60 78.79 91.10 90.12 87.02 91.42

#Improv.
‡

2.20% 10.47% 4.98% 3.24% 4.64% 4.37%

beyond an optimal degree, further improvements become negligi-

ble [58, 65].

5.3 Application example: graph anomaly
detection (GAD)

This section investigates an application example of TFGNN for the

graph anomaly detection (GAD) task, which is typically recognized

as binary node classification task (normal vs. abnormal) [51, 60].

5.3.1 Datasets and baselines.

Datasets. Weadopt three datasets (YelpChi, Amazon, and T-Finance)

with a low label-rate of 1% set across all datasets, while T-Finance

additionally utilizes a higher label-rate of 40%, as described in [69].

Baselines and model implementations. We include 10 baseline

methods, organized into three types below:

• GAD models: PC-GNN [46], CARE-GNN [14], GDN [18].

• GAD-specialized spectral GNNs: BWGNN [69], GHRN [17].

• General-purpose spectral GNNs: GCN [35], GPRGNN [10],

OptBasis [24], AdaptKry [30], NFGNN [81].

The specifications for implementing common baselines (PC-GNN,

CARE-GNN, BWGNN, GCN) are derived from [69]. In our TFGNN

and other general-purpose methods, we utilize a two-layer MLP

with 64 hidden units for the feature transformation module, main-

taining alignment with the GAD-specialized models. The hyper-

parameters for TFGNN are optimized as detailed in Section 5.2,

while the other baselines follow the configurations outlined in their

original papers. More experimental details are in Appendix E.3.

5.3.2 Main results and discussions.

Improvements on specific task. Table 7 highlights the #Improv.

metric, showing that TFGNN outperforms general-purpose models

significantly, achieving increases of up to 11.34% on the YelpChi

dataset. This suggests that while general-purpose spectral GNNs

can perform well in benchmark node classification tasks, they often

underperform in specialized applications. In contrast, TFGNN, with

its advanced graph filters, consistently provides notable improve-

ments across both standard and specialized tasks, demonstrating

the effectiveness and versatility of our approach.

Comparable to GAD-specialized spectral GNNs. Table 7 indi-
cates that TFGNN’s performance rivals that of specialized spectral

GNNs for GAD. Models like BWGNN and GHRN, which are built on

the same graph spectrum principles, incorporate specific features

aimed at enhancing performance. For example, BWGNN [69] effec-

tively addresses the “right-shift” phenomenon with its customized

beta wavelets, while GHRN [17] focuses on filtering out high-

frequency components to prune inter-class edges in heterophilic

graphs. In contrast, TFGNN offers a unique and effective filtering

strategy for GAD tasks, showcasing impressive outcomes. This re-

flects a promising direction for improving spectral GNNs through

the introduction of more advanced polynomial graph filters.

6 CONCLUSIONS
In this paper, we address the polynomial selection problem in spec-

tral GNNs, linking polynomial capabilities to their effectiveness.

We present the first proof that the construction error of graph con-

volution layers is bounded by the sum of polynomial approximation

errors on function slices, supported by intuitive numerical valida-

tions. This insight motivates the use of “narrow function-preferred”

polynomials, leading to the introduction of our advanced trigono-

metric graph filters. The proposed filters not only demonstrate

provable parameter-efficiency but also employ Taylor-based pa-

rameter decomposition for streamlined implementation. Building

upon this, we introduce TFGNN, a scalable spectral GNN featur-

ing a decoupled architecture. The efficacy of TFGNN is confirmed

through benchmark node classification tasks and a practical exam-

ple in graph anomaly detection, highlighting the adaptability and

real-world relevance of our theoretical contributions.

Limitations and future works. Our theoretical framework is

grounded in the concept of function slices, which are inherently

linked to target filters. However, in practical scenarios, the diversity

and variability of target filters can hinder the specificity of our

theoretical results, potentially leading to suboptimal solutions. A

promising future research is to categorize these filters and analyze

their numerical properties. With these insights, we can refine our

theoretical framework, thereby enabling more consistent enhance-

ments in spectral GNNs.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Polynomial Selection in Spectral Graph Neural Networks: An Error-Sum of Function Slices Approach Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien

Adam, and Paul Honeine. 2021. Analyzing the Expressive Power of Graph Neural

Networks in a Spectral Perspective. In International Conference on Learning

Representations. https://openreview.net/forum?id=-qh0M9XWxnv

[2] Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. 2023. Specformer: Spec-

tral Graph Neural Networks Meet Transformers. In The Eleventh International

Conference on Learning Representations. https://openreview.net/forum?id=

0pdSt3oyJa1

[3] Deyu Bo, Xiao Wang, Yang Liu, Yuan Fang, Yawen Li, and Chuan Shi. 2023. A

Survey on Spectral Graph Neural Networks. arXiv:2302.05631 [cs.LG]

[4] Salomon Bochner and Komaravolu Chandrasekharan. 1951. Fourier Transforms.

The Mathematical Gazette 35, 312 (1951), 140–141. https://doi.org/10.2307/

3609365

[5] Fedor Borisyuk, Shihai He, Yunbo Ouyang, Morteza Ramezani, Peng Du, Xi-

aochen Hou, Chengming Jiang, Nitin Pasumarthy, Priya Bannur, Birjodh Ti-

wana, Ping Liu, Siddharth Dangi, Daqi Sun, Zhoutao Pei, Xiao Shi, Sirou

Zhu, Qianqi Shen, Kuang-Hsuan Lee, David Stein, Baolei Li, Haichao Wei,

Amol Ghoting, and Souvik Ghosh. 2024. LiGNN: Graph Neural Networks at

LinkedIn (KDD ’24). Association for Computing Machinery, New York, NY, USA,

4793–4803. https://doi.org/10.1145/3637528.3671566

[6] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. 2014. Spectral

networks and locally connected networks on graphs. In International Conference

on Learning Representations (ICLR2014).

[7] Claudio Brunelli, Heikki Berg, and David Guevorkian. 2009. Approximating sine

functions using variable-precision Taylor polynomials. In 2009 IEEE Workshop

on Signal Processing Systems. 57–62. https://doi.org/10.1109/SIPS.2009.5336225

[8] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang

Li. 2020. Simple and Deep Graph Convolutional Networks. In

Proceedings of the 37th International Conference on Machine Learning

(Proceedings of Machine Learning Research, Vol. 119). PMLR, 1725–1735.

https://proceedings.mlr.press/v119/chen20v.html

[9] Zhengdao Chen, Lisha Li, and Joan Bruna. 2019. Supervised Community Detec-

tion with Line Graph Neural Networks. In International Conference on Learning

Representations. https://openreview.net/forum?id=H1g0Z3A9Fm

[10] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal

Generalized PageRank Graph Neural Network. In International Conference on

Learning Representations. https://openreview.net/forum?id=n6jl7fLxrP

[11] Fan Chung. 1997. Spectral Graph Theory. Vol. 92. CBMS Regional Conference

Series in Mathematics. https://doi.org//10.1090/cbms/092

[12] T.N. Davidson, Zhi-Quan Luo, and J.F. Sturm. 2002. Linear matrix inequality

formulation of spectral mask constraints with applications to FIR filter design.

IEEE Transactions on Signal Processing 50, 11 (2002), 2702–2715. https://doi.

org/10.1109/TSP.2002.804079

[13] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Con-

volutional Neural Networks on Graphs with Fast Localized Spectral Filtering.

In Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama,

U. Luxburg, I. Guyon, and R. Garnett (Eds.), Vol. 29. Curran Associates, Inc.

[14] Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S. Yu.

2020. Enhancing Graph Neural Network-based Fraud Detectors against Cam-

ouflaged Fraudsters. In Proceedings of the 29th ACM International Conference

on Information & Knowledge Management (Virtual Event, Ireland) (CIKM ’20).

Association for Computing Machinery, New York, NY, USA, 315–324. https:

//doi.org/10.1145/3340531.3411903

[15] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning

with PyTorch Geometric. https://doi.org/10.48550/ARXIV.1903.02428

[16] Dengwei Fu and A.N. Willson. 1999. Design of an improved interpolation filter

using a trigonometric polynomial. In 1999 IEEE International Symposium on

Circuits and Systems (ISCAS), Vol. 4. 363–366 vol.4. https://doi.org/10.1109/

ISCAS.1999.780017

[17] Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yong-

dong Zhang. 2023. Addressing Heterophily in Graph Anomaly Detection: A

Perspective of Graph Spectrum. In Proceedings of the ACM Web Conference

2023 (Austin, TX, USA) (WWW ’23). Association for Computing Machinery, New

York, NY, USA, 1528–1538. https://doi.org/10.1145/3543507.3583268

[18] Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yong-

dong Zhang. 2023. Alleviating Structural Distribution Shift in Graph Anomaly

Detection. In Proceedings of the Sixteenth ACM International Conference on

Web Search and Data Mining (Singapore, Singapore) (WSDM ’23). Association

for Computing Machinery, New York, NY, USA, 357–365. https://doi.org/10.

1145/3539597.3570377

[19] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2019.

Predict then Propagate: Graph Neural Networks meet Personalized PageRank.

In International Conference on Learning Representations. https://openreview.

net/forum?id=H1gL-2A9Ym

[20] Chenghua Gong, Yao Cheng, Xiang Li, Caihua Shan, and Siqiang Luo. 2024. Learn-

ing from Graphs with Heterophily: Progress and Future. arXiv:2401.09769 [cs.SI]

https://arxiv.org/abs/2401.09769

[21] Jogh G.Proakis. 1975. Digital signal processing. IEEE Transactions on Acoustics,

Speech, and Signal Processing 23, 4 (1975), 392–394. https://doi.org/10.1109/

TASSP.1975.1162707

[22] Lucy J. Gudino, Joseph X. Rodrigues, and S. N. Jagadeesha. 2008. Linear

phase FIR filter for narrow-band filtering. In 2008 International Conference

on Communications, Circuits and Systems. 776–779. https://doi.org/10.1109/

ICCCAS.2008.4657886

[23] Yuhe Guo and Zhewei Wei. 2023. Clenshaw Graph Neural Networks. In

Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery

and Data Mining (KDD ’23). Association for Computing Machinery, New York,

NY, USA, 614–625. https://doi.org/10.1145/3580305.3599275

[24] Yuhe Guo and ZheweiWei. 2023. Graph Neural Networks with Learnable and Op-

timal Polynomial Bases. In Proceedings of the 40th International Conference on

Machine Learning (Proceedings of Machine Learning Research, Vol. 202), An-

dreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan

Sabato, and Jonathan Scarlett (Eds.). PMLR, 12077–12097. https://proceedings.

mlr.press/v202/guo23i.html

[25] Mingguo He, Zhewei Wei, Zengfeng Huang, and Hongteng Xu. 2021. Bern-

Net: Learning Arbitrary Graph Spectral Filters via Bernstein Approxima-

tion. In Advances in Neural Information Processing Systems, A. Beygelzimer,

Y. Dauphin, P. Liang, and J. Wortman Vaughan (Eds.). https://openreview.net/

forum?id=WigDnV-_Gq

[26] Mingguo He, Zhewei Wei, and Ji-Rong Wen. 2022. Convolutional Neural Net-

works on Graphs with Chebyshev Approximation, Revisited. In Advances in

Neural Information Processing Systems, Alice H. Oh, Alekh Agarwal, Danielle

Belgrave, and Kyunghyun Cho (Eds.). https://openreview.net/forum?id=

jxPJ4QA0KAb

[27] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network

for Recommendation. https://doi.org/10.48550/ARXIV.2002.02126

[28] Roland F Hoskins. 2009. Delta functions: Introduction to generalised functions.

Horwood Publishing.

[29] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets

for Machine Learning on Graphs. In Advances in Neural Information Processing

Systems, Vol. 33. 22118–22133. https://proceedings.neurips.cc/paper_files/paper/

2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf

[30] Keke Huang, Wencai Cao, Hoang Ta, Xiaokui Xiao, and Pietro Liò. 2024. Op-

timizing Polynomial Graph Filters: A Novel Adaptive Krylov Subspace Ap-

proach. In Proceedings of the ACM Web Conference 2024 (Singapore, Singa-

pore) (WWW ’24). Association for Computing Machinery, New York, NY, USA,

1057–1068. https://doi.org/10.1145/3589334.3645705

[31] Keke Huang, Yu Guang Wang, Ming Li, and Pietro Lio. 2024. How Univer-

sal Polynomial Bases Enhance Spectral Graph Neural Networks: Heterophily,

Over-smoothing, and Over-squashing. In Forty-first International Conference

on Machine Learning. https://openreview.net/forum?id=Z2LH6Va7L2

[32] Kafetzis Ioannis, Moysis Lazaros, and Volos Christos. 2023. Assessing the chaos

strength of Taylor approximations of the sine chaotic map. Nonlinear Dynamics

111 (2023), 2755–2778. https://doi.org/10.1007/s11071-022-07929-y

[33] E. Stine James and J. Schulte Michael. 1999. The Symmetric Table Addition

Method for Accurate Function Approximation. Journal of VLSI signal processing

systems for signal, image and video technology 21 (1999), 167–177. https://doi.

org/10.1023/A:1008004523235

[34] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-

mization. https://doi.org/10.48550/ARXIV.1412.6980

[35] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification

with Graph Convolutional Networks. In International Conference on Learning

Representations. https://openreview.net/forum?id=SJU4ayYgl

[36] B. Lee and N. Burgess. 2003. Some results on Taylor-series function approxima-

tion on FPGA. In The Thrity-Seventh Asilomar Conference on Signals, Systems

and Computers, 2003, Vol. 2. 2198–2202. https://doi.org/10.1109/ACSSC.2003.

1292370

[37] Runlin Lei, Zhen Wang, Yaliang Li, Bolin Ding, and Zhewei Wei. 2022. EvenNet:

Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural Networks.

In Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed,

A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates,

Inc., 4694–4706. https://openreview.net/forum?id=SPoiDLr3WE7

[38] Bingheng Li, Erlin Pan, and Zhao Kang. 2024. PC-Conv: Unifying Homophily

and Heterophily with Two-Fold Filtering. Proceedings of the AAAI Conference

on Artificial Intelligence 38, 12 (Mar. 2024), 13437–13445. https://doi.org/10.

1609/aaai.v38i12.29246

[39] Guoming Li, Jian Yang, Shangsong Liang, and Dongsheng Luo. 2024. Spectral

GNN via Two-dimensional (2-D) Graph Convolution. arXiv:2404.04559 [cs.LG]

[40] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and

Weining Qian. 2022. Finding Global Homophily in Graph Neural NetworksWhen

Meeting Heterophily. In Proceedings of the 39th International Conference on

9

https://openreview.net/forum?id=-qh0M9XWxnv
https://openreview.net/forum?id=0pdSt3oyJa1
https://openreview.net/forum?id=0pdSt3oyJa1
https://arxiv.org/abs/2302.05631
https://doi.org/10.2307/3609365
https://doi.org/10.2307/3609365
https://doi.org/10.1145/3637528.3671566
https://doi.org/10.1109/SIPS.2009.5336225
https://proceedings.mlr.press/v119/chen20v.html
https://openreview.net/forum?id=H1g0Z3A9Fm
https://openreview.net/forum?id=n6jl7fLxrP
https://doi.org//10.1090/cbms/092
https://doi.org/10.1109/TSP.2002.804079
https://doi.org/10.1109/TSP.2002.804079
https://doi.org/10.1145/3340531.3411903
https://doi.org/10.1145/3340531.3411903
https://doi.org/10.48550/ARXIV.1903.02428
https://doi.org/10.1109/ISCAS.1999.780017
https://doi.org/10.1109/ISCAS.1999.780017
https://doi.org/10.1145/3543507.3583268
https://doi.org/10.1145/3539597.3570377
https://doi.org/10.1145/3539597.3570377
https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=H1gL-2A9Ym
https://arxiv.org/abs/2401.09769
https://arxiv.org/abs/2401.09769
https://doi.org/10.1109/TASSP.1975.1162707
https://doi.org/10.1109/TASSP.1975.1162707
https://doi.org/10.1109/ICCCAS.2008.4657886
https://doi.org/10.1109/ICCCAS.2008.4657886
https://doi.org/10.1145/3580305.3599275
https://proceedings.mlr.press/v202/guo23i.html
https://proceedings.mlr.press/v202/guo23i.html
https://openreview.net/forum?id=WigDnV-_Gq
https://openreview.net/forum?id=WigDnV-_Gq
https://openreview.net/forum?id=jxPJ4QA0KAb
https://openreview.net/forum?id=jxPJ4QA0KAb
https://doi.org/10.48550/ARXIV.2002.02126
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://doi.org/10.1145/3589334.3645705
https://openreview.net/forum?id=Z2LH6Va7L2
https://doi.org/10.1007/s11071-022-07929-y
https://doi.org/10.1023/A:1008004523235
https://doi.org/10.1023/A:1008004523235
https://doi.org/10.48550/ARXIV.1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1109/ACSSC.2003.1292370
https://doi.org/10.1109/ACSSC.2003.1292370
https://openreview.net/forum?id=SPoiDLr3WE7
https://doi.org/10.1609/aaai.v38i12.29246
https://doi.org/10.1609/aaai.v38i12.29246
https://arxiv.org/abs/2404.04559

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Machine Learning (Proceedings of Machine Learning Research, Vol. 162), Kama-

lika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan

Sabato (Eds.). PMLR, 13242–13256. https://proceedings.mlr.press/v162/li22ad.

html

[41] Langzhang Liang, Xiangjing Hu, Zenglin Xu, Zixing Song, and Irwin King. 2023.

Predicting Global Label Relationship Matrix for Graph Neural Networks un-

der Heterophily. In Advances in Neural Information Processing Systems, A. Oh,

T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Cur-

ran Associates, Inc., 10909–10921. https://proceedings.neurips.cc/paper_files/

paper/2023/file/23aa2163dea287441ebebc1295d5b3fc-Paper-Conference.pdf

[42] Ningyi Liao, Siqiang Luo, Xiang Li, and Jieming Shi. 2023. LD2: Scal-

able Heterophilous Graph Neural Network with Decoupled Embeddings. In

Thirty-seventh Conference on Neural Information Processing Systems. https:

//openreview.net/forum?id=7zkFc9TGKz

[43] Ningyi Liao, Dingheng Mo, Siqiang Luo, Xiang Li, and Pengcheng Yin. 2024.

Scalable decoupling graph neural network with feature-oriented optimization.

The VLDB Journal 33, 3 (2024), 667–683.

[44] Derek Lim, Felix Matthew Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi

Gupta, Omkar Prasad Bhalerao, and Ser-Nam Lim. 2021. Large Scale Learn-

ing on Non-Homophilous Graphs: New Benchmarks and Strong Simple Meth-

ods. In Advances in Neural Information Processing Systems, A. Beygelzimer,

Y. Dauphin, P. Liang, and J. Wortman Vaughan (Eds.). https://openreview.net/

forum?id=DfGu8WwT0d

[45] Vijay Lingam, Manan Sharma, Chanakya Ekbote, Rahul Ragesh, Arun Iyer, and

Sundararajan Sellamanickam. 2023. A Piece-Wise Polynomial Filtering Approach

for Graph Neural Networks. In Machine Learning and Knowledge Discovery in

Databases. Springer International Publishing, Cham, 412–452.

[46] Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing

He. 2021. Pick and Choose: A GNN-based Imbalanced Learning Approach

for Fraud Detection. In Proceedings of the Web Conference 2021 (Ljubljana,

Slovenia) (WWW ’21). Association for Computing Machinery, New York, NY,

USA, 3168–3177. https://doi.org/10.1145/3442381.3449989

[47] Kangkang Lu, Yanhua Yu, Hao Fei, Xuan Li, Zixuan Yang, Zirui Guo, Meiyu

Liang, Mengran Yin, and Tat-Seng Chua. 2024. Improving Expressive Power of

Spectral Graph Neural Networks with Eigenvalue Correction. Proceedings of

the AAAI Conference on Artificial Intelligence 38, 13 (Mar. 2024), 14158–14166.

https://doi.org/10.1609/aaai.v38i13.29326

[48] Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang,

Minkai Xu, Xiao-Wen Chang, Doina Precup, Rex Ying, Stan Z. Li, Jian Tang,

Guy Wolf, and Stefanie Jegelka. 2024. The Heterophilic Graph Learning Hand-

book: Benchmarks, Models, Theoretical Analysis, Applications and Challenges.

arXiv:2407.09618 [cs.LG] https://arxiv.org/abs/2407.09618

[49] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan

Zhang, Xiao-Wen Chang, and Doina Precup. 2022. Revisiting Heterophily For

Graph Neural Networks. In Advances in Neural Information Processing Systems,

S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35.

Curran Associates, Inc., 1362–1375. https://proceedings.neurips.cc/paper_files/

paper/2022/file/092359ce5cf60a80e882378944bf1be4-Paper-Conference.pdf

[50] Exl Lukas, J. Mauser Norbert, and Zhang Yong. 2016. Accurate and efficient

computation of nonlocal potentials based on Gaussian-sum approximation. J.

Comput. Phys. 327 (2016), 629–642. https://doi.org/10.1016/j.jcp.2016.09.045

[51] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z. Sheng, Hui

Xiong, and Leman Akoglu. 2023. A Comprehensive Survey on Graph Anomaly

Detection With Deep Learning. IEEE Transactions on Knowledge and Data

Engineering 35, 12 (2023), 12012–12038. https://doi.org/10.1109/TKDE.2021.

3118815

[52] P. Del Moral and A. Niclas. 2018. A Taylor expansion of the square root matrix

function. J. Math. Anal. Appl. 465, 1 (2018), 259–266. https://doi.org/10.1016/j.

jmaa.2018.05.005

[53] Mark Newman. 2010. Networks: An Introduction. Oxford University Press.

https://doi.org/10.1093/acprof:oso/9780199206650.001.0001

[54] Peter Nilsson, Ateeq Ur Rahman Shaik, Rakesh Gangarajaiah, and Erik Hertz.

2014. Hardware implementation of the exponential function using Taylor series.

In 2014 NORCHIP. 1–4. https://doi.org/10.1109/NORCHIP.2014.7004740

[55] Antonio Ortega, Pascal Frossard, Jelena Kovačević, José M. F. Moura, and Pierre

Vandergheynst. 2018. Graph Signal Processing: Overview, Challenges, and

Applications. Proc. IEEE 106, 5 (2018), 808–828. https://doi.org/10.1109/JPROC.

2018.2820126

[56] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang.

2020. Geom-GCN: Geometric Graph Convolutional Networks. In International

Conference on Learning Representations. https://openreview.net/forum?id=

S1e2agrFvS

[57] Chen Peng, Villa Umberto, and Ghattas Omar. 2019. Taylor approximation and

variance reduction for PDE-constrained optimal control under uncertainty. J.

Comput. Phys. 385 (2019), 163–186. https://doi.org/10.1016/j.jcp.2019.01.047

[58] George M Phillips. 2003. Interpolation and approximation by polynomials.

Vol. 14. Springer New York. https://doi.org/10.1007/b97417

[59] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila

Prokhorenkova. 2023. A critical look at the evaluation of GNNs under heterophily:

Are we really making progress?. In The Eleventh International Conference on

Learning Representations. https://openreview.net/forum?id=tJbbQfw-5wv

[60] Hezhe Qiao, Hanghang Tong, Bo An, Irwin King, Charu Aggarwal, and Guansong

Pang. 2024. Deep Graph Anomaly Detection: A Survey and New Perspectives.

arXiv:2409.09957 [cs.LG] https://arxiv.org/abs/2409.09957

[61] Aliaksei Sandryhaila and José M. F. Moura. 2013. Discrete Signal Processing

on Graphs. IEEE Transactions on Signal Processing 61, 7 (2013), 1644–1656.

https://doi.org/10.1109/TSP.2013.2238935

[62] Aliaksei Sandryhaila and José M. F. Moura. 2013. Discrete signal processing

on graphs: Graph filters. In 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing. 6163–6166. https://doi.org/10.1109/ICASSP.2013.

6638849

[63] A. Sharma and A. K. Varma. 1965. Trigonometric interpolation. Duke

Mathematical Journal 32, 2 (1965), 341–357. https://doi.org/10.1215/S0012-7094-

65-03235-7

[64] David I Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre

Vandergheynst. 2013. The emerging field of signal processing on graphs: Extend-

ing high-dimensional data analysis to networks and other irregular domains.

IEEE Signal Processing Magazine 30, 3 (2013), 83–98. https://doi.org/10.1109/

MSP.2012.2235192

[65] Gordon K Smyth. 1998. Polynomial approximation. Encyclopedia of Biostatistics

13 (1998).

[66] Yunchong Song, Chenghu Zhou, XinbingWang, and Zhouhan Lin. 2023. Ordered

GNN: Ordering Message Passing to Deal with Heterophily and Over-smoothing.

In The Eleventh International Conference on Learning Representations. https:

//openreview.net/forum?id=wKPmPBHSnT6

[67] Gilbert Strang. 2006. Linear algebra and its applications. Belmont, CA: Thomson,

Brooks/Cole.

[68] Jiaqi Sun, Lin Zhang, Guangyi Chen, Peng Xu, Kun Zhang, and Yu-

jiu Yang. 2023. Feature Expansion for Graph Neural Networks. In

Proceedings of the 40th International Conference on Machine Learning

(Proceedings of Machine Learning Research, Vol. 202). PMLR, 33156–33176.

[69] Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. 2022. Rethinking Graph Neu-

ral Networks for Anomaly Detection. In Proceedings of the 39th International

Conference on Machine Learning (Proceedings of Machine Learning Research,

Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang

Niu, and Sivan Sabato (Eds.). PMLR, 21076–21089. https://proceedings.mlr.press/

v162/tang22b.html

[70] Qian Tao, ZhenWang,Wenyuan Yu, Yaliang Li, and ZheweiWei. 2023. LON-GNN:

Spectral GNNs with Learnable Orthonormal Basis. arXiv:2303.13750 [cs.LG]

[71] Gabriel Taubin, Tong Zhang, and Gene Golub. 1996. Optimal surface smoothing

as filter design. In ECCV ’96. Springer Berlin Heidelberg, 283–292.

[72] Xiyuan Wang and Muhan Zhang. 2022. How Powerful are Spectral Graph

Neural Networks. In Proceedings of the 39th International Conference on

Machine Learning (Proceedings of Machine Learning Research, Vol. 162), Kama-

lika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and

Sivan Sabato (Eds.). PMLR, 23341–23362. https://proceedings.mlr.press/v162/

wang22am.html

[73] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE

Transactions onNeural Networks and Learning Systems 32, 1 (2021), 4–24. https:

//doi.org/10.1109/TNNLS.2020.2978386

[74] Lianghao Xia, Yong Xu, Chao Huang, Peng Dai, and Liefeng Bo. 2021. Graph

Meta Network for Multi-Behavior Recommendation. In The 44th International

ACM SIGIR Conference on Research and Development in Information Retrieval.

757–766. https://doi.org/10.1145/3404835.3462972

[75] Junjie Xu, Enyan Dai, Dongsheng Luo, Xiang Zhang, and Suhang Wang.

2023. Learning Graph Filters for Spectral GNNs via Newton Interpolation.

arXiv:2310.10064 [cs.LG]

[76] Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, and Kenji Kawaguchi. 2021. Optimiza-

tion of Graph Neural Networks: Implicit Acceleration by Skip Connections and

More Depth. In Proceedings of the 38th International Conference on Machine

Learning (Proceedings of Machine Learning Research, Vol. 139), Marina Meila

and Tong Zhang (Eds.). PMLR, 11592–11602. https://proceedings.mlr.press/v139/

xu21k.html

[77] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. 2016. Revisiting

Semi-Supervised Learning with Graph Embeddings. https://doi.org/10.48550/

ARXIV.1603.08861

[78] Pavel Zahradnik and Miroslav Vlcek. 2012. Perfect Decomposition Narrow-Band

FIR Filter Banks. IEEE Transactions on Circuits and Systems II: Express Briefs

59, 11 (2012), 805–809. https://doi.org/10.1109/TCSII.2012.2218453

[79] Yuan Zhang, Dong Wang, and Yan Zhang. 2019. Neural IR Meets Graph Embed-

ding: A Ranking Model for Product Search. In The World Wide Web Conference

(San Francisco, CA, USA) (WWW ’19). Association for Computing Machinery,

New York, NY, USA, 2390–2400. https://doi.org/10.1145/3308558.3313468

10

https://proceedings.mlr.press/v162/li22ad.html
https://proceedings.mlr.press/v162/li22ad.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/23aa2163dea287441ebebc1295d5b3fc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/23aa2163dea287441ebebc1295d5b3fc-Paper-Conference.pdf
https://openreview.net/forum?id=7zkFc9TGKz
https://openreview.net/forum?id=7zkFc9TGKz
https://openreview.net/forum?id=DfGu8WwT0d
https://openreview.net/forum?id=DfGu8WwT0d
https://doi.org/10.1145/3442381.3449989
https://doi.org/10.1609/aaai.v38i13.29326
https://arxiv.org/abs/2407.09618
https://arxiv.org/abs/2407.09618
https://proceedings.neurips.cc/paper_files/paper/2022/file/092359ce5cf60a80e882378944bf1be4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/092359ce5cf60a80e882378944bf1be4-Paper-Conference.pdf
https://doi.org/10.1016/j.jcp.2016.09.045
https://doi.org/10.1109/TKDE.2021.3118815
https://doi.org/10.1109/TKDE.2021.3118815
https://doi.org/10.1016/j.jmaa.2018.05.005
https://doi.org/10.1016/j.jmaa.2018.05.005
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1109/NORCHIP.2014.7004740
https://doi.org/10.1109/JPROC.2018.2820126
https://doi.org/10.1109/JPROC.2018.2820126
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=S1e2agrFvS
https://doi.org/10.1016/j.jcp.2019.01.047
https://doi.org/10.1007/b97417
https://openreview.net/forum?id=tJbbQfw-5wv
https://arxiv.org/abs/2409.09957
https://arxiv.org/abs/2409.09957
https://doi.org/10.1109/TSP.2013.2238935
https://doi.org/10.1109/ICASSP.2013.6638849
https://doi.org/10.1109/ICASSP.2013.6638849
https://doi.org/10.1215/S0012-7094-65-03235-7
https://doi.org/10.1215/S0012-7094-65-03235-7
https://doi.org/10.1109/MSP.2012.2235192
https://doi.org/10.1109/MSP.2012.2235192
https://openreview.net/forum?id=wKPmPBHSnT6
https://openreview.net/forum?id=wKPmPBHSnT6
https://proceedings.mlr.press/v162/tang22b.html
https://proceedings.mlr.press/v162/tang22b.html
https://arxiv.org/abs/2303.13750
https://proceedings.mlr.press/v162/wang22am.html
https://proceedings.mlr.press/v162/wang22am.html
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1145/3404835.3462972
https://arxiv.org/abs/2310.10064
https://proceedings.mlr.press/v139/xu21k.html
https://proceedings.mlr.press/v139/xu21k.html
https://doi.org/10.48550/ARXIV.1603.08861
https://doi.org/10.48550/ARXIV.1603.08861
https://doi.org/10.1109/TCSII.2012.2218453
https://doi.org/10.1145/3308558.3313468

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Polynomial Selection in Spectral Graph Neural Networks: An Error-Sum of Function Slices Approach Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

[80] Ruijie Zhao and David B. Tay. 2023. Minimax design of two-channel critically

sampled graph QMF banks. Signal Processing 212 (2023), 109129. https://doi.

org/10.1016/j.sigpro.2023.109129

[81] Shuai Zheng, Zhenfeng Zhu, Zhizhe Liu, Youru Li, and Yao Zhao. 2023. Node-

Oriented Spectral Filtering for Graph Neural Networks. IEEE Transactions

on Pattern Analysis and Machine Intelligence 46, 1 (2023), 388–402. https:

//doi.org/10.1109/TPAMI.2023.3324937

[82] Xin Zheng, Yi Wang, Yixin Liu, Ming Li, Miao Zhang, Di Jin, Philip S. Yu, and

Shirui Pan. 2024. Graph Neural Networks for Graphs with Heterophily: A Survey.

arXiv:2202.07082 [cs.LG] https://arxiv.org/abs/2202.07082

[83] Yun Zhiwei and Zhang Wei. 2017. Shtukas and the Taylor expansion of 𝐿-

functions. Annals of Mathematics 186, 3 (2017), 767–911. https://doi.org/10.

4007/annals.2017.186.3.2

[84] Yu Zhou, Haixia Zheng, Xin Huang, Shufeng Hao, Dengao Li, and Jumin Zhao.

2022. Graph Neural Networks: Taxonomy, Advances, and Trends. ACM

Transactions on Intelligent Systems and Technology 13, 1, Article 15 (jan 2022),

54 pages. https://doi.org/10.1145/3495161

[85] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai

Koutra. 2020. BeyondHomophily in GraphNeural Networks: Current Limitations

and Effective Designs. In Advances in Neural Information Processing Systems,

Vol. 33. Curran Associates, Inc., 7793–7804. https://proceedings.neurips.cc/

paper_files/paper/2020/file/58ae23d878a47004366189884c2f8440-Paper.pdf

[86] A. Zygmund and Robert Fefferman. 2003. Trigonometric Series (3 ed.). Cam-

bridge University Press. https://doi.org/10.1017/CBO9781316036587

11

https://doi.org/10.1016/j.sigpro.2023.109129
https://doi.org/10.1016/j.sigpro.2023.109129
https://doi.org/10.1109/TPAMI.2023.3324937
https://doi.org/10.1109/TPAMI.2023.3324937
https://arxiv.org/abs/2202.07082
https://arxiv.org/abs/2202.07082
https://doi.org/10.4007/annals.2017.186.3.2
https://doi.org/10.4007/annals.2017.186.3.2
https://doi.org/10.1145/3495161
https://proceedings.neurips.cc/paper_files/paper/2020/file/58ae23d878a47004366189884c2f8440-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/58ae23d878a47004366189884c2f8440-Paper.pdf
https://doi.org/10.1017/CBO9781316036587

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

A RELATEDWORKS
A.1 Spectral-based graph neural networks
Spectral-based graph neural networks form a unique branch of

GNNs designed to process graph-structured data by applying graph

filters to execute graph convolution (filtering) operations [3]. The

pioneering spectral GNN, SpectralCNN[6], was developed as a gen-

eralization of convolutional neural networks for graph data, using

principles from spectral graph theory. Subsequent refinements, such

as ChebNet[13] and GCN [35], have built upon this foundation.

In recent advancements, the design of spectral GNNs has in-

creasingly focused on incorporating various graph filters, which

are central to their functionality. Polynomial approximation has

become the prevailing approach for constructing these filters, pro-

viding both enhanced performance and operational efficiency. As

a result, many contemporary spectral GNNs are predominantly

defined by polynomial frameworks. For instance, GPRGNN [10] in-

troduces a monomial-based graph filter, interpreted as a generalized

PageRank algorithm. BernNet [13] leverages Bernstein polynomi-

als to create nonnegative graph filters, demonstrating significant

effectiveness in real-world applications. JacobiConv [72] unifies dif-

ferent methods by employing Jacobian polynomials. OptBasis [24]

improves the design of spectral GNNs by introducing filters with

optimal polynomial bases. UniFilter [31] introduces the notion of

universal bases, bridging polynomial filters with graph heterophily.

A.2 Node classification with heterophily
In recent years, heterophilic graphs have drawn considerable in-

terest in the field of graph learning. Unlike traditional homophilic

graphs, where linked nodes usually share the same label, heterophilic

graphs connect nodes with contrasting labels. This unique struc-

ture presents significant challenges for graph neural networks

(GNNs)[20, 48, 82], which are typically designed for homophilic

settings. To address these challenges, a range of GNNs tailored to

heterophily have emerged. For example, H2GCN[85] introduces

specialized mechanisms for embedding nodes in heterophilic envi-

ronments, OrderGNN [66] restructures message-passing to account

for heterophily, and LRGNN [41] leverages a global label relation-

ship matrix to improve performance under heterophily.

Addressing heterophily with spectral GNNs. In most recent,

spectral-based GNNs have shown promise in addressing these chal-

lenges by learning dataset-specific filters that extend beyond the

standard low-pass filters used in conventional GNNs. By doing so,

spectral GNNs demonstrate improved performance in tackling het-

erophilic graphs, achieving superior results in node classification

under heterophily [10, 24–26, 31, 39, 72].

A.3 Graph anomaly detection
Graph-based anomaly detection (GAD) is a specialized task within

anomaly detection, aimed at identifying anomalies within graph-

structured data [51, 60]. The primary goal in GAD is to detect

anomalous nodes (outliers) in the graph by leveraging a limited set

of labeled samples, including both anomalous and normal nodes.

Effectively, GAD can be viewed as a binary node classification task,

where the classes represent anomaly and normalcy. The recent

success of Graph Neural Networks (GNNs) in node classification

has spurred the development of GAD-specialized GNN methods,

such as CARE-GNN [14], PC-GNN [46], and GDN [18], with each

significantly enhancing detection performance.

Spectral GNNs in GAD. Building on the success of GNN-based ap-
proaches for graph anomaly detection (GAD), recent studies leverag-

ing spectral GNNs have yielded promising results. By framing GAD

through graph spectrum analysis, these methods introduce novel

perspectives on the problem. For example, BWGNN [69] utilizes

beta graph wavelets for signal filtering, effectively addressing the

“right-shift” phenomenon in GAD. Similarly, GHRN [17] enhances

GAD by pruning inter-class edges, focusing on high-frequency

graph components to improve detection performance.

B PROOF OF LEMMA 3.4
Proof. We establish this inequality by proving its right-hand

and left-hand sides independently.

Proof of right hand side. For convenience, we define the L2 norm of

a function 𝑔 over the interval [0, 2], denoted by ∥𝑔∥2 , as follows:

∥𝑔∥2 ≜ (
∫

2

0

| |𝑔(𝑥) | |2 𝑑𝑥)
1

2 (17)

Using the norm expression defined earlier, and recalling the expres-

sion for 𝜖 from Eq. 6, we can derive the following inequalities by

applying the Cauchy-Schwarz inequality:

𝜖 = ∥ 𝑓 (𝑥) − T0:𝐷 (𝑥 ; 𝑓)∥22 ,

= ∥
𝑛∑︁
𝑠=1

𝑓𝑠 (𝑥) −
𝑛∑︁
𝑠=1

T0:𝐷 (𝑥 ; 𝑓𝑠)∥22 , (18)

≤ (
𝑛∑︁
𝑠=1

∥ 𝑓𝑠 (𝑥) − T0:𝐷 (𝑥 ; 𝑓𝑠)∥2)2 = (
𝑛∑︁
𝑠=1

√
𝜖𝑠)2 , (19)

which is our right-hand side.

Proof of Left-hand side. To proceed without loss of generality, we

consider 𝑓 to be nonnegative over the entire interval. Recalling the

definition of 𝜖 from Eq. 6, it follows that

𝜖 = ∥T0:𝐷 (𝑥 ; 𝑓) − 𝑓 (𝑥)∥22 ,

= ∥
𝑛∑︁
𝑠=1

𝑓𝑠 (𝑥) −
𝑛∑︁
𝑠=1

T0:𝐷 (𝑥 ; 𝑓𝑠)∥22 , (20)

= 2

∑︁
1≤𝑝≤𝑞≤𝑛

∥

√︄
𝑑𝑒𝑡

���� 𝑓𝑝 (𝑥) 𝑓𝑞 (𝑥)
T0:𝐷 (𝑥 ; 𝑓𝑞) T0:𝐷 (𝑥 ; 𝑓𝑝)

����∥22
+

𝑛∑︁
𝑠=1

√
𝜖𝑠

2

, (21)

≥ 0 +
𝑛∑︁
𝑠=1

√
𝜖𝑠

2

=

𝑛∑︁
𝑠=1

𝜖𝑠 , (22)

which is our left-hand side.

Thus, combining the two parts of the proof above, we confirm

that Lemma 3.4 holds for the continuous form of error. □

Adaptation to the disctrete error form. This is due to the appli-

cability of the Cauchy-Schwarz inequality to the discrete version

of norm inequalities, ensuring that the right-hand side holds for

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Polynomial Selection in Spectral Graph Neural Networks: An Error-Sum of Function Slices Approach Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

the discrete form of the error. The left-hand side, which is based

solely on fundamental non-negative relations, also maintains the

inequality in the discrete setting. Consequently, Lemma 3.4 can be

directly adapted to the discrete scenario.

C PROOF OF THEOREM 3.5
Proof. We establish this inequality by proving its right-hand

and left-hand sides independently.

Proof of right hand side. Recalling the expression of 𝜉 from Eq. 8,

we can derive the following inequality using the submultiplicative

property of Frobenius norm:

𝜉 =∥𝑼𝑑𝑖𝑎𝑔(T0:𝐷 (𝝀; 𝑓) − 𝑓 (𝝀))𝑼𝑇𝑿𝑾 ∥𝐹
≤∥𝑼𝑑𝑖𝑎𝑔(T0:𝐷 (𝝀; 𝑓) − 𝑓 (𝝀))𝑼𝑇 ∥𝐹 · ∥𝑿 ∥𝐹 · ∥𝑾 ∥𝐹 , (23)

≤𝑟 · ∥𝑼𝑑𝑖𝑎𝑔(T0:𝐷 (𝝀; 𝑓) − 𝑓 (𝝀))𝑼𝑇 ∥𝐹 · ∥𝑿 ∥𝐹 . (24)

Note that 𝑼 is orthogonal matrix, which will not influence the

Frobenius norm of any matrices in product operation. Thus, the

inequality above can further be derived as:

𝜉 ≤𝑟 · ∥𝑼𝑑𝑖𝑎𝑔(T0:𝐷 (𝝀; 𝑓) − 𝑓 (𝝀))𝑼𝑇 ∥𝐹 · ∥𝑿 ∥𝐹
=𝑟 · ∥𝑑𝑖𝑎𝑔(T0:𝐷 (𝝀; 𝑓) − 𝑓 (𝝀))∥𝐹 · ∥𝑿 ∥𝐹 , (25)

=𝑟 · 𝜖 · ∥𝑿 ∥𝐹 , (26)

≤𝑟 ∥𝑿 ∥𝐹 (
𝑛∑︁
𝑠=1

√
𝜖𝑠)2 , (27)

which is the right-hand side.

Proof of left hand side. Using the basic of the matrix perturbation

theory, we can derive the following inequality:

𝜉 =∥𝑼𝑑𝑖𝑎𝑔(T0:𝐷 (𝝀; 𝑓) − 𝑓 (𝝀))𝑼𝑇𝑿𝑾 ∥𝐹
≥𝛿𝑿𝛿𝑾 ∥𝑼𝑑𝑖𝑎𝑔(T0:𝐷 (𝝀; 𝑓) − 𝑓 (𝝀))𝑼𝑇 ∥𝐹 , (28)

≥𝛿𝑿𝛿𝑾
𝑛∑︁
𝑠=1

𝜖𝑠 , (29)

which is the left-hand side.

Thus, combining the two parts of the proof above, we confirm

that Theorem 3.5 holds. □

D PROOF OF THEOREM 4.1
Proof. To begin with, note that 𝛼𝑘 and 𝛽𝑘 can be computed as

follows:

𝛼𝑘 =
𝜔

𝜋

∫ 2𝜋
𝜔

0

𝑓 (𝑥) sin(𝑘𝜔𝑥) 𝑑𝑥 ,

𝛽𝑘 =
𝜔

𝜋

∫ 2𝜋
𝜔

0

𝑓 (𝑥) cos(𝑘𝜔𝑥) 𝑑𝑥 . (30)

We alternatively consider such a real function 𝑓 ′ (𝑥) which is defined
as follows:

𝑓 ′ (𝑥) =
{
𝑓 (𝑥) , 𝑥 ∈

[
0, 2𝜋𝜔

]
;

0 , 𝑜𝑡ℎ𝑒𝑟𝑠 .
(31)

Notice that such 𝑓 ′ (𝑥) satisfies the Dirichlet conditions [28], the
Fourier transform of 𝑓 ′ (𝑥) exists according to [21] and is defined as

follows:

𝐹 ′ (Ω) =
∫ +∞

−∞
𝑓 ′ (𝑥)𝑒−𝑖Ω𝑥 𝑑𝑥 ,

=

∫ +∞

−∞
𝑓 ′ (𝑥) [cos(Ω𝑥) − 𝑖 · sin(Ω𝑥)] 𝑑𝑥 , (32)

where Ω denotes the variable in frequency domain, and 𝑖 is the

imaginary unit.

Furthermore, the 𝑓 ′ ∈ 𝐿1 (R𝑛) is an integrable function, making

𝑓 ′ (𝑥) satisfy the Riemann–Lebesgue lemma which is defined as

follows:

TheoremD.1. (Riemann–Lebesgue lemma [4]). Let𝑔 ∈ 𝐿1 (R𝑛)
be an integrable function, and let 𝐺 be the Fourier transform of 𝑔.
Then the 𝐺 vanishes at infinity, which is defined as follows:

lim

|Ω |→∞
|𝐺 (Ω) | = 0 . (33)

Thus, the limit of 𝐹 ′ (Ω) as Ω approaches +∞ equals 0, which is

defined as

lim

Ω→+∞
𝐹 ′ (Ω) = lim

Ω→+∞

[∫ +∞

−∞
𝑓 ′ (𝑥) [cos(Ω𝑥) − 𝑖 · sin(Ω𝑥)] 𝑑𝑥

]
︸ ︷︷ ︸

Formula 1

,

= 0 . (34)

Since the 𝑓 ′ (𝑥) is a real function, the Formula 1 equals 0 if and only

if the following equations hold:

lim

Ω→+∞

∫ +∞

−∞
𝑓 ′ (𝑥) cos(Ω𝑥) 𝑑𝑥 = 0 ,

lim

Ω→+∞

∫ +∞

−∞
𝑓 ′ (𝑥) sin(Ω𝑥) 𝑑𝑥 = 0 . (35)

With combing the definition of 𝑓 ′ (𝑥) in Eq. 31, the Eq. 35 above

can be further derived as follows:

lim

Ω→+∞

∫ 2𝜋
𝜔

0

𝑓 (𝑥) cos(Ω𝑥) 𝑑𝑥 = 0 ,

lim

Ω→+∞

∫ 2𝜋
𝜔

0

𝑓 (𝑥) sin(Ω𝑥) 𝑑𝑥 = 0 . (36)

Finally, with replacing the Ω, Ω → +∞ with 𝑘𝜔 , 𝑘 → +∞ in Eq.

36, and further considering the Eq. 30, we obtain the following

equations:

lim

𝑘→+∞
𝛼𝑘 =

𝜔

𝜋
· lim

𝑘→+∞

∫ 2𝜋
𝜔

0

𝑓 (𝑥) sin(𝑘𝜔𝑥) 𝑑𝑥 = 0 ,

lim

𝑘→+∞
𝛽𝑘 =

𝜔

𝜋
· lim

𝑘→+∞

∫ 2𝜋
𝜔

0

𝑓 (𝑥) cos(𝑘𝜔𝑥) 𝑑𝑥 = 0 , (37)

and the proof is completed. □

E EXPERIMENTAL DETAILS
This section outlines the extensive experimental settings relevant

to the studies conducted in Section 3.2 and Section 5. Experiments

are conducted using an NVIDIA Tesla V100 GPU with 32GB of

memory, running on Ubuntu 20.04 OS and CUDA version 11.8.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

E.1 Experimental details of numerical
validation

Descriptions to target functions. The six target functions em-

ployed in the numerical experiments are defined by the expressions

presented in Table 8.

Randomgraph construction. We construct random graphs using

the Erdős-Rényi model, specifically denoted as 𝐺 (𝑛, 𝑝) [53]. In our

experiments, we set the number of nodes 𝑛 to 50,000 and the edge

creation probability 𝑝 to 0.5.

Random node feature construction. We construct random node

features 𝑿 drawn from a Gaussian distribution. Each entry in the

feature matrix 𝑿 is independently sampled and follows a standard

normal distribution, 𝑁 (0, 1).

Experimental settings. To start, we randomly generate ten pairs

of graphs and features, denoted as (G1,𝑿1), (G2,𝑿2), ..., (G10,𝑿10).
For each pair (G𝑗 ,𝑿 𝑗), we apply six different graph filters, result-

ing in six filtered outputs: 𝒀 1𝑗 , 𝒀 2𝑗 , ..., 𝒀 6𝑗 . This process involves

performing graph convolution on 𝑿 using these target functions.

As discussed in Section 3.2, we pursue two tasks: the first task

involves approximating function slices, while the second focuses

on filter learning.

• Approximation of function slices.We generate 50000 func-

tion slices for each target function based on the eigenvalues of

the graph G𝑗 . Various polynomial bases are employed for the

approximation, with the minimum sum of squared errors (SSE)

serving as the evaluation metric. The final results are averaged

over ten randomly generated graphs.

• Graph filter learning.We implement a one-layer linear spectral

Graph Neural Network (GNN) that operates without a weight

matrix𝑾 , utilizing various polynomial bases. The input consists

of pairs (G𝑗 ,𝑿 𝑗)to approximate the target output 𝒀 . The learned
graph filters are then employed to compute the discrepancies

with the target filters, using the Frobenius norm as the evaluation

metric. Finally, the results are averaged across ten randomly

generated graphs to ensure robustness.

E.2 Experimental details for node classification
Dataset statistics. The statistics of the 13 datasets used in Sec-

tion 5.2 are provided in Tables 9 and 10.

Baseline implementations. We provide code URLs to the pub-

lic implementations for all baselines referenced in this paper. In

particular, for the well-established baselines GCN and ChebNet,

we employ standardized implementations based on previous re-

search [24–26, 30, 39, 68, 72, 81]; for the remaining baselines, we

resort to the publicly released code, accessible via the provided

URLs as below.

• H2GCN: https://github.com/GemsLab/H2GCN

• GloGNN: https://github.com/RecklessRonan/GloGNN

• LINKX: https://github.com/CUAI/Non-Homophily-Large-Scale

• OrderGNN: https://github.com/lumia-group/orderedgnn

• LRGNN: https://github.com/Jinx-byebye/LRGNN

• GCN: https://github.com/ivam-he/ChebNetII

• SGC: https://github.com/ivam-he/ChebNetII

• GCNII: https://github.com/chennnM/GCNII

• ChebNet: https://github.com/ivam-he/ChebNetII

• ACMGCN: https://github.com/SitaoLuan/ACM-GNN

• Specformer: https://github.com/DSL-Lab/Specformer

• GPRGNN: https://github.com/jianhao2016/GPRGNN

• BernNet: https://github.com/ivam-he/BernNet

• ChebNetII: https://github.com/ivam-he/ChebNetII

• OptBasis: https://github.com/yuziGuo/FarOptBasis

• NFGNN: https://github.com/SsGood/NFGNN

• JacobiConv: https://github.com/GraphPKU/JacobiConv

• AdaptKry: https://github.com/kkhuang81/AdaptKry

• UniFilter: https://github.com/kkhuang81/UniFilter

Implementation of TFGNN. As introduced in Section 4.3, TFGNN
is implemented in two distinct configurations to accommodate

graphs of varying sizes. For graphs detailed in Table 3, we utilize

the architecture represented by Eq. (15). For larger graphs listed in

Table 5, we employ the architecture shown in Eq. (16).

The MLP architecture within TFGNN is dataset-specific. For

medium-sized graphs (Cora, Citeseer, Pubmed, Roman-empire, Amazon-

ratings, and Questions), we use a two-layer MLP with 64 hidden

units. In contrast, larger datasets are assigned three-layer MLPs

with varying hidden units: 128 for Gamers and Genius, 256 for

Snap-patents and Pokec, 512 for Ogbn-arxiv, and 1024 for Ogbn-

papers100M.

To ensure experimental fairness, we fix the order of the Trigono-

metric Polynomial Decomposition (TPD), denoted as 𝐷 , to 10, align-

ing with other baselines such as GPRGNN and ChebNetII. We em-

ploy a grid search to optimize the weight decay over {5𝑒 − 1, 5𝑒 −
2, 5𝑒−3, 5𝑒−4, 0}, learning rate over {0.5, 0.1, 0.05, 0.01, 0.005, 0.001},
dropout over {0, 0.2, 0.5, 0.7, 0.9}, 𝜔 within {0.2𝜋, 0.3𝜋, 0.5𝜋, 0.7𝜋},
and 𝐾 from {2, 4, 6, 8, 10, 15, 20}.

Model training and testing. We follow the dataset splitting proto-

cols established in the literature. For the Cora, Citeseer, and Pubmed

datasets, we utilize the established 60%/20%/20% train/val/test

split, which has been widely adopted across numerous studies [24–

26, 30, 31, 38, 39, 68, 72]. For the Roman-empire, Amazon-ratings,

and Questions datasets, we implement a 50%/25%/25% train/val/test

split, aligning with the protocols outlined in their original publi-

cations [59]. This 50%/25%/25% train/val/test split strategy is also

applied to the Gamers, Genius, Snap-patents, and Pokec datasets, as

recommended in [44]. Finally, for Ogbn-arxiv, Ogbn-products, and

Ogbn-papers100M, we adopt the fixed splits defined in the original

OGB dataset paper [29].

Models are trained for a maximum of 1, 000 epochs, with early

stopping implemented after 200 epochs if there is no improvement

in validation accuracy. To handle exceptionally large graphs, we em-

ploy a mini-batch training strategy using batches of 20, 000 nodes.

The optimization process employs the Adam optimizer [34]. For

each dataset, we generate 10 random node splits and perform 10

14

https://github.com/GemsLab/H2GCN
https://github.com/RecklessRonan/GloGNN
https://github.com/CUAI/Non-Homophily-Large-Scale
https://github.com/lumia-group/orderedgnn
https://github.com/Jinx-byebye/LRGNN
https://github.com/ivam-he/ChebNetII
https://github.com/ivam-he/ChebNetII
https://github.com/chennnM/GCNII
https://github.com/ivam-he/ChebNetII
https://github.com/SitaoLuan/ACM-GNN
https://github.com/DSL-Lab/Specformer
https://github.com/jianhao2016/GPRGNN
https://github.com/ivam-he/BernNet
https://github.com/ivam-he/ChebNetII
https://github.com/yuziGuo/FarOptBasis
https://github.com/SsGood/NFGNN
https://github.com/GraphPKU/JacobiConv
https://github.com/kkhuang81/AdaptKry
https://github.com/kkhuang81/UniFilter

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Polynomial Selection in Spectral Graph Neural Networks: An Error-Sum of Function Slices Approach Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Table 8: Mathematical expressions of six target functions.

Functions Expressions

𝑓1 (𝑥) 𝑒−20(𝑥−0.5)
2 + 𝑒−20(𝑥−1.5)2

𝑓2 (𝑥)

𝑒−100(𝑥−0.8)

2 + 𝑒−100(𝑥−1.2)2 + 0.5 · (1 + cos(2𝜋𝑥)) , 𝑥 ∈ [0, 0.5]
𝑒−100(𝑥−0.8)

2 + 𝑒−100(𝑥−1.2)2 , 𝑥 ∈ (0.5, 1.5)
𝑒−100(𝑥−0.8)

2 + 𝑒−100(𝑥−1.2)2 + 0.5 · (1 + cos(2𝜋𝑥)) , 𝑥 ∈ [1.5, 2]
𝑓3 (𝑥) 𝑒−100(𝑥−0.5)

2 + 𝑒−100(𝑥−1.5)2 + 1.5𝑒−50(𝑥−1)
2

𝑓4 (𝑥) 𝑒−100𝑥
2 + 𝑒−100(𝑥−2)2

𝑓5 (𝑥) 1 − 𝑒−10𝑥2

𝑓6 (𝑥) 𝑒−10(𝑥−0.4)
2 + 2𝑒−10(𝑥−1.5)

2

Table 9: Statistics for medium-to-large datasets, with # Edge homo indicating the edge homophily measure from [85].

Cora CiteSeer PubMed Ogbn-arxiv Roman-empire Amazon-ratings Questions Gamers Genius

Nodes 2708 3327 19,717 169,343 22,662 24,492 48,921 168,114 421,961
Edges 5278 4552 44,324 1,157,799 32,927 93,050 153,540 6,797,557 922,868

Features 1433 3703 500 128 300 300 301 7 12

Classes 7 6 5 40 18 5 2 2 2

Edge homo [85] 0.81 0.74 0.80 0.65 0.05 0.38 0.84 0.55 0.62

Table 10: Statistics for exceptionally large datasets. # Edge homo for Ogbn-papers100M is unavailable due to runtime exceedance.

Ogbn-products Ogbn-papers100M Snap-patents Pokec

Nodes 2,449,029 111,059,956 2,923,922 1,632,803

Edges 61,859,140 1,615,685,872 13,975,788 30,622,564

Features 100 128 269 65

Classes 47 172 5 2

Edge homo [85] 0.81 - 0.07 0.45

random initializations for each baseline on these splits. This pro-

cess yields a total of 100 evaluations for each dataset. The reported

results for each baseline represent the average of these 100 evalua-

tions.

E.3 Experimental details for graph anomaly
detection

Dataset statistics. Table 11 presents the statistics of datasets used
in Section 5.3.

Table 11: Statistics of datasets utilized for graph anomaly
detection. # Anomaly represents the rate of abnormal nodes.

YelpChi Amazon T-Finance

Nodes 45,954 11,944 39,357

Edges 3,846,979 4,398,392 21,222,543

Features 32 25 10

Anomaly 14.53% 6.87% 4.58%

Baseline implementations. We provide code URLs to the official

implementations of all baseline models referenced in this paper.

Specifically, for general-purpose spectral GNNs like GPRGNN, Opt-

Basis, AdaptKry, and NFGNN, which are initially introduced as

uniform, decoupled GNN architectures, we implement them in

alignment with the TFGNN variant defined in Eq. (15). Each model

uses a fixed maximum polynomial degree of 10 and a two-layer

MLP with 64 hidden units for feature transformation, consistent

with BWGNN [69]. The GCN baseline is similarly implemented

with a two-layer setup featuring 64 hidden dimensions. For other

baselines, we rely on their official implementations (links provided

below). All models are rebuilt and evaluated in PyG [15] framework

to maintain experimental fairness.

• PC-GNN: https://github.com/PonderLY/PC-GNN

• CARE-GNN: https://github.com/YingtongDou/CARE-GNN

• GDN: https://github.com/blacksingular/wsdm_GDN

• BWGNN: https://github.com/squareRoot3/Rethinking-Anomaly-

Detection

• GHRN: https://github.com/blacksingular/GHRN

• GPRGNN: https://github.com/jianhao2016/GPRGNN

• OptBasis: https://github.com/yuziGuo/FarOptBasis

• AdaptKry: https://github.com/kkhuang81/AdaptKry

• NFGNN: https://github.com/SsGood/NFGNN

Implementation of TFGNN. In pursuit of fairness, TFGNN incor-

porates a decoupled architecture consistent with general-purpose

spectral GNNs, featuring a maximum polynomial degree of 10 and

a two-layer MLP comprising 64 hidden units for feature transfor-

mation. This approach also ensures that parameter fairness is in

15

https://github.com/PonderLY/PC-GNN
https://github.com/YingtongDou/CARE-GNN
https://github.com/blacksingular/wsdm_GDN
https://github.com/squareRoot3/Rethinking-Anomaly-Detection
https://github.com/squareRoot3/Rethinking-Anomaly-Detection
https://github.com/blacksingular/GHRN
https://github.com/jianhao2016/GPRGNN
https://github.com/yuziGuo/FarOptBasis
https://github.com/kkhuang81/AdaptKry
https://github.com/SsGood/NFGNN

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

alignment with BWGNN. For hyperparameter tuning, we adhere

to the previous setups detailed in Appendix E.2.

Training and testing. Following the training protocol established
in the BWGNN paper [69], we maintain a validation-to-test set split

of 1 : 2, and employ training ratios of 1% (across all datasets) and 40%

(additionally for T-Finance). Baselines are trained for 100 epochs

using the Adam optimizer, without early stopping. We report the

test results of the models that achieved the highest Macro-F1 score

on the validation set, averaging results across 10 random seeds to

ensure robustness.

F ADDITIONAL RESULTS
In this section, we present additional results that bolster the ex-

periments detailed in the main text, further substantiating our

conclusions.

F.1 Full numerical experiment results
We present a detailed overview of our numerical experiment results

in Table 12, including those for our TFGNN.

The data illustrates that both the trigonometric polynomial and

TFGNN achieve outstanding performance, underscoring the advan-

tages of our approach. Additionally, these results are consistent with

the node classification outcomes outlined in Section 5.2, validating

the real-world applicability of our analysis.

F.2 Additional ablation studies of 𝐾 and 𝜔
In this section, we present an extended ablation study of the key

hyperparameters 𝐾 and 𝜔 , complementing our findings in Sec-

tion 5.2.3, with Figure 4 illustrating the outcomes.

The figures indicate a trend similar to that highlighted in Sec-

tion 5.2.3, showing that the best-performing values for 𝐾 , 𝜔 , and

the product 𝐾 · 𝜔 typically lie within low ranges.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Polynomial Selection in Spectral Graph Neural Networks: An Error-Sum of Function Slices Approach Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

Table 12: Full numerical experiment results. introduced in Section 3.2. Both trigonometric polynomial and TFGNN are included
for comprehensive evaluations.

Method Slice-wise approximation Filter Learning # Avg

Rank 1

Avg

Rank 2Polynomial GNN 𝑓1 (𝑥) 𝑓2 (𝑥) 𝑓3 (𝑥) 𝑓4 (𝑥) 𝑓5 (𝑥) 𝑓6 (𝑥) 𝑓1 (𝑥) 𝑓2 (𝑥) 𝑓3 (𝑥) 𝑓4 (𝑥) 𝑓5 (𝑥) 𝑓6 (𝑥)
Monomial GPRGNN [10] 139.9 289.1 466.1 398.3 1.83 97.83 167.2 366.4 566.3 468.7 15.91 139.2 6 6

Bernstein BernNet [25] 32.78 247.3 398.5 306.5 0.058 22.92 68.23 313.2 448.2 415.2 7.79 95.84 5 5

Chebyshev ChebNetII [26] 23.45 85.19 244.8 187.2 0.018 13.13 64.22 168.4 402.5 347.5 6.83 86.25 4 4

Jacobian JacobiConv [72] 22.18 80.77 239.2 155.3 0.017 11.82 48.56 95.92 338.1 266.4 5.33 65.13 3 3

Learnable OptBasis [24] 20.75 80.53 225.7 152.7 0.017 11.20 43.44 89.48 289.5 238.1 4.98 61.70 2 2

Trigonometric TFGNN 12.35 23.69 71.13 59.88 0.017 6.52 27.23 65.19 102.3 105.3 4.05 48.08 1 1

2 4 6 8 10 15 20
K

.7

.5

.3

.2

(a) Cora.

2 4 6 8 10 15 20
K

.7

.5

.3

.2

(b) Citeseer.

2 4 6 8 10 15 20
K

.7

.5

.3

.2

(c) Roman.

2 4 6 8 10 15 20
K

.7

.5

.3

.2

(d) Amazon.

2 4 6 8 10 15 20
K

.7

.5

.3

.2

(e) Pubmed

2 4 6 8 10 15 20
K

.7

.5

.3

.2

(f) Ques.

2 4 6 8 10 15 20
K

.7

.5

.3

.2

(g) Arxiv.

2 4 6 8 10 15 20
K

.7

.5

.3

.2

(h) Products.

2 4 6 8 10 15 20
K

.7

.5

.3

.2

(i) Gamers

2 4 6 8 10 15 20
K

.7

.5

.3

.2

(j) Genius

Figure 4: Additional ablation studies on 𝐾 and 𝜔 . Darker shades indicate higher performance values.

17

	Abstract
	1 Introduction
	2 Backgrounds and Preliminaries
	3 Connecting Polynomial Capability with Spectral GNN Efficacy
	3.1 Theoretical insights
	3.2 Numerical validation
	3.3 Summary

	4 The proposed TFGNN
	4.1 Parameter-efficient trigonometric filter
	4.2 Taylor-based parameter decomposition
	4.3 Modeling TFGNN as decoupled paradigm
	4.4 Complexity analysis of TFGNN

	5 Empirical Studies
	5.1 Slice approximation and filter learning
	5.2 Benchmark node classification tasks
	5.3 Application example: graph anomaly detection (GAD)

	6 Conclusions
	References
	A Related Works
	A.1 Spectral-based graph neural networks
	A.2 Node classification with heterophily
	A.3 Graph anomaly detection

	B Proof of Lemma 3.4
	C Proof of Theorem 3.5
	D Proof of Theorem 4.1
	E Experimental Details
	E.1 Experimental details of numerical validation
	E.2 Experimental details for node classification
	E.3 Experimental details for graph anomaly detection

	F Additional Results
	F.1 Full numerical experiment results
	F.2 Additional ablation studies of K and

