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Abstract: Humanoid robots hold significant potential in assisting humans across
diverse environments and tasks thanks to their flexibility and human-like mor-
phology. However, whole-body control remains a significant challenge, given
the high-dimensional action space and the inherent instability of bipedal systems.
Previous works often rely on either precise dynamic models with computation-
ally expensive optimization or task-specific training with extensive reward tuning.
In this work, we introduce SkillBlender, a hierarchical reinforcement learning
framework that first develops a set of primitive skills using pre-designed dense
rewards, and then reuses and blends these skills to accomplish more complex
new tasks, requiring minimal task-specific reward engineering. Our simulated
experiments on two complex loco-manipulation tasks show that our method signifi-
cantly outperforms all baselines, while naturally regularizing behaviors to avoid
reward hacking, resulting in more feasible and human-like movements. Website:
https://sites.google.com/view/wcbm-skillblender/.
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1 Introduction

Humanoid robots have long held promise to be seamlessly deployed in our daily lives thanks to their
flexibility and adaptability, enabled by their human-like morphology. This alignment is crucial since
our environments, tasks, and tools are designed around human capabilities [1]. However, controlling
humanoids remains extremely challenging due to the high-dimensional nature of their observation and
action spaces, as well as the complex dynamics inherent in bipedal locomotion [2]. Even seemingly
simple tasks like standing or walking present significant research challenges [1, 3].

Due to the sheer complexity of such problems, previous works focused on building dynamic models
for model predictive control (MPC) [4, 5], which have shown robust performance on humanoid
locomotion. However, these methods require highly accurate dynamic models tailored to each
robot’s embodiment, along with time-intensive optimization, limiting their scalability across different
environments. Recent model-free reinforcement learning (RL) methods [6, 7, 8, 9, 10, 11] have made
significant strides in agile humanoid whole-body control, benefiting from highly parallel simulation
training [12, 13]. Nonetheless, those works often require task-specific training with labor-intensive
reward engineering to balance terms like gait, contact, curiosity, etc. [6, 7, 8, 14], limiting their
scalability to diverse real-world tasks.

In this work, we propose SkillBlender, to tackle the humanoid whole-body control problem by
leveraging a pretrain-then-blend paradigm. Our approach leverages hierarchical reinforcement
learning, where primitive expert skills are first pretrained using goal-conditioned RL. These skills
are task-agnostic, reusable, and physically interpretable. Then for each specific high-level task, we
train a high-level controller that generates goals for the low-level skills, as well as per-joint weight
vectors to blend them. The combination of these specialized low-level skills yields more sophisticated
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Figure 1: Framework of our proposed SkillBlender. We first pretrain primitive expert skills that are
task-agnostic, reusable, and physically interpretable, and then reuse and blend these skills to achieve
complex whole-body loco-manipulation tasks given only one or few task-specific reward terms.

behaviors, generalizing their use to broader, more complex tasks. Additionally, this architecture
reduces the need for extensive reward engineering for those high-level tasks, requiring only one or
few task-specific reward terms per task [15, 16].

We evaluate our framework on two challenging loco-manipulation tasks, FarReach and BoxPush.
Our experiments in simulation show that SkillBlender significantly outperforms baselines in terms of
accuracy and feasibility. In addition, our method avoids reward hacking and produces more natural,
task-specific behaviors by leveraging pretrained skills and minimal task-related rewards. Videos are
available on our website: https://sites.google.com/view/wcbm-skillblender/.

2 Related Works

Humanoid Whole-Body Control. Humanoid whole-body control remains extremely difficult due to
its high dimensionality and unstable bipedal nature. To tackle this problem, previous non-learning-
based methods focused on building dynamic models for MPC [4, 5]. However, these methods require
relatively accurate dynamic modeling for each individual embodiment and require time-consuming
optimization of cost functions. Recent times witnessed significant progress on learning-based methods
leveraging model-free reinforcement learning [6, 7, 8, 9, 10, 11, 17, 18] for their robustness against
model mismatch and uncertainties, and capability of real-time agile motions on legged robots [19, 20].
However, most of them only focused on locomotion or motion mimicking tasks and required lots of
tedious reward tuning on gait, contact, curiosity, etc. on each setting [14]. Compared to those works,
our method neglects the need for tedious reward engineering and only needs one or few task-specific
reward terms for each task to train robust, agile and natural policies.

Hierarchical Reinforcement Learning. Hierarchical Reinforcement Learning (HRL) strategies
have been used in many works to handle the complex temporal dependencies of long-horizon tasks,
which are challenging for conventional RL [21, 22, 23]. HRL has also seen frequent application in
quadruped loco-manipulation [24, 25, 26] and physics-based animation [27, 28, 29, 30, 31, 32, 33].
Recently [1, 3] have also shown promising results of HRL on humanoid whole-body control. However,
those methods only consider one kind of low-level policy (mimicking or reaching) instead of multiple
reusable skills which are more structural for complex whole-body loco-manipulation tasks. Compared
to MCP [28] or ASE [30] which consider multiple skills, our method’s low-level skills are physically
interpretable, which are specialized and generally useful, allowing them to be reused for diverse task
and motion planning (TAMP) objectives.
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3 Method

3.1 Problem Formulation

We formulate our humanoid whole-body control policy learning problem as a goal-conditioned
Markov Decision Process (MDP) M = ⟨S,A, T ,R, γ,G⟩ of state st ∈ S , action at ∈ A, transition
function T , reward rt ∈ R, discount factor γ, and task goal g ∈ G. The objective is to maximize the
expected return E [

∑
t γ

trt] by finding an optimal policy π∗(at|gt, st).

In our hierarchical pipeline, we divide policies into low-level skills {πL(at,i|gt,i, st,i}) that output
humanoid actions based on (sub)goals and states, and a high-level controller πH({gt,i}, {Wt,i}|gt, st)
that outputs subgoals and weight vectors for low-level policies based on the task goal and state.

3.2 Building Primitive Expert Skills

The core concept of our proposed framework is to reuse and blend primitive expert skills for new
tasks, with only one or few task-specific reward terms. To achieve this, we first pretrain a set of
low-level expert skills as policies {πL} using goal-conditioned RL. These policies take the current
state and task-specific goal as input, and output actions of all joints for whole-body control. In this
work, we consider two primitive expert skills: Locomotion πL,l and Manipulation πL,m. Note
that both expert skills are whole-body policies, which directly actuate all the joints on the humanoid.

For both policies, the input is divided into state st and goal gt, in which st contains the proprioception
of the humanoid (joint position, velocity, etc.). The goal of the Locomotion policy gt,l is specified
as the target linear velocities in the xy (i.e., ground) plane and target yaw rate. For Manipulation,
the goal gt,m is specified as the distance vector between the humanoid’s hand positions and their
respective targets. The output of both policies at ∈ Rd is the whole-body joint target positions, which
are subsequently converted to torques using a PD controller.

The low-level expert policies are trained with dense rewards, including task-related goal-matching
rewards, regularization rewards, gait rewards, and so on. Although reward tuning is required to
train these expert skills, they are modular and reusable, which makes them amenable to blending for
high-level tasks, minimizing the need for further task-specific reward engineering.

3.3 Reusing and Blending Skills for Specific Tasks

Once the expert skills are constructed, they can be reused either as plug-and-play modules for
traditional TAMP, or dynamically blended for novel tasks involving complex whole-body control,
guided solely by task-specific rewards. In this blending process, all expert skills are simultaneously
activated, and their actions are weighted to accomplish challenging tasks beyond the capability of a
single expert policy. Unlike prior multi-expert approaches [24, 28], which apply scalar weights to
each expert, we employ vectorized weights, enabling more versatile and flexible skill blending.

Specifically, as shown in Fig. 1, given the task goal gt and state st, we train a high-level controller
πH that takes gt and st, and outputs the goals gt,l and gt,m for the low-level policies, as well as their
per-joint weight vectors Wt,l,Wt,m ∈ [0, 1]d, which are continuous and match the dimensionality of
the actions. The low-level policies then concatenate the current state st with the subgoals generated
by πH to produce the actions at,l and at,m. The overall action at is the weighted sum of at,l and
at,m, using the weights provided by πH , in the following form:

at = at,l ⊙Wt,l + at,m ⊙Wt,m (1)

where ⊙ is the Hadamard (element-wise) product operation. In the blending process, only the
high-level controller is updated and all the low-level skills remain frozen. Note that similar to [3]
both the high-level policy and low-level skills are algorithmically identical but only differ in the
dimension of input/output and are both trained with end-to-end RL. Notably, the blending process
requires only one or few task-specific reward terms.
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Task FarReach BoxPush
Metrics Acc. ↓ avg(ϕ, θ) ↓ h ↑ τ ↓ E ↓ Acc. ↓ avg(ϕ, θ) ↓ h ↑ τ ↓ E ↓

PPO 0.033 0.241 0.823 28.7 62.2 0.093 0.609 0.789 52.5 92.5
ExBody 0.109 0.089 0.914 18.8 43.5 0.053 0.038 0.897 16.6 12.7

Ours 0.029 0.061 0.915 17.4 43.1 0.010 0.044 0.882 15.9 12.4

Table 1: Quantitative comparison between our method and baseline methods. Our method consistently
and significantly outperforms baseline methods on most metrics.

FarReach

BoxPush

OursPPO ExBody

Figure 2: Qualitative results on different methods.

Task FarReach BoxPush
w/o Locomotion 0.451 0.039

w/o Manipulation 0.232 0.047
Scalar Weights 0.203 0.025

Ours 0.029 0.010

Table 2: Accuracy metrics on ablation methods.

4 Experiments

4.1 Experimental Setup

We conduct our experiments in the IsaacGym simulator [12], using the Unitree H1 humanoid robot.
For all goal-conditioned RL in this work, we employ Proximal Policy Optimization (PPO) [13] to
optimize the policy. All policy networks are implemented as end-to-end MLPs.

We consider two complex whole-body loco-manipulation tasks: FarReach, where the humanoid
must use both hands to reach randomly placed targets (yellow spots) within a 2-meter range, and
BoxPush, where the humanoid needs to move forward to push a box on a table to random target
positions (red spots). The task rewards are straightforward, incorporating only one or two intuitive
task-specific terms, such as the distance between the current hand positions and the target positions.

We compare our method with two baselines: vanilla PPO [13], and ExBody [7] which uses [7] as
the low-level policy and trains in a Puppeteer [3] fashion. All methods are trained with the same
reward function. We consider two kinds of metrics: accuracy (Acc.) as the main metric and a few
proxy metrics [3], measuring task performance and behavior feasibility, respectively. Proxy metrics
include average root roll/pitch angle avg(ϕ, θ), root height h, joint torque τ , and joint energy E.

4.2 Results and Analysis

We show our main results in Table 1, where our method significantly outperforms all baselines across
most metrics, demonstrating its clear advantages with respect to motion accuracy and naturalness.
Qualitative examples are shown in Fig. 2, where our method is more accurate, natural and feasible.

The strength of our framework stems from the structural priors from the low-level expert skills that
provide extra robustness and regularization, effectively reducing the RL search space and mitigating
reward hacking. Compared to vanilla PPO [13], our method not only achieves better accuracy but
also produces more natural and feasible behaviors, as shown by proxy metrics and qualitative results.
Compared to ExBody [7], our method is more accurate, thanks to its more structured and versatile
action space derived from different primitive skills and their dynamic blending.

4.3 Ablation Studies

To further investigate our framework design, we perform ablation studies on various components.
As shown in Table 2, removing either πL,l or πL,m leads to severe performance degradation due to
limited search space. Moreover, we modified our framework to output scalar weights, as in [28, 24],
instead of per-joint weight vectors. The decreased performance highlights that vectorized weights
enable more flexible skill blending than scalar weights, leading to higher accuracy.
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5 Conclusions

In this paper, we introduced SkillBlender, a pretrain-then-blend framework for versatile and robust
humanoid whole-body control. At the core of SkillBlender is to pretrain primitive skills and blend
them for specific tasks, using only one or few task-related reward terms. Extensive experiments
demonstrate the effectiveness of our framework. Moreover, our framework has the potential to
generalize to even more challenging humanoid tasks beyond those explored in this work.
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