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ABSTRACT

Optimization over general non-convex constraint sets poses significant compu-
tational challenges due to their inherent complexity. In this paper, we focus on
optimization problems over non-convex constraint sets that are homeomorphic to a
ball, which encompasses important problem classes such as star-shaped sets that
frequently arise in machine learning and engineering applications. We propose
Hom-PGD™, a fast, learning-based and projection-efficient first-order method that
efficiently solves such optimization problems without requiring expensive projec-
tion or optimization oracles. Our approach leverages an invertible neural network
(INN) to learn the homeomorphism between the non-convex constraint set and a
unit ball, transforming the original problem into an equivalent ball-constrained
optimization problem. This transformation enables fast projection-efficient op-
timization while preserving the fundamental structure of the original problem.
We establish that Hom-PGD™ achieves an O(e~2) convergence rate to obtain an
€ + O(/€mnn )-approximate stationary solution, where €;y,,, denotes the homeomor-
phism learning error. This convergence rate represents a significant improvement
over existing methods for optimization over non-convex sets. Moreover, Hom-
PGD™ maintains a per-iteration computational complexity of O(W), where W
is the number of INN parameters. Extensive numerical experiments, including
chance-constrained optimization popular in power systems, demonstrate that Hom-
PGD™ achieves convergence rates comparable to state-of-the-art methods while
delivering speedups of up to one order of magnitude.

1 INTRODUCTION

We consider a class of non-convex constrained optimization problems where the constraint set is
homeomorphic to a unit ball, also known as ball-homeomorphic (BH) sets. BH sets encompass any
compact convex set and a class of simply-connected non-convex sets, such as star-shaped and geodesic-
convex sets. This problem is fairly general and covers numerous optimization classes, including
standard convex programming (Boyd et al., [2004)), chance-constrained programming (Nemirovski
& Shapirol 2006} [Pagnoncelli et al., 2009), and ¢,,-constrained regression (Xu et al., 2010; Jiang
et al.l [2016). These optimization problems naturally arise in real-world applications in machine
learning and engineering, such as chance-constrained power grid optimization (Pagnoncelli et al.,
2009) and ¢,-constrained adversarial attacks in neural networks (Erdemir et al.l[2021). While convex
constrained optimization has been extensively studied and can be solved efficiently, this paper focuses
on optimization over non-convex constraint sets, which present significant additional challenges.

Optimization over non-convex sets is highly challenging. Even establishing the feasibility of a
general non-convex set can be NP-hard (Park & Boyd, 2017). Furthermore, in many real-time
operational scenarios, one must repeatedly solve the same class of problems with varying parameters,
introducing uncertainty and variability in a setting known as parametric optimization (Grancharova
& Johansen, |2012)). This scenario poses significant computational challenges. Traditional approaches
include convex relaxation (Low, [2014a:b; Diamond et al., 2018; |Anstreicher, [2012)), reformulation-
linearization (Sherali & Adams,2013), and sequential convex approximation (Marks & Wright, [1978};
Beck et al., [2010; [Tran et al., 2013} Scutari et al., 2014). However, these methods are computationally
expensive and do not provide tight guarantees on feasibility or optimality. Recent state-of-the-art
works (Lin et al.| [2022; Kume & Yamada, 2024; Ma et al., 2019) have proposed more efficient
methods under different structural conditions and established convergence guarantees. Nevertheless,
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Table 1: Summary of parameterization or iterative methods for (non)-convex constrained optimization.

Settings . Parameterization . Per-iteration ~ Convergence
Reference | Obj Ctr. Key Assumption Techniques Algorithm Complexity Rate
(Lietal 2023} | N Simplex — — Perturbed RGD O(n) O(e?)
(Chok & Vasill2025) | € Simplex — Trzl ‘;f;‘r”,’rfa’l‘fm Cauchy-Simplex O(n) O(e™)
(Tang & Toh|2024) | (N)C  Polyhedra  Full-rank constraints. RGD + PGD RO + PO N/A
Non-degeneracy. Gauge O(e™)
Liu et al.|(2025a) SC Convex - Ma fn PGD over ball O(n*) +MO  O(loge™™)
NC _ ipping O( 572)
(Barber & Hal2018] | sc NC Small local concavity - PGD PO O(loge™™)
coefficients of constraints.
Certain non-singularity. _ Proximal-point O(e™?)
(Lin et al. {{2022) | we e Initial feasible points. penalty method SCoo @(6*4)
v Contraction and triangle O(e™)
(Barik et al.|[2023) | SIvV v inequality w.r.t. invexity. — Invex PGD Invex PO Olog e’l)
. Invertible . . 9
Theoremm | NC NC Ball-homeomorphic. Neural Network Bisected-PGD O(W)+MO O(e?)

! Abbreviations: C = “convex”, NC = “non-convex”, WC = “weakly convex ”, SC = “strongly convex”, IV = “ invex ”, SIV = “ strongly invex ~ Obj
= “objective”, Ctr = “constraint”, GD = “gradient descent”, PGD = “projected gradient descent”, RGD = “ Riemannian gradient descent”, SCOO =
strongly convex optimization oracle”, MO = “membership oracle”, PO = “Projection oracle”, RO = “Retraction oracle”.

2 Convergence rate: number of iterations for finding an e-approximate stationary point for non-convex optimizations or an e-approximate optimum for
convex optimizations.

3 Complexity: Here W denotes the size of the neural network we use to learn a homeomorphic mapping, referring to Sec. [3] In practice, we choose
W = O(n?) where n is the problem size. Notably, Membership oracle (MO) enjoys the lowest complexity compared with other optimization-based
oracles in general settings (Mhammedi)[2022).

several issues remain, including slower convergence rates, expensive per-iteration oracles, and the
necessity for strong convergence assumptions.

In recent years, reparameterization has emerged as a powerful technique for solving challenging
optimization problems by transforming them into simpler, more tractable forms. The core idea
involves applying invertible/smooth transformations that preserve optimal solutions while mitigating
difficulties such as non-smoothness or complex constraints. This approach has been successfully
applied in semidefinite programming (Cifuentes, |2021), low-rank optimization (Mishra et al.| | 2014;
Ha et al., 2020), and risk minimization (Bah et al.} 2022). Recent works have extended this concept
to optimization over simplices (L1 et al., 2023)), polyhedra (Tang & Toh| [2024), and general compact
convex sets |Liu et al.|(2025a), as well as smoothing non-smooth objectives (Poon & Peyré, [2023)
and modeling discrete data (Davis et al., [2024). However, most applications remain confined to
convex settings (see Table[T) and require well-designed transformations. For more complex non-
convex constraints, recent works (Liang et al.| [2023;2024) propose to use invertible neural networks
(INNs) (Papamakarios et al.,|2021; Dinh et al., | 2014) for reparameterization. However, they focus
on projection in the transformation space for the infeasible neural network predictions, rather than
solving the optimization problems from initial points. We refer readers to Appendix [A]for a more
detailed discussion on reparameterization and non-convex constrained optimization.

Despite the progress made for (non)-convex constrained optimization, a research gap still remains:
“Can we design an efficient approach for optimization over non-convex ball-homeomorphic sets with
fast convergence and low per-iteration cost?”

In this work, we propose a fast first-order, learning-driven and projection-efficient method for solving
parametric optimization over non-convex BH sets. One could refer to Table[I] for a summary and
comparison of existing work and our method. Specifically, we make the following contributions:

> In Sec. 3| we propose Hom-PGD™: (i) it first exploits the BH structure of the constraints by
employing an INN to parameterize the homeomorphism; (ii) it then reformulates the optimization
over BH sets as an equivalent ball-constrained optimization via the learned INN; and (iii) it applies
projection gradient descent to solve the ball-constrained problem and transforms the converged
solution back to obtain the solution for the original problem.

> In Sec. {4 l we establish convergence and complexity analy51s for Hom-PGD™: (i) it finds an
€+ O(y/Enn ) -stationary point in O (e~ ?) iterations, where €,y is the INN learning error. This conver-
gence rate outperforms existing first-order methods for optimization over non-convex sets (see Table
' (ii) it achieves a per-1terat1on complexity of O(WW), where W is the number of INN parameters
and setting W = O(n?) is sufficient to achieve strong performance in practice. It demonstrates the
scalability of our method compared to other methods requiring expensive optimization oracles.
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o> In Sec.[5] through extensive numerical experiments on non-convex problems, including applications
to non-convex quadratic-constrained and chance-constrained optimization with applications in power
grid operation, we demonstrate that Hom-PGD™ outperforms existing approaches in computational
efficiency, achieving both faster convergence and lower per-iteration cost.

2 PROBLEM STATEMENT
We consider the following parametric constrained optimization problem:

min fp(x), s.t x € Ky, P)

where x € R™ is the decision variable and # € © C R? is the input parameters. The objective
function fp(-) is continuous and smooth, and the constraint set g9 C R™ is compact. For ease of
analysis and without loss of generality, we assume the constraint set Kg is defined by inequalitie
as Ko = {x € R" | go(x) < 0} withgo = (91,0, , gm.0), Where g; o : R™ — R are continuous
functions. We further impose the following topological assumption on the constraint set Kg.

Assumption 1. The set Kg is homeomorphic to a unit ball denoted as K9 = B, VO € ©.

Homeomorphism (or homeomorphic mapping) is a bi-continuous bijection from two topological
spaces, guaranteeing the topological equivalence. The non-convex BH constraint is fairly general,
covering a broad class of compact and simply-connected non-convex sets and many real-world
applications in machine learning and engineering as discussed in Sec[T]

Open Issues: While constrained optimization has been extensively studied, approaches for non-
convex sets typically suffer from strong assumptions for convergence, slow convergence rates, or high
per-iteration computational complexity. The central challenge is to develop efficient algorithms that
not only preserve fast convergence but also maintain computational efficiency across both general
convex and a broader range of non-convex programs.

3 HOMEOMORPHIC OPTIMIZATION APPROACH

Motivated by projection-free and reparameterization frameworks to speed up optimization problems
over convex sets, (Li et al} 2023} [Liu et al.| 2025a), we propose to transform the original non-convex
problem through a homeomorphic mapping between the constraint set KCg and a unit ball B, which
preserves the problem structure while simplifying the constrained set.

Definition 3.1 (Homeomorphic Constrained Optimization). Given a homeomorphism 4 : B —
Ko, we define the transformed parametric optimization problem with objective function hg(z) =

fo(1hg(2)) and constraint set as a unit ball B = 1, (Kg) as:
min hg(z), st ze€B. H)

Under Assumption [I} we can transform any optimization problem [P] over a BH set into a ball-
constrained program [H| Notably, under the homeomorphic transformation, the original problem and
its homeomorphic counterpart are equivalent, i.e., there exists a bijective correspondence between
their optimal solution sets P* and H*, where P* = {x | x € arg min{Pl}} and similarly for
H*. Specifically, for any x € P*, there exists a unique z € H* such that x = 1 (z), and vice
versa. Thus, we can solve the reparameterized problem [H] without expensive projection to obtain the
corresponding optimal solution of the original problem [P}

However, finding homeomorphic transformations for general BH constraints remains non-trivial.
Many existing reparameterization methods for optimization problems rely on explicitly constructed
parameterized transformations. For instance, the Hadamard transformation (Li et al.l 2023) enables
mapping from a simplex to a sphere, while the Gauge mapping (Liu et al.| 2025a)) facilitates trans-
formation from a compact convex set to a unit ball. Although these methods successfully construct
specific homeomorphisms, they face several fundamental limitations: (i) Explicit or analytical forms
for homeomorphisms do not exist for more general non-convex BH sets. (ii) The computational

"Equality constraints can be removed without loss of generality, see Appendixmfor discussions.

*In this work, we refer a unit ball 3 to a Euclidean norm ball, i.e., B = {z € R™ : ||z|]> < 1}.

3For example, simply connected compact sets with Jordan curve boundary over R? (Garnett & Marshall,
2005) and contractible manifold with simply connected boundary over R™ for n > 6 (Smale, |1962).
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Figure 1: Hom-PGD™ framework: It applies projection-based GD methods in a transformed
space via an INN-learned homeomorphism ®g(-), where the transformed constraint set 5 is an
approximated ball and hg is the transformed objective. The iterative trajectory is visualized in the
transformed homeomorphic space and also mapped back to the original space for comparison.

overhead required to construct different homeomorphisms for varying constraint sets becomes pro-
hibitive when input parameters change frequently, thereby limiting the practical applicability of these
approaches in real-time operational settings.

To address these limitations, we propose Hom-PGD™, as illustrated in Figure Our method
leverages an invertible neural network (INN), a universal approximator of homeomorphisms, to
transform the original non-convex constrained problem under different input parameters into a simple
ball-constrained problem (Sec. [3.1]and [3.2)). We then apply projected gradient descent (PGD) on
the reformulated ball-constrained problem (HJ. Ideally, under an exact homeomorphism, projection
is performed onto a unit ball with a closed-form expression. In practice, however, the INN-based
homeomorphism provides only an approximation. We then propose a bisection scheme to compute a
non-orthogonal projection onto this approximate ball. Complete algorithmic descriptions are provided
in Algorithms|[Tjand

3.1 HOMEOMORPHIC PARAMETERIZATION USING INVERTIBLE NEURAL NETWORK

We utilize an invertible neural network (INNﬂ to learn the homeomorphic mapping for general
BH sets. An INN is a neural network & : R” — R™ that is invertible, meaning its inverse o1
is well-defined and computationally tractable. Typically, an INN comprises multiple invertible
layers, such as invertible linear layers (Kingma & Dhariwall 2018)), Lipschitz residual layers (Chen
et al., 2019; Behrmann et al., 2019), and coupling layers (Papamakarios et al.| 2021} |Dinh et al.,
2014). Furthermore, to parameterize the input-dependent homeomorphic mapping 14, we adopt the
conditional INN (Winkler et al., 2019; |Lyu et al.| 2022). Given changing input parameters 6, we treat
them as additional inputs and learn augmented homeomorphisms ®g : B — g, where Ko = Pg(B)
denotes the homeomorphic image under specific input parameters 6.

In this work, we select coupling-layer INNs to learn the homeomorphic mapping due to their
computational efficiency and universal approximation capability. Specifically, the coupling layer first
randomly splits the input into two parts as X = [X<y, X>|. Then the forward/inverse mapping is as:

Forward : x' = [x<j, Vg (X<k) © X>k + To (X<i)]

Inverse : x = [X/Sk, (x;k —To (X/Sk)) /e (X’Sk)]

where 74, Tg : R¥ — R™* are regular NNs (e.g., fully-connected), which take input parameter
0 and variables x<;, and output weight and bias for element-wise transformation of x- ;. Notably,
coupling-layer INN can universally approximate any target (differentiable) homeomorphism given suf-
ficient layers (Jin et al.| [2024; Ishikawa et al.}[2022; Lyu et al.| 2022), making it theoretically grounded
for learning the homeomorphic mapping between constraints and a unit ball in our framework.

*For a more comprehensive introduction to INNs, we refer the reader to Appendix



Under review as a conference paper at ICLR 2026

3.2 INN TRAINING FOR OBTAINING THE HOMEOMORPHISM

Next, we introduce the approach for training an INN to approximate the homeomorphism between
the BH constraint and the unit ball. Specifically, we employ the following loss function and maximize
it to train an INN ®¢ following (Liang et al., 2024):

£ (%) =V (26(B)) — P (26(B)) — AL (®p) (1)
where \; and )5 are positive coefficients to balance among the three terms, including:

> Volume term: V (D(B)) is a computable approximation of the log-volume term log V (®g(B)).
> Penalty term: P (®g(5)) is the penalty term for the constraint violation of ®¢(B) C K.

&> Lipschitz term: L (Pg) is a computable approximation of the log-Lipschitz term log L (®g).

For details of computing the three terms and their analysis, we refer readers to Appendix
Intuitively, the first two terms encourage the transformed set to maximize volume while remaining
within the BH constraint set; achieving this yields a target homeomorphism. The third term regularizes
the Lipschitz constant of the homeomorphism, improving optimization performance in the next stage
(with formal convergence analysis in Sec. 4.2).

We then uniformly sample from a unit ball to prepare the training data for the loss function. Further,
to train the INN for learning the homeomorphism under different 8, we uniformly sample input
parameters {6;}; and train the INN following < vazl L(Dg,). After finite-sample training, the
trained INN only approximates the homeomorphism, i.e., they do not perfectly map the constrained
set to the unit ball, or vice versa. However, for our purposes, it suffices that the following validity
condition holds to ensure the correctness of the transformed optimization and the projection-based
algorithm introduced in the next section.

Definition 3.2 (Valid INN). The INN approximated mapping ®g is valid for g if g(0) € Ko, i.c.,
it maps the origin in the unit ball to a feasible point in Cg.

Theoretically, such valid conditions hold for all & € © in the input parameter space, given that it
holds for finite covering training data {8, }~ ; (Liang et al., [2023; [Liang & Chen, [2025). Empirically,
we observe that the validity condition is consistently satisfied across both training and test inputs
in the experimental section, which is not surprising since we try to keep the entire set within the
constraint $g(B) C Ky in loss design, while we only need the center to be feasible to satisfy the
validity conditions. Furthermore, if $o(0) ¢ Kg, we can enforce validity by defining a shifted
INN as @, (-) = $g(-) — Pp(0) + x° given an interior point x° € Kg. Such an interior/feasible
point requirement for worst-case feasibility guarantees aligns with existing works on non-convex
constrained optimization (Barber & Ha, 2018} Lin et al., [2022)).

3.3 HOM-PGD™: PROJECTED GRADIENT DESCENT WITH INN

Algorithm 1 Hom-PGD™" Algorithm 2 BP Operator

Input: initial point zg, valid INN ®4, reformu- Input: input point z, lower bound 5; = 0,

lated optimization problem, and total number  upper bound 5,, = 1, and max iterations B

of iterations K fort = 0to B do

for £ = 0to K do Bisection 5, = (81 + Bu)/2
Compute stepsize Update: if ®o(53,, -z) € Ko then §; « 5,,
Update: Zi+1 = BPB (Zk — O(kVHg(Zk)) else Bu — /Bm

end for end for

Output: x5 = Pg(zx) Output: z = ;- z

In the ideal setting with perfect homeomorphism, we perform standard projected gradient descent
(PGD) to problem (H) where the constrained set is a unit ball. However, in practice, due to the non-
perfect training, the INN homeomorphic mapping is inexact, i.e., g # 14, thereby transforming g
into a non-perfect (and a non—convex ball B = <I>51 (Kg). To clarify the reformulated optimization
problem we address, we denote the reformulated version induced by the INN as follows:

min Hg(z), st ze€B. Hinn)

SHere “non-perfect ball” means the learned ball Bis just an approximate ball, i.e., the shape is close to a unit
ball, thus might exhibit non-convexities (e.g., see Fig. E])
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where Hg = fg o ®g. It is worth noting that the orthogonal projection onto the approximate ball Bis
computationally challenging. To mitigate this, we employ a bisection-based projection operator to
approximate the orthogonal projection in each iteration, formally defined below.

Definition 3.3 (Bisected projection). The bisected projection operator BP 5(z) for z € R" is as
BPj(z) € segment(oz) N OB for z ¢ B and BP 5(z) = z for z € B, where o is the origin.

We note the following properties of the bisected projection operator: (i) The bisected projection
may have multiple solutions when the line segment intersects the boundary 98 at multiple points;
in such cases, the operator returns one of the valid solutions. (ii) The projected solution can be
computed efficiently using bisection methods (Alg. [2) with linear convergence rate (Liang et al,
2023)). Importantly, each bisection iteration requires a simple feasibility check (i.e., membership
oracle queries). (iii) When the trained INN satisfies validity conditions (Def. @), the composition
®g(BP;(z)) guarantees feasibility in Cg for any z € R™.

We then apply the PGD with the bisection projection operator for the INN-transformed problem
(shown in Alg. [T). Finally, we map the obtained converged solution back to the original space to
recover the corresponding solution for the original problem.

4 PERFORMANCE ANALYSIS

In this section, we present a comprehensive performance analysis for Hom-PGD™, including the
landscape analysis, convergence rate, and run-time complexity.

General Assumptions and Notations (with details in Appendix|C.2): For notational simplicity, we
fix the input parameter 6 and omit it, writing f in place of fo(-), and similarly for other functions
and mappings.

* The objective f and each constraint function g; (i € [m]) are Ly o-Lipschitz (Lg, o resp.) continu-
ous, and L p-smooth (L, resp.).

* The homeomorphic mapping ) is invertible, bi-Lipschitz continuous, and has a non-singular,
Lipschitz continuous Jacobian matrix, denoted by Jo.

Given a compact constrained set /C, these global conditions can be relaxed to hold on a compact
domain. See Appendix [C.2]for detailed explanations. We remark that the learned INN ® inherently
satisfies the same assumptions as 1, including bi-Lipschitz continuity and the existence of the
Jacobian, by design of the INN architecture (refer to Appendix [B.3). Moreover, the composited
function H = f o ® and G; = g; o ® for i € [m] inherit the same regularization properties as f and
g; from Lemma[D.T] Specifically, we make further assumptions in the following.

* The learned INN is (I, ug )-bi-Lipschitz continuous and Lg-smooth.

¢ The composited functions H = f o ® and G; = g; o @ (i € [m]) are Ly o-Lipschitz (L, o resp.)
continuous, and L j-smooth (Lg, resp.).

In addition, we make the following assumption related to the learned INN.

Assumption 2 (INN Approximation Error Bound). We assume the INN-approximated homeomorphic
mapping ¢ : R™ — R" has (i) a bounded approximation error:

B(O, 1- 6inn) C (bil(lc) - B(O, 1+ 6inn)v W - (I)” < €inn,

and (ii) a bounded Jacobian approximation error: ||Jy — Jo|| < €nn.

The bounded INN approximation error could be made due to the training manner. Specifically, we
design the INN @ to map the ball 53 closely onto the constraint set K, a behavior enforced by the loss
function in Eq. (T). When ®(B) approximates K well, it closely mimics the true homeomorphism 1.
However, controlling the Jacobian approximation error is a stronger condition, but this assumption is
pivotal in our analysis to bound the KKT solution gap. In practice, since the ground truth mapping
is unavailable, we incorporate Lipschitz regularization (i.e., spectral norm of INN Jacobian) into the
training loss to reduce local sensitivities of ®.

4.1 LANDSCAPE ANALYSIS

In this subsection, we analyze the landscape of [H] under the homeomorphic transformation. The
following lemma establishes a one-to-one correspondence between KKT stationary points (Def. [D.2)
of [P|and [H] where the relevant definitions and the proofs are provided in Appendix [D.3]



Under review as a conference paper at ICLR 2026

Proposition 4.1. Suppose the strict complementary condition holds for both problem[P|and[H] Then
X" is a first-order, second-order and non- degenerate KKT stationary point of [P|if and only if z* is a
corresponding KKT stationary point of. H|where z* = 1p(x*).

The significance of this proposition lies in its ability to establish a fundamental equivalence between
the solution properties of two distinct formulations of an optimization problem. Specifically, it
guarantees that optimality conditions under the Karush-Kuhn-Tucker framework are preserved under
a homeomorphic transformation.

4.2 CONVERGENCE ANALYSIS

Definition 4.2 (Approximate KKT stationary point). A point x* is said to be an e-approximate KKT
stationary point of Eif there exists A" € RY such that

(") + D A Vagi(x")
i=1

where we denote [a]1 := max{a, 0} for a scalar a € R and [a] := ([ai]+)i for a vector a.

<e g4l <6 ZlA*gz )| <e )

The convergence analysis of Hom-PGD™ is as follows, where the proof is deferred to Appendix @

Theorem 1 (Convergence of Hom-PGD™). Let INN ® satisfy Assumption 2| Then Hom-PGD* with
constant step-size o € (0, ﬁ] can find an € + O (\/L HE€inn )—approximate KKT stationary point for

@in O (LHe_Q) iterations.

To understand this result’s significance, we examine it within the broader context of optimization
theory, which presents fundamental difference for convex versus non-convex constraint sets.

For non-convex optimization over convex constraints, established methods like PGD and augmented-
Lagrangian approaches (Beck, 2014; [Zhang et al., 2022; |[Liu et al., 2025a) achieve O(e~?) rates.
Under perfect INN training (€;,,, = 0), our result recovers their result. The additional O (\/L H €inn )
term reflecting INN approximation error, is consistent with optimization under inexact information
(Devolder et al.,[2014; [Barber & Ha, [2018; |Liu et al.| 2025b).

However, optimization over non-convex constraints is significantly more challenging. Existing
PGD-like methods require restrictive assumptions such as small local concavity (Barber & Hal 2018)),
hidden convexity (Barik et al.| [2023} Fatkhullin et al.| |2023)), or specialized manifold structures
(Balashov et al., 2020). Proximal-point-based algorithms have been proposed and analyzed in recent
works (Boob et al.,2019; Ma et al., 2019; [Lin et al., 2022), demonstrating complex1ty bounds of
O(e3) to find a stationary point under non-singular assumptions, and O(e~*) without them.

Our key insight is that the ball-homeomorphic structure bridges this complexity gap. While XC may
be highly non-convex, the homeomorphic mapping enables convex optimization techniques in the
transformed space. This assumption is more natural than existing restrictive conditions and broadly
applicable across machine learning and engineering domains, as discussed in Sec. [T}

Consequently, Theoremlachleves convex-like O(e~?) rates for non-convex constrained problems—a
significant theoretical advance. Additionally, the dependence on Ly = u% L + L Ly is related to
the forward Lipschitz ug (22) of the INN (Lemma[D.I)). Thus, the Lipschitz-regularized INN training
scheme in Sec. can accelerate the convergence rate by a constant factor.

4.3 RUN-TIME COMPLEXITY

We analyze the total runtime complexity of the Hom-PGD™ method. The INN training process incurs
a one-time computational cost that is performed offline and does not impact real-time performance.
During the online phase, when a specific parameter 6 is provided, the pre-trained mapping ®g can
be directly utilized. Detailed discussion on the offline complexity of INN training is included in
Appendix The following discussion focuses on the online complexity of the Hom-PGD™ method.

Oracles. In Hom-PGD™, we will use the following oracles. (i) Zeroth-order and first-order oracle:
Given a point, a zeroth-order oracle returns the value of a function f, whereas a first-order oracle
provides the gradient of f. (ii) Membership oracle: Given a point x € R", this oracle M (x) :=
I(x € K) : R™ — {0, 1} returns 1 if and only if x € K. Generally, the membership oracle is more
efficient than the optimization oracle (Mhammedi, |2022)), particularly for non-convex constraint sets.
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Basic operations in Hom-PGD™. Next, we provide the complexity of computing basic operators
where we denote W as the size of the trained INN (with details in Appendix|B.3).

« Computing BPy(-) : O(W log1/e). The bisected projection can be computed using Alg.[2| As
shown in (Liang et al.}|2023), the method enjoy§ a linear convergence rate. In each iteration, it
requires one forward pass through the INN and O(1) query to the membership oracle for Kg.

» Computing gradient of h: O(W). The gradient can be computed by chain rule Vh(z) =
Jo(2) TV f(x). The Jacobian of ® can be obtained through back propagation with cost O(W).

Total run-time complexity of Hom-PGD™. Given a trained INN ®, the complexity includes:

s Per-iteration complexity. Each iteration requires gradient computation as Vh(z) = Js(z) 'V f(x)

and computation of homeomorphic bisected projection both with complexity O(W).

* Last-step complexity. The final converged solution in the transformed space is mapped back to the
original space via ® with complexity O (W) for a forward propagation.

* Number of iterations (I). Refer to Sec. for the convergence analysis.

In conclusion, the total complexity of Hom-PGD™ equals O(W -1). Empirically, we choose a 3-layer
INN with O(n) width, which exhibits strong performance and efficiency, and leads to complexity
of W = O(n?). This practical complexity is lower than that of second-order methods (with O(n?)
per-iteration cost), highlighting the scalability of Hom-PGD™ to high-dimensional problems.

4.4 EXTENDING BEYOND BALL-HOMEOMORPHIC CONSTRAINT

While this work assumes that the constraint set is homeomorphic to a ball, our framework can, in
principle, be extended to general compact non-convex sets, albeit with a potentially large optimality
gap. (i) For non-BH constrained sets, one can still train an INN to learn an invertible mapping from
the unit ball to a subset of the constraint set that is itself ball-homeomorphic (ideally, the largest
subset via volume maximization) following the loss function in Sec (ii) The Hom-PGD™* (Alg.
[I) can be directly applied to the reformulated problem without any modification under the valid INN
condition. (iii) The convergence rate of Theorem [1|still holds, but the stationary point corresponds to
the restricted problem over the subset. Consequently, the optimality gap with respect to the original
problem cannot be directly quantified.

5 EMPIRICAL STUDY

We conduct extensive experiments to demonstrate the efficiency of Hom-PGD™. (i) We evaluate
Hom-PGD™ on quadratically constrained quadratic programming (QCQP) problems. (ii), we scaling
the QCQP problem dimension and compare Hom-PGD™ with industrial solver on scalability. (iii)
We consider real-world power grid optimization under uncertainty with joint chance constraints
(JCC). (iv) We conduct ablation studies including INN complexity and optimality gaps. Detailed
experimental settings, problem formulation, data generation, baseline description, and supplementary
results are provided in Appendices [Fland [G

Baselines: For non-convex constrained optimization problems, we consider the following baselines
following the state-of-the-art work considering optimization over non-convex constrained sets (Lin
et al., 2022). (i) EPM (Cartis et al., [2011): exact penalty methods iteratively solve subproblems
by adding a penalty for constraint violations to the objective. (ii)) ALM (Sahin et al.,2019; Xie &
Wright, [2019; Birgin et al.l 2003)): augmented Lagrangian methods for problem [P|that alternately
update primal and dual variables for an unconstrained Lagrangian formulation. (iii) PPP (Lin et al.|
2022): proximal-point penalty method iteratively solves subproblems by augmenting the objective
with a proximal term and quadratic penalty terms. (iv) Hom-PGD™ shown in Sec.

5.1 ILLUSTRATIVE EXAMPLES OF HOM-PGD™ FOR NON-CONVEX QCQP

As shown in Fig. in the randomly generated non-convex QCQP instances, our Hom-PGD™
method achieves fast convergence compared to other first-order algorithms. In terms of running
time, compared to methods requiring expensive inner minimization problems such as Lagrangian or
proximal-point methods, we only need bisection to project infeasible solutions back to the transformed
constraint set, reaching linear convergence with low complexity through membership oracle queries.
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Figure 2: Illustrative examples of Hom-PGD™ for solving QCQP, including non-convex BH and
non-BH constraints. The optimality gap is evaluated over the IPOPT solver. One INN is trained to
map the unit ball to the constraint set under different input parameters (with details in Appendix.
. Hom-PGD™ convergence under various inputs is included in the Appendix.

We train one INN to transform the constraint set under different input parameters and deploy it for
optimization, amortizing the homeomorphism construction complexity across different constraints
and reducing online complexity. Furthermore, our method empirically works for non-BH constraint
settings as long as the valid INN conditions hold, despite lacking tight theoretical bounds.

5.2 HoM-PGD™ vs IPOPT IN HIGH-DIMENSIONAL NON-CONVEX QCQP

(n,m) | (10,10)  (10,100)  (10,1000)
IPOPT -1.481 -0.941 -1.377

Hom-PGD* -1.446 -0.927 -1.295
(n,m) | (30,10)  (30,100)  (30,1000)
IPOPT -0.751 -0.829 -0.699

Hom-PGD* -0.737 -0.811 -0.682
(n,m) | (50,10)  (50,100)  (50,1000)
IPOPT -0.665 -0.635 -0.602

Hom-PGD™* -0.634 -0.620 -0.590

Number of Quadratic Constraints
(a) Solution-Time Scaling in m and n. (b) Objective Value Comparison.

Figure 3: Scalability analysis of INN-PGD™ with respect to problem dimensions-number of con-
straints m € {10, 100, 1000} and number of variables n € {10, 30, 50}. The problem dimensions
scale with as O(m - n?). (a) shows average per-instance solving time when scaling m and n, while
(b) shows the average converged objective values.

We scale our method to high-dimensional QCQP problems (which may be non-homeomorphic)
along two axes: the number of decision variables n and the number of quadratic constraints m,
yielding O(n? - m) problem parameters. Hom-PGD* demonstrates superior scaling compared to the
well-optimized second-order industrial solver IPOPT. As m increases by two orders of magnitude (10
— 1000), IPOPT’s per-instance time grows steeply—most notably for n = 50, where runtime jumps
from 3 to 70 seconds. In contrast, Hom-PGD™ exhibits near-constant runtime as m scales and only
mild growth with n, owing to efficient GPU-accelerated INN computation and batched constraint
verification. Solution quality remains competitive: Hom-PGD™ achieves an average objective gap
of 2.9% on average with zero constraint violations. These results demonstrate that Hom-PGD™
maintains efficiency as problem size grows, while IPOPT’s computational cost escalates rapidly,
particularly for large n and m.
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Table 2: Performance comparison over JCC optimal power flow on PGLIB| 200- and 500-bus
systems with 100 and 1000 uncertainty scenarios. (Obj., Vio., Time) denote the objective value,
constraint violation, and inference time (in seconds), respectively. GUROBI is applied to compute the
optimum with equivalent mixed-integer formulations in 3, 600 seconds. All baseline methods
are executed in a maximum of 100 iterations.

Power Gird | 200-bus | 500-bus

Scenarios | 100 | 1000 | 100 | 1000
Metrics | Obj. Vio. Time | Obj. Vio. Time | Obj. Vio. Time | Obj. Vio. Time
GUROBI | 0679 0 95 | failed | 743 0 1259 | failed

EPM 0.690 0.9 76 0.933 1 801 | 8.63 1 109 | 8.65 1 1107
ALM 0.693 0.9 141 | 0.927 1 1452 | 8.66 1 205 | 8.67 1 2061
PPP 0.698 0.9 75 0.927 1 799 | 8.62 1 108 | 8.66 1 1102
Hom-PGD™" | 0.688 0 44 0.768 0 246 | 7.66 0 103 | 8.56 0 396

5.3 NON-CONVEX JCC-OPTIMIZATION FOR POWER GRID OPERATION

Modern power grids face uncertainties from renewable generation and load fluctuations, requiring
operators to determine generator settings that ensure safe operation with high probability. This
problem can be modeled as non-convex joint chance constraints (JCC), which are computationally
prohibitive for large-scale grids when solved exactly with mixed-integer formulations (Pagnoncelli
et al.,[2009). The computational challenge arises from integer variables scaling with scenarios and
numerous operational constraints per scenario (exceeding 2,000 for the 500-bus grid).

Our method demonstrates strong performance on this challenging problem. As shown in Table [2] we
significantly outperform baselines in running time while maintaining approximately 3% optimality
gap compared to GUROBI and achieving exact chance constraint satisfaction. This efficiency stems
from our bisection-based projection algorithm requiring only function evaluation (membership
oracle) without gradient calculations for constraints, unlike other first-order methods that require both
evaluations at each iteration, with computational burden growing linearly with scenarios.

5.4 ABLATION STUDY AND SENSITIVITY ANALYSIS

With details in Appendix [G.2] we conduct the following analysis: (i) INN Complexity and Perfor-
mance, showing the impact of INN complexity (e.g., 1/3/5-layer INN) on approximation error (2)
and its Lipschitz constants, as well as the impacts on the downstream optimization task, showing
that the 3-layer INN balances the approximation capability and parameter complexity. (ii) Bisection
Complexity and Performance, showing that reducing the iterations of the bisection algorithm can
further reduce the per-iteration cost, while it may incur a large optimality gap.

6 CONCLUSION AND LIMITATIONS

In this work, we proposed Hom-PGD™, a fast projection-efficient, learning-based method for opti-
mizing over non-convex constraint sets homeomorphic to a ball. Exploiting the constraint topological
structure, we leverage INN to transform the problem and achieve efficient convergence with low
per-iteration cost, outperforming existing methods both theoretically and empirically across various
benchmarks. Despite the efficiency of Hom-PGD™, several limitations remain for future work:
(i) Learning homeomorphic mappings via INNs introduces significant worst-case theoretical com-
plexity. Developing tighter approximation bounds for learning homeomorphisms could improve
practical efficiency. (ii) Our convergence guarantee yields an € + O(,/€inn)-approximate stationary
point. This square-root dependence for homeomorphism approximation error €;,, may be suboptimal,
and achieving a tighter relationship remains an open question. (iii) While designed for Euclidean
ball-homeomorphic constraints, our framework may extend to manifold-constrained problems with
favorable topology, though formalizing such extensions remains non-trivial.
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LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.

A  RELATED WORK

Non-convex optimization is notoriously challenging and is NP-hard in general. To better understand
its structure and design more efficient algorithms, researchers have explored strong structural assump-
tions that enable convergence, sometimes even to global optima, as well as advanced techniques such
as reparameterization and hidden convexity. We review these developments in the following sections.

A.1 CONDITIONS FOR GLOBAL CONVERGENCE IN NON-CONVEX OPTIMIZATION

Invexity. Invexity (Hanson, |[1981)) is a generalization of convexity, with a property that stationary
points are global optima (Martin, 1985} Ben-Israel & Mond, |1986). The classical theory of invexity
is detailed in (Mishra & Giorgil [2008)). Recent work (Barik et al.l 2023)) develops projected invex
gradient descent algorithms that find global optima for invex programs under certain assumptions.
Additionally, the invex structure has been applied to learning tasks, such as image reconstruction
(Pinilla et al. [2022} Pinilla & Thiyagalingam), [2024), to achieve global optima instead of merely
critical points.

PL/KL conditions. Kurdyka-t.ojasiewicz (KL) condition (Lojasiewicz, |1963a} [Kurdykal, [1998)) is
widely used to analyze local convergence in non-convex minimization. The Polyak-t.ojasiewicz
(PL) condition (Polyakl, |1963; [Lojasiewiczl |1963b)), a global variant of the KL condition, ensures
that stationarity implies optimality and serves as a sufficient condition for global linear convergence
in non-convex problems. This condition has been applied to non-convex, non-smooth optimization
(Bento et al.,|2024) and learning tasks such as training neural networks (Reddi et al., 2016 |Lei et al.,
2019) and stochastic risk minimization (Foster et al., 2018)). Theoretical studies have explored the
relationship between (generalized) PL and other conditions (Karimi et al., 2016]), the calculus of KL
functions (Li & Pong, |2018]), and convergence rates for functions satisfying the KL condition with
varying exponents (Frankel et al., 2015)).

Quasar-convexity. Quasar-convexity (Hardt et al., 2018) is a relaxation of convexity parameterized
by v € (0,1], with v = 1 implying star-convexity. This property arises in various optimization
and learning tasks such as the objectives in, learning linear dynamical systems (Hardt et al., [2018),
positive semidefinite matrix completion (Ge et al.| 2016)), and neural network training tasks (Zhou
et al., 2019; Kleinberg et al., 2018). For quasar-convex objectives, gradient-based methods can
achieve a comparable convergence rate as convex objectives to a global optimum, with convergence
analyses available for standard algorithms (Gower et al.,2021; |Guminov et al.,|2017) and accelerated
methods (Guminov et al., 2017; Hinder et al., 2020; Nesterov et al.,[2018a; [Fu et al., |2023)).

A.2 NON-CONVEX CONSTRAINED OPTIMIZATION

For optimization problems with non-convex constraints, convergence guarantees for standard PGD
algorithms are rarely provided. The existing literature often imposes extremely stringent conditions,
such as assumptions on local concavity coefficients (Barber & Ha, [2018)) or adopts a manifold
optimization framework (Balashov et al.| [2020; Balashov, [2021; [Boumal, [2023).

In fact, convergence analysis for non-convex constrained optimization is generally scarce and fre-
quently relies on inconsistent or overly restrictive assumptions, not just for projection-based algo-
rithms but across other approaches as well. To address these challenges, several works have proposed
alternative methodologies, including regularized subgradient methods (Ma et al.| |2020), inexact
Lagrangian augmented methods (Sahin et al., [2019; [ Xie & Wright, 2019; Birgin et al., 2003 and
proximal-point-based algorithms (Boob et al 2019; Ma et al., 2019; Lin et al.| 2022). Among
these works, the state-of-the-art work [Lin et al.| (2022)) achieves the fastest convergence rate 0(6_3)
for non-convex optimization problems with weakly convex constraints, under some regularization
assumption. We refer readers to this paper for a comprehensive discussion of the assumptions and
convergence analysis in related work.
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A.3 RECENT ADVANCES FOR NON-CONVEX OPTIMIZATION

To reduce the cost and accelerate the convergence for solving (non-)convex constrained optimization,
recent novel projection-free methods and other advanced techniques involve inexact projection, radial
dual formulation, reparameterizing optimization problems, and uncovering hidden convexity.

Inexact projection. In many cases, the projection operator lacks an analytic solution or is compu-
tationally expensive to compute exactly, motivating the analysis of inexact projected methods. For
convex optimization, such methods achieve the same convergence rate as PGD if the cumulative
projection error is bounded (Schmidt et al., 2011} |Patrascu & Necoaral 2018]), with new results
derived under specific settings (Patrascu & Irofti, 2021). For nonconvex objectives with convex
constraints, their convergence has been analyzed in (Birgin et al., 2003; [Wang & Liu, [2006; |Zhang
et al., |2020). Recent advances further generalize inexact projection operators to broader settings
(Ferreira et al.} 2022} |Aguiar et al.| [2023).

Radial duality. Beyond classical projection-free methods, recent advancements have introduced
novel approaches based on gauge and radial duality theory. Radial duality theory for nonnegative
optimization problems (Grimmer, |2024ajb) demonstrates that constrained optimization problems
can be reformulated as unconstrained problems using the gauge of their constraints. This framework
has led to the development of new families of projection-free methods with optimal convergence
guarantees (Liu & Grimmer, 2023)), as well as relaxed conditions (Samakhoana & Grimmer, 2024)
that enable more efficient line search operators for the reformulated unconstrained problems.

Reparameterization. Reparameterizing optimization problems aims to mitigate challenging prop-
erties, such as non-smoothness or non-convexity, via invertible transformations while preserving
equivalent optima. Parameterization is widely used in optimization and learning tasks, including
semi-definite programming (Cifuentes| 2021)), low-rank optimization (Mishra et al., 2014} |Ha et al.,
2020), and risk minimization (Bah et al.| 2022). Recent advancements include parameterizing simplex
(L1 et al.| 2023)) and polyhedron (Tang & Tohl 2024) optimization via Hadamard transformation to
reduce projection complexity, smooth over-parameterization to accelerate non-smooth optimization
algorithms (Poon & Peyré, 2023), parameterizing discrete data as continuous for generative learning
(Davis et al.,2024), and analyzing the optimization landscape under parameterization transformations
in non-convex settings (Levin et al., 2024)).

Hidden convexity. Hidden convexity refers to transformations that reveal the convex structure of non-
convex sets or functions, which has been exploited in problems such as rotation matrix optimization
(Ramachandran et al.| [2024)), non-linear least squares (Drusvyatskiy & Paquette, [2019), revenue
management and inventory control (Chen et al., 2022)), and quadratically constrained quadratic
programming (QCQP) with Toeplitz-Hermitian quadratics (Konar & Sidiropoulos, [2015). For non-
convex stochastic optimization with hidden structure, projected gradient-based algorithms can achieve
the same convergence rate as in convex optimization for both strongly convex (Fatkhullin et al.,[2023)
and convex objectives (Chen et al.,2022) under certain assumptions. Furthermore, QCQP, which is
generally NP-hard, can be solved in polynomial time when hidden convexity is present (Konar &
Sidiropoulos} 2015).
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B LEARNING HOMEOMORPHISM VIA INVERTIBLE NEURAL NETWORKS
In this section, we provide the omitted details in Sec. [2]and

B.1 HANDLING CONSTRAINT SET WITH EQUALITY

We first explain how to handle equality constraints as mentioned in Sec. 2} Consider the constrained
set [Cg as follows

KO = {X | QB(X) = Oagl,e(x) S 07 e 7gm,9(x> S O}
where q = (q1,G2," - , @m.,) With continuous functions ¢; (x) : R™ — R with respect to x and 6.

Suppose the rank of the equality constrained function is constant for all x € Kg, i.e.,
rank (Jq(x)) =7, Vx € Ks.

Then {qg(x) = 0} is of dimension n —r by the Constant-Rank Level Set Theorem (Lee & Leel 2012)).
In other words, we can use a subset of decision variables x; € R™~" and reconstruct full decision
variable [x1, %3] € R" via the equality constraint, where xo = ¢g (x1) and gg ([x1, ¢g (x2)]) = 0.
Such a reconstruction process ensures the feasibility of the equality constraint. Hence, the constraint
Ko can be reformulated as

Ko ={x1 € R"™" | g1,0(x1,Pg(x1)) <0, , gm,6(x1, Pg(x1)) < 0}.
It follows from the reconstruction that
(x1,X2 = ¢g (x2)) € Kg © x1 € Kg.
It is noteworthy that the constant rank assumption for gg(-) holds globally for linear equalities and
locally for nonlinear manifold equalities (see, e.g., (Leel 20105 Boumal, [2023))), which encompasses
a majority of practical optimization applications. Based on the foregoing analysis, this paper assumes
that the constrained set g includes only equality constraints. For a detailed discussion on managing

linear equalities, nonlinear inequalities, and manifold equalities, the reader is referred to Appendix A
and Appendix B in (Liang et al.| 2023)).

B.2 INTRODUCTION OF INVERTIBLE NEURAL NETWORKS

The INN @ : R — R" is a class of neural networks that is a continuous bijection. It is a finite
composition of invertible layers, where each layer is also a homeomorphic mapping with tunable
parameters. In the following, we introduce several commonly used invertible layers for INN, and
refer readers to (Papamakarios et al., 2021) for a more comprehensive introduction. Moreover, denote
H™ the set of homeomorphisms from R™ to R"™.

* Linear layer (Kingma & Dhariwal,|2018)). The invertible linear layer is defined as
Forward: x' = Wx+b, Inverse: x= W '(x' —b)

where W € R"*" b € R” are matrices with tunable entries. Further, by the LU decomposition,
the invertible matrix is designed as W = WpW (Wy + diag(s)), where Wp is a fixed
permutation matrix, Wy, is a lower triangular matrix, Wy is an upper triangular matrix, and
s € R is the diagonal elements. The singular values of the invertible matrix are |s|.

* Coupling layer. The coupling layer first randomly splits the input into two parts as x =
(x<x € R¥, x5, € R"*) and the transformation is defined as

Forward :  xj = X<p, X5 = s (Xop;t (X<z))
Inverse : X< = x’gk,x>k =g ! (x;k;t (X,Sk))

where t : R¥ — R” is an arbitrary DNN and s : R” ™% x R*¥ — R"~* is an invertible map w.r.t.
its first argument given the second, i.e., s(+,y) is invertible for fixed y. One particular choice is the
affine coupling layer (Dinh et al., 2014) if t : RF — R™~* x R*~:

s(a;jb) =a® by + by, forby #0, and b=1t(y) = (v(y),7(y))

where v > 0,7 : R¥ — R"¥ are two learnable NNs, ® denotes the element-wise product. To
keep v > 0, one selection is y(y) = exp ¢(y) where ¢ : R¥ — R"~* is a regular NN and the
operation exp is applied element-wise.
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* Residual layer (Behrmann et al.;2019; |Chen et al., 2019). The invertible residual layer is defined
as
Forward: x' =x+r(x) with Lip(r) <1,
Inverse : via the iteration x(T) =x' —r(x¥) with x© =x/,

where r : R” — R" is an arbitrary NN. The inverse process is computed iteratively through a fixed-
point iteration scheme. Owing to the Lipschitz constraint, the fixed-point iteration is guaranteed to
converge when ¢ — oo, thus ensuring the invertibility of the residual layer. The log-determinant of
this layer can be approximated by the power series (Behrmann et al., 2019).

* Neural ODE layer (Chen et al., [2018}; \Grathwohl et al.,2018). The ODE invertible layer is defined
as

1 -1
Forward : x =x+ / p(x,t)dt, Inverse: x=x' —|—/ p(x',t)dt,
0 0

where (-, ) : R® x R — R" represents a time-dependent vector field. The forward and inverse
processes are both computed based on integration, ensuring that the system is invertible.

* Convex potential layer (Huang et al.| [2020).
Forward : x' = VF(x), Inverse: x=argmin{F(y)—y x'},
y

where F' : R™ — R denotes a strongly convex function. The inverse process is computed by
iteratively solving the optimization problem. Because of the strictly convex property of F’, the
solution for the inverse process is unique.

Remark. In this work, we follow the GLOW architecture (Kingma & Dhariwall 2018)) for INN
design, which consists of a composition of finite affine coupling layers and invertible linear layers.
Specifically, an [-layer INN is defined as

P=qlodpl~t...0p!

where each layer ®/ = fJ o L7 (j € [I]) consists of an invertible linear transformation £7 (x) =
Q,x for some rotation matrix Q; and a coupling layer fcoup Of fixed splitting strategy k = |n/2].

This structure offers several key advantages: (i) it admits closed-form forward and inverse computa-
tions through neural network propagation, (ii) it enables closed-form calculation of Jacobian singular
values, which are essential for computing the log-determinant and Lipschitz constant required in our
INN loss function, and (iii) affine coupling layers are universal approximators for any differentiable
homeomorphism (Teshima et al.| 2020). Given these theoretical and computational advantages, we
adopt the coupling layer-based INN architecture for our framework.

B.3 COMPUTATIONAL ISSUES OF INVERTIBLE NEURAL NETWORKS

In this section, we analyze the computational issues of INNs ®. There are several requirements for
the Invertible Neural Network (INN):

* (i) The forward and inverse mappings of the INN must be efficiently computable, as they are
required to map solutions between the original space and the transformed space within Hom-
PGD™.

* (ii) The Jacobian of the INN must be computable, as it is essential for evaluating the gradient of the
composite function H = f o ® in the Hom-PGD™ algorithm.

* (iii) The singular values of the Jacobian matrix must be accessible, as they are necessary for
estimating terms in the loss function defined in Eq. (7) during the INN training process.

* (iv) The INN should have bounded distortion to ensure the worst-case performance for homeo-
morphic projection. Furthermore, the INN should be a universal approximator of homeomorphic
mappings. This enables it to handle complex transformations involving a broad range of constraints.

Since this paper adopts the coupling-layer-based INN architecture, we focus our analysis specifically
on this type of INN. For conciseness of notations, we fix 8 and omit it. For an [-layer INN denoted as
P=>0lo---0oPio-- 0®! wedenotex) = ®I~! (x/71) forj =2, ,land x' = x. Moreover,
we denote W as the size (number of parameters) of an INN.
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(1) In each affine coupling layer, the forward and inverse could be computed directly by the definition,
ie., forx = (x; € R™ x5 € R™) with ny +ns = n and two arbitrary NNs v > 0, 7 : R"* — R"2,
we have

Forward :  (y1,y2) = (x1,%2 © v (x1) + 7(x1)),

Inverse :  (x1,%2) = (y1, (y2 — 7(y1)) /v (y1))

where / is applied element-wise to vector computation. For the conditional layer, we augment the
input parameters 0 as, 4 (+) and To(-). Therefore, the complexity of computing ® and ®~* is O(W).

3

(ii) The Jacobian of such a composited mapping and its determinant can be expressed as

! l
Jo(x) = H Jos (x7),  |det Jo(x)| = H |det Jgs (x7)].

Jj=1

For each affine coupling layer, the Jacobian can be expressed as

gy [ L., 0
ox g%f diag (v(x1)) |’

where diag(v) returns a diagonal matrix whose diagonal elements are given by the vector v. Ir
follows that the complexity of computing Jo(x) is O(W).

(iii) For each layer, the Jacobian determinant can be expressed as the product of singular values:
[detTs ()] = [T v (Jas ()
i=1

where o1 (-) > ... > o, () > 0 are the sorted singular values of the Jacobian matrix of the mapping
®J(-) at x. By the design of each affine coupling layer, such an invertible transformation has a
closed-form expression of singular values, which is 1 or elements of 7y(x1). Therefore, the complexity
to compute the determinant or singular values of an coupling layer INN is still O(W).

(iv) The bounded distortion property of an INN constructed with affine coupling layers is inherently
guaranteed by its architectural design. Moreover, its universal approximation capability for homeo-
morphic mappings over compact domains has been established in the existing literature. These two
properties are formally stated below.

Proposition B.1. Suppose ® is an INN composed of affine coupling layers. Then:

(i) @ is capable of approximating any n-dimensional differentiable homeomorphism over a compact
domain, given a sufficiently large number of layers (Jin et al.| 2024 |Liang et al.| 2024} Ishikawa
et al.| 2022).

(ii) ® exhibits bounded distortion, where the bound depends on the number of layers (Liang et al.|
2024)).

B.4 UNSUPERVISED INN TRAINING

We denote

H" :={¢ : R" — R" | ¢ is a homeomorphism}, H" (Kg, B) := {¢p € H" | ¢(B) = Ko} .
Moreover, the feasible set H™ (Kg, BB) is equivalent to the set of optimal solutions to the problem
(Liang et al., 2023} 2024):

max log V(1pg(B)) s.t. 1g(B) C Ko 4
poEH"
where V (14 (B)) computes the volume of set 1y (53) and the constraint means that the set 14(B) is
a subset of Kg. While there might be multiple homeomorphisms in the set H"(Kg, B) (e.g., through
composition with rotations over the ball, we get an additional such homeomorphism), we wish to
learn one with minimum Lipschitz constant. To this end, we define the Lipschitz constant of a
mapping ) over a set IC as

L) — wp 122 =]

zzuck [z —ul

(&)
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Intuitively, the minimum Lipschitz homeomorphical (MLH) mapping problem can be reformulated
to the following bi-level problem:

wmi% log L (¢g) s.t. ¥y € arg max{ Problem in @) }. (6)
ee n

We employ the following loss function and maximize it to train an INN ®¢ with [ layers for learning
the homeomorphic mapping € in an unsupervised manner:

L (®e) =V (Dg(B)) — P (Dg(B)) — A2L (Pp) )

where \; and )\, are positive coefficients to balance among the three terms. For ease of analysis of
how to compute the three terms, we denote an [-layer INN as ®g = @é 0...0 CI% o <I>‘1,, where each
layer is either a bi-Lip affine coupling layer or an invertible linear layer.

(i) V (®g(B)) is a computable approximation of the log-volume term log V (@ (B)) in (4) as:

n l
N 1 ,
V (Pg(B)) = 7/ logo; ( Jgi (27) ) dz + log V(B) (8)
i 3 (30, )
where z/ = &} (z'7') forj =2,--- ,l,and 2" € B, a1 (z7) denotes the Jacobian matrix of

®)(-) at 2.
(ii) P (®g(B)) is the penalty term for the constraint violation of ®¢(B) C K¢ in (@) as:

P (24(B)) = /B IReLU (g (¥4 (2).0)), dz. ©)

where ReLU(-) = max{0, -} and g (Pg(z), @) calculates the residual for each inequality constraint
as [g1 (Pg(2),0) ..., 9m (Po(z),0)].

)
9),
(iii) L (®,", Kg) is a computable approximation of the log-Lipschitz term log L (@5, Kg) as:

!
L(®g) = sup ¢ Y logon (Jg, (2/)) (10)
zl€Zg j=1 6

where z/ = @} (27 1) forj =2,-- ,l,and z' € Zg = ;" (Kg).
We have the following bounds for the approximations (Liang et al.,|2023};|2024). The two approxima-
tion terms in (8)) and 1i satisfy log V (®g(B) > V (®g(B)) and log L (g) < L (Py).

The above proposition implies that the loss function in (7) is actually a lower bound to the Lagrangian
of the problem in (6). Therefore, we can maximize the loss function in (7)) to approximate the MLH
mapping under the equivalent reformulation in @) Further, to train one conditional INN & € H"*¢
to learn the 8-dependent MLLH mappings for any 8 € O, we generalize the loss in (7)) to

L(®) =Eg [L (Pg)]

where 8 € O is uniformly sampled. For the INN training, we prepare quasi Monte Carlo (QMC)
samples {zl}f\/:1 C B to approximate the integration in (8) and @i When evaluating the distortion in
1| since we may not know Zg in advance, we sample from Zg = <I>gl (Kg) C B over a unit ball

as {Zz}f\; In each iteration, we sample a batch of collected data and employ the Adam optimizer to
maximize the loss function £(®), similar to training standard NNs (Kingma & Ba, [2014).

B.5 OFFLINE COMPLEXITY TO OBTAIN A TRAINED VALID INN

In this section, we will discuss the theoretical complexity of obtaining a trained, valid INN ®¢ which
approximates g where 14 (B) = Kg for the optimization [P]

Complexity of obtaining a valid INN. To obtain a valid invertible neural network (INN) &g ~ g
given a ball-homeomorphic constrained set Kg, one must incur the following cost.
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* Training. Training a neural network is an unconstrained non-convex optimization, which is NP-hard
to find a global optimum in general. In practice, we use Adam optimizer to maximize the loss
function, similar to the process of training regular NNs (Kingma & Bal [2014)). Typically, the
run-time is poly(¢~!) to find an approximate stationary solution.

o #Samples of B. As discussed in Sec. one will prepare samples {z;} C B to approximate
the integration (8), (9) and (I0) using QMC. The integration error for the QMC approach is

O ((logN )"71 /N ) where N is the number of samples, which is faster in the rate of convergence
than Monte Carlo using a pseudorandom sequence Dick & Pillichshammer| (2010).

* INN size. For the INN size to approximate a bi-continuous n-dimensional homeomorphism to
an error ¢, the theoretical upper bound O(e~") derived from (Jin et al., [2024) is high due to
the worst-case analysis. Meanwhile, the lower bound is an open question so far. Note that the
theoretical bound of INN size is high and grows exponentially with the input dimension n due
to a worst-case analysis. However, in practice, the target homeomorphism may be much simpler,
requiring significantly fewer parameters for the INN to approximate it effectively. For instance,
in our empirical study, we found that approximately three coupling layers with width O(n) are
sufficient to learn the homeomorphic mapping from a non-convex set to a ball.

Remark. Although training the INN offline incurs additional computational cost, this expense is only
one-time and can be amortized over numerous online problem instances. Moreover, modern deep
learning frameworks, such as PyTorch coupled with GPU acceleration, render the training process
efficient (e.g., less than 10 minutes for high-dimensional chance-constrained problems). Once the
INN is appropriately trained, the framework achieves a convergence rate comparable to optimization
over convex constraint sets (O (6’2)) with a low per-iteration cost, significantly improving on

state-of-the-art rates of O (6’4) or O (6’3) under regularity conditions (see Tablefor details).

In practice, it is often necessary to verify whether a constrained set is homeomorphic to a ball. This
question can generally be divided into two cases:

(1) Special cases with known topological properties. Certain sets are naturally homeomorphic to a
ball, such as compact convex sets (Geschke, 2012} |Bredon, |2013)) and star-shaped sets (Appendix
[B:6). In particular, for compact convex sets, an explicit ball-homeomorphic mapping can be directly
constructed using the gauge mapping, as discussed in [Liu et al.| (2025a). For star-shaped sets, a
ball-homeomorphic mapping can also be constructed; however, it may depend on certain unknown
parameters specific to the star-shaped set. As a result, it is often more practical to use an INN to
approximate the homeomorphic mapping. Further details are provided in Appendix [B.6

(ii) General non-convex sets. For general compact non-convex constrained sets, we may apply
topological data analysis (TDA) (Chazal & Michel, 2021} [Otter et al.l[2017) to determine whether the
set satisfies the ball-homeomorphic property. The method is described below.

Verify whether g = B? It is a classical result that a compact, contractible set of dimension
n > 6 with a simply connected boundary is homeomorphic to a ball (Smale| |1962)). Therefore,
to verify whether g = B, one can examine the presence of any “holes” in Kg for 8 € ©. In
practice, persistent homology (Chazal & Michel, [2021} |Otter et al.L|2017), a widely used technique in
topological data analysis, provides an effective means of performing this verification.

» Sample complexity (#samples of Kg). To detect the absence of holes in the set /g (for a fixed )
with diameters smaller than €, the number of required samples is given by the e-covering number
of K |Chazal & Michel (2021), which is of order O(exp(n)).

* Run-time. Given the samples of [Cg, the run-time of persistent homology methods is of order
poly(#Samples) (Otter et al.,[2017).

Remark. While verifying the ball-homeomorphism property through sampling and topological data
analysis can be computationally expensive, explicit verification is often unnecessary in practice.
Many common constraint sets—including convex and star-shaped sets—possess known topological
properties that naturally guarantee ball-homeomorphism.

More generally, our method can be applied whenever the valid INN condition (Definition [3.2) is
satisfied, which requires only that the INN maps the center of the unit ball to a feasible point in the
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constraint set. As discussed in Section[4.4] our theoretical guarantees (feasibility preservation and
convergence rate) hold under this valid INN condition alone.

This makes ball-homeomorphism verification a sufficient but not necessary prerequisite—the valid
INN condition provides a more practical and verifiable criterion that can be easily checked without
expensive topological analysis. In essence, practitioners need only verify that their trained INN
satisfies the valid INN condition, which is straightforward to evaluate through simple feasibility
checking.

B.6 HOMEOMORPHISMS FROM A STAR-SHAPED SET TO A BALL

Definition B.2 (Star-shaped set). A set is called a star-shaped set if it has the property that all interior
and boundary points are visible from a point x° (called star center) in the set. Note that the set of
star centers of a star-shaped set might have multiple and even infinite elements.

For the geometric, analytical, combinatorial and topological properties of star-shaped sets, and their
broad applicability in many mathematical fields, we refer readers to (Hansen et al., [2020) for a
comprehensive discussion and review.

Importantly, a star-shaped set is homeomorphic to a unit ball. The formal statement is given below,
where one could refer to, e.g., Page 60 (Gonnord & Tosel, |1998)) and Theorem 237 of the handbook
Analysis III by Dirk Ferus, for its proof.

Proposition B.3. Open star-shaped sets are diffeomorphic to open balls, where a diffeomorphism is
a smooth homeomorphism.

For a star-shaped set S, using x° as the center, one can construct an explicit homeomorphism ) that
continuously and bijectively sends points in S to points in a unit ball B. Such a homeomorphism is
termed a gauge mapping (Tabas & Zhang|2022) defined below.

Definition B.4 (Gauge mapping). Suppose S is a star-shaped set with star center x°. Let ys(x,x°) =
inf{\ > 0 | x € \(S — x°)} be the Gauge/Minkowski function (Blanchini & Miani, 2008) given a
star center x° € int(S). The gauge mapping v : B — S is defined between a unit ball and a compact
star-shaped set:

wr)= o vaeB i) = BSEZXXY)

Vs (2, x°)

Remark B.5. In|Liu et al.|(2025a), the gauge mapping is constructed as a homeomorphism between
the unit ball and a compact convex set. A key distinction in this setting is that, for compact convex
sets, the gauge mapping consistently maps boundary points of the set to boundary points of the unit
ball. In contrast, when the gauge mapping is applied to a star-shaped set, boundary points of the
set may be mapped to interior points of the unit ball. A visualization of this behavior is provided
in Fig.[d] Nevertheless, the gauge mapping remains a well-defined homeomorphism between the
star-shaped set and the unit ball.

x—x°),VxeS8. (11)
TR

Based on the explicit construction of homeomorphisms between the unit ball and a star-shaped set, the
gauge mapping can be efficiently computed by evaluating the gauge function using a bisection-based
algorithm [Hom-PGD]. Moreover, it is important to note that the above construction depends on the
center of a star-shaped set. However, in general, finding a star center of a star-shaped set is very
challenging and can be NP-hard (O’Rourke & Supowit, [1983; Lee & Lin,|1986). In such cases, one
can utilize an INN to learn the ball-homeomorphic mapping directly as discussed in Sec. [3| avoiding
the need to verify whether the star-shaped set is ball-homeomorphic.

C PRELIMINARIES FOR TECHNICAL PROOF

In this section, we summarize the related basic concepts, notations, assumptions, and fundamental
propositions and lemmas.

C.1 BAsic CONCEPTS

We list the basic concepts used in this paper below.
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Figure 4: Illustration of the gauge mapping between the unit ball and a convex set (left) versus a star-
shaped set (right). In the left figure, where the target set is convex, the gauge mapping consistently
maps boundary points (resp. interior points) of the unit ball to boundary points (resp. interior points)
of the convex set. In contrast, the right figure shows a star-shaped set with star center o; here, the
gauge mapping may map an interior point v € B to a boundary point ¢ (v) of the star-shaped set.

* Distance between a point and a set. For a closed set X € R™ and any x € R", the distance between
x and X is defined as dist(x, X') = infyex [|x — y]|.

* Orthogonal projection. For a closed set X', the orthogonal projection of a point x € R™ onto X’ is
defined as [Ix (x) € argminyex |x — y||.
* Function convexity. For a differentiable function f : X C R™ — R, it is said to be convex if one
of the following holds:
1) Jensen’s inequality. For § with 0 < 6 < 1, we have f(0x+ (1 —0)y) < 0f(x)+(1—6)f(y)
forallx,y € .
2) first-order condition. f(y) > f(x) + (Vf(x),y — x),Vx,y € X.
3) monotone gradient. (Vf(x) — Vf(y))?(x —y) > 0forall x,y € X.
* L-Smoothness. A differentiable function f : X C R™ — R is said be L-smooth if one of the
following holds:
1) zeroth-order condition. f(Ax + (1 — A)y) > Af(x) + (1 = N)f(y) — X1 = N)|ly — x|
forallx,y € X, \ € [0,1].
2) first-order condition. f(y) < f(x)+ (Vf(x),y —x) + Z|ly — x|’ forall x,y € X.
3) Lipschitz gradient. ||V f(y) — Vf(x)|| < L]y — x||, for all x,y.
+ Weak convexity. A function f : R? — R is said to be weakly convex with constant ¢ > 0if the
function f(x) + (£7/2)|x||* is convex.

* Jacobian matrix. Suppose f : R” — R is a function such that each of its first-order partial
derivatives exists on R™. Then the Jacobian matrix of f, denoted J¢ € R™*"™, is defined as

9fi
Je = (55

s A Hessian of a function f : R” — R is defined as V2 f = (ﬂ)ij € R™*™, if its second-order

Ox;0x;
partial derivatives exist. Moreover, for a mapping f : R” — R™ with existed second-order partial
derivatives of each component f; (¢ = 1,2,--- ;m). The Hessian of f is defined as

H(f) = (v2f1’ T 7v2fm)-
C.2 BASIC ASSUMPTIONS AND NOTATIONS

Remark. For conciseness of notation, we fix the input parameter 6 in problem [P](and [H) and omit
it, by which we write ¥, ®, f, g;, h, K to replace ¥, Po, fo(-), gi0(-), ho(-), Ko respectively. In the
following, we make assumptions throughout the paper.

* Assumptions on f and constraints g; (i = 1,2, --- ,m) in problem [P}

1) fis Ly -Lipschitz continuous, i.e., || f(x) — f(y)|| < Lyollx — y|| for any x, y.
2) fin problem|£|is differentiable and L ;-smooth.
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3) f* > —oo where f* := minyex f(X).
4) Each g; is Ly, o-Lipschitz continuous, differentiable, and L, -smooth.
* Assumptions on the homeomorphic mapping ) : R™ — R"™:

1) 4 is differentiable with non-singular Jacobian J(-),
2) b is (K1, k2)-bi-Lipschitz continuous for ko > k1 > 0, i.e.,

Frflu— v < flgp(n) = (v)|| < roflu—v|.
Then the Jacobian matrix, Jy(-) and J,,—1(-) will satisfy
1

1T ()} < h2, V2, [ Tyr () <, Vx

3) ) has L,-Lipschitz continuous Jacobian matrix, i.e.,
[T () = Jy (V)| < Ly [[u = v, Vu,v.
4) 1 has continuous Hessian, i.e.,
Hy(z) = (V9q,--- ,V4h,,)

exists and is continuous.

Remark. Given a compact constrained set /C, we can relax these global assumptions to hold on a
compact domain, including Lipschitz continuity and smoothness. Specifically, we only require f
and 1) to be Lipschitz continuous on a compact set containing the feasible constrained set IC. The
following are detailed explanations. In our convergence analysis of the Hom-PGD™ algorithm, we
only require that the composite function H = f o ® satisfies: (i) L y-smoothness, and (ii) L o-
Lipschitz continuity on the iterates (with both constants depending on the Lipschitz constant of f;
see Lemma . Since each iterate zy, is feasible in the ball 53, the update sz_H =z — aVH (z)
remains in a compact set M (which contains 5 ) for bounded o, and ||V H(z)||. Thus, it suffices for
H to be smooth and Lipschitz continuous over M, meaning that f need only be Lipschitz continuous
on the compact set (M) D K.

In addition, we summarize the commonly used notations in this paper in Table [3]

Table 3: Summary of Notations. The notations shown in the table is for problem [P]and we use the
same type notations for problem [H]

Notation |  Definition
11 2-norm | - |

unit ball centered at 0
L¢o Lipschitz constant of f
Ly L ¢-smooth property of f
. ft-strong convexity of f
K1, K2 bi-Lipschitz constant of 1)
D distortion of ¥, i.e., k2 /K1
Ly Lipschitz constant of J
int(K),0K the interior,boundary of

C.3 BAsIc FACTS

In this section, we list the fundamental facts we will use in this paper.

Proposition C.1 (Properties of Orthogonal Projection, see e.g., (Beck, [2014)). The projection
operator ¢ over a closed and convex set C satisfies the following properties.

1) Optimality condition: Yy € C, (x — Il¢(x),y — H¢(x)) < 0.
2) Non-Expansiveness: |[l¢(x) — e (y)| < |Ix — vl
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3) Monotonicity: (Il¢(x) — ¢ (y),x —y) > 0.

We have the following lemma related to 1) to help with the computation.

Lemma C.2. Suppose Jy, is Ly, Lipschitz, i.e.,
Then, we have

Jy(u) — Jyp(2)|| < Ly|ju — 2z|| for any u and z.

Ly|u —z?

[ (u) = 9 (2) — Jy(z)(u—2)| < 5

, Yu, z.

One can refer to Lemma 1.2.3 (Nesterov et al.,[2018b) for the proof.
Next, we list the following rules for basic computation:
* Jacobian equivalence: J,,-1(x) = J;l(z) for z = v (x).
* Chain rule for computing gradient of h = f o a):
Vi(z) = Jy(2) ' VI(3(2) = Jy(2) V(%)
* Chain rule for computing gradient of f:
Vi(x) = Jy-1(x)"Vh(z) = J,'(z) " Vh(z).

* Chain rule for computing Hessian of h = f o 4:

Vh(n) = Jy(2) V2 F(() () + D0 S (4p(2)) Vs ()
i=1 "

D LANDSCAPE ANALYSIS

In this section, we provide landscape analysis to understand important relationships between problem

[Pland[Hl

D.1 ACTION OF HOMEOMORPHISM ON A CONSTRAINED SET

Recall that the constrained set is £ = {x € R" | g(x) < 0} with g = (g1, g2, - - , gm) Where each
gi (i =1,2,--- ,m) is a continuous function. For problem[H]

B=v"'(K)={z€R" | 9(z) € K} = {z € R" | G(a) := g(¢(2)) < 0}

where G; is non-convex in general. However, B is assumed to be convex (actually a ball set) in this
paper. One can refer to Fig. [5] for an illustration.

Moreover, we assume there are no redundant inequalities in /C, i.e., there is no g; such that K =
{x ] g-i(x) <0} whereg_; = (91, ,9i—1,Ji+1," ' ,gm)- In this case, any feasible point x
satisfying g;(x) = 0 for some i is on the boundary of the set K. Thus, we have

{x €K1 g;(x)=0,gx(x) # 0} [ {{x € K | gr(x) = 0,9;(x) # 0} = 0

forany k # j. Note B = {z | Gi(z) < 0,i = 1,2,---,m} = {z | ||z]|*> < 1}. Moreover,
{Gi(z) < 0,i = 1,2,--- ,m} also has no redundant constraints by the non-singularity of the
Jacobian of 1) and similarly,

{z€B|Gj(z) =0,Gr(z) # 0} [ {z € B|Gi(z) =0} =0

for any j # k. Hence if z € B satisfies G;(z) = 0 for some ¢, it lies on the boundary of B. Clearly,
we have

Gi(z) =|z|> -1 at 2 €0B,Gi(z') =0, (12)
and

VGi(z) = 22,V?Gi(z) =21, at 2z’ € 9B,Gi(z') =0. (13)

where I,, is the identity matrix of n by n.
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Figure 5: Illustration of the action of homeomorphism on a star-shaped set. The left figure shows the
star-shaped constraints of problem[P] Each color of line represents the boundary characterized by a
constraint inequality {a, x < b;} for some i. Under a homeomorphic mapping 1, the constrained set
is transformed to a ball (right figure). Each constraint inequality {G;(z) < 0} (colored differently) is
non-convex in general.

D.2 PROPERTIES OF FUNCTION h = f o

Lemma D.1 (Properties of h = f o 4). Under the general assumptions[C.2} h = f o 4 has the
following properties.

1) his Ly o := Ly ko Lipschitz continuous.
2) his Ly-smooth with Ly, = E%Lf + Ly Ly .
3) If f is convex, then h is L},-weakly convex with £}, = L oL..

Proof. We prove them one by one in the following.

1) We can directly derive from basic definitions:
17 (a) =R (V)| < [If (¢ (0)) = f (% (V)]

< Lol (u) — 4 (v)|
< LjoLy |lu—v].

2) From L ¢-smoothness of f, we have
[Vf(x) = VI < Lellx =yl (14)
Then we derive with x = v(z), v = ¥(y),

IVh(z) = VA ()| = [Ju(2) 9 1(0) = 3y () VF ()
— |17 (V760 = V£ () + Gu(2) = 3y (V)T VS )|

< [[94()T (VS(0) = T )] + |G (2) = T ()T V1 (3)

< raLy|9(2z) =9 (V)| + LyLyo 2z — V]|
< (K3Ls + LyLyo) |z — v

Let L, = k3L ¢ + Lqy L 0. We have the conclusion.

3) One hope to show h(-) + %’7 || - +v||? is a convex function, i.e.,

l 14
h) + 5 IVIP = hiz) + 2 + (Vh(z) + bz, v —2), Va,v.
This is equivalent to show

W) + LIy 2l > hiz) + (Vh(z), v —2), Ve v.
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We drive with x = ¢(z),y = ¥ (v) as follows,

(Vh(z),v —z) = (VIy(z )T f(x),v —z)
= (Vf(x),Jy(2)(v — 2))
= (Vf(x), —(v )+¢(Z)+Jw(z)(v z)) + (Vf(x),%(v) — ¢(2))

S IV -l (v) = (z) — Jy(2)(v — 2)[| + (Vf(x),y — %)
< LyoLylz = v|*+ f(y) = f(x)
= LoLylz = v|* + h(v) — h(z)

where the first inequality is from triangular inequality and the second inequality is from Lemma|C.2]
and the convexity of f.

O
D.3 KKT CONDITIONS OF PROBLEM [Pl AND [H]
First, we recall some basic definitions. Consider a general optimization problem
min f(x),
st gi(x)<0,Vi=1,2,--- ,m; (&)

Q’L(X) S 07VZ = 1723"' , P

The Lagrangian function of problem (GJ is defined as

m

p
‘C(X A, V + Z )\zgz + Z ViQi(X)
i=1

A triple (x, A, v) is said to satisfy the Karush-Kuhn-Tucker (KKT) condition of problem if the
following holds

p

+Z)\ Vgi(x +ZV]Vq]

Qj(x) =0,6i(x) <0, Vj€[pl,i€ [m];
A>0, \gi(x) =0, Vie[m].

(15)

where A (or v) is the dual variable corresponding to inequality (resp. equality) constraints.

Definition D.2 (KKT statlonary point). A point x* is said to be a KKT stationary point of (G) if
there exists X" € R, »* € R” such that (x*, X", v*) satisfies KKT condition (13).

Definition D.3 (Strict complementary slackness). It is said that the strict complementary slackness
condition holds for problem (G)), if

A >0 for g;(x*)=0, Vie[m]

To define the second-order KKT condition for the optimization problems, we recall that the critical
cone in the following.

Definition D.4 (Critical cone). Denote the feasible region of problem as G. Then the critical
cone Cg(x*) at x* of problem (G) is defined as (Nocedal & Wright, [1999

Vg (x*)Tw =0, forallic [p],
we Cg(x*) < { Vg (x)"w=0, forallie A(x*) with A7 >0,
Vg (x)"w >0, forallie A(x*) with \¥ = 0.

Here A* is the Lagrangian multiplier of inequality constraints g; and A(x*) is the index of active
constraints.
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From the definition, the critical cone of problemE] can be written as

Vgi (x*) w=0, forallic A(x*) with X} >0,

eC ) &
W e Gl {ng‘ (x*)"w >0, forallie A(x*) with \* =0.

Moreover, if strict complementary slackness holds, the critical cone is simplified as

Cr (x*) ={w e R" | Vg (x*)"d =0, foralli € A(x*)}.

Suppose strict complementary slackness holds for problem [P]and [H] Then, we can write KKT
conditions for problem [P]and [H]in the following.

First-order KKT conditions on x*. The Lagrangian of [P]is
Lp(x,A) = f(x) + Z Aigi(x).
i=1

The first-order KK T conditions of[Plare: there exists A* such that

V) + > A Vei(x*) =0, (16a)
=1

9i(x*) <0, i=1,2,---.,m (16b)

A*>0, Ngi(x*)=0, i=1,2,---,m. (16¢)

Second-order KKT conditions on x*. It adds the following condition

w ViLp(x*, X)W >0 (17)

for any w satisfying w ' Vg;(x*) = 0 with i € A(x*).

First-order KKT conditions on z*. The Lagrangian of [HJis
Lu(z.v) = hz) + v(||z]> - 1).

The first-order KKT conditions of [H] are: there exists v* such that

Vh(z*) 4+ 2v*z" = 0, (18a)
Iz*)* <1, (18b)
v* >0, v*(||z*]|? — 1) = 0. (18¢)

Second-order KKT condition on z*. It will add the following condition.
d"V2Ly(z*,v*)d >0 (19)
for any d € Cp(z*). Here recall that
R™ if z* € int(B)
C * — ) )
5(z") {{d dTz* =0}, ifz* € B
D.4 RELATIONSHIPS OF KKT STATIONARY POINTS BETWEEN PROBLEM [P]AND [H]

Lemma D.5. Suppose strict complementary slackness holds for both problem|[P|and[H] We have
that x* is a KKT stationary point of [P|if and only if z* is also a KKT stationary point of [H|where

x* = p(x*).

Proof. 1) First, we assume that x* is a KKT stationary point of @ By assumption, there exists A*
such that the KKT condition holds (I6) holds. Then we have

T TVE) + 3 Ay (a) Vi (x) = 0,
=1
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This is equivalent to

Vh(z") + > A VGi(z") =0, (20a)
=1

Gi(z*) <0, i=1,2,---.,m (20b)

A >0, NiGyi(z") =0, i=1,2,---,m. (20¢)

Letv* = 31" | Af. According to the eq. , eq. is actually
Vh(z") +2v*z* = 0.
By assumption, eq. (20b) is equivalent to
2" < 1.

Note that if G;(z*) < 0 for all 7, then \* = 0 and thus v* = 0. In this case, v*(||z*||?>—1) = 0. If z*
makes at least one G;(z*) = 0, then we have ||z*||?> = 1. In this case, we also have v*(||z*||*—1) = 0.

Hence, eq. implies
v* > 0,07 (|22 — 1) = 0.

In conclusion, there exists z*, v* such the KKT condition holds.
2) Now, we assume z*, v* satisfy KKT condition for problem|[H] i.e.,

Vh(z*) 4+ 2v*z* = 0,

Iz*]* <1,

vt >0, V*(||z*||2 —1)=0.

If z* € int(B), then G;(z*) < 0 for all ¢ and v* = 0. In this case, there exists A\* = 0 such that the
KKT condition with eq. (16) of problem[P]holds at x* = 1)(z*), A* = 0.

If z* € OB, then there exists at least one ¢ € {1,2,--- ,m} such that G;(z*) = 0 and v* > 0 from
strict complementary slackness. Denote A = {i : G;(z*) = 0}. Note we define A} = 0ifi ¢ A and
A; = v* /| A|. Then we have z*, A* such that eq. 20|holds which implies x* = 1(z*), A* make the
KKT condition of problem [P]hold.

O
Lemma D.6. Suppose strict complementary slackness condition holds for both problem [P| and

Then x* is a second-order KKT stationary point 0f|E| if and only if z* = 'l,b_l(x*) is also a
second-order KKT stationary point of [H]

Proof. From Lemma there exists A* and v* such that (x*, A*) holds for first-order KKT
condition of |E| if and only if (z*, v*) holds for first-order KKT condition of [Hl Hence, it suffices to
show the equivalence of condition [I9]and [T7}

1) Let’s first suppose x* is a second-order KKT stationary point, i.e., eq. (I7) holds.
Note
V2Lu(z*,v*) = V2h(z*) + 2071,
where I, is identity matrix of size n x n. We just need to show d ' VLy(z*,v*)d > 0 for any
d € Cg(z*). Recall that

V2h(z") = Jy(2*) V2 f(1h(27))p(2") + Z gi» ((2) V9, (2"),
and
V2Gi(z") = Jy(2*) V20i((2) T (2) + > g,i’; (Y(2*))V2Yr(2z"), k=1,2,--- ,m.
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From eq. (I2), note that
V2G(z") = 21,,,Vk € A(x*) N {k : Gr(z*) = 0}.

From Lemma v* =3, Af. Then we have

VLu(z*,v*) = V2h(z*) + zm: NV2Gi(z") (2la)
= Jy(2") TV F(p(27) I (27) + Y Ty (2°) TN V25(3h(27)) I (2)  (21D)
=1
£ 2 ) ) + 35 N ). @lo
=1 0% k=1i=1 " Ox,

From first-order KKT stationarity of [P] i.e.,

(x*) + Z AVgi(x*) =0,
i=1
We have

agz x*) =
8xk Z N s Oxp,

Hence for any d € Cg(z*), we have the second term (21c) is equal to 0.

Now we note it’s trivial that Cx(x)* = Cp(z*) = R" if z* € int(K) where x = 1)(z*). Hence in
this case if d € Cp(z*), we will have J,,(z*)d € Ci(x*)

If x* € OK. Then A(x*) # (). Ford € Cp(z*),i.e.,d"z* = 0, we have
(Jp(z)d) T Vgi(x*) = d " Jy(2") "Vgi(x*) =d " Gi(z*) =2d"z" =0, foriec A(x),

or Jy(z*)d € Cr(x*).

So ford" € Cp(z*), we have the following holds about the first term of V2 Ly (z*, v*).

(Jy (2 )" Vf (3 (27)) Iy (2°) d + (Ty (2 (Z X V2g; (¢ ))) Jy (27)d >0

where the last >’ is from the assumption that x* is the second-order KKT stationary point of
IE Hence, we have d " V2Ly(z*, v*)d > 0 for any d” € Cp(z*), ie., z* = ¥~ '(x*) is also a
second-order KKT stationary point.

2) Let’s suppose z* is a second-order KKT stationary point and show that x* is a second-order KKT
stationary point.

If z* € int(B), the proof is trivial because v* = 0 according to the similar analysis. So we assume
z* € 0B. Define A(z*) = {i : G;(z*) = 0}, and A} = 0 fori ¢ A(z*), A} = v*/|A(z*)| for
i e A(z").

Note for any w € Cy(x*), we have
0=w'Vg(x*) = WTJ;l(Z*)VGi(Z*) = (J;l(z*)w)Tz*, for i € A(x*) = A(z").
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Hence J;}l(z*)w € Cg(z*). Then for any w € C(x*),
w ' ViLlp(x*, A" )W

—w Vif(x")w+w' Z NV2 g (x*)w
i=1

— (3,1 w) T (@) V()T (2)), (2w

O W) Y S () Ve (a) + Y YN g () V()

where the sum of last term of the second *=" is exactly 0 and the last >’ is from the assumption that
z* is a second-order KKT stationary point.

O

Definition D.7 (Non-degenerate KKT stationary point). A second-order KKT point x* of [P]is said
to be non-degenerate if there exists A* such that

dTV2L(x*, A" )d >0

forall 0 # d € Ci(x*). Here the Lagrangian function is
L(x,A) = f(x) + Z Aigi(x).
i=1

Lemma D.8. Suppose strict complementary slackness holds for problem [P|land[H] Then x* is
a non-degenerate KKT point of optimization E] if and only if z* satisfying x* = 1 (z*) is also a
non-degenerate KKT point of problem [H]

Proof. 1) Suppose x* is a non-degenerate KKT stationary point. Note that for d € Cp(z*), we
have Jy(z*)d € Ci(x*) from the proof of Lemma[D.6} Moreover, from Jy;(z*) # 0 we have
Jy(z*)d # 0if and only if d # 0. Then the conclusion is trivial from eq. in the proof of Lemma

2) Now, we suppose z* is a non-degenerate KKT stationary point. It follows from the proof of
Lemma that for any w € Cx(x*), we have J:pl (z*)w € Cp(z*). Hence, the conclusion is also
trivial from the proof of item (2) of Lemma[D.6]

O

E CONVERGENCE ANALYSIS: OPTIMIZATION OVER NON-CONVEX BH SET

In this section, we then provide the proof of Theorem I} Before moving on, we first introduce some
definitions and notations below.

Definition E.1 (Approximate stationary point). A point x* is called e-stationary point for problem
minyex f(x) with convex set KC, if the gradient norm mapping

Grf(x;0) =[x ~ Te(x — @V (x))

satisfies || Gr?(x; a)|| < e for proper o > 0.

Definition E.2 (Normal cone). The normal cone Ng(x) of a closed and convex set K at x € K is
defined as
Ni(x)={y:(y,z—x) <Oforanyz € K}.
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Notations.

* Recall that 4 is the exact homeomorphic mapping and @ is the learned, approximate homeomorphic
mapping. Thus, we denote B := v~ (K) as a unit ball and B := ®~'(K) as an approximate unit
ball. Moreover, as Assumption E]holds, we have

[BP3(z) — 115(2)]| < €inn-
* Wedenote h := fowand H = fo®.
* We denote the bi-Lipschitz continuous constant of ® as ¢ and ug, i.e.,
lollu—v] < [|8(w) — 2(vV)] < usfu—v]. 22)
Recall that the bi-Lipschitz continuous property of an INN composed of affine coupling layers is
satisfied by its design (Prop. [B.T). Under this condition, we have

1
e (2)] < e, [lJo- ()l < 7.

E.1 PROOF OF THEOREMIII

We list some help lemmas first in the following.

Lemma E.3. Suppose an error € > 0 is sufficiently small. Consider min, e h(z). If | Gr® (z'; )| <
€ for some z' € B, then 7' is an O(€)-KKT stationary point of problem min,ep h(z). Specifically,

there exists v* such that
|Vh(z") + 2077 || < a(1 + B)e,

Iz’ =1 <0,
v 20, (2|7 — 1)] < Be,

where f3 is a constant depending on z'.

Proof. Suppose z* = IIz(z’ — aVh(z')) and Gr(z') = Gr}(2; o) for conciseness of notation.
Then Gr(z') = 1(z' — z™).
From the optimality of orthogonal projection (Prop. [C.I)), we have

(Z —aVh(z')—zT,z—2z") <0

forany z € B. Let ( =2’ — zT — aVh(z'). We have ¢ € Ng(z™1) by definition of the normal cone.
Moreover, the normal cone of a unit ball can be written as

Np(zt) ={Bz" : B> 0} for z* € 9B; and Np(z') = {Bz" : B =0} for z" € int(B).

Hence we have ¢ = 3z for some 3 > 0, i.e.,
aVh(z') + Bzt =2’ —z*.
Equivalently,
Vh(z) + ~ (52 + Blat —5)] = [ ~57].
Thus,
IVh) + Dall < (1 Bl Gl < (14 B)e.

B

3 2 0, we have

IVi(z') + 2v72'|| < (1+ B)|| Gr(2)[| < (1+ B)e.
Next, note that z’ is feasible, thereby ||z’|| — 1 < 0.

By defining v* =

Finally, we show

v (l2'[]* = 1)| < Be.
If zT € int(B), we have 8 = 0 by the definition of 3, i.e., v* = 0. In this case, the proof is trivial.
Hence, we assume z* € dB. It follows that ||z*||?> = 1. Then we have

(121 = Dl = (12> = 27 *)] < 2072 — 2" || < 20"l Gr(2')|| < Be.
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Lemma E.4. Consider the optimization problem [Hi,nf min, g H(z). Let € > 0 be a sufficiently
small error and Assumption [Z]hold. Suppose {zy } >0 is a sequence generated by Hom-PGD+ with
step-size o € (0, ﬁ] Then {zy }o<k<x contains an point z’ with K = O(Le~?) such that

| G5 (2')|| < ce + O(V/Liréinn)

where c is a constant independent of € that can be small arbitrarily.

Proof. We denote z = IIg(z — aVH(z)) and z— = BPg(z — aVH(z)). We know that ||z —
z" || < €inn- According to the Ly smoothness of H, we have

H(z) < Hz) + (VH(z), 5 ~2) + 2~ |
— H(z) + (VH(2). 2" —2) + (VH(2). 2 —2) + 22|

From Prop. we have
(z—aVH(z)—zy,z—124) <0,
ie.,

1
(VH(z),2 - 24) < =124 >

Hence, we have

H(x) < H(z) + (VH(z). 5~ 2,) + (VH(), 2 —2)+ 22— 2|

Ly 1 Ly _ _
< H(z) + (7 - E)HZ+ —z| + 7||z+ —z [P+ [VH(2)|| - |2~ — 2]
It follows that
Ly 9 oLy 2
H(z) = H(zk+1) + =€ + Lao€inn 2 a(l = —=)|| Gr(z)| (23)

where we denote )
Gr(z) := Gr¥ (z) = a[z —g(z — aVH(z))].

Let M = (1 — ©Li) We sum up Eq. from k = 0 to k = K, and then we have
L
H(zo) — H* > H(zo) — H(zxc 1) + (K + 1) (5 e + L106imm)

K
> MY || Gr(zy) | > (K + 1)] Gr(2)||?
k=1

where z' = argming—o 1,... x || Gr(zg)||. It follows that

H(zo) — H* Ly 1
G DIl< A AN —é L inn — O(—= (@) L inn)-
I Grta)| < |G + S + Lination = O(—=) + O L)
With K = O(Lye~?), we get the conclusion. O

Lemma E.5. Ifz’ is a feasible e-approximate KKT point of problem mingcp H(z) = f o ®(z) over
a unit balli.e., z € B, then x' = ®(2') is an (¢/ min{lg, 1} + O(€inn))-approximate KKT point of
problem|P}
Proof. Note that

Bi= (2> — 1 < 0} = {Gi(2) = gi(tb()) < 0,i = 1,2, ,m}

and
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‘We derive

IVGi(z) — VQi(2)|| = T4 (2)Vgi(¥(2) — Jo(2)Vgi(2(2))|
< (2)Vai(¥(z) — Ty (2) Vi (2(
[J4(2)Vgi(2(2)) — Jo(2)Vgi(2(2))|

<Ly oLg;€nn + Lg, 0€inn-

N
C)
=

+

By assumption, there exists +’ > 0 such that

IVh(z") + 207 || <,
Il2'|I* =1 <0,
(2] = 1] < e

First, we show it is a fact that there exists A’ such that

|Vh(z') + Z/\’VG N <e,

i=1
Gi(z/) <0, i=1,2,---,m
A >0, |)\;Gi(z’)| <e/lAl, i=1,2,---,m.
where we define A := {i | G;(z) = ||z||> — 1 at 2’} and denote \} := 0 fori ¢ Aand \, := v/ /| A

for i ¢ A. Moreover, the second inequality is from the feasibility of z’. Now, it is easy to check that
the above approximate KKT condition holds.

Note that G;(z") < 0 implies [G;(z")]+ = 0. Next, we derive the following.

" +i)\§VGi(
i=1
S €+ O (einn) )
[Qi (2)]}. < [Gi(2)], +[Qi(2) — Gi(2)], < Ly, 0€inn,
INQi (2)] < NG (2)] + X (Qi (7)) — Gi (2'))] < e+ ALy, 0€inn-

ZAVQz Z)\VG

=1

HVh (2) + Y _AiVQi (2)

Moreover, we have

HVh (z') + f: NVQ; (Z)| < e+ O (€inn)
=1
Q@) <> e <> (¢ +1Qi (2) - Gi (2)],) < mLg o€,
=1 =1

(INGi (2)] + [Xi (Qi (2) = Gi (2))])

2

Z G (2)|+ D INGi (@) + YN (Qi (2) — Gy (2)]
cA i=1
+

i¢ A
max|"4|Lg 0€inn

where Lg o = max;—1 2 .__,m{Lg o)and A = max;=12... m{A;}. Here in the second line we
use the inequality [a + b]4 < [a]4 + [b]+ for a,b € R.

That is z’ is an € + O(€jnn )-KKT points of problemwith homeomorphic mapping P.
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Next, we derive

S

VIE)+D NV (x)
i=1

< i + O (Einn) 5
lp

[8(x)]. =1Q ()] < O(€imn),

Z INigi (x)| = Z INQi (2i)] < €4 O (€nn) -
i=1 i=1

It follows that x’ = ®(2z’) is an (¢/ min{1, !¢ } + O(€inn))-approximate KKT point.

Proof of Theorem([l] This is the direct corollary of the above lemmas. From LemmalE.4] we have

that Hom-PGD+ can find an approximate stationary point z’ such that

|Gr% (2)|| < ce + O(\/Lz€inn)

in O(Lp€?) iterations.

Then, it follows from Lemma that z’ is also an approximate KKT point of optimization

min,en H(z). Specifically, we have that there exists v* € Rxg
IVH(2') +2v*2|| < a(1 + B)ce + O(V/ Lirein),
Iz’ -1 <0,

v* 2 0,[v*(|2']* = 1)| < cBe + O(V/ Lueim),

Finally, by Lemma|E.5| x’ = ®(z') is an [ca(1 + B)e/ min{1,ls} + O(VL 1 €inn)]-approximate

KKT point of problem[P] By choosing appropriate c, e.g.,

. lo 1
C_mln{w’ }

x' = ®(z’') becomes an [e + O(/L Heinn)] -approximate KKT point of problem@

39
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F EXPERIMENTS SETTING

F.1 PROBLEM FORMULATIONS AND INSTANCE GENERATION
F.1.1 NON-CONVEX QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMMING

We consider the following non-convex QCQP problem:

1 T T
Lg(SU §X Qox + qg x + 70, (24)
1
s.t. §XTQix+qjx—|—n§0, t=1,...,m, (25)

where x € [L,U]" is the decision variable, Q; € R™*" are symmetric matrices (not necessarily
positive semidefinite), q; € R™, and r; € R.

Instance Generation: For the objective matrix Qq, we generate eigenvalues uniformly from [—1, 1]
to create a mix of positive and negative eigenvalues, ensuring non-convexity. We construct Qg =
Udiag(A\)UT /n, where U is a random orthogonal matrix obtained via QR decomposition of a
standard Gaussian matrix, and X contains the mixed eigenvalues. The linear term p is sampled from
N(0,1/n). For the constraint matrices {Q; }™,, eigenvalues are uniformly sampled from [—1, 1]
to maintain the non-convex structure across constraints. Each Q; is constructed using the same
eigendecomposition approach with independent random orthogonal matrices and normalized by
1/n. The corresponding linear terms p; are sampled from A (0, 1/n). To ensure feasibility, we first
generate a random initial point xo ~ N(0,0.1) and clip it to satisfy the box constraints with a margin
of 0.1. The constraint bounds are then set as b; = $xg Q;X0 + P, X0 + €;, where €; ~ |[N(0,1)[-0.1
provides a feasibility margin. This construction guarantees that x is feasible and ensures the problem
has a non-empty feasible region. For the illustrative example, we sample a 2-dimensional instance
with 2 quadratic constraints.

F.1.2 JOINT CHANCE CONSTRAINED DC OPTIMAL POWER FLOW

In electrical power systems, operators must satisfy stochastic demand while maintaining system relia-
bility across multiple nodes simultaneously. This presents a challenging multi-constraint optimization
problem under uncertainty, where violations at any node can compromise system-wide stability.

We first introduce the standard DC optimal power flow (DC-OPF) problem:

G
min cIp? + dpy) 26
iy ;(zpz ipi) (26)
S.t. pmin <p< I:)max7 Omin <0< Omax7 (27)
By =p —d, (28)
Blinee < Smax7 (29)

where p € R is the power generation vector, & € R? are voltage phase angles, and d € R? is
the demand vector. The matrices Bpys € RB* 5 and Byine € RE*B are the bus and line susceptance
matrices, with B buses, L transmission lines, and G generators. The vector S™&* ¢ RE denotes
maximum line capacities.

To handle dependency between decision variables and uncertain parameters, we eliminate the slack
bus from the system equations. Let By,, € R(B~1*(B=1) be the reduced bus susceptance matrix,
andp € RE~1,0 e RE-1,d e RB~1, £ € RB~! be the corresponding reduced vectors. The phase
angles for non-slack buses are:

6(6) = By) (p-d—¢). (30)

and the slack bus generation adjusts to maintain power balance:
ps(&) =) (di+&)— > pi, (31)

ieN JEG\s
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Table 4: Network characteristics and DC-OPF formulation complexity for PGLib test cases

Power Grids | 200-Bus | 500-Bus
Network Topology
Buses 200 500
Generators 69 145
Branches 245 597
DC-OPF Formulation
Decision Variables
Real Power Generation (Fy) 69 145
Voltage Angles (6) 199 499
Total Variables 268 644
Equality Constraints
Power Balance 200 500
Inequality Constraints
Generator Limits 138 290
Voltage Angle Limits 398 998
Line Flow Limits 490 1194
Total Inequalities 1026 2482

where NV, G, and s denote the sets of all buses, generator buses, and the slack bus, respectively.

The joint chance-constrained optimal power flow (JCC-OPF) extends the deterministic DC-OPF to
handle demand uncertainty £ while ensuring system reliability:
G
min  Ee > (clpi(€)® + clpi(9)) | (32)
i=1
p"i < p(€) < pm
st. Pl ™" <g(¢) <™ >1—e, (33)
Blinee(é) S Smax

where e € (0, 1) is the prescribed violation probability. All operational constraints must be satisfied
jointly with probability at least 1 — ¢, ensuring comprehensive system reliability under uncertainty.

Given sampled scenarios & ()} = 1V, we have the Sample Average Approximation (SAA) for the
chance constraints:

) N nnn < p(g(k ) pmex
N ZH emm < 0(£(k ) < amax >1— €, (34)
k=1 Blmee(é(k) < gmax

where I(-) is the indicator function that equals 1 if all constraints are satisfied and 0 otherwise.

To solve it exactly via an existing solver such as GUROBI, we can reformulate it using the mixed-
integer formulations by introducing binary variables z(*) € {0, 1} for each scenario::

iiz“@ >1—¢ (35)
~ > ,

k=1
pt — M(1-20) <pE®) <pm 4 M(1-:P), k=1,...,N, (36)
6™ — M(1 -2y <ge®)y <o 4 M1 -2, k=1,...,N, (37)
Bine0(6®) < 8™ 4 M1 -2, k=1,... N, (38)
" e{0,1}, k=1,...,N, (39)

where z(®) is a binary indicator that equals 1 if all constraints are satisfied for scenario k, and M is a
sufficiently large constant. This mixed-integer linear programming formulation provides a tractable
approximation with convergence guarantees as N increases.
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Instance Generation: We use IEEE test systems from PGLIB (Babaeinejadsarookolaee et al.,
2019), which provide standardized network topologies, transmission line parameters, generator
characteristics, and baseline demand profiles for power system benchmarking. Uncertainty scenarios
{¢ (k) }_| are generated from multivariate normal distributions N'(0, X), where X captures spatial
correlation in demand uncertainty. We construct 3 using an exponential decay model based on

geographical distance: X;; = o;0; exp (f%) where o; is the standard deviation of demand
uncertainty at bus 7 (set to 5% of nominal demand d;), d;; is the electrical distance between buses
i and j measured by the shortest path length in the network graph, and ¢ is the correlation length
parameter that controls the spatial decay rate. We sample ¢ from [1, 5] to generate instances with
different correlation structures: small ¢ values produce localized correlations, while large ¢ values

create system-wide correlated demand fluctuations.

F.2 BASELINE ALGORITHMS AND HYPER-PARAMETERS
We implement the baselines as follows:

* EPM : Exact Penalty Method (Cartis et al., 2011)). It solves an unconstrained reformulated problem
of (P) as follows

min f(z) + pl|g(z)]| (40)

where p is the penalty parameter. Moreover, for a large enough parameter p, the critical points
of the unconstrained reformulation [@0) correspond to the KKT stationary points of the original
problem (P), provided by usual constraint qualifications [Nocedal & Wright| (1999). Based on
this reformulation, one can use any appropriate algorithm to solve (40), such as gradient descent
methods, trust region methods |Cartis et al.|(2011).

* ALM: Augmented Lagrangian Methods (Sahin et al., 2019; | Xie & Wrightl, |2019; Birgin et al.,
2003).

X1 = argmin{ f(x) + Ay g(x) + pr[[8(0))+ [}, @1

Akt1 = [Ak + i - 8(Xk41)]+ (42)

where Ay, is the Lagrange multipliers, g(x) represents the constraint functions, and p; > 0 is
the dual step size. The inner unconstrained optimization problem is non-convex due to the non-
convexity of the constraint functions g and is solved using gradient descent to a stationary point,
making it an inexact method.

* PPP : Proximal-Point Penalty Method (Lin et al., 2022). For the optimization @, let

680) = 50 + 2 fpe— il + 2 (ligCaLL ) @3)

where 5, > 0 is the penalty parameter and 5 > 0 is the proximal parameter. A sufficiently large
parameter ~; will make the problem (@3) a strongly convex optimization provided by the weakly
convex constraints g.

In each iteration, one will solve the problem (@3) to a stationary point using (sub)gradient descent
by fining x4+ such that

[Vor (xk+1)]| < €k (44)
given a desired error €; > 0.

e Hom-PGD™. Given the reformulated problem (H, ) and a step-size «y, in each iteration, we
update by the rules

Zp4+1 = BPB<ZIC — Oéka<(b<Zk))) (45)

where BP denotes the bisected projection onto the approximate unit ball B, and ® is the INN-
learned homeomorphism. The solution is mapped to the original space after convergence as
x* = ®(z*).
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* IPOPT: Interior Point Optimizer, a state-of-the-art nonlinear programming solver that implements
a primal-dual interior point method with line search. It uses exact second-order information and
adaptive barrier parameter updates to handle inequality constraints through logarithmic barrier
functions. IPOPT is particularly effective for large-scale continuous optimization problems with
smooth nonlinear constraints.

* GUROBI: Commercial mixed-integer programming solver that employs branch-and-bound al-
gorithms with advanced cutting plane generation, presolving techniques, and heuristics. For the
SAA formulation of the JCC-OPF problem, GUROBI provides the exact optimal solution to the
mixed-integer linear program, serving as the ground truth baseline for comparison with other
approximate methods.

Gradient calculation: For simple quadratic objective functions, gradients are calculated via closed-
form formulations. Other non-trivial gradient calculations across the various algorithms are im-
plemented using auto-differentiation in PyTorch. We note that replacing auto-differentiation with
closed-form gradient implementations could further improve the computational efficiency of the
algorithms.

Handing Non-differentiable Chance Constraint: Since the indicator-based chance constraint is
non-differentiable, making direct application of all first-order algorithms challenging. To tackle this
challenge, we compute the robust scenario penalty following (Nemirovski & Shapiro| [2006), which
computes the constraint violation for the worst-case scenario and treats it as a penalty in INN training
or as the constraint violation/residual/penalty for other first-order algorithms. Specifically, we replace
the non-differentiable indicator function with a smooth approximation:

N

1 ,

=N <0)>1-€¢ = "Ny <o 46

~ ; (8(x.&,) <0) =1~ cemax (B0 &M < (46)
Notably, when evaluating the chance constraint feasibility, we still follow the exact indicator-based
formulation, which is used in the membership oracle for our Hom-PGD* method to ensure accurate
feasibility assessment during optimization or the final evaluation for solutions obtained from different
algorithms.

Step-size: Theoretically, different algorithms employ their own step size selection strategies, such
as explicit dependence on smoothness and convexity parameters, or implicit step sizes that depend
on the optimal objective value \Grimmer| (2024b). For practical implementation, we initialize a fixed
step size (e.g., 10~3) and decay it by a factor of 0.999 if the objective value does not decrease, which
helps identify a sufficient step size for convergence.

Computation environment: All algorithms are implemented in Pytorch and executed on an Ubuntu
server with an NVIDIA A800 GPU and an AMD EPYC 7763 64-Core Processor.

F.3 INVERTIBLE NEURAL NETWORK IMPLEMENTATION

We adopt the coupling layer-based INN as our homeomorphism approximator. Specifically, it consists
of 3 layers, each layer containing two sub-layers:

* Invertible Linear Layers: Following the GLOW architecture (Kingma & Dhariwal, 2018)),
we employ invertible linear layers with learnable bias terms. These layers implement affine
transformations of the form y = Wx + b, where the weight matrix W is constrained to be
invertible through LU decomposition parameterization. This parameterization ensures invertibility
by construction while allowing efficient computation of the log-determinant of the Jacobian as the
sum of logarithms of the diagonal elements from the decomposition.

* Coupling layer: We implement coupling layers using MADE (Masked Autoencoder for Distribu-
tion Estimation) (Germain et al., 2015)), which enables highly efficient computation through masked
forward propagation. MADE applies element-wise affine transformations in an autoregressive
manner, where each output dimension is conditioned on all preceding input dimensions according
to a predefined ordering. This structure maintains the coupling layer property while providing
computational efficiency through parallelizable masked operations.

Conditional Embedding: To incorporate conditional input 8, we employ a dedicated fully connected
neural network that embeds the conditional information into a latent representation. This embedding
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is then added to the intermediate variables at each coupling layer, allowing the transformation to
adapt based on the conditioning information. For the scenario-based input in JCC-DC-OPF, where
the number of scenarios can vary across problem instances, we adopt a DeepSet-based architecture
(Zaheer et al.l 2017) to handle the permutation invariance property inherent in scenario sets. The
DeepSet encoder maps variable-size scenario collections into a fixed-dimensional embedding space
(64 dimensions in our implementation), ensuring consistent representation regardless of the number
of scenarios while preserving the exchangeability of individual scenarios.

INN Training: We apply the Adam (Kingma & Bal, 2014) optimizer to train the INN with a batch
size of 64, where each batch is sampled from the unit ball and input parameter space. We set the
initial learning rate to 5 x 10~% with a decay factor of 0.9 every 1,000 iterations. The maximum
number of training iterations is set to 10,000. The coefficient for the penalty term is 10, and the
Lipschitz regularizer is 0.1.

G SUPPLEMENTARY EXPERIMENTS RESULTS

G.1 INN TRAINING DETAILS
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Figure 6: Training and evaluation of the 3-layer INN. Top: convergence of the volume term, penalty
term, and Lipschitz term across different sampled input parameters 6 during training. Bottom:
visualization of the trained INN mapping the unit ball to different target constraint sets under various
test input parameters. The training algorithm stably learns homeomorphisms by maximizing volume
within constraints while regularizing the Lipschitz constant, demonstrating effective approximation
quality and capturing the complex constraint geometry under unseen input parameters.

We provide training details for the invertible neural network used in homeomorphism learning.
Specifically, we examine the convergence behavior of the training loss components and demonstrate
the network’s ability to learn bidirectional mappings between unit balls and constraint sets.

Training Convergence: The INN is trained by optimizing three loss components: the volume term
(ensuring volume preservation), the penalty term (enforcing constraints), and the Lipschitz term
(controlling smoothness). Figure[6] (top) shows the convergence of these components across different
sampled input parameters ¢, demonstrating stable optimization. The training dynamics include three
stages:

¢ Initialization phase: The INN parameters are randomly initialized (e.g., Gaussian), causing
the initial mapping output ®(B3) to violate the constraint () C /. This results in a large
constraint penalty term that dominates the total loss (as evident in the second subfigure
showing high penalty loss).

 Shrinking phase: To reduce constraint violations, the network learns to shrink the mapped
region and adjust its position. This shrinking decreases the volume (and thus log-volume
drop), while it also reduces the constraint penalty by pushing ® () fits within /. During
this phase, minimizing the penalty term takes priority over maximizing volume.
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» Expansion phase: Once the constraint is approximately satisfied (indicated by low penalty
loss in the second subfigure), the volume maximization term becomes dominant. The net-
work then learns to expand ® () to occupy as much of K as possible, ultimately approaching
a homeomorphism approximately.

Learned Mapping Properties: The trained INN learns parameter-dependent bidirectional mappings.
In the forward direction, it maps the unit ball to constraint sets that vary with the input parameter 6.
In the inverse direction, it maps points from these constraint sets back to the unit ball, providing a
normalized representation of the feasible region.

* Assumption [2] requires bounded homeomorphism error, meaning the trained INN must
approximate the true homeomorphism between the unit ball and the constraint set with
bounded error ¢;,,,,. Due to the bijective property of homeomorphisms, this is equivalent
to requiring that ® (1) closely approximates the true constraint set /C (or equivalently, that
®~1(K) approximates B). For straightforward visualization and comparison, we validate
the forward direction by examining how well ®(B) covers and matches the true constraint
set KC.

* As shown in Figure |§|, the mapped set ®(B) accurately approximates the non-convex
geometry of the target constraint set under different input parameters, demonstrating the
effectiveness of our INN training method. To quantify this approximation quality, we can
compute the Hausdorff distance between ®(3) and K, defined as

dg(®(B),K) =max< sup inf ||z —y|,sup inf |z — ,
#(®(5).K) {M(B)y@cn ylhsupinf, | yn}

which measures the maximum distance between the two sets. if di(®(B), ) = 0, then
®(B) = K given B = K, meaning INN @ is a perfect homeomorphic mapping between B
and C and €;,, = 0.

G.2 ABALATION STUDY

We conduct ablation studies on QCQP optimization problems to analyze two key aspects of our
method: (i) INN Complexity and Performance: We examine how INN depth (1/3/5 layers) affects
approximation error (Assumption [2), Lipschitz constants, and downstream optimization performance,
demonstrating that a 3-layer INN achieves the best balance between approximation capability and
parameter complexity. (ii) Bisection Complexity and Performance: We show that reducing bisection
iterations decreases per-iteration cost but may increase the optimality gap.

G.3 MORE QCQP RESULTS

We visualize the comparison of Hom-PGD™ and other baseline methods on QCQP optimization
under different input parameters. We show the convergence with respect to iteration and total time,
the constraint violation with respect to running time and per-iteration cost, and visualize the iteration
trajectory of different methods.
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(b) 5-layer INN training (top) and evaluation (bottom) under different input parameters.

Figure 7: INN training and evaluation across different network depths. Top panels show training
loss (Eq. (1)) convergence, including volume, penalty, and Lipschitz terms. Bottom panels visualize
learned mappings under different input parameters. Key observations: (i) The 1-layer INN fails to
capture constraint geometry accurately (average Hausdorff distance > 1.5), while 3- and 5-layer
INNs achieve better approximation quality (average Hausdorff distance < 0.3). (ii) The 1-layer
INN exhibits the smallest Lipschitz constant due to limited model expressiveness, whereas deeper
networks show larger Lipschitz constants during training. The trade-off between approximation
accuracy and smoothness can be controlled via the Lipschitz regularization term in the INN loss

function.
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Figure 8: Performance comparison of Hom-PGD™ across different INN architectures (1-layer, 3-layer,
5-layer). Single-layer INNs exhibit poor approximation capability, leading to large learning errors
when approximating the constraint set. In contrast, 3-layer and 5-layer INNs provide sufficient
representational capacity to capture the constraint set and demonstrate superior convergence behavior.
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Figure 9: Performance comparison of Hom-PGD™ across different bisection tolerance levels (1075,
103, 10~1). Higher tolerance values accelerate the algorithm by reducing bisection iterations within
the projection operator, but result in larger optimality gaps due to less precise convergence to the
constraint boundary.
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Figure 10: Illustrative examples of Hom-PGD™ for solving QCQP with non-convex BH constraints.
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Figure 11: Illustrative examples of Hom-PGD™ for solving QCQP with non-convex BH constraints.
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Figure 12: Tllustrative examples of Hom-PGD™ for solving QCQP with non-BH constraints.
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