

000 001 002 003 004 005 HOM-PGD⁺: FAST REPARAMETERIZED OPTIMIZATION 006 OVER NON-CONVEX BALL-HOMEOMORPHIC SET 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Optimization over general non-convex constraint sets poses significant computational challenges due to their inherent complexity. In this paper, we focus on 032 optimization problems over non-convex constraint sets that are homeomorphic to a ball, which encompasses important problem classes such as star-shaped sets that 033 frequently arise in machine learning and engineering applications. We propose 034 **Hom-PGD⁺**, a fast, *learning-based* and *projection-efficient* first-order method that 035 efficiently solves such optimization problems without requiring expensive projection 036 or optimization oracles. Our approach leverages an invertible neural network 037 (INN) to learn the homeomorphism between the non-convex constraint set and a 038 unit ball, transforming the original problem into an equivalent ball-constrained 039 optimization problem. This transformation enables fast projection-efficient 040 optimization while preserving the fundamental structure of the original problem. 041 We establish that Hom-PGD⁺ achieves an $\mathcal{O}(\epsilon^{-2})$ convergence rate to obtain an 042 $\epsilon + \mathcal{O}(\sqrt{\epsilon_{\text{inn}}})$ -approximate stationary solution, where ϵ_{inn} denotes the homeomor- 043 phism learning error. This convergence rate represents a significant improvement 044 over existing methods for optimization over non-convex sets. Moreover, Hom- 045 PGD⁺ maintains a per-iteration computational complexity of $\mathcal{O}(W)$, where W 046 is the number of INN parameters. Extensive numerical experiments, including 047 chance-constrained optimization popular in power systems, demonstrate that Hom- 048 PGD⁺ achieves convergence rates comparable to state-of-the-art methods while 049 delivering speedups of up to one order of magnitude.

050 1 INTRODUCTION

051 We consider a class of non-convex constrained optimization problems where the constraint set is 052 homeomorphic to a unit ball, also known as *ball-homeomorphic* (BH) sets. BH sets encompass any 053 *compact convex set* and a class of *simply-connected non-convex* sets, such as star-shaped and geodesic- 054 convex sets. This problem is fairly general and covers numerous optimization classes, including 055 standard convex programming (Boyd et al., 2004), chance-constrained programming (Nemirovski 056 & Shapiro, 2006; Pagnoncelli et al., 2009), and ℓ_p -constrained regression (Xu et al., 2010; Jiang 057 et al., 2016). These optimization problems naturally arise in real-world applications in machine 058 learning and engineering, such as chance-constrained power grid optimization (Pagnoncelli et al., 059 2009) and ℓ_p -constrained adversarial attacks in neural networks (Erdemir et al., 2021). While convex 060 constrained optimization has been extensively studied and can be solved efficiently, this paper focuses 061 on optimization over non-convex constraint sets, which present significant additional challenges.

062 Optimization over non-convex sets is highly challenging. Even establishing the feasibility of a 063 general non-convex set can be *NP-hard* (Park & Boyd, 2017). Furthermore, in many real-time 064 operational scenarios, one must repeatedly solve the same class of problems with varying parameters, 065 introducing uncertainty and variability in a setting known as *parametric optimization* (Grangarova 066 & Johansen, 2012). This scenario poses significant computational challenges. Traditional approaches 067 include convex relaxation (Low, 2014a;b; Diamond et al., 2018; Anstreicher, 2012), reformulation- 068 linearization (Sherali & Adams, 2013), and sequential convex approximation (Marks & Wright, 1978; 069 Beck et al., 2010; Tran et al., 2013; Scutari et al., 2014). However, these methods are computationally 070 expensive and do not provide tight guarantees on feasibility or optimality. Recent state-of-the-art 071 works (Lin et al., 2022; Kume & Yamada, 2024; Ma et al., 2019) have proposed more efficient 072 methods under different structural conditions and established convergence guarantees. Nevertheless,

054
055 Table 1: Summary of parameterization or iterative methods for (non)-convex constrained optimization.
056

Reference	Obj.	Settings Ctr.	Key Assumption	Parameterization Techniques	Algorithm	Per-iteration Complexity	Convergence Rate
(Li et al., 2023)	NC	Simplex	—	Hadamard Transformation	Perturbed RGD	$\mathcal{O}(n)$	$\mathcal{O}(\epsilon^{-2})$
(Chok & Vasil, 2025)	C	Simplex	—		Cauchy-Simplex	$\mathcal{O}(n)$	$\mathcal{O}(\epsilon^{-1})$
(Tang & Toh, 2024)	(N)C	Polyhedra	Full-rank constraints.		RGD + PGD	RO + PO	N/A
Liu et al. (2025a)	C SC NC	Convex	Non-degeneracy. — —	Gauge Mapping	PGD over ball	$\mathcal{O}(n^2) + MO$	$\mathcal{O}(\epsilon^{-1})$ $\mathcal{O}(\log \epsilon^{-1})$ $\mathcal{O}(\epsilon^{-2})$
(Barber & Ha, 2018)	SC	NC	Small local concavity coefficients of constraints.		PGD	PO	$\mathcal{O}(\log \epsilon^{-1})$
(Lin et al., 2022)	WC	WC	Certain non-singularity. Initial feasible points.		Proximal-point penalty method	SCOO	$\tilde{\mathcal{O}}(\epsilon^{-3})$ $\mathcal{O}(\epsilon^{-4})$
(Barik et al., 2023)	IV SIV	IV	Contraction and triangle inequality w.r.t. invexity.	—	Invex PGD	Invex PO	$\mathcal{O}(\epsilon^{-1})$ $\mathcal{O}(\log \epsilon^{-1})$
Theorem 1	NC	NC	Ball-homeomorphic.	Invertible Neural Network	Bisection-PGD	$\mathcal{O}(W) + MO$	$\mathcal{O}(\epsilon^{-2})$

¹ **Abbreviations:** C = “convex”, NC = “non-convex”, WC = “weakly convex”, SC = “strongly convex”, IV = “invex”, SIV = “strongly invex” Obj = “objective”, Ctr = “constraint”, GD = “gradient descent”, PGD = “projected gradient descent”, RGD = “Riemannian gradient descent”, SCOO = “strongly convex optimization oracle”, MO = “membership oracle”, PO = “Projection oracle”, RO = “Retraction oracle”.

² **Convergence rate:** number of iterations for finding an ϵ -approximate stationary point for non-convex optimizations or an ϵ -approximate optimum for convex optimizations.

³ **Complexity:** Here W denotes the size of the neural network we use to learn a homeomorphic mapping, referring to Sec. 3. In practice, we choose $W = \mathcal{O}(n^2)$ where n is the problem size. Notably, Membership oracle (MO) enjoys the lowest complexity compared with other optimization-based oracles in general settings (Mhammedi, 2022).

074
075 several issues remain, including slower convergence rates, expensive per-iteration oracles, and the
076 necessity for strong convergence assumptions.

077 In recent years, *reparameterization* has emerged as a powerful technique for solving challenging
078 optimization problems by transforming them into simpler, more tractable forms. The core idea
079 involves applying invertible/smooth transformations that preserve optimal solutions while mitigating
080 difficulties such as non-smoothness or complex constraints. This approach has been successfully
081 applied in semidefinite programming (Cifuentes, 2021), low-rank optimization (Mishra et al., 2014;
082 Ha et al., 2020), and risk minimization (Bah et al., 2022). Recent works have extended this concept
083 to optimization over simplices (Li et al., 2023), polyhedra (Tang & Toh, 2024), and general compact
084 convex sets Liu et al. (2025a), as well as smoothing non-smooth objectives (Poon & Peyré, 2023)
085 and modeling discrete data (Davis et al., 2024). However, most applications remain confined to
086 convex settings (see Table 1) and require well-designed transformations. **For more complex non-convex**
087 **constraints, recent works (Liang et al., 2023; 2024) propose to use invertible neural networks**
088 **(INNs) (Papamakarios et al., 2021; Dinh et al., 2014) for reparameterization. However, they focus**
089 **on projection in the transformation space for the infeasible neural network predictions, rather than**
090 **solving the optimization problems from initial points.** We refer readers to Appendix A for a more
091 detailed discussion on reparameterization and non-convex constrained optimization.

092 Despite the progress made for (non)-convex constrained optimization, a research gap still remains:
093 “*Can we design an efficient approach for optimization over non-convex ball-homeomorphic sets with*
094 *fast convergence and low per-iteration cost?*”

095 In this work, we propose a fast *first-order, learning-driven* and *projection-efficient* method for solving
096 *parametric* optimization over *non-convex BH* sets. One could refer to Table 1 for a summary and
097 comparison of existing work and our method. Specifically, we make the following contributions:

098 ▷ In Sec. 3, we propose **Hom-PGD⁺**: (i) it first exploits the BH structure of the constraints by
099 employing an INN to parameterize the homeomorphism; (ii) it then reformulates the optimization
100 over BH sets as an equivalent ball-constrained optimization via the learned INN; and (iii) it applies
101 projection gradient descent to solve the ball-constrained problem and transforms the converged
102 solution back to obtain the solution for the original problem.

103 ▷ In Sec. 4, we establish convergence and complexity analysis for **Hom-PGD⁺**: (i) it finds an
104 $\epsilon + \mathcal{O}(\sqrt{\epsilon_{\text{inn}}})$ -stationary point in $\mathcal{O}(\epsilon^{-2})$ iterations, where ϵ_{inn} is the INN learning error. This conver-
105 gence rate outperforms existing first-order methods for optimization over non-convex sets (see Table
106 1). (ii) it achieves a per-iteration complexity of $\mathcal{O}(W)$, where W is the number of INN parameters
107 and setting $W = \mathcal{O}(n^2)$ is sufficient to achieve strong performance in practice. It demonstrates the
scalability of our method compared to other methods requiring expensive optimization oracles.

108 \triangleright In Sec. 5, through extensive numerical experiments on non-convex problems, including applications
 109 to non-convex *quadratic-constrained* and *chance-constrained* optimization with applications in power
 110 grid operation, we demonstrate that **Hom-PGD**⁺ outperforms existing approaches in computational
 111 efficiency, achieving both faster convergence and lower per-iteration cost.
 112

113 2 PROBLEM STATEMENT

114 We consider the following *parametric* constrained optimization problem:
 115

$$116 \quad \min_{\mathbf{x}} f_{\boldsymbol{\theta}}(\mathbf{x}), \quad \text{s.t. } \mathbf{x} \in \mathcal{K}_{\boldsymbol{\theta}}, \quad (\mathbf{P})$$

118 where $\mathbf{x} \in \mathbb{R}^n$ is the decision variable and $\boldsymbol{\theta} \in \Theta \subseteq \mathbb{R}^d$ is the input parameters. The objective
 119 function $f_{\boldsymbol{\theta}}(\cdot)$ is continuous and smooth, and the constraint set $\mathcal{K}_{\boldsymbol{\theta}} \subset \mathbb{R}^n$ is compact. For ease of
 120 analysis and without loss of generality, we assume the constraint set $\mathcal{K}_{\boldsymbol{\theta}}$ is defined by inequalities¹
 121 as $\mathcal{K}_{\boldsymbol{\theta}} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}_{\boldsymbol{\theta}}(\mathbf{x}) \leq \mathbf{0}\}$ with $\mathbf{g}_{\boldsymbol{\theta}} = (g_{1,\boldsymbol{\theta}}, \dots, g_{m,\boldsymbol{\theta}})$, where $g_{i,\boldsymbol{\theta}} : \mathbb{R}^n \rightarrow \mathbb{R}$ are continuous
 122 functions. We further impose the following topological assumption on the constraint set $\mathcal{K}_{\boldsymbol{\theta}}$.
 123

Assumption 1. The set $\mathcal{K}_{\boldsymbol{\theta}}$ is homeomorphic to a unit ball \mathcal{B}^2 , denoted as $\mathcal{K}_{\boldsymbol{\theta}} \cong \mathcal{B}, \forall \boldsymbol{\theta} \in \Theta$.
 124

125 Homeomorphism (or homeomorphic mapping) is a bi-continuous bijection from two topological
 126 spaces, guaranteeing the topological equivalence. The non-convex BH constraint is fairly general,
 127 covering a broad class of compact and simply-connected non-convex sets³, and many real-world
 128 applications in machine learning and engineering as discussed in Sec.1.
 129

130 **Open Issues:** While constrained optimization has been extensively studied, approaches for non-
 131 convex sets typically suffer from strong assumptions for convergence, slow convergence rates, or high
 132 per-iteration computational complexity. The central challenge is to develop efficient algorithms that
 133 not only preserve fast convergence but also maintain computational efficiency across both general
 134 convex and a broader range of non-convex programs.
 135

136 3 HOMEOMORPHIC OPTIMIZATION APPROACH

137 Motivated by projection-free and reparameterization frameworks to speed up optimization problems
 138 over *convex* sets, (Li et al., 2023; Liu et al., 2025a), we propose to transform the original *non-convex*
 139 problem through a homeomorphic mapping between the constraint set $\mathcal{K}_{\boldsymbol{\theta}}$ and a unit ball \mathcal{B} , which
 preserves the problem structure while simplifying the constrained set.
 140

Definition 3.1 (Homeomorphic Constrained Optimization). Given a homeomorphism $\psi_{\boldsymbol{\theta}} : \mathcal{B} \rightarrow$
 141 $\mathcal{K}_{\boldsymbol{\theta}}$, we define the transformed parametric optimization problem with objective function $h_{\boldsymbol{\theta}}(\mathbf{z}) =$
 142 $f_{\boldsymbol{\theta}}(\psi_{\boldsymbol{\theta}}(\mathbf{z}))$ and constraint set as a unit ball $\mathcal{B} = \psi_{\boldsymbol{\theta}}^{-1}(\mathcal{K}_{\boldsymbol{\theta}})$ as:
 143

$$144 \quad \min_{\mathbf{z}} h_{\boldsymbol{\theta}}(\mathbf{z}), \quad \text{s.t. } \mathbf{z} \in \mathcal{B}. \quad (\mathbf{H})$$

145 Under Assumption 1, we can transform any optimization problem **P** over a BH set into a ball-
 146 constrained program **H**. Notably, under the homeomorphic transformation, the original problem and
 147 its homeomorphic counterpart are equivalent, i.e., there exists a bijective correspondence between
 148 their optimal solution sets \mathbf{P}^* and \mathbf{H}^* , where $\mathbf{P}^* = \{\mathbf{x} \mid \mathbf{x} \in \arg \min \{\mathbf{P}\}\}$ and similarly for
 149 \mathbf{H}^* . Specifically, for any $\mathbf{x} \in \mathbf{P}^*$, there exists a unique $\mathbf{z} \in \mathbf{H}^*$ such that $\mathbf{x} = \psi(\mathbf{z})$, and vice
 150 versa. Thus, we can solve the reparameterized problem **H** without expensive projection to obtain the
 151 corresponding optimal solution of the original problem **P**.
 152

153 However, finding homeomorphic transformations for general BH constraints remains non-trivial.
 154 Many existing *reparameterization* methods for optimization problems rely on explicitly constructed
 155 parameterized transformations. For instance, the *Hadamard transformation* (Li et al., 2023) enables
 156 mapping from a simplex to a sphere, while the *Gauge mapping* (Liu et al., 2025a) facilitates trans-
 157 formation from a compact convex set to a unit ball. Although these methods successfully construct
 158 specific homeomorphisms, they face several fundamental limitations: (i) Explicit or analytical forms
 for homeomorphisms do not exist for more general non-convex BH sets. (ii) The computational
 159

¹Equality constraints can be removed without loss of generality, see Appendix B.1 for discussions.
 160

²In this work, we refer a unit ball \mathcal{B} to a Euclidean norm ball, i.e., $\mathcal{B} = \{\mathbf{z} \in \mathbb{R}^n : \|\mathbf{z}\|_2 \leq 1\}$.

³For example, simply connected compact sets with Jordan curve boundary over \mathbb{R}^2 (Garnett & Marshall, 2005) and contractible manifold with simply connected boundary over \mathbb{R}^n for $n \geq 6$ (Smale, 1962).

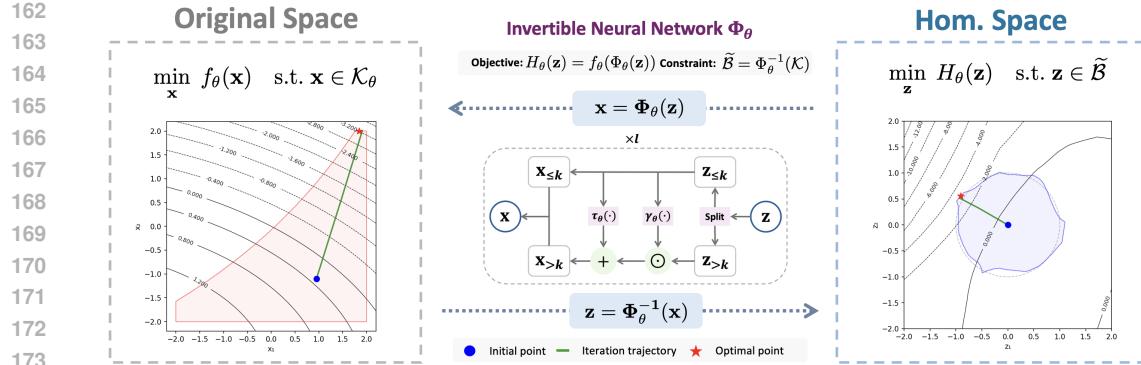


Figure 1: **Hom-PGD⁺** framework: It applies projection-based GD methods in a transformed space via an INN-learned homeomorphism $\Phi_\theta(\cdot)$, where the transformed constraint set $\tilde{\mathcal{B}}$ is an approximated ball and h_θ is the transformed objective. The iterative trajectory is visualized in the transformed homeomorphic space and also mapped back to the original space for comparison.

overhead required to construct different homeomorphisms for varying constraint sets becomes prohibitive when input parameters change frequently, thereby limiting the practical applicability of these approaches in real-time operational settings.

To address these limitations, we propose **Hom-PGD⁺**, as illustrated in Figure 1. Our method leverages an invertible neural network (INN), a universal approximator of homeomorphisms, to transform the original non-convex constrained problem under different input parameters into a simple ball-constrained problem (Sec. 3.1 and 3.2). We then apply projected gradient descent (PGD) on the reformulated ball-constrained problem (H). Ideally, under an exact homeomorphism, projection is performed onto a unit ball with a closed-form expression. In practice, however, the INN-based homeomorphism provides only an approximation. We then propose a bisection scheme to compute a non-orthogonal projection onto this approximate ball. Complete algorithmic descriptions are provided in Algorithms 1 and 2.

3.1 HOMEOMORPHIC PARAMETERIZATION USING INVERTIBLE NEURAL NETWORK

We utilize an invertible neural network (INN)⁴ to learn the homeomorphic mapping for general BH sets. An INN is a neural network $\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ that is invertible, meaning its inverse Φ^{-1} is well-defined and computationally tractable. Typically, an INN comprises multiple invertible layers, such as invertible linear layers (Kingma & Dhariwal, 2018), Lipschitz residual layers (Chen et al., 2019; Behrmann et al., 2019), and coupling layers (Papamakarios et al., 2021; Dinh et al., 2014). Furthermore, to parameterize the input-dependent homeomorphic mapping ψ_θ , we adopt the conditional INN (Winkler et al., 2019; Lyu et al., 2022). Given changing input parameters θ , we treat them as additional inputs and learn augmented homeomorphisms $\Phi_\theta : \mathcal{B} \rightarrow \mathcal{K}_\theta$, where $\mathcal{K}_\theta = \Phi_\theta(\mathcal{B})$ denotes the homeomorphic image under specific input parameters θ .

In this work, we select coupling-layer INNs to learn the homeomorphic mapping due to their computational efficiency and universal approximation capability. Specifically, the coupling layer first randomly splits the input into two parts as $\mathbf{x} = [\mathbf{x}_{\leq k}, \mathbf{x}_{>k}]$. Then the forward/inverse mapping is as:

$$\begin{aligned} \text{Forward : } \mathbf{x}' &= [\mathbf{x}_{\leq k}, \gamma_\theta(\mathbf{x}_{\leq k}) \odot \mathbf{x}_{>k} + \tau_\theta(\mathbf{x}_{\leq k})], \\ \text{Inverse : } \mathbf{x} &= [\mathbf{x}'_{\leq k}, (\mathbf{x}'_{>k} - \tau_\theta(\mathbf{x}'_{\leq k})) / \gamma_\theta(\mathbf{x}'_{\leq k})] \end{aligned}$$

where $\gamma_\theta, \tau_\theta : \mathbb{R}^k \rightarrow \mathbb{R}^{n-k}$ are regular NNs (e.g., fully-connected), which take input parameter θ and variables $\mathbf{x}_{\leq k}$ and output weight and bias for element-wise transformation of $\mathbf{x}_{>k}$. Notably, coupling-layer INN can *universally approximate* any target (differentiable) homeomorphism given sufficient layers (Jin et al., 2024; Ishikawa et al., 2022; Lyu et al., 2022), making it theoretically grounded for learning the homeomorphic mapping between constraints and a unit ball in our framework.

⁴For a more comprehensive introduction to INNs, we refer the reader to Appendix B.2.

216 3.2 INN TRAINING FOR OBTAINING THE HOMEOMORPHISM
217

218 Next, we introduce the approach for training an INN to approximate the homeomorphism between
219 the BH constraint and the unit ball. Specifically, we employ the following loss function and *maximize*
220 it to train an INN Φ_θ following (Liang et al., 2024):

$$221 \quad \mathcal{L}(\Phi_\theta) = \widehat{V}(\Phi_\theta(\mathcal{B})) - \lambda_1 P(\Phi_\theta(\mathcal{B})) - \lambda_2 \widehat{L}(\Phi_\theta) \quad (1)$$

222 where λ_1 and λ_2 are positive coefficients to balance among the three terms, including:

223 \triangleright **Volume term:** $\widehat{V}(\Phi_\theta(\mathcal{B}))$ is a computable approximation of the log-volume term $\log V(\Phi_\theta(\mathcal{B}))$.
224 \triangleright **Penalty term:** $P(\Phi_\theta(\mathcal{B}))$ is the penalty term for the constraint violation of $\Phi_\theta(\mathcal{B}) \subseteq \mathcal{K}_\theta$.
225 \triangleright **Lipschitz term:** $\widehat{L}(\Phi_\theta)$ is a computable approximation of the log-Lipschitz term $\log L(\Phi_\theta)$.

226 For details of computing the three terms and their analysis, we refer readers to Appendix B.4.
227 Intuitively, the first two terms encourage the transformed set to maximize volume while remaining
228 within the BH constraint set; achieving this yields a target homeomorphism. The third term regularizes
229 the Lipschitz **constant** of the homeomorphism, improving optimization performance in the next stage
230 (with formal convergence analysis in Sec. 4.2).
231

232 We then uniformly sample from a unit ball to prepare the training data for the loss function. Further,
233 to **train the INN for learning the homeomorphism under different θ** , we uniformly sample input
234 parameters $\{\theta_i\}_{i=1}^N$ and train the INN following $\frac{1}{N} \sum_{i=1}^N \mathcal{L}(\Phi_{\theta_i})$. After finite-sample training, the
235 trained INN only approximates the homeomorphism, i.e., they do not perfectly map the constrained
236 set to the unit ball, or vice versa. However, for our purposes, it suffices that the following validity
237 condition holds to ensure the correctness of the transformed optimization and the projection-based
238 algorithm introduced in the next section.

239 **Definition 3.2** (Valid INN). The INN approximated mapping Φ_θ is valid for \mathcal{K}_θ if $\Phi_\theta(\mathbf{0}) \in \mathcal{K}_\theta$, i.e.,
240 it maps the origin in the unit ball to a feasible point in \mathcal{K}_θ .

241 Theoretically, such valid conditions hold for all $\theta \in \Theta$ in the input parameter space, given that it
242 holds for finite covering training data $\{\theta_i\}_{i=1}^N$ (Liang et al., 2023; Liang & Chen, 2025). Empirically,
243 we observe that the validity condition is consistently satisfied across both training and test inputs
244 in the experimental section, which is not surprising since we try to keep the entire set within the
245 constraint $\Phi_\theta(\mathcal{B}) \subseteq \mathcal{K}_\theta$ in loss design, while we only need the center to be feasible to satisfy the
246 validity conditions. Furthermore, if $\Phi_\theta(\mathbf{0}) \notin \mathcal{K}_\theta$, we can enforce validity by defining a shifted
247 INN as $\Phi'_\theta(\cdot) = \Phi_\theta(\cdot) - \Phi_\theta(\mathbf{0}) + \mathbf{x}^\circ$ given an interior point $\mathbf{x}^\circ \in \mathcal{K}_\theta$. Such an interior/feasible
248 point requirement for worst-case feasibility guarantees aligns with existing works on non-convex
249 constrained optimization (Barber & Ha, 2018; Lin et al., 2022).
250

251 3.3 HOM-PGD⁺: PROJECTED GRADIENT DESCENT WITH INN
252253 **Algorithm 1** Hom-PGD⁺

254 **Input:** initial point \mathbf{z}_0 , valid INN Φ_θ , reformulated
255 optimization problem, and total number
256 of iterations K
257 **for** $k = 0$ **to** K **do**
258 Compute stepsize α_k
259 **Update:** $\mathbf{z}_{k+1} = \text{BP}_{\tilde{\mathcal{B}}}(\mathbf{z}_k - \alpha_k \nabla H_\theta(\mathbf{z}_k))$
260 **end for**
261 **Output:** $\mathbf{x}_K = \Phi_\theta(\mathbf{z}_K)$

253 **Algorithm 2** BP Operator

254 **Input:** input point \mathbf{z} , lower bound $\beta_l = 0$,
255 upper bound $\beta_u = 1$, and max iterations B
256 **for** $t = 0$ **to** B **do**
257 Bisection $\beta_m = (\beta_l + \beta_u)/2$
258 **Update:** **if** $\Phi_\theta(\beta_m \cdot \mathbf{z}) \in \mathcal{K}_\theta$ **then** $\beta_l \leftarrow \beta_m$
259 **else** $\beta_u \leftarrow \beta_m$
260 **end for**
261 **Output:** $\hat{\mathbf{z}} = \beta_l \cdot \mathbf{z}$

262 In the ideal setting with perfect homeomorphism, we perform standard **projected** gradient descent
263 (PGD) to problem **(H)** where the constrained set is a unit ball. However, in practice, due to the non-
264 perfect training, the INN homeomorphic mapping is inexact, i.e., $\Phi_\theta \neq \psi_\theta$, thereby transforming \mathcal{K}_θ
265 into a non-perfect (and a non-convex)⁵ ball $\tilde{\mathcal{B}} = \Phi_\theta^{-1}(\mathcal{K}_\theta)$. To clarify the reformulated optimization
266 problem we address, we denote the reformulated version induced by the INN as follows:
267

$$268 \quad \min_{\mathbf{z}} H_\theta(\mathbf{z}), \quad \text{s.t. } \mathbf{z} \in \tilde{\mathcal{B}}. \quad (\mathbf{H}_{\text{inn}})$$

269 ⁵Here “non-perfect ball” means the learned ball $\tilde{\mathcal{B}}$ is just an approximate ball, i.e., the shape is close to a unit
270 ball, thus might exhibit non-convexities (e.g., see Fig. 1).

270 where $H_\theta = f_\theta \circ \Phi_\theta$. It is worth noting that the orthogonal projection onto the approximate ball $\tilde{\mathcal{B}}$ is
 271 computationally challenging. To mitigate this, we employ a bisection-based projection operator to
 272 approximate the orthogonal projection in each iteration, formally defined below.

273 **Definition 3.3** (Bisection projection). The bisection projection operator $\text{BP}_{\tilde{\mathcal{B}}}(\mathbf{z})$ for $\mathbf{z} \in \mathbb{R}^n$ is as
 274 $\text{BP}_{\tilde{\mathcal{B}}}(\mathbf{z}) \in \text{segment}(\mathbf{o}\mathbf{z}) \cap \partial\tilde{\mathcal{B}}$ for $\mathbf{z} \notin \tilde{\mathcal{B}}$ and $\text{BP}_{\tilde{\mathcal{B}}}(\mathbf{z}) = \mathbf{z}$ for $\mathbf{z} \in \tilde{\mathcal{B}}$, where \mathbf{o} is the origin.
 275

276 We note the following properties of the bisection projection operator: **(i)** The bisection projection
 277 may have multiple solutions when the line segment intersects the boundary $\partial\tilde{\mathcal{B}}$ at multiple points;
 278 in such cases, the operator returns one of the valid solutions. **(ii)** The projected solution can be
 279 computed efficiently using bisection methods (Alg. 2) with linear convergence rate (Liang et al.,
 280 2023). Importantly, each bisection iteration requires a simple feasibility check (i.e., membership
 281 oracle queries). **(iii)** When the trained INN satisfies validity conditions (Def. 3.2), the composition
 282 $\Phi_\theta(\text{BP}_{\tilde{\mathcal{B}}}(\mathbf{z}))$ guarantees feasibility in \mathcal{K}_θ for any $\mathbf{z} \in \mathbb{R}^n$.

283 We then apply the PGD with the bisection projection operator for the INN-transformed problem \mathbf{H}_{inn}
 284 (shown in Alg. 1). Finally, we map the obtained converged solution back to the original space to
 285 recover the corresponding solution for the original problem.

287 4 PERFORMANCE ANALYSIS

288 In this section, we present a comprehensive performance analysis for Hom-PGD⁺, including the
 289 landscape analysis, convergence rate, and run-time complexity.
 290

291 **General Assumptions and Notations** (with details in Appendix C.2): *For notational simplicity, we
 292 fix the input parameter θ and omit it, writing f in place of $f_\theta(\cdot)$, and similarly for other functions
 293 and mappings.*

- 294 • The objective f and each constraint function g_i ($i \in [m]$) are $L_{f,0}$ -Lipschitz ($L_{g_i,0}$ resp.) continu-
 295 ous, and L_f -smooth (L_{g_i} resp.).
- 296 • The homeomorphic mapping ψ is invertible, bi-Lipschitz continuous, and has a non-singular,
 297 Lipschitz continuous Jacobian matrix, denoted by J_ψ .

298 **Given a compact constrained set \mathcal{K} , these global conditions can be relaxed to hold on a compact
 299 domain. See Appendix C.2 for detailed explanations. We remark that the learned INN Φ inherently
 300 satisfies the same assumptions as ψ , including bi-Lipschitz continuity and the existence of the
 301 Jacobian, by design of the INN architecture (refer to Appendix B.3). Moreover, the composit-
 302 ed function $H = f \circ \Phi$ and $G_i = g_i \circ \Phi$ for $i \in [m]$ inherit the same regularization properties as f and
 303 g_i from Lemma D.1. Specifically, we make further assumptions in the following.**

- 304 • The learned INN is (l_Φ, u_Φ) -bi-Lipschitz continuous and L_Φ -smooth.
- 305 • The compositored functions $H = f \circ \Phi$ and $G_i = g_i \circ \Phi$ ($i \in [m]$) are $L_{H,0}$ -Lipschitz ($L_{G_i,0}$ resp.)
 306 continuous, and L_H -smooth (L_{G_i} resp.).

307 In addition, we make the following assumption related to the learned INN.

308 **Assumption 2** (INN Approximation Error Bound). We assume the INN-approximated homeomorphic
 309 mapping $\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ has (i) a bounded approximation error:

$$310 \quad \mathcal{B}(0, 1 - \epsilon_{\text{inn}}) \subseteq \Phi^{-1}(\mathcal{K}) \subseteq \mathcal{B}(0, 1 + \epsilon_{\text{inn}}), \|\psi - \Phi\| \leq \epsilon_{\text{inn}},$$

312 and (ii) a bounded Jacobian approximation error: $\|J_\psi - J_\Phi\| \leq \epsilon_{\text{inn}}$.

313 The bounded INN approximation error could be made due to the training manner. Specifically, we
 314 design the INN Φ to map the ball \mathcal{B} closely onto the constraint set \mathcal{K} , a behavior enforced by the loss
 315 function in Eq. (1). When $\Phi(\mathcal{B})$ approximates \mathcal{K} well, it closely mimics the true homeomorphism ψ .
 316 However, controlling the Jacobian approximation error is a stronger condition, but this assumption is
 317 pivotal in our analysis to bound the KKT solution gap. In practice, since the ground truth mapping ψ
 318 is unavailable, we incorporate Lipschitz regularization (i.e., spectral norm of INN Jacobian) into the
 319 training loss to reduce local sensitivities of Φ .

320 4.1 LANDSCAPE ANALYSIS

322 In this subsection, we analyze the landscape of \mathbf{H} under the homeomorphic transformation. The
 323 following lemma establishes a one-to-one correspondence between KKT stationary points (Def. D.2)
 of \mathbf{P} and \mathbf{H} , where the relevant definitions and the proofs are provided in Appendix D.3.

324 **Proposition 4.1.** Suppose the strict complementary condition holds for both problem \mathbf{P} and \mathbf{H} . Then
 325 \mathbf{x}^* is a first-order, second-order and non-degenerate KKT stationary point of \mathbf{P} if and only if \mathbf{z}^* is a
 326 corresponding KKT stationary point of \mathbf{H} where $\mathbf{z}^* = \psi(\mathbf{x}^*)$.
 327

328 The significance of this proposition lies in its ability to establish a fundamental equivalence between
 329 the solution properties of two distinct formulations of an optimization problem. Specifically, it
 330 guarantees that optimality conditions under the Karush-Kuhn-Tucker framework are preserved under
 331 a homeomorphic transformation.

332 **4.2 CONVERGENCE ANALYSIS**
 333

334 **Definition 4.2** (Approximate KKT stationary point). A point \mathbf{x}^* is said to be an ϵ -approximate KKT
 335 stationary point of \mathbf{P} if there exists $\boldsymbol{\lambda}^* \in \mathbb{R}_{\geq 0}^n$ such that

$$336 \quad \left\| \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(\mathbf{x}^*) \right\| \leq \epsilon, \quad \|\mathbf{g}(\mathbf{x}^*)\|_+ \leq \epsilon, \quad \sum_{i=1}^m |\lambda_i^* g_i(\mathbf{x}^*)| \leq \epsilon, \quad (2)$$

339 where we denote $[a]_+ := \max\{a, 0\}$ for a scalar $a \in \mathbb{R}$ and $[\mathbf{a}]_+ := ([a_i]_+)_i$ for a vector \mathbf{a} .
 340

341 The convergence analysis of Hom-PGD⁺ is as follows, where the proof is deferred to Appendix E.

342 **Theorem 1** (Convergence of Hom-PGD⁺). *Let INN Φ satisfy Assumption 2. Then Hom-PGD⁺ with
 343 constant step-size $\alpha \in (0, \frac{1}{L_H}]$ can find an $\epsilon + \mathcal{O}(\sqrt{L_H \epsilon_{\text{inn}}})$ -approximate KKT stationary point for
 344 \mathbf{P} in $\mathcal{O}(L_H \epsilon^{-2})$ iterations.*

345 To understand this result's significance, we examine it within the broader context of optimization
 346 theory, which presents fundamental difference for convex versus non-convex constraint sets.
 347

348 For non-convex optimization over **convex constraints**, established methods like PGD and augmented-
 349 Lagrangian approaches (Beck, 2014; Zhang et al., 2022; Liu et al., 2025a) achieve $\mathcal{O}(\epsilon^{-2})$ rates.
 350 Under perfect INN training ($\epsilon_{\text{inn}} = 0$), our result recovers [their result](#). The additional $\mathcal{O}(\sqrt{L_H \epsilon_{\text{inn}}})$
 351 term reflecting INN approximation error, is consistent with optimization under inexact information
 352 (Devolder et al., 2014; Barber & Ha, 2018; Liu et al., 2025b).

353 However, optimization over **non-convex constraints** is significantly more challenging. Existing
 354 PGD-like methods require restrictive assumptions such as small local concavity (Barber & Ha, 2018),
 355 hidden convexity (Barik et al., 2023; Fatkhullin et al., 2023), or specialized manifold structures
 356 (Balashov et al., 2020). Proximal-point-based algorithms have been proposed and analyzed in recent
 357 works (Boob et al., 2019; Ma et al., 2019; Lin et al., 2022), demonstrating complexity bounds of
 358 $\tilde{\mathcal{O}}(\epsilon^{-3})$ to find a stationary point under non-singular assumptions, and $\tilde{\mathcal{O}}(\epsilon^{-4})$ without them.
 359

360 Our key insight is that the ball-homeomorphic structure bridges this complexity gap. While \mathcal{K} may
 361 be highly non-convex, the homeomorphic mapping enables convex optimization techniques in the
 362 transformed space. This assumption is more natural than existing restrictive conditions and broadly
 363 applicable across machine learning and engineering domains, as discussed in Sec. 1.

364 Consequently, Theorem 1 achieves convex-like $\mathcal{O}(\epsilon^{-2})$ rates for non-convex constrained problems—a
 365 significant theoretical advance. Additionally, the dependence on $L_H = u_\Phi^2 L_f + L_\Phi L_{f,0}$ is related to
 366 the forward Lipschitz u_Φ (22) of the INN (Lemma D.1). Thus, the Lipschitz-regularized INN training
 367 scheme in Sec. 3.2 can accelerate the convergence rate by a constant factor.

368 **4.3 RUN-TIME COMPLEXITY**

369 We analyze the total runtime complexity of the Hom-PGD⁺ method. The INN training process incurs
 370 a one-time computational cost that is performed offline and does not impact real-time performance.
 371 During the online phase, when a specific parameter θ is provided, the pre-trained mapping Φ_θ can
 372 be directly utilized. Detailed discussion on the offline complexity of INN training is included in
 373 Appendix B.5. The following discussion focuses on the online complexity of the Hom-PGD⁺ method.

374 **Oracles.** In Hom-PGD⁺, we will use the following oracles. (i) *Zeroth-order and first-order oracle*:
 375 Given a point, a zeroth-order oracle returns the value of a function f , whereas a first-order oracle
 376 provides the gradient of f . (ii) *Membership oracle*: Given a point $\mathbf{x} \in \mathbb{R}^n$, this oracle $\mathcal{M}_{\mathcal{K}}(\mathbf{x}) :=$
 377 $\mathbb{I}(\mathbf{x} \in \mathcal{K}) : \mathbb{R}^n \rightarrow \{0, 1\}$ returns 1 if and only if $\mathbf{x} \in \mathcal{K}$. Generally, the membership oracle is more
 378 efficient than the optimization oracle (Mhammedi, 2022), particularly for non-convex constraint sets.

378 **Basic operations in Hom-PGD⁺.** Next, we provide the complexity of computing basic operators
 379 where we denote W as the size of the trained INN (with details in Appendix B.3).
 380

- 381 • *Computing* $\text{BP}_{\mathcal{U}}(\cdot) : \tilde{\mathcal{O}}(W \log 1/\epsilon)$. The bisected projection can be computed using Alg. 2. As
 382 shown in (Liang et al., 2023), the method enjoys a linear convergence rate. In each iteration, it
 383 requires one forward pass through the INN and $\tilde{\mathcal{O}}(1)$ query to the membership oracle for \mathcal{K}_{θ} .
- 384 • *Computing gradient of h:* $\mathcal{O}(W)$. The gradient can be computed by chain rule $\nabla h(\mathbf{z}) =$
 385 $J_{\Phi}(\mathbf{z})^{\top} \nabla f(\mathbf{x})$. The Jacobian of Φ can be obtained through back propagation with cost $\mathcal{O}(W)$.

386 **Total run-time complexity of Hom-PGD⁺.** Given a trained INN Φ , the complexity includes:
 387

- 388 • *Per-iteration complexity.* Each iteration requires gradient computation as $\nabla h(\mathbf{z}) = J_{\Phi}(\mathbf{z})^{\top} \nabla f(\mathbf{x})$
 389 and computation of homeomorphic bisected projection both with complexity $\tilde{\mathcal{O}}(W)$.
- 390 • *Last-step complexity.* The final *converged* solution in the transformed space is mapped back to the
 391 original space via Φ with complexity $\mathcal{O}(W)$ for a forward propagation.
- 392 • *Number of iterations (I).* Refer to Sec. 4.2 for the convergence analysis.

393 In conclusion, the total complexity of Hom-PGD⁺ equals $\mathcal{O}(W \cdot I)$. Empirically, we choose a 3-layer
 394 INN with $\mathcal{O}(n)$ width, which exhibits strong performance and efficiency, and leads to complexity
 395 of $W = \mathcal{O}(n^2)$. This *practical* complexity is lower than that of second-order methods (with $\mathcal{O}(n^3)$
 396 per-iteration cost), highlighting the scalability of Hom-PGD⁺ to high-dimensional problems.
 397

398 4.4 EXTENDING BEYOND BALL-HOMEOMORPHIC CONSTRAINT

400 While this work assumes that the constraint set is homeomorphic to a ball, our framework can, in
 401 principle, be extended to general compact non-convex sets, albeit with a potentially large optimality
 402 gap. (i) For non-BH constrained sets, one can still train an INN to learn an invertible mapping from
 403 the unit ball to a **subset** of the constraint set that is itself ball-homeomorphic (ideally, the largest
 404 subset via volume maximization) following the loss function in Sec 3.2. (ii) The Hom-PGD⁺ (Alg.
 405 1) can be directly applied to the reformulated problem without any modification under the valid INN
 406 condition. (iii) The convergence rate of Theorem 1 still holds, but the stationary point corresponds to
 407 the restricted problem over the subset. Consequently, the optimality gap with respect to the original
 408 problem cannot be directly quantified.

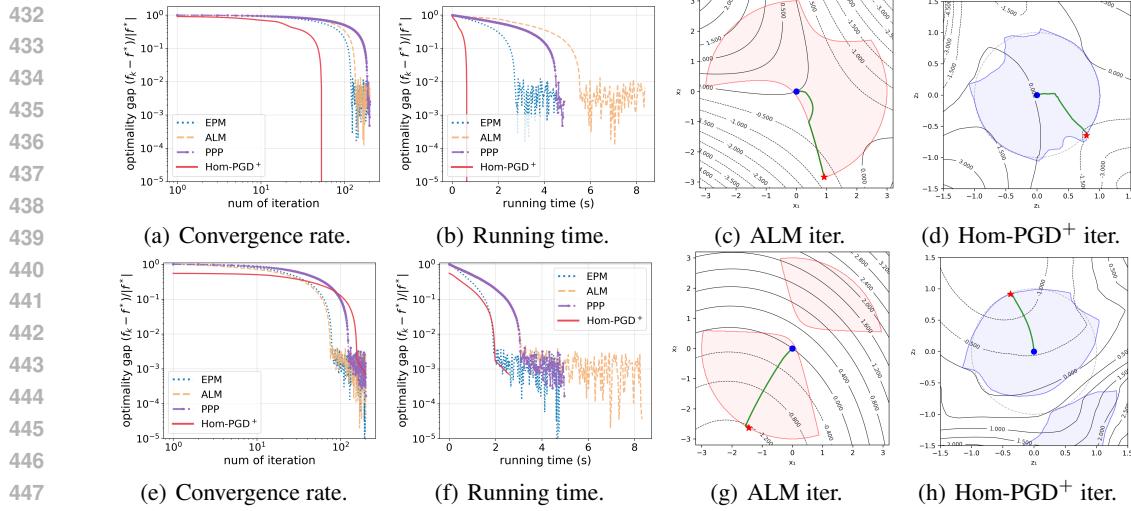
409 5 EMPIRICAL STUDY

410 We conduct extensive experiments to demonstrate the efficiency of Hom-PGD⁺. (i) We evaluate
 411 Hom-PGD⁺ on quadratically constrained quadratic programming (QCQP) problems. (ii), we scaling
 412 the QCQP problem dimension and compare Hom-PGD⁺ with industrial solver on scalability. (iii)
 413 We consider real-world power grid optimization under uncertainty with joint chance constraints
 414 (JCC). (iv) We conduct ablation studies including INN complexity and optimality gaps. Detailed
 415 experimental settings, problem formulation, data generation, baseline description, and supplementary
 416 results are provided in Appendices F and G.

417 **Baselines:** For non-convex constrained optimization problems, we consider the following baselines
 418 following the state-of-the-art work considering optimization over non-convex constrained sets (Lin
 419 et al., 2022). (i) **EPM** (Cartis et al., 2011): *exact penalty methods* iteratively solve subproblems
 420 by adding a penalty for constraint violations to the objective. (ii) **ALM** (Sahin et al., 2019; Xie &
 421 Wright, 2019; Birgin et al., 2003): *augmented Lagrangian methods* for problem **P** that alternately
 422 update primal and dual variables for an unconstrained Lagrangian formulation. (iii) **PPP** (Lin et al.,
 423 2022): *proximal-point penalty method* iteratively solves subproblems by augmenting the objective
 424 with a proximal term and quadratic penalty terms. (iv) **Hom-PGD⁺** shown in Sec. 3.

425 5.1 ILLUSTRATIVE EXAMPLES OF HOM-PGD⁺ FOR NON-CONVEX QCQP

426 As shown in Fig. 2, in the randomly generated non-convex QCQP instances, our Hom-PGD⁺
 427 method achieves fast convergence compared to other first-order algorithms. In terms of running
 428 time, compared to methods requiring expensive inner minimization problems such as Lagrangian or
 429 proximal-point methods, we only need bisection to project infeasible solutions back to the transformed
 430 constraint set, reaching linear convergence with low complexity through membership oracle queries.
 431



We train one INN to transform the constraint set under different input parameters and deploy it for optimization, *amortizing* the homeomorphism construction complexity across different constraints and reducing online complexity. Furthermore, our method empirically works for non-BH constraint settings as long as the valid INN conditions hold, despite lacking tight theoretical bounds.

5.2 HOM-PGD+ vs IPOPT IN HIGH-DIMENSIONAL NON-CONVEX QCQP

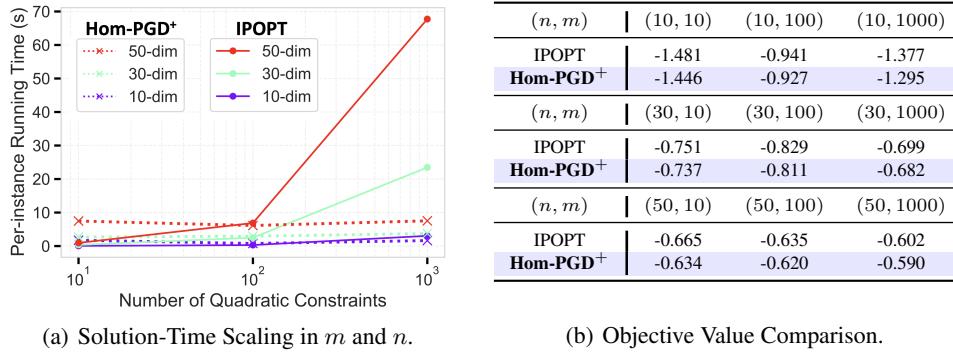


Figure 3: Scalability analysis of INN-PGD+ with respect to problem dimensions-number of constraints $m \in \{10, 100, 1000\}$ and number of variables $n \in \{10, 30, 50\}$. The problem dimensions scale with as $\mathcal{O}(m \cdot n^2)$. (a) shows average per-instance solving time when scaling m and n , while (b) shows the average converged objective values.

We scale our method to high-dimensional QCQP problems (which may be non-homeomorphic) along two axes: the number of decision variables n and the number of quadratic constraints m , yielding $\mathcal{O}(n^2 \cdot m)$ problem parameters. Hom-PGD+ demonstrates superior scaling compared to the well-optimized second-order industrial solver IPOPT. As m increases by two orders of magnitude ($10 \rightarrow 1000$), IPOPT’s per-instance time grows steeply—most notably for $n = 50$, where runtime jumps from 3 to 70 seconds. In contrast, Hom-PGD+ exhibits near-constant runtime as m scales and only mild growth with n , owing to efficient GPU-accelerated INN computation and batched constraint verification. Solution quality remains competitive: Hom-PGD+ achieves an average objective gap of 2.9% on average with zero constraint violations. These results demonstrate that Hom-PGD+ maintains efficiency as problem size grows, while IPOPT’s computational cost escalates rapidly, particularly for large n and m .

486
 487 Table 2: Performance comparison over JCC optimal power flow on PGLIB 200- and 500-bus
 488 systems with 100 and 1000 uncertainty scenarios. (Obj., Vio., Time) denote the objective value,
 489 constraint violation, and inference time (in seconds), respectively. GUROBI is applied to compute the
 490 optimum with equivalent mixed-integer formulations in 3,600 seconds. All baseline methods
 491 are executed in a maximum of 100 iterations.

Power Grid	200-bus						500-bus					
	Scenarios			100			1000			100		
Metrics	Obj.	Vio.	Time	Obj.	Vio.	Time	Obj.	Vio.	Time	Obj.	Vio.	Time
GUROBI	0.679	0	95	failed			7.43	0	1259	failed		
EPM	0.690	0.9	76	0.933	1	801	8.63	1	109	8.65	1	1107
ALM	0.693	0.9	141	0.927	1	1452	8.66	1	205	8.67	1	2061
PPP	0.698	0.9	75	0.927	1	799	8.62	1	108	8.66	1	1102
Hom-PGD⁺	0.688	0	44	0.768	0	246	7.66	0	103	8.56	0	396

5.3 NON-CONVEX JCC-OPTIMIZATION FOR POWER GRID OPERATION

Modern power grids face uncertainties from renewable generation and load fluctuations, requiring operators to determine generator settings that ensure safe operation with high probability. This problem can be modeled as non-convex joint chance constraints (JCC), which are computationally prohibitive for large-scale grids when solved exactly with mixed-integer formulations (Pagnoncelli et al., 2009). The computational challenge arises from integer variables scaling with scenarios and numerous operational constraints per scenario (exceeding 2,000 for the 500-bus grid).

Our method demonstrates strong performance on this challenging problem. As shown in Table 2, we significantly outperform baselines in running time while maintaining approximately 3% optimality gap compared to GUROBI and achieving exact chance constraint satisfaction. This efficiency stems from our bisection-based projection algorithm requiring only function evaluation (membership oracle) without gradient calculations for constraints, unlike other first-order methods that require both evaluations at each iteration, with computational burden growing linearly with scenarios.

5.4 ABLATION STUDY AND SENSITIVITY ANALYSIS

With details in Appendix G.2, we conduct the following analysis: **(i) INN Complexity and Performance**, showing the impact of INN complexity (e.g., 1/3/5-layer INN) on **approximation error** (2) and its **Lipschitz constants**, as well as the impacts on the downstream optimization task, showing that the 3-layer INN balances the approximation capability and parameter complexity. **(ii) Bisection Complexity and Performance**, showing that reducing the iterations of the bisection algorithm can further reduce the per-iteration cost, while it may incur a large optimality gap.

6 CONCLUSION AND LIMITATIONS

In this work, we proposed Hom-PGD⁺, a fast projection-efficient, learning-based method for optimizing over non-convex constraint sets homeomorphic to a ball. Exploiting the constraint topological structure, we leverage INN to transform the problem and achieve efficient convergence with low per-iteration cost, outperforming existing methods both theoretically and empirically across various benchmarks. Despite the efficiency of Hom-PGD⁺, several **limitations** remain for future work: (i) Learning homeomorphic mappings via INNs introduces significant worst-case theoretical complexity. Developing tighter approximation bounds for learning homeomorphisms could improve practical efficiency. (ii) Our convergence guarantee yields an $\epsilon + \mathcal{O}(\sqrt{\epsilon_{\text{inn}}})$ -approximate stationary point. This square-root dependence for homeomorphism approximation error ϵ_{inn} may be suboptimal, and achieving a tighter relationship remains an open question. (iii) While designed for Euclidean ball-homeomorphic constraints, our framework may extend to manifold-constrained problems with favorable topology, though formalizing such extensions remains non-trivial.

540 REFERENCES

542 Ademir Alves Aguiar, Orizon Pereira Ferreira, and Leandro F Prudente. Inexact gradient projection
 543 method with relative error tolerance. *Computational Optimization and Applications*, 84(2):363–395,
 544 2023.

545 Kurt M Anstreicher. On convex relaxations for quadratically constrained quadratic programming.
 546 *Mathematical programming*, 136(2):233–251, 2012.

548 Sogol Babaieejadsarokolaee, Adam Birchfield, Richard D Christie, Carleton Coffrin, Christopher
 549 DeMarco, Ruisheng Diao, Michael Ferris, Stephane Fliscounakis, Scott Greene, Renke Huang,
 550 et al. The power grid library for benchmarking ac optimal power flow algorithms. *arXiv preprint*
 551 *arXiv:1908.02788*, 2019.

552 Bubacarr Bah, Holger Rauhut, Ulrich Terstiege, and Michael Westdickenberg. Learning deep linear
 553 neural networks: Riemannian gradient flows and convergence to global minimizers. *Information*
 554 and *Inference: A Journal of the IMA*, 11(1):307–353, 2022.

555 Maxim V Balashov. The gradient projection algorithm for smooth sets and functions in nonconvex
 556 case. *Set-Valued and Variational Analysis*, 29(2):341–360, 2021.

558 MV Balashov, BT Polyak, and AA Tremba. Gradient projection and conditional gradient methods
 559 for constrained nonconvex minimization. *Numerical Functional Analysis and Optimization*, 41(7):
 560 822–849, 2020.

561 Rina Foygel Barber and Wooseok Ha. Gradient descent with non-convex constraints: local concavity
 562 determines convergence. *Information and Inference: A Journal of the IMA*, 7(4):755–806, 2018.

563 Adarsh Barik, Suvrit Sra, and Jean Honorio. Invex programs: First order algorithms and their
 564 convergence. *arXiv preprint arXiv:2307.04456*, 2023.

566 Amir Beck. *Introduction to nonlinear optimization: Theory, algorithms, and applications with*
 567 *MATLAB*. SIAM, 2014.

568 Amir Beck, Aharon Ben-Tal, and Luba Tetruashvili. A sequential parametric convex approximation
 569 method with applications to nonconvex truss topology design problems. *Journal of Global*
 570 *Optimization*, 47:29–51, 2010.

572 Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
 573 Invertible residual networks. In *International Conference on Machine Learning*, pp. 573–582.
 574 PMLR, 2019.

575 Adi Ben-Israel and Bertram Mond. What is invexity? *The ANZIAM Journal*, 28(1):1–9, 1986.

577 GC Bento, BS Mordukhovich, TS Mota, and Yu Nesterov. Convergence of descent methods under
 578 kurdyka-\l ojasiewicz properties. *arXiv preprint arXiv:2407.00812*, 2024.

579 Ernesto G Birgin, José Mario Martínez, and Marcos Raydan. Inexact spectral projected gradient
 580 methods on convex sets. *IMA Journal of Numerical Analysis*, 23(4):539–559, 2003.

582 Franco Blanchini and Stefano Miani. *Set-theoretic methods in control*, volume 78. Springer, 2008.

583 Digvijay Boob, Qi Deng, and Guanghui Lan. Proximal point methods for optimization with nonconvex
 584 functional constraints. *arXiv preprint arXiv:1908.02734*, 2, 2019.

585 Nicolas Boumal. *An introduction to optimization on smooth manifolds*. Cambridge University Press,
 586 2023.

588 Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. *Convex optimization*. Cambridge
 589 university press, 2004.

591 Glen E Bredon. *Topology and geometry*, volume 139. Springer Science & Business Media, 2013.

592 Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. On the evaluation complexity of composite
 593 function minimization with applications to nonconvex nonlinear programming. *SIAM Journal on*
 594 *Optimization*, 21(4):1721–1739, 2011.

594 Frédéric Chazal and Bertrand Michel. An introduction to topological data analysis: fundamental and
 595 practical aspects for data scientists. *Frontiers in artificial intelligence*, 4:667963, 2021.
 596

597 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
 598 differential equations. *Advances in neural information processing systems*, 31, 2018.
 599

600 Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for
 601 invertible generative modeling. *Advances in Neural Information Processing Systems*, 32, 2019.
 602

603 Xin Chen, Niao He, Yifan Hu, and Zikun Ye. Efficient algorithms for minimizing compositions
 604 of convex functions and random functions and its applications in network revenue management.
 605 *arXiv preprint arXiv:2205.01774*, 2022.
 606

607 James Chok and Geoffrey M Vasil. Optimization over a probability simplex. *Journal of Machine
 608 Learning Research*, 26(73):1–35, 2025.
 609

610 Diego Cifuentes. On the burer–monteiro method for general semidefinite programs. *Optimization
 611 Letters*, 15(6):2299–2309, 2021.
 612

613 Oscar Davis, Samuel Kessler, Mircea Petrache, Ismail Ilkan Ceylan, Michael Bronstein, and
 614 Avishek Joey Bose. Fisher flow matching for generative modeling over discrete data. *arXiv
 615 preprint arXiv:2405.14664*, 2024.
 616

617 Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods of smooth convex
 618 optimization with inexact oracle. *Mathematical Programming*, 146(1):37–75, 2014.
 619

620 Steven Diamond, Reza Takapoui, and Stephen Boyd. A general system for heuristic minimization of
 621 convex functions over non-convex sets. *Optimization Methods and Software*, 33(1):165–193, 2018.
 622

623 Josef Dick and Friedrich Pillichshammer. *Digital nets and sequences: discrepancy theory and
 624 quasi–Monte Carlo integration*. Cambridge University Press, 2010.
 625

626 Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
 627 estimation. *arXiv preprint arXiv:1410.8516*, 2014.
 628

629 Dmitriy Drusvyatskiy and Courtney Paquette. Efficiency of minimizing compositions of convex
 630 functions and smooth maps. *Mathematical Programming*, 178:503–558, 2019.
 631

632 Ecenaz Erdemir, Jeffrey Bickford, Luca Melis, and Sergul Aydore. Adversarial robustness with
 633 non-uniform perturbations. *Advances in Neural Information Processing Systems*, 34:19147–19159,
 634 2021.
 635

636 Ilyas Fatkhullin, Niao He, and Yifan Hu. Stochastic optimization under hidden convexity. *arXiv
 637 preprint arXiv:2401.00108*, 2023.
 638

639 Orizon Pereira Ferreira, Max Lemes, and Leandro F Prudente. On the inexact scaled gradient
 640 projection method. *Computational Optimization and Applications*, pp. 1–35, 2022.
 641

642 Dylan J Foster, Ayush Sekhari, and Karthik Sridharan. Uniform convergence of gradients for
 643 non-convex learning and optimization. *Advances in neural information processing systems*, 31,
 644 2018.
 645

646 Pierre Frankel, Guillaume Garrigos, and Juan Peypouquet. Splitting methods with variable metric for
 647 kurdyka–łojasiewicz functions and general convergence rates. *Journal of Optimization Theory and
 648 Applications*, 165:874–900, 2015.
 649

650 Qiang Fu, Dongchu Xu, and Ashia Camage Wilson. Accelerated stochastic optimization methods
 651 under quasar-convexity. In *International Conference on Machine Learning*, pp. 10431–10460.
 652 PMLR, 2023.
 653

654 John B Garnett and Donald E Marshall. *Harmonic measure*. Number 2. Cambridge University Press,
 655 2005.
 656

657 Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. *Advances
 658 in neural information processing systems*, 29, 2016.
 659

648 Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for
 649 distribution estimation. In *International conference on machine learning*, pp. 881–889. PMLR,
 650 2015.

651

652 Stefan Geschke. Convex open subsets of \mathbb{R}^n are homeomorphic to n -dimensional open balls. *Preprint*,
 653 <http://relaunch.hcm.uni-bonn.de/fileadmin/geschke/papers/ConvexOpen.pdf>, 2012.

654 Stéphane Gonnord and Nicolas Tose. *Calcul différentiel: thèmes d'analyse pour l'agrégation*.
 655 Ellipses, 1998.

656

657 Robert Gower, Othmane Sebbouh, and Nicolas Loizou. Sgd for structured nonconvex functions:
 658 Learning rates, minibatching and interpolation. In *International Conference on Artificial Intelli-
 659 gence and Statistics*, pp. 1315–1323. PMLR, 2021.

660 Alexandra Grangcharova and Tor Arne Johansen. Multi-parametric programming. In *Explicit nonlinear
 661 model predictive control: Theory and applications*, pp. 1–37. Springer, 2012.

662

663 Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
 664 Free-form continuous dynamics for scalable reversible generative models. *arXiv preprint
 665 arXiv:1810.01367*, 2018.

666 Benjamin Grimmer. Radial duality part i: foundations. *Mathematical Programming*, 205(1):33–68,
 667 2024a.

668

669 Benjamin Grimmer. Radial duality part ii: applications and algorithms. *Mathematical Programming*,
 670 205(1):69–105, 2024b.

671

672 Sergey Guminov, Alexander Gasnikov, and Ilya Kuruzov. Accelerated methods for α -weakly-quasi-
 673 convex problems. *arXiv preprint arXiv:1710.00797*, 2017.

674

675 Wooseok Ha, Haoyang Liu, and Rina Foygel Barber. An equivalence between critical points for
 676 rank constraints versus low-rank factorizations. *SIAM Journal on Optimization*, 30(4):2927–2955,
 2020.

677

678 Guillermo Hansen, Irmina Herburt, Horst Martini, and Maria Moszyńska. Starshaped sets. *Aequa-
 679 tiones mathematicae*, 94(6):1001–1092, 2020.

680

681 Morgan A Hanson. On sufficiency of the kuhn-tucker conditions. *J. Math. Anal. Appl.*, 80(2):545–550,
 1981.

682

683 Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynamical systems.
 684 *Journal of Machine Learning Research*, 19(29):1–44, 2018.

685

686 Oliver Hinder, Aaron Sidford, and Nimit Sohoni. Near-optimal methods for minimizing star-convex
 687 functions and beyond. In *Conference on learning theory*, pp. 1894–1938. PMLR, 2020.

688

689 Chin-Wei Huang, Ricky TQ Chen, Christos Tsirigotis, and Aaron Courville. Convex potential flows:
 690 Universal probability distributions with optimal transport and convex optimization. In *International
 691 Conference on Learning Representations*, 2020.

692

693 Isao Ishikawa, Takeshi Teshima, Koichi Tojo, Kenta Oono, Masahiro Ikeda, and Masashi Sugiyama.
 694 Universal approximation property of invertible neural networks. *arXiv preprint arXiv:2204.07415*,
 2022.

695

696 Bo Jiang, Ya-Feng Liu, and Zaiwen Wen. L_p-norm regularization algorithms for optimization over
 697 permutation matrices. *SIAM Journal on Optimization*, 26(4):2284–2313, 2016.

698

699 Bangti Jin, Zehui Zhou, and Jun Zou. On the approximation of bi-lipschitz maps by invertible neural
 700 networks. *Neural Networks*, 174:106214, 2024.

701

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
 702 gradient methods under the polyak-łojasiewicz condition. In *Machine Learning and Knowledge
 703 Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy,
 704 September 19–23, 2016, Proceedings, Part I* 16, pp. 795–811. Springer, 2016.

702 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 703 *arXiv:1412.6980*, 2014.

704

705 Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
 706 *Advances in neural information processing systems*, 31, 2018.

707

708 Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does sgd escape local
 709 minima? In *International conference on machine learning*, pp. 2698–2707. PMLR, 2018.

710

711 Aritra Konar and Nicholas D Sidiropoulos. Hidden convexity in qcqp with toeplitz-hermitian
 712 quadratics. *IEEE Signal Processing Letters*, 22(10):1623–1627, 2015.

713

714 Keita Kume and Isao Yamada. A variable smoothing for weakly convex composite minimization
 715 with nonconvex constraint. *arXiv preprint arXiv:2412.04225*, 2024.

716

717 Krzysztof Kurdyka. On gradients of functions definable in o-minimal structures. In *Annales de
 718 l'institut Fourier*, volume 48, pp. 769–783, 1998.

719

720 D Lee and Arthur Lin. Computational complexity of art gallery problems. *IEEE Transactions on
 721 Information Theory*, 32(2):276–282, 1986.

722

723 John Lee. *Introduction to topological manifolds*, volume 202. Springer Science & Business Media,
 724 2010.

725

726 John M Lee and John M Lee. *Smooth manifolds*. Springer, 2012.

727

728 Yunwen Lei, Ting Hu, Guiying Li, and Ke Tang. Stochastic gradient descent for nonconvex learning
 729 without bounded gradient assumptions. *IEEE transactions on neural networks and learning
 730 systems*, 31(10):4394–4400, 2019.

731

732 Eitan Levin, Joe Kileel, and Nicolas Boumal. The effect of smooth parametrizations on nonconvex
 733 optimization landscapes. *Mathematical Programming*, pp. 1–49, 2024.

734

735 Guoyin Li and Ting Kei Pong. Calculus of the exponent of kurdyka–łojasiewicz inequality and
 736 its applications to linear convergence of first-order methods. *Foundations of computational
 737 mathematics*, 18(5):1199–1232, 2018.

738

739 Qiuwei Li, Daniel McKenzie, and Wotao Yin. From the simplex to the sphere: faster constrained
 740 optimization using the hadamard parametrization. *Information and Inference: A Journal of the
 741 IMA*, 12(3):1898–1937, 2023.

742

743 Enming Liang and Minghua Chen. Efficient bisection projection to ensure neural-network solution
 744 feasibility for optimization over general set. In *International Conference on Machine Learning*.
 745 PMLR, 2025.

746

747 Enming Liang, Minghua Chen, and Steven H. Low. Low complexity homeomorphic projection to
 748 ensure neural-network solution feasibility for optimization over (non-)convex set. In *International
 749 Conference on Machine Learning*. PMLR, 2023.

750

751 Enming Liang, Minghua Chen, and Steven H. Low. Homeomorphic projection to ensure neural-
 752 network solution feasibility for constrained optimization. *Journal of Machine Learning Research*,
 753 2024.

754

755 Qihang Lin, Runchao Ma, and Yangyang Xu. Complexity of an inexact proximal-point penalty method
 756 for constrained smooth non-convex optimization. *Computational optimization and applications*,
 757 82(1):175–224, 2022.

758

759 Chenghao Liu, Enming Liang, and Minghua Chen. Fast projection-free approach (without optimiza-
 760 tion oracle) for optimization over compact convex set. *Advances in Neural Information Processing
 761 Systems*, 2025a.

762

763 Kang Liu, Wei Peng, and Jianchen Hu. Learning based convex approximation for constrained
 764 parametric optimization. *arXiv preprint arXiv:2505.04037*, 2025b.

756 Ning Liu and Benjamin Grimmer. Gauges and accelerated optimization over smooth and/or strongly
 757 convex sets. *arXiv preprint arXiv:2303.05037*, 2023.

758

759 Stanislaw Łojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. *Les*
 760 *équations aux dérivées partielles*, 117:87–89, 1963a.

761 Stanislaw Łojasiewicz. A topological property of real analytic subsets. *Coll. du CNRS, Les équations*
 762 *aux dérivées partielles*, 117(87-89):2, 1963b.

763

764 Steven H Low. Convex relaxation of optimal power flow—part i: Formulations and equivalence.
 765 *IEEE Transactions on Control of Network Systems*, 1(1):15–27, 2014a.

766 Steven H Low. Convex relaxation of optimal power flow—part ii: Exactness. *IEEE Transactions on*
 767 *Control of Network Systems*, 1(2):177–189, 2014b.

768

769 Junlong Lyu, Zhitang Chen, Chang Feng, Wenjing Cun, Shengyu Zhu, Yanhui Geng, Zhijie Xu, and
 770 Yongwei Chen. Universality of parametric coupling flows over parametric diffeomorphisms. *arXiv*
 771 *preprint arXiv:2202.02906*, 2022.

772 Runchao Ma, Qihang Lin, and Tianbao Yang. Proximally constrained methods for weakly convex
 773 optimization with weakly convex constraints. *arXiv preprint arXiv:1908.01871*, 3, 2019.

774

775 Runchao Ma, Qihang Lin, and Tianbao Yang. Quadratically regularized subgradient methods for
 776 weakly convex optimization with weakly convex constraints. In *International Conference on*
 777 *Machine Learning*, pp. 6554–6564. PMLR, 2020.

778 Barry R Marks and Gordon P Wright. A general inner approximation algorithm for nonconvex
 779 mathematical programs. *Operations research*, 26(4):681–683, 1978.

780 D H. Martin. The essence of invexity. *Journal of optimization Theory and Applications*, 47:65–76,
 781 1985.

782

783 Zakaria Mhammedi. Efficient projection-free online convex optimization with membership oracle. In
 784 *Conference on Learning Theory*, pp. 5314–5390. PMLR, 2022.

785

786 Bamdev Mishra, Gilles Meyer, Silvere Bonnabel, and Rodolphe Sepulchre. Fixed-rank matrix
 787 factorizations and riemannian low-rank optimization. *Computational Statistics*, 29:591–621, 2014.

788 Shashi K Mishra and Giorgio Giorgi. *Invexity and optimization*, volume 88. Springer Science &
 789 Business Media, 2008.

790 Arkadi Nemirovski and Alexander Shapiro. Scenario approximations of chance constraints. *Probabilistic*
 791 *and randomized methods for design under uncertainty*, pp. 3–47, 2006.

792

793 Yurii Nesterov, Alexander Gasnikov, Sergey Guminov, and Pavel Dvurechensky. Primal-dual
 794 accelerated gradient descent with line search for convex and nonconvex optimization problems.
 795 *arXiv preprint arXiv:1809.05895*, pp. 5, 2018a.

796 Yurii Nesterov et al. *Lectures on convex optimization*, volume 137. Springer, 2018b.

797

798 Jorge Nocedal and Stephen J Wright. *Numerical optimization*. Springer, 1999.

799

800 Joseph O’Rourke and Kenneth Supowit. Some np-hard polygon decomposition problems. *IEEE*
 801 *Transactions on Information Theory*, 29(2):181–190, 1983.

802 Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington. A roadmap
 803 for the computation of persistent homology. *EPJ Data Science*, 6:1–38, 2017.

804

805 Bernardo K Pagnoncelli, Shabbir Ahmed, and Alexander Shapiro. Sample average approximation
 806 method for chance constrained programming: theory and applications. *Journal of optimization*
 807 *theory and applications*, 142(2):399–416, 2009.

808

809 George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
 Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. *Journal of*
Machine Learning Research, 22(57):1–64, 2021.

810 Jaehyun Park and Stephen Boyd. General heuristics for nonconvex quadratically constrained quadratic
 811 programming. *arXiv preprint arXiv:1703.07870*, 2017.

812

813 Andrei Patrascu and Paul Irofti. Computational complexity of inexact proximal point algorithm for
 814 convex optimization under holderian growth. *arXiv preprint arXiv:2108.04482*, 2021.

815

816 Andrei Patrascu and Ion Necoara. On the convergence of inexact projection primal first-order methods
 817 for convex minimization. *IEEE Transactions on Automatic Control*, 63(10):3317–3329, 2018.

818

819 Samuel Pinilla and Jeyan Thiyagalingam. Global optimality for non-linear constrained restoration
 820 problems via invexity. In *The Twelfth International Conference on Learning Representations*,
 2024.

821

822 Samuel Pinilla, Tingting Mu, Neil Bourne, and Jeyan Thiyagalingam. Improved imaging by invex
 823 regularizers with global optima guarantees. *Advances in Neural Information Processing Systems*,
 35:10780–10794, 2022.

824

825 Boris Teodorovich Polyak. Gradient methods for minimizing functionals. *Zhurnal vychislitel'noi
 826 matematiki i matematicheskoi fiziki*, 3(4):643–653, 1963.

827

828 Clarice Poon and Gabriel Peyré. Smooth over-parameterized solvers for non-smooth structured
 829 optimization. *Mathematical programming*, 201(1):897–952, 2023.

830

831 Akshay Ramachandran, Kevin Shu, and Alex L Wang. Hidden convexity, optimization, and algorithms
 832 on rotation matrices. *Mathematics of Operations Research*, 2024.

833

834 Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance
 835 reduction for nonconvex optimization. In *International conference on machine learning*, pp.
 314–323. PMLR, 2016.

836

837 Mehmet Fatih Sahin, Ahmet Alacaoglu, Fabian Latorre, Volkan Cevher, et al. An inexact augmented
 838 lagrangian framework for nonconvex optimization with nonlinear constraints. *Advances in Neural
 839 Information Processing Systems*, 32, 2019.

840

841 Thabo Samakhoana and Benjamin Grimmer. Scalable projection-free optimization methods via
 842 multiradial duality theory. *arXiv preprint arXiv:2403.13688*, 2024.

843

844 Mark Schmidt, Nicolas Roux, and Francis Bach. Convergence rates of inexact proximal-gradient
 845 methods for convex optimization. *Advances in neural information processing systems*, 24, 2011.

846

847 Gesualdo Scutari, Francisco Facchinei, Lorenzo Lampariello, and Peiran Song. Parallel and dis-
 848 tributed methods for nonconvex optimization. In *2014 IEEE International Conference on Acoustics,
 849 Speech and Signal Processing (ICASSP)*, pp. 840–844. IEEE, 2014.

850

851 Hanif D Sherali and Warren P Adams. *A reformulation-linearization technique for solving discrete
 852 and continuous nonconvex problems*, volume 31. Springer Science & Business Media, 2013.

853

854 Stephen Smale. On the structure of manifolds. *American Journal of Mathematics*, 84(3):387–399,
 1962.

855

856 Daniel Tabas and Baosen Zhang. Computationally efficient safe reinforcement learning for power
 857 systems. In *2022 American Control Conference (ACC)*, pp. 3303–3310. IEEE, 2022.

858

859 Tianyun Tang and Kim-Chuan Toh. Optimization over convex polyhedra via hadamard parametriza-
 860 tions. *Mathematical Programming*, pp. 1–41, 2024.

861

862 Takeshi Teshima, Isao Ishikawa, Koichi Tojo, Kenta Oono, Masahiro Ikeda, and Masashi Sugiyama.
 863 Coupling-based invertible neural networks are universal diffeomorphism approximators. *Advances
 864 in Neural Information Processing Systems*, 33:3362–3373, 2020.

865

866 Le-Nam Tran, Muhammad Fainan Hanif, and Markku Juntti. A conic quadratic programming
 867 approach to physical layer multicasting for large-scale antenna arrays. *IEEE Signal Processing
 868 Letters*, 21(1):114–117, 2013.

864 Changyu Wang and Qian Liu. Convergence properties of inexact projected gradient methods.
865 *Optimization*, 55(3):301–310, 2006.
866

867 Christina Winkler, Daniel Worrall, Emiel Hoogeboom, and Max Welling. Learning likelihoods with
868 conditional normalizing flows. *arXiv preprint arXiv:1912.00042*, 2019.
869

870 Yue Xie and Stephen J Wright. Complexity of proximal augmented lagrangian for nonconvex
871 optimization with nonlinear equality constraints. *arXiv preprint arXiv:1908.00131*, 2019.
872

873 Zongben Xu, Hai Zhang, Yao Wang, XiangYu Chang, and Yong Liang. L 1/2 regularization. *Science
China Information Sciences*, 53:1159–1169, 2010.
874

875 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
876 Alexander J Smola. Deep sets. *Advances in neural information processing systems*, 30, 2017.
877

878 Fan Zhang, Hao Wang, Jiashan Wang, and Kai Yang. Inexact primal–dual gradient projection methods
879 for nonlinear optimization on convex set. *Optimization*, 69(10):2339–2365, 2020.
880

881 Jiawei Zhang, Wenqiang Pu, and Zhi-Quan Luo. On the iteration complexity of smoothed proximal
882 alm for nonconvex optimization problem with convex constraints. *arXiv preprint arXiv:2207.06304*,
883 2022.
884

885 Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and Vahid Tarokh. Sgd converges to global
886 minimum in deep learning via star-convex path. *arXiv preprint arXiv:1901.00451*, 2019.
887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918	Contents	
919		
920	A Related Work	19
921	A.1 Conditions for Global Convergence in Non-convex Optimization	19
922	A.2 Non-Convex Constrained Optimization	19
923	A.3 Recent Advances for Non-Convex Optimization	20
924		
925	B Learning Homeomorphism via Invertible Neural Networks	21
926	B.1 Handling Constraint Set with Equality	21
927	B.2 Introduction of Invertible Neural Networks	21
928	B.3 Computational Issues of Invertible Neural Networks	22
929	B.4 Unsupervised INN Training	23
930	B.5 Offline Complexity to Obtain a Trained Valid INN	24
931	B.6 Homeomorphisms from a Star-Shaped Set to a Ball	26
932		
933	C Preliminaries for Technical Proof	26
934	C.1 Basic Concepts	26
935	C.2 Basic Assumptions and Notations	27
936	C.3 Basic Facts	28
937		
938	D Landscape Analysis	29
939	D.1 Action of Homeomorphism on a Constrained Set	29
940	D.2 Properties of Function $h = f \circ \psi$	30
941	D.3 KKT Conditions of Problem P and H	31
942	D.4 Relationships of KKT Stationary Points between Problem P and H	32
943		
944	E Convergence Analysis: Optimization over Non-Convex BH Set	35
945	E.1 Proof of Theorem 1	36
946		
947	F Experiments Setting	40
948		
949	F.1 Problem Formulations and Instance Generation	40
950	F.2 Baseline Algorithms and Hyper-Parameters	42
951	F.3 Invertible Neural Network Implementation	43
952		
953		
954		
955		
956		
957		
958		
959		
960		
961		
962		
963		
964		
965		
966		
967		
968		
969		
970		
971		

972 LLM USAGE
973974 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
975976
977 A RELATED WORK
978979 Non-convex optimization is notoriously challenging and is NP-hard in general. To better understand
980 its structure and design more efficient algorithms, researchers have explored strong structural assumptions
981 that enable convergence, sometimes even to global optima, as well as advanced techniques such
982 as reparameterization and hidden convexity. We review these developments in the following sections.
983984 A.1 CONDITIONS FOR GLOBAL CONVERGENCE IN NON-CONVEX OPTIMIZATION
985986 **Invexity.** Invexity (Hanson, 1981) is a generalization of convexity, with a property that stationary
987 points are global optima (Martin, 1985; Ben-Israel & Mond, 1986). The classical theory of invexity
988 is detailed in (Mishra & Giorgi, 2008). Recent work (Barik et al., 2023) develops projected invex
989 gradient descent algorithms that find global optima for invex programs under certain assumptions.
990 Additionally, the invex structure has been applied to learning tasks, such as image reconstruction
991 (Pinilla et al., 2022; Pinilla & Thiyyagalingam, 2024), to achieve global optima instead of merely
992 critical points.993 **PL/KL conditions.** Kurdyka-Łojasiewicz (KL) condition (Łojasiewicz, 1963a; Kurdyka, 1998) is
994 widely used to analyze local convergence in non-convex minimization. The Polyak-Łojasiewicz
995 (PL) condition (Polyak, 1963; Łojasiewicz, 1963b), a global variant of the KL condition, ensures
996 that stationarity implies optimality and serves as a sufficient condition for global linear convergence
997 in non-convex problems. This condition has been applied to non-convex, non-smooth optimization
998 (Bento et al., 2024) and learning tasks such as training neural networks (Reddi et al., 2016; Lei et al.,
999 2019) and stochastic risk minimization (Foster et al., 2018). Theoretical studies have explored the
1000 relationship between (generalized) PL and other conditions (Karimi et al., 2016), the calculus of KL
1001 functions (Li & Pong, 2018), and convergence rates for functions satisfying the KL condition with
1002 varying exponents (Frankel et al., 2015).1003 **Quasar-convexity.** Quasar-convexity (Hardt et al., 2018) is a relaxation of convexity parameterized
1004 by $\gamma \in (0, 1]$, with $\gamma = 1$ implying star-convexity. This property arises in various optimization
1005 and learning tasks such as the objectives in, learning linear dynamical systems (Hardt et al., 2018),
1006 positive semidefinite matrix completion (Ge et al., 2016), and neural network training tasks (Zhou
1007 et al., 2019; Kleinberg et al., 2018). For quasar-convex objectives, gradient-based methods can
1008 achieve a comparable convergence rate as convex objectives to a global optimum, with convergence
1009 analyses available for standard algorithms (Gower et al., 2021; Guminov et al., 2017) and accelerated
1010 methods (Guminov et al., 2017; Hinder et al., 2020; Nesterov et al., 2018a; Fu et al., 2023).1011 A.2 NON-CONVEX CONSTRAINED OPTIMIZATION
10121013 For optimization problems with non-convex constraints, convergence guarantees for standard PGD
1014 algorithms are rarely provided. The existing literature often imposes extremely stringent conditions,
1015 such as assumptions on local concavity coefficients (Barber & Ha, 2018) or adopts a manifold
1016 optimization framework (Balashov et al., 2020; Balashov, 2021; Boumal, 2023).1017 In fact, convergence analysis for non-convex constrained optimization is generally scarce and fre-
1018 quently relies on inconsistent or overly restrictive assumptions, not just for projection-based algo-
1019 rithms but across other approaches as well. To address these challenges, several works have proposed
1020 alternative methodologies, including regularized subgradient methods (Ma et al., 2020), inexact
1021 Lagrangian augmented methods (Sahin et al., 2019; Xie & Wright, 2019; Birgin et al., 2003) and
1022 proximal-point-based algorithms (Boob et al., 2019; Ma et al., 2019; Lin et al., 2022). Among
1023 these works, the state-of-the-art work Lin et al. (2022) achieves the fastest convergence rate $\mathcal{O}(\epsilon^{-3})$
1024 for non-convex optimization problems with weakly convex constraints, under some regularization
1025 assumption. We refer readers to this paper for a comprehensive discussion of the assumptions and
convergence analysis in related work.

1026
1027

A.3 RECENT ADVANCES FOR NON-CONVEX OPTIMIZATION

1028
1029
1030

To reduce the cost and accelerate the convergence for solving (non-)convex constrained optimization, recent novel projection-free methods and other advanced techniques involve inexact projection, radial dual formulation, reparameterizing optimization problems, and uncovering hidden convexity.

1031
1032
1033
1034
1035
1036
1037
1038

Inexact projection. In many cases, the projection operator lacks an analytic solution or is computationally expensive to compute exactly, motivating the analysis of inexact projected methods. For convex optimization, such methods achieve the same convergence rate as PGD if the cumulative projection error is bounded (Schmidt et al., 2011; Patrascu & Necroara, 2018), with new results derived under specific settings (Patrascu & Irofti, 2021). For nonconvex objectives with convex constraints, their convergence has been analyzed in (Birgin et al., 2003; Wang & Liu, 2006; Zhang et al., 2020). Recent advances further generalize inexact projection operators to broader settings (Ferreira et al., 2022; Aguiar et al., 2023).

1039
1040
1041
1042
1043
1044
1045

Radial duality. Beyond classical projection-free methods, recent advancements have introduced novel approaches based on gauge and radial duality theory. Radial duality theory for nonnegative optimization problems (Grimmer, 2024a;b) demonstrates that constrained optimization problems can be reformulated as unconstrained problems using the gauge of their constraints. This framework has led to the development of new families of projection-free methods with optimal convergence guarantees (Liu & Grimmer, 2023), as well as relaxed conditions (Samakhoana & Grimmer, 2024) that enable more efficient line search operators for the reformulated unconstrained problems.

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055

Reparameterization. Reparameterizing optimization problems aims to mitigate challenging properties, such as non-smoothness or non-convexity, via invertible transformations while preserving equivalent optima. Parameterization is widely used in optimization and learning tasks, including semi-definite programming (Cifuentes, 2021), low-rank optimization (Mishra et al., 2014; Ha et al., 2020), and risk minimization (Bah et al., 2022). Recent advancements include parameterizing simplex (Li et al., 2023) and polyhedron (Tang & Toh, 2024) optimization via Hadamard transformation to reduce projection complexity, smooth over-parameterization to accelerate non-smooth optimization algorithms (Poon & Peyré, 2023), parameterizing discrete data as continuous for generative learning (Davis et al., 2024), and analyzing the optimization landscape under parameterization transformations in non-convex settings (Levin et al., 2024).

1056
1057
1058
1059
1060
1061
1062
1063
1064

Hidden convexity. Hidden convexity refers to transformations that reveal the convex structure of non-convex sets or functions, which has been exploited in problems such as rotation matrix optimization (Ramachandran et al., 2024), non-linear least squares (Drusvyatskiy & Paquette, 2019), revenue management and inventory control (Chen et al., 2022), and quadratically constrained quadratic programming (QCQP) with Toeplitz-Hermitian quadratics (Konar & Sidiropoulos, 2015). For non-convex stochastic optimization with hidden structure, projected gradient-based algorithms can achieve the same convergence rate as in convex optimization for both strongly convex (Fatkullin et al., 2023) and convex objectives (Chen et al., 2022) under certain assumptions. Furthermore, QCQP, which is generally NP-hard, can be solved in polynomial time when hidden convexity is present (Konar & Sidiropoulos, 2015).

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 **B LEARNING HOMEOMORPHISM VIA INVERTIBLE NEURAL NETWORKS**
10811082 In this section, we provide the omitted details in Sec. 2 and 3.
10831084 **B.1 HANDLING CONSTRAINT SET WITH EQUALITY**
10851086 We first explain how to handle equality constraints as mentioned in Sec. 2. Consider the constrained
1087 set \mathcal{K}_θ as follows

1088
$$\mathcal{K}_\theta = \{\mathbf{x} \mid \mathbf{q}_\theta(\mathbf{x}) = 0, g_{1,\theta}(\mathbf{x}) \leq 0, \dots, g_{m,\theta}(\mathbf{x}) \leq 0\}$$

1089

1090 where $\mathbf{q} = (q_1, q_2, \dots, q_{m_{\text{eq}}})$ with continuous functions $q_{i,\theta}(\mathbf{x}) : \mathbb{R}^n \rightarrow \mathbb{R}$ with respect to \mathbf{x} and θ .
10911092 Suppose the rank of the equality constrained function is constant for all $\mathbf{x} \in \mathcal{K}_\theta$, i.e.,
1093

1094
$$\text{rank}(\mathbf{J}_\mathbf{q}(\mathbf{x})) = r, \quad \forall \mathbf{x} \in \mathcal{K}_\theta.$$

1095

1096 Then $\{\mathbf{q}_\theta(\mathbf{x}) = 0\}$ is of dimension $n - r$ by the Constant-Rank Level Set Theorem (Lee & Lee, 2012).
1097 In other words, we can use a subset of decision variables $\mathbf{x}_1 \in \mathbb{R}^{n-r}$ and reconstruct full decision
1098 variable $[\mathbf{x}_1, \mathbf{x}_2] \in \mathbb{R}^n$ via the equality constraint, where $\mathbf{x}_2 = \phi_\theta(\mathbf{x}_1)$ and $\mathbf{q}_\theta([\mathbf{x}_1, \phi_\theta(\mathbf{x}_1)]) = 0$.
1099 Such a reconstruction process ensures the feasibility of the equality constraint. Hence, the constraint
1100 \mathcal{K}_θ can be reformulated as

1101
$$\mathcal{K}_\theta^s = \{\mathbf{x}_1 \in \mathbb{R}^{n-r} \mid g_{1,\theta}(\mathbf{x}_1, \phi_\theta(\mathbf{x}_1)) \leq 0, \dots, g_{m,\theta}(\mathbf{x}_1, \phi_\theta(\mathbf{x}_1)) \leq 0\}.$$

1102

1103 It follows from the reconstruction that

1104
$$(\mathbf{x}_1, \mathbf{x}_2 = \phi_\theta(\mathbf{x}_1)) \in \mathcal{K}_\theta \Leftrightarrow \mathbf{x}_1 \in \mathcal{K}_\theta^s.$$

1105

1106 It is noteworthy that the constant rank assumption for $\mathbf{q}_\theta(\cdot)$ holds globally for linear equalities and
1107 locally for nonlinear manifold equalities (see, e.g., (Lee, 2010; Boumal, 2023)), which encompasses
1108 a majority of practical optimization applications. Based on the foregoing analysis, this paper assumes
1109 that the constrained set \mathcal{K}_θ includes only equality constraints. For a detailed discussion on managing
1110 linear equalities, nonlinear inequalities, and manifold equalities, the reader is referred to Appendix A
1111 and Appendix B in (Liang et al., 2023).
11121113 **B.2 INTRODUCTION OF INVERTIBLE NEURAL NETWORKS**
11141115 The INN $\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a class of neural networks that is a continuous bijection. It is a finite
1116 composition of invertible layers, where each layer is also a homeomorphic mapping with tunable
1117 parameters. In the following, we introduce several commonly used invertible layers for INN, and
1118 refer readers to (Papamakarios et al., 2021) for a more comprehensive introduction. *Moreover, denote*
1119 \mathcal{H}^n *the set of homeomorphisms from \mathbb{R}^n to \mathbb{R}^n .*
11201121 • **Linear layer** (Kingma & Dhariwal, 2018). The invertible linear layer is defined as
1122

1123 Forward : $\mathbf{x}' = \mathbf{W}\mathbf{x} + \mathbf{b}$, Inverse : $\mathbf{x} = \mathbf{W}^{-1}(\mathbf{x}' - \mathbf{b})$
1124

1125 where $\mathbf{W} \in \mathbb{R}^{n \times n}$, $\mathbf{b} \in \mathbb{R}^n$ are matrices with tunable entries. Further, by the LU decomposition,
1126 the invertible matrix is designed as $\mathbf{W} = \mathbf{W}_P \mathbf{W}_L (\mathbf{W}_U + \text{diag}(\mathbf{s}))$, where \mathbf{W}_P is a fixed
1127 permutation matrix, \mathbf{W}_L is a lower triangular matrix, \mathbf{W}_U is an upper triangular matrix, and
1128 $\mathbf{s} \in \mathbb{R}^n$ is the diagonal elements. The singular values of the invertible matrix are $|\mathbf{s}|$.
11291130 • **Coupling layer.** The coupling layer first randomly splits the input into two parts as $\mathbf{x} =$
1131 $(\mathbf{x}_{\leq k} \in \mathbb{R}^k, \mathbf{x}_{>k} \in \mathbb{R}^{n-k})$ and the transformation is defined as
1132

1133 Forward : $\mathbf{x}'_{\leq k} = \mathbf{x}_{\leq k}, \mathbf{x}'_{>k} = \mathbf{s}(\mathbf{x}_{>k}; \mathbf{t}(\mathbf{x}_{\leq k}))$,
1134

1135 Inverse : $\mathbf{x}_{\leq k} = \mathbf{x}'_{\leq k}, \mathbf{x}_{>k} = \mathbf{s}^{-1}(\mathbf{x}'_{>k}; \mathbf{t}(\mathbf{x}'_{\leq k}))$
1136

1137 where $\mathbf{t} : \mathbb{R}^k \rightarrow \mathbb{R}^k$ is an arbitrary DNN and $\mathbf{s} : \mathbb{R}^{n-k} \times \mathbb{R}^k \rightarrow \mathbb{R}^{n-k}$ is an invertible map w.r.t.
1138 its first argument given the second, i.e., $\mathbf{s}(\cdot, \mathbf{y})$ is invertible for fixed \mathbf{y} . One particular choice is the
1139 affine coupling layer (Dinh et al., 2014) if $\mathbf{t} : \mathbb{R}^k \rightarrow \mathbb{R}^{n-k} \times \mathbb{R}^{n-k}$:
1140

1141
$$\mathbf{s}(\mathbf{a}; \mathbf{b}) = \mathbf{a} \odot \mathbf{b}_1 + \mathbf{b}_2, \text{ for } \mathbf{b}_1 \neq 0, \quad \text{and} \quad \mathbf{b} = \mathbf{t}(\mathbf{y}) = (\gamma(\mathbf{y}), \tau(\mathbf{y}))$$

1142

1143 where $\gamma > 0$, $\tau : \mathbb{R}^k \rightarrow \mathbb{R}^{n-k}$ are two learnable NNs, \odot denotes the element-wise product. To
1144 keep $\gamma > 0$, one selection is $\gamma(\mathbf{y}) = \exp \phi(\mathbf{y})$ where $\phi : \mathbb{R}^k \rightarrow \mathbb{R}^{n-k}$ is a regular NN and the
1145 operation \exp is applied element-wise.
1146

1134 • **Residual layer** (Behrmann et al., 2019; Chen et al., 2019). The invertible residual layer is defined
 1135 as

$$\text{Forward : } \mathbf{x}' = \mathbf{x} + \mathbf{r}(\mathbf{x}) \quad \text{with} \quad \text{Lip}(\mathbf{r}) < 1,$$

$$\text{Inverse : via the iteration } \mathbf{x}^{(i+1)} = \mathbf{x}' - \mathbf{r}(\mathbf{x}^{(i)}) \quad \text{with} \quad \mathbf{x}^{(0)} = \mathbf{x}',$$

1136 where $\mathbf{r} : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is an arbitrary NN. The inverse process is computed iteratively through a fixed-
 1137 point iteration scheme. Owing to the Lipschitz constraint, the fixed-point iteration is guaranteed to
 1138 converge when $t \rightarrow \infty$, thus ensuring the invertibility of the residual layer. The log-determinant of
 1139 this layer can be approximated by the power series (Behrmann et al., 2019).

1140 • **Neural ODE layer** (Chen et al., 2018; Grathwohl et al., 2018). The ODE invertible layer is defined
 1141 as

$$\text{Forward : } \mathbf{x}' = \mathbf{x} + \int_0^1 \varphi(\mathbf{x}, t) dt, \quad \text{Inverse : } \mathbf{x} = \mathbf{x}' + \int_0^{-1} \varphi(\mathbf{x}', t) dt,$$

1142 where $\varphi(\cdot, \cdot) : \mathbb{R}^n \times \mathbb{R} \rightarrow \mathbb{R}^n$ represents a time-dependent vector field. The forward and inverse
 1143 processes are both computed based on integration, ensuring that the system is invertible.

1144 • **Convex potential layer** (Huang et al., 2020).

$$\text{Forward : } \mathbf{x}' = \nabla F(\mathbf{x}), \quad \text{Inverse : } \mathbf{x} = \arg \min_{\mathbf{y}} \{F(\mathbf{y}) - \mathbf{y}^\top \mathbf{x}'\},$$

1145 where $F : \mathbb{R}^n \rightarrow \mathbb{R}$ denotes a strongly convex function. The inverse process is computed by
 1146 iteratively solving the optimization problem. Because of the strictly convex property of F , the
 1147 solution for the inverse process is unique.

1148 **Remark.** In this work, we follow the GLOW architecture (Kingma & Dhariwal, 2018) for INN
 1149 design, which consists of a composition of finite affine coupling layers and invertible linear layers.
 1150 Specifically, an l -layer INN is defined as

$$\Phi = \Phi^l \circ \Phi^{l-1} \circ \dots \circ \Phi^1$$

1151 where each layer $\Phi^j = f_{\text{coup}}^j \circ \mathcal{L}^j$ ($j \in [l]$) consists of an invertible linear transformation $\mathcal{L}^j(\mathbf{x}) =$
 1152 $\mathbf{Q}_j \mathbf{x}$ for some rotation matrix \mathbf{Q}_j and a coupling layer f_{coup}^j of fixed splitting strategy $k = \lfloor n/2 \rfloor$.

1153 This structure offers several key advantages: (i) it admits closed-form forward and inverse computations
 1154 through neural network propagation, (ii) it enables closed-form calculation of Jacobian singular
 1155 values, which are essential for computing the log-determinant and Lipschitz constant required in our
 1156 INN loss function, and (iii) affine coupling layers are universal approximators for any differentiable
 1157 homeomorphism (Teshima et al., 2020). Given these theoretical and computational advantages, we
 1158 adopt the coupling layer-based INN architecture for our framework.

1159 B.3 COMPUTATIONAL ISSUES OF INVERTIBLE NEURAL NETWORKS

1160 In this section, we analyze the computational issues of INNs Φ . There are several requirements for
 1161 the Invertible Neural Network (INN):

- 1162 • (i) The forward and inverse mappings of the INN must be efficiently computable, as they are
 1163 required to map solutions between the original space and the transformed space within Hom-
 1164 PGD⁺.
- 1165 • (ii) The Jacobian of the INN must be computable, as it is essential for evaluating the gradient of the
 1166 composite function $H = f \circ \Phi$ in the Hom-PGD⁺ algorithm.
- 1167 • (iii) The singular values of the Jacobian matrix must be accessible, as they are necessary for
 1168 estimating terms in the loss function defined in Eq. (7) during the INN training process.
- 1169 • (iv) The INN should have bounded distortion to ensure the worst-case performance for homeo-
 1170 morphic projection. Furthermore, the INN should be a universal approximator of homeomorphic
 1171 mappings. This enables it to handle complex transformations involving a broad range of constraints.

1172 Since this paper adopts the coupling-layer-based INN architecture, we focus our analysis specifically
 1173 on this type of INN. For conciseness of notations, we fix θ and omit it. For an l -layer INN denoted as
 1174 $\Phi = \Phi^l \circ \dots \circ \Phi^j \circ \dots \circ \Phi^1$, we denote $\mathbf{x}^j = \Phi^{j-1}(\mathbf{x}^{j-1})$ for $j = 2, \dots, l$ and $\mathbf{x}^1 = \mathbf{x}$. Moreover,
 1175 we denote W as the size (number of parameters) of an INN.

(i) In each affine coupling layer, the forward and inverse could be computed directly by the definition, i.e., for $\mathbf{x} = (\mathbf{x}_1 \in \mathbb{R}^{n_1}, \mathbf{x}_2 \in \mathbb{R}^{n_2})$ with $n_1 + n_2 = n$ and two arbitrary NNs $\gamma > 0, \tau : \mathbb{R}^{n_1} \rightarrow \mathbb{R}^{n_2}$, we have

$$\begin{aligned} \text{Forward : } & (\mathbf{y}_1, \mathbf{y}_2) = (\mathbf{x}_1, \mathbf{x}_2 \odot \gamma(\mathbf{x}_1) + \tau(\mathbf{x}_1)), \\ \text{Inverse : } & (\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{y}_1, (\mathbf{y}_2 - \tau(\mathbf{y}_1)) / \gamma(\mathbf{y}_1)) \end{aligned} \quad (3)$$

where \odot is applied element-wise to vector computation. For the conditional layer, we augment the input parameters θ as, $\gamma_\theta(\cdot)$ and $\tau_\theta(\cdot)$. Therefore, the complexity of computing Φ and Φ^{-1} is $\mathcal{O}(W)$.

(ii) The Jacobian of such a composites mapping and its determinant can be expressed as

$$J_\Phi(\mathbf{x}) = \prod_{j=1}^l J_{\Phi^j}(\mathbf{x}^j), \quad |\det J_\Phi(\mathbf{x})| = \prod_{j=1}^l |\det J_{\Phi^j}(\mathbf{x}^j)|.$$

For each affine coupling layer, the Jacobian can be expressed as

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \mathbf{I}_{n_1} & 0 \\ \frac{\partial \mathbf{y}_2}{\partial \mathbf{x}_1} & \text{diag}(\gamma(\mathbf{x}_1)) \end{bmatrix},$$

where $\text{diag}(\mathbf{v})$ returns a diagonal matrix whose diagonal elements are given by the vector \mathbf{v} . It follows that the complexity of computing $J_\Phi(\mathbf{x})$ is $\mathcal{O}(W)$.

(iii) For each layer, the Jacobian determinant can be expressed as the product of singular values:

$$|\det J_{\Phi^j}(\mathbf{x}^j)| = \prod_{i=1}^n \sigma_i(J_{\Phi^j}(\mathbf{x}^j))$$

where $\sigma_1(\cdot) \geq \dots \geq \sigma_n(\cdot) > 0$ are the sorted singular values of the Jacobian matrix of the mapping $\Phi^j(\cdot)$ at \mathbf{x} . By the design of each affine coupling layer, such an invertible transformation has a closed-form expression of singular values, which is 1 or elements of $\gamma(\mathbf{x}_1)$. Therefore, the complexity to compute the determinant or singular values of an coupling layer INN is still $\mathcal{O}(W)$.

(iv) The bounded distortion property of an INN constructed with affine coupling layers is inherently guaranteed by its architectural design. Moreover, its universal approximation capability for homeomorphic mappings over compact domains has been established in the existing literature. These two properties are formally stated below.

Proposition B.1. Suppose Φ is an INN composed of affine coupling layers. Then:

(i) Φ is capable of approximating any n -dimensional differentiable homeomorphism over a compact domain, given a sufficiently large number of layers (Jin et al., 2024; Liang et al., 2024; Ishikawa et al., 2022).

(ii) Φ exhibits bounded distortion, where the bound depends on the number of layers (Liang et al., 2024).

B.4 UNSUPERVISED INN TRAINING

We denote

$$\mathcal{H}^n := \{\phi : \mathbb{R}^n \rightarrow \mathbb{R}^n \mid \phi \text{ is a homeomorphism}\}, \quad \mathcal{H}^n(\mathcal{K}_\theta, \mathcal{B}) := \{\psi \in \mathcal{H}^n \mid \psi(\mathcal{B}) = \mathcal{K}_\theta\}.$$

Moreover, the feasible set $\mathcal{H}^n(\mathcal{K}_\theta, \mathcal{B})$ is equivalent to the set of optimal solutions to the problem (Liang et al., 2023; 2024):

$$\max_{\psi_\theta \in \mathcal{H}^n} \log V(\psi_\theta(\mathcal{B})) \quad \text{s.t. } \psi_\theta(\mathcal{B}) \subseteq \mathcal{K}_\theta \quad (4)$$

where $V(\psi_\theta(\mathcal{B}))$ computes the volume of set $\psi_\theta(\mathcal{B})$ and the constraint means that the set $\psi_\theta(\mathcal{B})$ is a subset of \mathcal{K}_θ . While there might be multiple homeomorphisms in the set $\mathcal{H}^n(\mathcal{K}_\theta, \mathcal{B})$ (e.g., through composition with rotations over the ball, we get an additional such homeomorphism), we wish to learn one with minimum Lipschitz constant. To this end, we define the Lipschitz constant of a mapping ψ over a set \mathcal{K} as

$$L(\psi) = \sup_{\mathbf{z} \neq \mathbf{u} \in \mathcal{K}} \frac{\|\psi(\mathbf{z}) - \psi(\mathbf{u})\|}{\|\mathbf{z} - \mathbf{u}\|}. \quad (5)$$

1242 Intuitively, the minimum Lipschitz homeomorphical (MLH) mapping problem can be reformulated
 1243 to the following bi-level problem:
 1244

$$1245 \min_{\psi_{\theta} \in \mathcal{H}^n} \log L(\psi_{\theta}) \text{ s.t. } \psi_{\theta} \in \arg \max \{ \text{Problem in (4)} \}. \quad (6)$$

1247 We employ the following loss function and maximize it to train an INN Φ_{θ} with l layers for learning
 1248 the homeomorphic mapping θ in an unsupervised manner:
 1249

$$1250 \mathcal{L}(\Phi_{\theta}) = \widehat{V}(\Phi_{\theta}(\mathcal{B})) - \lambda_1 P(\Phi_{\theta}(\mathcal{B})) - \lambda_2 \widehat{L}(\Phi_{\theta}) \quad (7)$$

1251 where λ_1 and λ_2 are positive coefficients to balance among the three terms. For ease of analysis of
 1252 how to compute the three terms, we denote an l -layer INN as $\Phi_{\theta} = \Phi_{\theta}^l \circ \dots \circ \Phi_{\theta}^2 \circ \Phi_{\theta}^1$, where each
 1253 layer is either a bi-Lip affine coupling layer or an invertible linear layer.
 1254

1255 (i) $\widehat{V}(\Phi_{\theta}(\mathcal{B}))$ is a computable approximation of the log-volume term $\log V(\Phi_{\theta}(\mathcal{B}))$ in (4) as:

$$1257 \widehat{V}(\Phi_{\theta}(\mathcal{B})) = \frac{1}{V(\mathcal{B})} \int_{\mathcal{B}} \sum_{i=1}^n \sum_{j=1}^l \log \sigma_i \left(J_{\Phi_{\theta}^j}(\mathbf{z}^j) \right) d\mathbf{z} + \log V(\mathcal{B}) \quad (8)$$

1260 where $\mathbf{z}^j = \Phi_{\theta}^{j-1}(\mathbf{z}^{j-1})$ for $j = 2, \dots, l$, and $\mathbf{z}^1 \in \mathcal{B}$, $J_{\Phi_{\theta}^j}(\mathbf{z}^j)$ denotes the Jacobian matrix of
 1261 $\Phi_{\theta}^j(\cdot)$ at \mathbf{z}^j .
 1262

1263 (ii) $P(\Phi_{\theta}(\mathcal{B}))$ is the penalty term for the constraint violation of $\Phi_{\theta}(\mathcal{B}) \subseteq \mathcal{K}_{\theta}$ in (4) as:

$$1264 1265 P(\Phi_{\theta}(\mathcal{B})) = \int_{\mathcal{B}} \| \text{ReLU}(g(\Phi_{\theta}(\mathbf{z}), \theta)) \|_1 d\mathbf{z}, \quad (9)$$

1266 where $\text{ReLU}(\cdot) = \max\{0, \cdot\}$ and $g(\Phi_{\theta}(\mathbf{z}), \theta)$ calculates the residual for each inequality constraint
 1267 as $[g_1(\Phi_{\theta}(\mathbf{z}), \theta), \dots, g_m(\Phi_{\theta}(\mathbf{z}), \theta)]$.
 1268

1269 (iii) $\widehat{L}(\Phi_{\theta}^{-1}, \mathcal{K}_{\theta})$ is a computable approximation of the log-Lipschitz term $\log L(\Phi_{\theta}^{-1}, \mathcal{K}_{\theta})$ as:

$$1271 1272 1273 \widehat{L}(\Phi_{\theta}) = \sup_{\mathbf{z}^1 \in \mathcal{Z}_{\theta}} \left\{ \sum_{j=1}^l \log \sigma_1 \left(J_{\Phi_{\theta}^j}(\mathbf{z}^j) \right) \right\} \quad (10)$$

1274 where $\mathbf{z}^j = \Phi_{\theta}^{j-1}(\mathbf{z}^{j-1})$ for $j = 2, \dots, l$, and $\mathbf{z}^1 \in \mathcal{Z}_{\theta} = \Phi_{\theta}^{-1}(\mathcal{K}_{\theta})$.
 1275

1276 We have the following bounds for the approximations (Liang et al., 2023; 2024). The two approxima-
 1277 tion terms in (8) and (10) satisfy $\log V(\Phi_{\theta}(\mathcal{B})) \geq \widehat{V}(\Phi_{\theta}(\mathcal{B}))$ and $\log L(\Phi_{\theta}) \leq \widehat{L}(\Phi_{\theta})$.
 1278

1279 The above proposition implies that the loss function in (7) is actually a lower bound to the Lagrangian
 1280 of the problem in (6). Therefore, we can maximize the loss function in (7) to approximate the MLH
 1281 mapping under the equivalent reformulation in (6). Further, to train one conditional INN $\Phi \in \mathcal{H}^{n+d}$
 1282 to learn the θ -dependent MLH mappings for any $\theta \in \Theta$, we generalize the loss in (7) to
 1283

$$\mathcal{L}(\Phi) = \mathbb{E}_{\theta} [\mathcal{L}(\Phi_{\theta})]$$

1284 where $\theta \in \Theta$ is uniformly sampled. For the INN training, we prepare quasi Monte Carlo (QMC)
 1285 samples $\{\mathbf{z}_i\}_{i=1}^N \subset \mathcal{B}$ to approximate the integration in (8) and (9). When evaluating the distortion in
 1286 (10), since we may not know \mathcal{Z}_{θ} in advance, we sample from $\mathcal{Z}_{\theta} = \Phi_{\theta}^{-1}(\mathcal{K}_{\theta}) \subset \mathcal{B}$ over a unit ball
 1287 as $\{\mathbf{z}_i\}_{i=1}^N$. In each iteration, we sample a batch of collected data and employ the Adam optimizer to
 1288 maximize the loss function $\mathcal{L}(\Phi)$, similar to training standard NNs (Kingma & Ba, 2014).
 1289

1290 B.5 OFFLINE COMPLEXITY TO OBTAIN A TRAINED VALID INN

1291 In this section, we will discuss the theoretical complexity of obtaining a trained, valid INN Φ_{θ} which
 1292 approximates ψ_{θ} where $\psi_{\theta}(\mathcal{B}) = \mathcal{K}_{\theta}$ for the optimization \mathbf{P} .
 1293

1294 **Complexity of obtaining a valid INN.** To obtain a valid invertible neural network (INN) $\Phi_{\theta} \approx \psi_{\theta}$
 1295 given a ball-homeomorphic constrained set \mathcal{K}_{θ} , one must incur the following cost.

- Training. Training a neural network is an unconstrained non-convex optimization, which is NP-hard to find a global optimum in general. In practice, we use Adam optimizer to maximize the loss function, similar to the process of training regular NNs (Kingma & Ba, 2014). Typically, the run-time is $\text{poly}(\epsilon^{-1})$ to find an approximate stationary solution.
- #Samples of \mathcal{B} . As discussed in Sec. B.4, one will prepare samples $\{\mathbf{z}_i\} \subset \mathcal{B}$ to approximate the integration (8), (9) and (10) using QMC. The integration error for the QMC approach is $\mathcal{O}((\log N)^{n-1} / N)$ where N is the number of samples, which is faster in the rate of convergence than Monte Carlo using a pseudorandom sequence Dick & Pillichshammer (2010).
- INN size. For the INN size to approximate a bi-continuous n -dimensional homeomorphism to an error ϵ , the theoretical upper bound $\mathcal{O}(\epsilon^{-n})$ derived from (Jin et al., 2024) is high due to the worst-case analysis. Meanwhile, the lower bound is an open question so far. Note that the theoretical bound of INN size is high and grows exponentially with the input dimension n due to a worst-case analysis. However, in practice, the target homeomorphism may be much simpler, requiring significantly fewer parameters for the INN to approximate it effectively. For instance, in our empirical study, we found that approximately three coupling layers with width $\mathcal{O}(n)$ are sufficient to learn the homeomorphic mapping from a non-convex set to a ball.

Remark. Although training the INN offline incurs additional computational cost, this expense is only one-time and can be amortized over numerous online problem instances. Moreover, modern deep learning frameworks, such as PyTorch coupled with GPU acceleration, render the training process efficient (e.g., less than 10 minutes for high-dimensional chance-constrained problems). Once the INN is appropriately trained, the framework achieves a convergence rate comparable to optimization over convex constraint sets ($\mathcal{O}(\epsilon^{-2})$) with a low per-iteration cost, significantly improving on state-of-the-art rates of $\mathcal{O}(\epsilon^{-4})$ or $\mathcal{O}(\epsilon^{-3})$ under regularity conditions (see Table 1 for details).

In practice, it is often necessary to verify whether a constrained set is homeomorphic to a ball. This question can generally be divided into two cases:

- (i) *Special cases with known topological properties.* Certain sets are naturally homeomorphic to a ball, such as compact convex sets (Geschke, 2012; Bredon, 2013) and star-shaped sets (Appendix B.6). In particular, for compact convex sets, an explicit ball-homeomorphic mapping can be directly constructed using the gauge mapping, as discussed in Liu et al. (2025a). For star-shaped sets, a ball-homeomorphic mapping can also be constructed; however, it may depend on certain unknown parameters specific to the star-shaped set. As a result, it is often more practical to use an INN to approximate the homeomorphic mapping. Further details are provided in Appendix B.6.
- (ii) *General non-convex sets.* For general compact non-convex constrained sets, we may apply topological data analysis (TDA) (Chazal & Michel, 2021; Otter et al., 2017) to determine whether the set satisfies the ball-homeomorphic property. The method is described below.

Verify whether $\mathcal{K}_\theta \cong \mathcal{B}$? It is a classical result that a compact, contractible set of dimension $n \geq 6$ with a simply connected boundary is homeomorphic to a ball (Smale, 1962). Therefore, to verify whether $\mathcal{K}_\theta \cong \mathcal{B}$, one can examine the presence of any “holes” in \mathcal{K}_θ for $\theta \in \Theta$. In practice, persistent homology (Chazal & Michel, 2021; Otter et al., 2017), a widely used technique in topological data analysis, provides an effective means of performing this verification.

- Sample complexity (#samples of \mathcal{K}_θ). To detect the absence of holes in the set \mathcal{K}_θ (for a fixed θ) with diameters smaller than ϵ , the number of required samples is given by the ϵ -covering number of \mathcal{K} Chazal & Michel (2021), which is of order $\mathcal{O}(\exp(n))$.
- Run-time. Given the samples of \mathcal{K}_θ , the run-time of persistent homology methods is of order $\text{poly}(\#Samples)$ (Otter et al., 2017).

Remark. While verifying the ball-homeomorphism property through sampling and topological data analysis can be computationally expensive, explicit verification is often unnecessary in practice. Many common constraint sets—including convex and star-shaped sets—possess known topological properties that naturally guarantee ball-homeomorphism.

More generally, our method can be applied whenever the *valid INN condition* (Definition 3.2) is satisfied, which requires only that *the INN maps the center of the unit ball to a feasible point in the*

1350 *constraint set*. As discussed in Section 4.4, our theoretical guarantees (feasibility preservation and
 1351 convergence rate) hold under this valid INN condition alone.

1352 This makes ball-homeomorphism verification a *sufficient but not necessary* prerequisite—the valid
 1353 INN condition provides a more practical and verifiable criterion that can be easily checked without
 1354 expensive topological analysis. In essence, practitioners need only verify that their trained INN
 1355 satisfies the valid INN condition, which is straightforward to evaluate through simple feasibility
 1356 checking.

1358 **B.6 HOMEOMORPHISMS FROM A STAR-SHAPED SET TO A BALL**

1360 **Definition B.2** (Star-shaped set). A set is called a *star-shaped* set if it has the property that all interior
 1361 and boundary points are visible from a point \mathbf{x}° (called *star center*) in the set. Note that the set of
 1362 star centers of a star-shaped set might have multiple and even infinite elements.

1363 For the geometric, analytical, combinatorial and topological properties of star-shaped sets, and their
 1364 broad applicability in many mathematical fields, we refer readers to (Hansen et al., 2020) for a
 1365 comprehensive discussion and review.

1366 Importantly, a star-shaped set is homeomorphic to a unit ball. The formal statement is given below,
 1367 where one could refer to, e.g., Page 60 (Gonnord & Tosel, 1998) and Theorem 237 of the handbook
 1368 *Analysis III* by Dirk Ferus, for its proof.

1369 **Proposition B.3.** *Open star-shaped sets are diffeomorphic to open balls, where a diffeomorphism is
 1370 a smooth homeomorphism.*

1371 For a star-shaped set \mathcal{S} , using \mathbf{x}° as the center, one can construct an explicit homeomorphism ψ that
 1372 continuously and bijectively sends points in \mathcal{S} to points in a unit ball \mathcal{B} . Such a homeomorphism is
 1373 termed a gauge mapping (Tabas & Zhang, 2022) defined below.

1374 **Definition B.4** (Gauge mapping). Suppose \mathcal{S} is a star-shaped set with star center \mathbf{x}° . Let $\gamma_{\mathcal{S}}(\mathbf{x}, \mathbf{x}^\circ) =$
 1375 $\inf\{\lambda \geq 0 \mid \mathbf{x} \in \lambda(\mathcal{S} - \mathbf{x}^\circ)\}$ be the Gauge/Minkowski function (Blanchini & Miani, 2008) given a
 1376 star center $\mathbf{x}^\circ \in \text{int}(\mathcal{S})$. The gauge mapping $\psi : \mathcal{B} \rightarrow \mathcal{S}$ is defined between a unit ball and a compact
 1377 star-shaped set:

$$1378 \psi(\mathbf{z}) = \frac{\|\mathbf{z}\|}{\gamma_{\mathcal{S}}(\mathbf{z}, \mathbf{x}^\circ)} \mathbf{z} + \mathbf{x}^\circ, \forall \mathbf{z} \in \mathcal{B}; \quad \psi^{-1}(\mathbf{x}) = \frac{\gamma_{\mathcal{S}}(\mathbf{x} - \mathbf{x}^\circ, \mathbf{x}^\circ)}{\|\mathbf{x} - \mathbf{x}^\circ\|} (\mathbf{x} - \mathbf{x}^\circ), \forall \mathbf{x} \in \mathcal{S}. \quad (11)$$

1379 **Remark B.5.** In Liu et al. (2025a), the gauge mapping is constructed as a homeomorphism between
 1380 the unit ball and a compact convex set. A key distinction in this setting is that, for compact convex
 1381 sets, the gauge mapping consistently maps boundary points of the set to boundary points of the unit
 1382 ball. In contrast, when the gauge mapping is applied to a star-shaped set, boundary points of the
 1383 set may be mapped to interior points of the unit ball. A visualization of this behavior is provided
 1384 in Fig. 4. Nevertheless, the gauge mapping remains a well-defined homeomorphism between the
 1385 star-shaped set and the unit ball.

1386 Based on the explicit construction of homeomorphisms between the unit ball and a star-shaped set, the
 1387 gauge mapping can be efficiently computed by evaluating the gauge function using a bisection-based
 1388 algorithm [Hom-PGD]. Moreover, it is important to note that the above construction depends on the
 1389 center of a star-shaped set. However, in general, finding a star center of a star-shaped set is very
 1390 challenging and can be NP-hard (O’Rourke & Supowit, 1983; Lee & Lin, 1986). In such cases, one
 1391 can utilize an INN to learn the ball-homeomorphic mapping directly as discussed in Sec. 3, avoiding
 1392 the need to verify whether the star-shaped set is ball-homeomorphic.

1393

1394 **C PRELIMINARIES FOR TECHNICAL PROOF**

1395

1396 In this section, we summarize the related basic concepts, notations, assumptions, and fundamental
 1397 propositions and lemmas.

1398

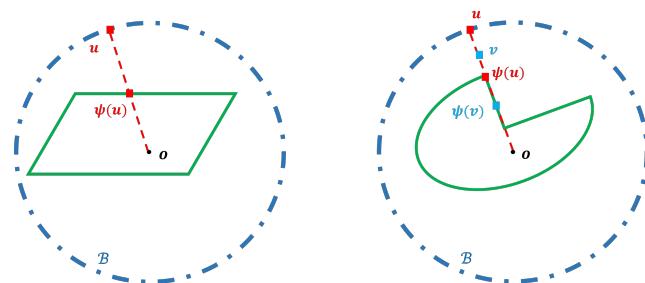
1399 **C.1 BASIC CONCEPTS**

1400

1401 We list the basic concepts used in this paper below.

1402

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413



1414 Figure 4: *Illustration of the gauge mapping between the unit ball and a convex set (left) versus a star-
1415 shaped set (right).* In the left figure, where the target set is convex, the gauge mapping consistently
1416 maps boundary points (resp. interior points) of the unit ball to boundary points (resp. interior points)
1417 of the convex set. In contrast, the right figure shows a star-shaped set with star center o ; here, the
1418 gauge mapping may map an interior point $v \in \mathcal{B}$ to a boundary point $\psi(v)$ of the star-shaped set.

1419
1420
1421
1422
1423
1424
1425
1426

- Distance between a point and a set. For a closed set $\mathcal{X} \subseteq \mathbb{R}^n$ and any $\mathbf{x} \in \mathbb{R}^n$, the distance between \mathbf{x} and \mathcal{X} is defined as $\text{dist}(\mathbf{x}, \mathcal{X}) = \inf_{\mathbf{y} \in \mathcal{X}} \|\mathbf{x} - \mathbf{y}\|$.
- Orthogonal projection. For a closed set \mathcal{X} , the orthogonal projection of a point $\mathbf{x} \in \mathbb{R}^n$ onto \mathcal{X} is defined as $\Pi_{\mathcal{X}}(\mathbf{x}) \in \arg \min_{\mathbf{y} \in \mathcal{X}} \|\mathbf{x} - \mathbf{y}\|$.
- Function convexity. For a differentiable function $f : \mathcal{X} \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$, it is said to be convex if one of the following holds:
 - 1) Jensen's inequality. For θ with $0 \leq \theta \leq 1$, we have $f(\theta\mathbf{x} + (1 - \theta)\mathbf{y}) \leq \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$.
 - 2) first-order condition. $f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle, \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$.
 - 3) monotone gradient. $(\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}))^T(\mathbf{x} - \mathbf{y}) \geq 0$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$.
- L -Smoothness. A differentiable function $f : \mathcal{X} \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ is said to be L -smooth if one of the following holds:
 - 1) zeroth-order condition. $f(\lambda\mathbf{x} + (1 - \lambda)\mathbf{y}) \geq \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) - \frac{L}{2}\lambda(1 - \lambda)\|\mathbf{y} - \mathbf{x}\|^2$, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}, \lambda \in [0, 1]$.
 - 2) first-order condition. $f(\mathbf{y}) \leq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2}\|\mathbf{y} - \mathbf{x}\|^2$, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$.
 - 3) Lipschitz gradient. $\|\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})\| \leq L\|\mathbf{y} - \mathbf{x}\|$, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$.
- Weak convexity. A function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is said to be weakly convex with constant $\ell_f > 0$ if the function $f(\mathbf{x}) + (\ell_f/2)\|\mathbf{x}\|^2$ is convex.
- Jacobian matrix. Suppose $\mathbf{f} : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a function such that each of its first-order partial derivatives exists on \mathbb{R}^n . Then the Jacobian matrix of \mathbf{f} , denoted $\mathbf{J}_f \in \mathbb{R}^{m \times n}$, is defined as $\mathbf{J}_f = (\frac{\partial f_i}{\partial x_j})_{ij}$.
- A Hessian of a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is defined as $\nabla^2 f = (\frac{\partial^2 f}{\partial x_i \partial x_j})_{ij} \in \mathbb{R}^{n \times n}$, if its second-order partial derivatives exist. Moreover, for a mapping $\mathbf{f} : \mathbb{R}^n \rightarrow \mathbb{R}^m$ with existed second-order partial derivatives of each component f_i ($i = 1, 2, \dots, m$). The Hessian of \mathbf{f} is defined as

$$H(\mathbf{f}) = (\nabla^2 f_1, \dots, \nabla^2 f_m).$$

1449

C.2 BASIC ASSUMPTIONS AND NOTATIONS

1450
1451
1452
1453
1454

Remark. For conciseness of notation, we fix the input parameter θ in problem \mathbf{P} (and \mathbf{H}) and omit it, by which we write $\psi, \Phi, f, g_i, h, \mathcal{K}$ to replace $\psi_\theta, \Phi_\theta, f_\theta(\cdot), g_{i,\theta}(\cdot), h_\theta(\cdot), \mathcal{K}_\theta$ respectively. In the following, we make assumptions throughout the paper.

1455
1456
1457

- Assumptions on f and constraints g_i ($i = 1, 2, \dots, m$) in problem \mathbf{P} :

- 1) f is $L_{f,0}$ -Lipschitz continuous, i.e., $\|f(\mathbf{x}) - f(\mathbf{y})\| \leq L_{f,0}\|\mathbf{x} - \mathbf{y}\|$ for any \mathbf{x}, \mathbf{y} .
- 2) f in problem \mathbf{P} is differentiable and L_f -smooth.

1458 3) $f^* > -\infty$ where $f^* := \min_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x})$.
 1459 4) Each g_i is $L_{g_i,0}$ -Lipschitz continuous, differentiable, and L_{g_i} -smooth.

1460 • Assumptions on the homeomorphic mapping $\psi : \mathbb{R}^n \rightarrow \mathbb{R}^n$:

1461 1) ψ is differentiable with non-singular Jacobian $J_\psi(\cdot)$,
 1462 2) ψ is (κ_1, κ_2) -bi-Lipschitz continuous for $\kappa_2 \geq \kappa_1 > 0$, i.e.,

$$1463 \kappa_1 \|\mathbf{u} - \mathbf{v}\| \leq \|\psi(\mathbf{u}) - \psi(\mathbf{v})\| \leq \kappa_2 \|\mathbf{u} - \mathbf{v}\|.$$

1464 Then the Jacobian matrix, $J_\psi(\cdot)$ and $J_{\psi^{-1}}(\cdot)$ will satisfy

$$1465 \|\mathbf{J}_\psi(\mathbf{z})\| \leq \kappa_2, \quad \forall \mathbf{z}, \quad \|\mathbf{J}_{\psi^{-1}}(\mathbf{x})\| \leq \frac{1}{\kappa_1}, \quad \forall \mathbf{x}.$$

1466 3) ψ has L_ψ -Lipschitz continuous Jacobian matrix, i.e.,

$$1467 \|\mathbf{J}_\psi(\mathbf{u}) - \mathbf{J}_\psi(\mathbf{v})\| \leq L_\psi \|\mathbf{u} - \mathbf{v}\|, \quad \forall \mathbf{u}, \mathbf{v}.$$

1468 4) ψ has continuous Hessian, i.e.,

$$1469 \mathbf{H}_\psi(\mathbf{z}) = (\nabla^2 \psi_1, \dots, \nabla^2 \psi_n)$$

1470 exists and is continuous.

1471

Remark. Given a compact constrained set \mathcal{K} , we can relax these global assumptions to hold on a compact domain, including Lipschitz continuity and smoothness. Specifically, we only require f and ψ to be Lipschitz continuous on a compact set containing the feasible constrained set \mathcal{K} . The following are detailed explanations. In our convergence analysis of the Hom-PGD⁺ algorithm, we only require that the composite function $H = f \circ \Phi$ satisfies: (i) L_H -smoothness, and (ii) $L_{H,0}$ -Lipschitz continuity on the iterates (with both constants depending on the Lipschitz constant of f ; see Lemma D.1). Since each iterate \mathbf{z}_k is feasible in the ball \mathcal{B} , the update $\mathbf{z}_{k+1}^+ = \mathbf{z}_k - \alpha_k \nabla H(\mathbf{z}_k)$ remains in a compact set \mathcal{M} (which contains \mathcal{B}) for bounded α_k and $\|\nabla H(\mathbf{z})\|$. Thus, it suffices for H to be smooth and Lipschitz continuous over \mathcal{M} , meaning that f need only be Lipschitz continuous on the compact set $\Phi(\mathcal{M}) \supseteq \mathcal{K}$.

1472 In addition, we summarize the commonly used notations in this paper in Table 3.

1473

1474 Table 3: Summary of Notations. The notations shown in the table is for problem **P** and we use the
 1475 same type notations for problem **H**.

1476 Notation	1477 Definition
1477 $\ \cdot\ $	l2-norm $\ \cdot\ _2$
1478 \mathcal{B}	unit ball centered at 0
1479 $L_{f,0}$	Lipschitz constant of f
1480 L_f	L_f -smooth property of f
1481 μ_f	μ_f -strong convexity of f
1482 κ_1, κ_2	bi-Lipschitz constant of ψ
1483 D	distortion of ψ , i.e., κ_2/κ_1
1484 L_ψ	Lipschitz constant of J_ψ
1485 $\text{int}(\mathcal{K}), \partial\mathcal{K}$	the interior, boundary of \mathcal{K}

1486

1487 C.3 BASIC FACTS

1488

1489 In this section, we list the fundamental facts we will use in this paper.

1490

1491 **Proposition C.1** (Properties of Orthogonal Projection, see e.g., (Beck, 2014)). *The projection*
 1492 *operator Π_C over a closed and convex set C satisfies the following properties.*

1493

1494 1) *Optimality condition:* $\forall \mathbf{y} \in \mathcal{C}, \langle \mathbf{x} - \Pi_C(\mathbf{x}), \mathbf{y} - \Pi_C(\mathbf{x}) \rangle \leq 0$.

1495 2) *Non-Expansiveness:* $\|\Pi_C(\mathbf{x}) - \Pi_C(\mathbf{y})\| \leq \|\mathbf{x} - \mathbf{y}\|$.

1512 3) *Monotonicity*: $\langle \Pi_C(\mathbf{x}) - \Pi_C(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \geq 0$.
 1513

1514 We have the following lemma related to ψ to help with the computation.
 1515

1516 **Lemma C.2.** *Suppose J_ψ is L_ψ Lipschitz, i.e., $\|J_\psi(\mathbf{u}) - J_\psi(\mathbf{z})\| \leq L_\psi \|\mathbf{u} - \mathbf{z}\|$ for any \mathbf{u} and \mathbf{z} .
 1517 Then, we have*

$$1518 \quad \|\psi(\mathbf{u}) - \psi(\mathbf{z}) - J_\psi(\mathbf{z})(\mathbf{u} - \mathbf{z})\| \leq \frac{L_\psi \|\mathbf{u} - \mathbf{z}\|^2}{2}, \quad \forall \mathbf{u}, \mathbf{z}.$$

1520 One can refer to Lemma 1.2.3 (Nesterov et al., 2018b) for the proof.
 1521

1522 Next, we list the following rules for basic computation:
 1523

- 1523 • Jacobian equivalence: $J_{\psi^{-1}}(\mathbf{x}) = J_\psi^{-1}(\mathbf{z})$ for $\mathbf{z} = \psi(\mathbf{x})$.
 1524
- 1525 • Chain rule for computing gradient of $h = f \circ \psi$:

$$1526 \quad \nabla h(\mathbf{z}) = J_\psi(\mathbf{z})^\top \nabla f(\psi(\mathbf{z})) = J_\psi(\mathbf{z})^\top \nabla f(\mathbf{x}).$$

- 1527 • Chain rule for computing gradient of f :

$$1529 \quad \nabla f(\mathbf{x}) = J_{\psi^{-1}}(\mathbf{x})^\top \nabla h(\mathbf{z}) = J_\psi^{-1}(\mathbf{z})^\top \nabla h(\mathbf{z}).$$

- 1531 • Chain rule for computing Hessian of $h = f \circ \psi$:

$$1533 \quad \nabla^2 h(\mathbf{z}) = J_\psi(\mathbf{z})^\top \nabla^2 f(\psi(\mathbf{z})) J_\psi(\mathbf{z}) + \sum_{i=1}^n \frac{\partial f}{\partial \mathbf{x}_i}(\psi(\mathbf{z})) \nabla^2 \psi_i(\mathbf{z}).$$

1536 D LANDSCAPE ANALYSIS

1538 In this section, we provide landscape analysis to understand important relationships between problem
 1539 \mathbf{P} and \mathbf{H} .
 1540

1541 D.1 ACTION OF HOMEOMORPHISM ON A CONSTRAINED SET

1543 Recall that the constrained set is $\mathcal{K} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \leq 0\}$ with $\mathbf{g} = (g_1, g_2, \dots, g_m)$ where each
 1544 g_i ($i = 1, 2, \dots, m$) is a continuous function. For problem \mathbf{H} ,

$$1546 \quad \mathcal{B} = \psi^{-1}(\mathcal{K}) = \{\mathbf{z} \in \mathbb{R}^n \mid \psi(\mathbf{z}) \in \mathcal{K}\} = \{\mathbf{z} \in \mathbb{R}^n \mid \mathbf{G}(\mathbf{z}) := \mathbf{g}(\psi(\mathbf{z})) \leq 0\}$$

1547 where G_i is non-convex in general. However, \mathcal{B} is assumed to be convex (actually a ball set) in this
 1548 paper. One can refer to Fig. 5 for an illustration.
 1549

1550 Moreover, we assume there are no redundant inequalities in \mathcal{K} , i.e., there is no g_i such that $\mathcal{K} =$
 1551 $\{\mathbf{x} \mid \mathbf{g}_{-i}(\mathbf{x}) \leq 0\}$ where $\mathbf{g}_{-i} = (g_1, \dots, g_{i-1}, g_{i+1}, \dots, g_m)$. In this case, any feasible point \mathbf{x}
 1552 satisfying $g_i(\mathbf{x}) = 0$ for some i is on the boundary of the set \mathcal{K} . Thus, we have

$$1553 \quad \{\mathbf{x} \in \mathcal{K} \mid g_j(\mathbf{x}) = 0, g_k(\mathbf{x}) \neq 0\} \cap \{\mathbf{x} \in \mathcal{K} \mid g_k(\mathbf{x}) = 0, g_j(\mathbf{x}) \neq 0\} = \emptyset$$

1555 for any $k \neq j$. Note $\mathcal{B} = \{\mathbf{z} \mid G_i(\mathbf{z}) \leq 0, i = 1, 2, \dots, m\} = \{\mathbf{z} \mid \|\mathbf{z}\|^2 \leq 1\}$. Moreover,
 1556 $\{G_i(\mathbf{z}) \leq 0, i = 1, 2, \dots, m\}$ also has no redundant constraints by the non-singularity of the
 1557 Jacobian of ψ and similarly,

$$1558 \quad \{\mathbf{z} \in \mathcal{B} \mid G_j(\mathbf{z}) = 0, G_k(\mathbf{z}) \neq 0\} \cap \{\mathbf{z} \in \mathcal{B} \mid G_k(\mathbf{z}) = 0\} = \emptyset$$

1560 for any $j \neq k$. Hence if $\mathbf{z} \in \mathcal{B}$ satisfies $G_i(\mathbf{z}) = 0$ for some i , it lies on the boundary of \mathcal{B} . Clearly,
 1561 we have

$$1562 \quad G_i(\mathbf{z}) = \|\mathbf{z}\|^2 - 1 \quad \text{at} \quad \mathbf{z}' \in \partial \mathcal{B}, G_i(\mathbf{z}') = 0, \quad (12)$$

1563 and

$$1564 \quad \nabla G_i(\mathbf{z}) = 2\mathbf{z}, \nabla^2 G_i(\mathbf{z}) = 2\mathbf{I}_n \quad \text{at} \quad \mathbf{z}' \in \partial \mathcal{B}, G_i(\mathbf{z}') = 0. \quad (13)$$

1565 where \mathbf{I}_n is the identity matrix of n by n .

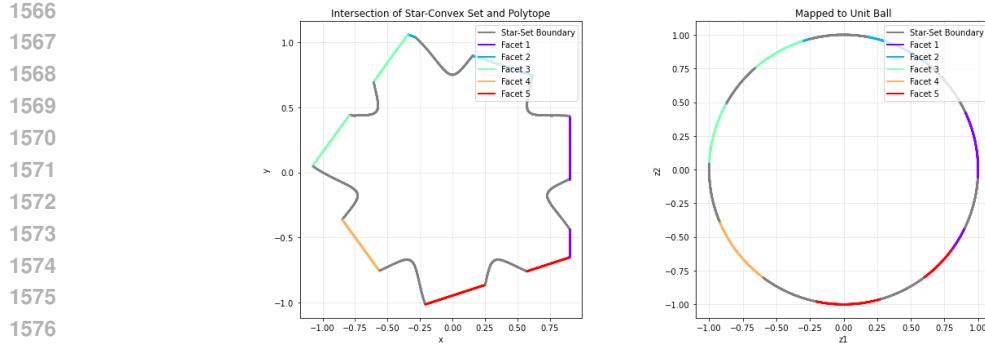


Figure 5: Illustration of the action of homeomorphism on a star-shaped set. The left figure shows the star-shaped constraints of problem \mathbf{P} . Each color of line represents the boundary characterized by a constraint inequality $\{\mathbf{a}_i^\top \mathbf{x} \leq b_i\}$ for some i . Under a homeomorphic mapping ψ , the constrained set is transformed to a ball (right figure). Each constraint inequality $\{G_i(\mathbf{z}) \leq 0\}$ (colored differently) is non-convex in general.

D.2 PROPERTIES OF FUNCTION $h = f \circ \psi$

Lemma D.1 (Properties of $h = f \circ \psi$). *Under the general assumptions C.2, $h = f \circ \psi$ has the following properties.*

- 1) h is $L_{h,0} := L_{f,0}\kappa_2$ Lipschitz continuous.
- 2) h is L_h -smooth with $L_h = \kappa_2^2 L_f + L_\psi L_{f,0}$.
- 3) If f is convex, then h is ℓ_h -weakly convex with $\ell_h = L_{f,0}L_\psi$.

Proof. We prove them one by one in the following.

- 1) We can directly derive from basic definitions:

$$\begin{aligned} \|h(\mathbf{u}) - h(\mathbf{v})\| &\leq \|f(\psi(\mathbf{u})) - f(\psi(\mathbf{v}))\| \\ &\leq L_{f,0} \|\psi(\mathbf{u}) - \psi(\mathbf{v})\| \\ &\leq L_{f,0} L_\psi \|\mathbf{u} - \mathbf{v}\|. \end{aligned}$$

- 2) From L_f -smoothness of f , we have

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \leq L_f \|\mathbf{x} - \mathbf{y}\|. \quad (14)$$

Then we derive with $\mathbf{x} = \psi(\mathbf{z}), \mathbf{v} = \psi(\mathbf{y})$,

$$\begin{aligned} \|\nabla h(\mathbf{z}) - \nabla h(\mathbf{v})\| &= \left\| \mathbf{J}_\psi(\mathbf{z})^\top \nabla f(\mathbf{x}) - \mathbf{J}_\psi(\mathbf{v})^\top \nabla f(\mathbf{y}) \right\| \\ &= \left\| \mathbf{J}_\psi(\mathbf{z})^\top (\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})) + (\mathbf{J}_\psi(\mathbf{z}) - \mathbf{J}_\psi(\mathbf{v}))^\top \nabla f(\mathbf{y}) \right\| \\ &\leq \left\| \mathbf{J}_\psi(\mathbf{z})^\top (\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})) \right\| + \left\| (\mathbf{J}_\psi(\mathbf{z}) - \mathbf{J}_\psi(\mathbf{v}))^\top \nabla f(\mathbf{y}) \right\| \\ &\leq \kappa_2 L_f \|\psi(\mathbf{z}) - \psi(\mathbf{v})\| + L_\psi L_{f,0} \|\mathbf{z} - \mathbf{v}\| \\ &\leq (\kappa_2^2 L_f + L_\psi L_{f,0}) \|\mathbf{z} - \mathbf{v}\|. \end{aligned}$$

Let $L_h = \kappa_2^2 L_f + L_\psi L_{f,0}$. We have the conclusion.

- 3) One hope to show $h(\cdot) + \frac{\ell_h}{2} \|\cdot + \mathbf{v}\|^2$ is a convex function, i.e.,

$$h(\mathbf{v}) + \frac{\ell_h}{2} \|\mathbf{v}\|^2 \geq h(\mathbf{z}) + \frac{\ell_h}{2} \|\mathbf{z}\|^2 + \langle \nabla h(\mathbf{z}) + \ell_h \mathbf{z}, \mathbf{v} - \mathbf{z} \rangle, \quad \forall \mathbf{z}, \mathbf{v}.$$

This is equivalent to show

$$h(\mathbf{v}) + \frac{\ell_h}{2} \|\mathbf{v} - \mathbf{z}\|^2 \geq h(\mathbf{z}) + \langle \nabla h(\mathbf{z}), \mathbf{v} - \mathbf{z} \rangle, \quad \forall \mathbf{z}, \mathbf{v}.$$

1620 We drive with $\mathbf{x} = \psi(\mathbf{z}), \mathbf{y} = \psi(\mathbf{v})$ as follows,
 1621

$$\begin{aligned}
 1622 \langle \nabla h(\mathbf{z}), \mathbf{v} - \mathbf{z} \rangle &= \langle \nabla J_\psi(\mathbf{z})^\top f(\mathbf{x}), \mathbf{v} - \mathbf{z} \rangle \\
 1623 &= \langle \nabla f(\mathbf{x}), J_\psi(\mathbf{z})(\mathbf{v} - \mathbf{z}) \rangle \\
 1624 &= \langle \nabla f(\mathbf{x}), -\psi(\mathbf{v}) + \psi(\mathbf{z}) + J_\psi(\mathbf{z})(\mathbf{v} - \mathbf{z}) \rangle + \langle \nabla f(\mathbf{x}), \psi(\mathbf{v}) - \psi(\mathbf{z}) \rangle \\
 1625 &\leq \|\nabla f(\mathbf{x})\| \cdot \|\psi(\mathbf{v}) - \psi(\mathbf{z}) - J_\psi(\mathbf{z})(\mathbf{v} - \mathbf{z})\| + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \\
 1627 &\leq L_{f,0} L_\psi \|\mathbf{z} - \mathbf{v}\|^2 + f(\mathbf{y}) - f(\mathbf{x}) \\
 1628 &= L_{f,0} L_\psi \|\mathbf{z} - \mathbf{v}\|^2 + h(\mathbf{v}) - h(\mathbf{z})
 \end{aligned}$$

1630 where the first inequality is from triangular inequality and the second inequality is from Lemma C.2
 1631 and the convexity of f . □

1634 D.3 KKT CONDITIONS OF PROBLEM \mathbf{P} AND \mathbf{H}

1636 First, we recall some basic definitions. Consider a general optimization problem

$$\begin{aligned}
 1638 \min_{\mathbf{x} \in \mathbb{R}^n} & f(\mathbf{x}), \\
 1639 \text{s.t. } & g_i(\mathbf{x}) \leq 0, \forall i = 1, 2, \dots, m; \\
 1640 & q_i(\mathbf{x}) \leq 0, \forall i = 1, 2, \dots, p.
 \end{aligned} \tag{G}$$

1642 The Lagrangian function of problem (G) is defined as
 1643

$$1644 \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) + \sum_{i=1}^p \nu_i q_i(\mathbf{x}).$$

1647 A triple $(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$ is said to satisfy the Karush–Kuhn–Tucker (KKT) condition of problem (G) if the
 1648 following holds
 1649

$$\begin{aligned}
 1650 \nabla f(\mathbf{x}) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}) + \sum_{j=1}^p \nu_j \nabla q_j(\mathbf{x}) &= \mathbf{0}, \\
 1652 & q_j(\mathbf{x}) = 0, g_i(\mathbf{x}) \leq 0, \quad \forall j \in [p], i \in [m]; \\
 1653 & \boldsymbol{\lambda} \geq \mathbf{0}, \lambda_i g_i(\mathbf{x}) = 0, \quad \forall i \in [m].
 \end{aligned} \tag{15}$$

1656 where $\boldsymbol{\lambda}$ (or $\boldsymbol{\nu}$) is the dual variable corresponding to inequality (resp. equality) constraints.

1657 **Definition D.2** (KKT stationary point). A point \mathbf{x}^* is said to be a KKT stationary point of (G) if
 1658 there exists $\boldsymbol{\lambda}^* \in \mathbb{R}_{\geq 0}^m, \boldsymbol{\nu}^* \in \mathbb{R}^p$ such that $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$ satisfies KKT condition (15).

1659 **Definition D.3** (Strict complementary slackness). It is said that the strict complementary slackness
 1660 condition holds for problem (G), if
 1661

$$1662 \lambda_i^* > 0 \quad \text{for } g_i(\mathbf{x}^*) = 0, \quad \forall i \in [m].$$

1663 To define the second-order KKT condition for the optimization problems, we recall that the critical
 1664 cone in the following.

1666 **Definition D.4** (Critical cone). Denote the feasible region of problem (G) as \mathcal{G} . Then the critical
 1667 cone $C_{\mathcal{G}}(\mathbf{x}^*)$ at \mathbf{x}^* of problem (G) is defined as (Nocedal & Wright, 1999)

$$1669 \mathbf{w} \in C_{\mathcal{G}}(\mathbf{x}^*) \Leftrightarrow \begin{cases} \nabla q_i(\mathbf{x}^*)^\top \mathbf{w} = 0, & \text{for all } i \in [p], \\ \nabla g_i(\mathbf{x}^*)^\top \mathbf{w} = 0, & \text{for all } i \in \mathcal{A}(\mathbf{x}^*) \text{ with } \lambda_i^* > 0, \\ \nabla g_i(\mathbf{x}^*)^\top \mathbf{w} \geq 0, & \text{for all } i \in \mathcal{A}(\mathbf{x}^*) \text{ with } \lambda_i^* = 0. \end{cases}$$

1672 Here $\boldsymbol{\lambda}^*$ is the Lagrangian multiplier of inequality constraints g_i and $\mathcal{A}(\mathbf{x}^*)$ is the index of active
 1673 constraints.

1674 From the definition, the critical cone of problem \mathbf{P} can be written as
 1675

$$1676 \mathbf{w} \in C_{\mathcal{K}}(\mathbf{x}^*) \Leftrightarrow \begin{cases} \nabla g_i(\mathbf{x}^*)^T \mathbf{w} = 0, & \text{for all } i \in \mathcal{A}(\mathbf{x}^*) \text{ with } \lambda_i^* > 0, \\ \nabla g_i(\mathbf{x}^*)^T \mathbf{w} \geq 0, & \text{for all } i \in \mathcal{A}(\mathbf{x}^*) \text{ with } \lambda_i^* = 0. \end{cases}$$

1678 Moreover, if *strict complementary slackness* holds, the critical cone is simplified as
 1679

$$1680 C_{\mathcal{K}}(\mathbf{x}^*) = \{\mathbf{w} \in \mathbb{R}^n \mid \nabla g_i(\mathbf{x}^*)^T \mathbf{d} = 0, \text{ for all } i \in \mathcal{A}(\mathbf{x}^*)\}.$$

1681

1682 Suppose *strict complementary slackness* holds for problem \mathbf{P} and \mathbf{H} . Then, we can write KKT
 1683 conditions for problem \mathbf{P} and \mathbf{H} in the following.

1684 *First-order KKT conditions* on \mathbf{x}^* . The Lagrangian of \mathbf{P} is
 1685

$$1686 \mathcal{L}_{\mathbf{P}}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}).$$

1688 The first-order KKT conditions of \mathbf{P} are: there exists $\boldsymbol{\lambda}^*$ such that
 1689

$$1690 \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(\mathbf{x}^*) = \mathbf{0}, \quad (16a)$$

$$1692 g_i(\mathbf{x}^*) \leq 0, \quad i = 1, 2, \dots, m \quad (16b)$$

$$1694 \boldsymbol{\lambda}^* \geq \mathbf{0}, \quad \lambda_i^* g_i(\mathbf{x}^*) = 0, \quad i = 1, 2, \dots, m. \quad (16c)$$

1695 *Second-order KKT conditions* on \mathbf{x}^* . It adds the following condition
 1696

$$1697 \mathbf{w}^\top \nabla_{\mathbf{x}}^2 \mathcal{L}_{\mathbf{P}}(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{w} \geq 0 \quad (17)$$

1698 for any \mathbf{w} satisfying $\mathbf{w}^\top \nabla g_i(\mathbf{x}^*) = 0$ with $i \in \mathcal{A}(\mathbf{x}^*)$.
 1699

1700 *First-order KKT conditions* on \mathbf{z}^* . The Lagrangian of \mathbf{H} is
 1701

$$1702 \mathcal{L}_{\mathbf{H}}(\mathbf{z}, \nu) = h(\mathbf{z}) + \nu(\|\mathbf{z}\|^2 - 1).$$

1703 The first-order KKT conditions of \mathbf{H} are: there exists ν^* such that
 1704

$$\nabla h(\mathbf{z}^*) + 2\nu^* \mathbf{z}^* = \mathbf{0}, \quad (18a)$$

$$1705 \|\mathbf{z}^*\|^2 \leq 1, \quad (18b)$$

$$1707 \nu^* \geq 0, \quad \nu^*(\|\mathbf{z}^*\|^2 - 1) = 0. \quad (18c)$$

1708 *Second-order KKT condition* on \mathbf{z}^* . It will add the following condition.
 1709

$$1710 \mathbf{d}^\top \nabla_{\mathbf{z}}^2 \mathcal{L}_{\mathbf{H}}(\mathbf{z}^*, \nu^*) \mathbf{d} \geq 0 \quad (19)$$

1711 for any $\mathbf{d} \in C_{\mathcal{B}}(\mathbf{z}^*)$. Here recall that
 1712

$$1713 C_{\mathcal{B}}(\mathbf{z}^*) = \begin{cases} \mathbb{R}^n, & \text{if } \mathbf{z}^* \in \text{int}(\mathcal{B}), \\ \{\mathbf{d} : \mathbf{d}^\top \mathbf{z}^* = 0\}, & \text{if } \mathbf{z}^* \in \partial \mathcal{B}. \end{cases}$$

1716 D.4 RELATIONSHIPS OF KKT STATIONARY POINTS BETWEEN PROBLEM \mathbf{P} AND \mathbf{H}

1718 **Lemma D.5.** Suppose *strict complementary slackness* holds for both problem \mathbf{P} and \mathbf{H} . We have
 1719 that \mathbf{x}^* is a KKT stationary point of \mathbf{P} if and only if \mathbf{z}^* is also a KKT stationary point of \mathbf{H} *where*
 1720 $\mathbf{x}^* = \psi(\mathbf{z}^*)$.

1721 *Proof.* 1) First, we assume that \mathbf{x}^* is a KKT stationary point of \mathbf{P} . By assumption, there exists $\boldsymbol{\lambda}^*$
 1722 such that the KKT condition holds (16) holds. Then we have
 1723

$$1724 \mathbf{J}_{\psi}(\mathbf{z}^*)^\top \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \mathbf{J}_{\psi}(\mathbf{z}^*)^\top \nabla g_i(\mathbf{x}^*) = \mathbf{0},$$

$$1725 g_i(\psi(\mathbf{z}^*)) \leq 0, \quad i = 1, 2, \dots, m$$

$$1726 \boldsymbol{\lambda}^* \geq \mathbf{0}, \quad \lambda_i^* g_i(\psi(\mathbf{z}^*)) = 0, \quad i = 1, 2, \dots, m.$$

1728 This is equivalent to
 1729

$$\nabla h(\mathbf{z}^*) + \sum_{i=1}^m \lambda_i^* \nabla G_i(\mathbf{z}^*) = \mathbf{0}, \quad (20a)$$

$$G_i(\mathbf{z}^*) \leq 0, \quad i = 1, 2, \dots, m \quad (20b)$$

$$\boldsymbol{\lambda}^* \geq \mathbf{0}, \quad \lambda_i^* G_i(\mathbf{z}^*) = 0, \quad i = 1, 2, \dots, m. \quad (20c)$$

1736 Let $\nu^* = \sum_{i=1}^m \lambda_i^*$. According to the eq. (12,13), eq. (20a) is actually
 1737

$$\nabla h(\mathbf{z}^*) + 2\nu^* \mathbf{z}^* = \mathbf{0}.$$

1739 By assumption, eq. (20b) is equivalent to
 1740

$$\|\mathbf{z}^*\|^2 \leq 1.$$

1742 Note that if $G_i(\mathbf{z}^*) < 0$ for all i , then $\boldsymbol{\lambda}^* = \mathbf{0}$ and thus $\nu^* = 0$. In this case, $\nu^*(\|\mathbf{z}^*\|^2 - 1) = 0$. If \mathbf{z}^*
 1743 makes at least one $G_i(\mathbf{z}^*) = 0$, then we have $\|\mathbf{z}^*\|^2 = 1$. In this case, we also have $\nu^*(\|\mathbf{z}^*\|^2 - 1) = 0$.
 1744 Hence, eq. (20c) implies

$$\nu^* \geq 0, \quad \nu^*(\|\mathbf{z}^*\|^2 - 1) = 0.$$

1746 In conclusion, there exists \mathbf{z}^*, ν^* such the KKT condition holds.
 1747

1748 2) Now, we assume \mathbf{z}^*, ν^* satisfy KKT condition for problem \mathbf{H} , i.e.,
 1749

$$\begin{aligned} \nabla h(\mathbf{z}^*) + 2\nu^* \mathbf{z}^* &= \mathbf{0}, \\ \|\mathbf{z}^*\|^2 &\leq 1, \\ \nu^* &\geq 0, \quad \nu^*(\|\mathbf{z}^*\|^2 - 1) = 0. \end{aligned}$$

1754 If $\mathbf{z}^* \in \text{int}(\mathcal{B})$, then $G_i(\mathbf{z}^*) < 0$ for all i and $\nu^* = 0$. In this case, there exists $\boldsymbol{\lambda}^* = \mathbf{0}$ such that the
 1755 KKT condition with eq. (16) of problem \mathbf{P} holds at $\mathbf{x}^* = \psi(\mathbf{z}^*), \boldsymbol{\lambda}^* = \mathbf{0}$.

1756 If $\mathbf{z}^* \in \partial\mathcal{B}$, then there exists at least one $i \in \{1, 2, \dots, m\}$ such that $G_i(\mathbf{z}^*) = 0$ and $\nu^* > 0$ from
 1757 strict complementary slackness. Denote $\mathcal{A} = \{i : G_i(\mathbf{z}^*) = 0\}$. Note we define $\lambda_i^* = 0$ if $i \notin \mathcal{A}$ and
 1758 $\lambda_i^* = \nu^*/|\mathcal{A}|$. Then we have $\mathbf{z}^*, \boldsymbol{\lambda}^*$ such that eq. 20 holds which implies $\mathbf{x}^* = \psi(\mathbf{z}^*), \boldsymbol{\lambda}^*$ make the
 1759 KKT condition of problem \mathbf{P} hold.
 1760

□

1762 **Lemma D.6.** Suppose strict complementary slackness condition holds for both problem \mathbf{P} and
 1763 \mathbf{H} . Then \mathbf{x}^* is a second-order KKT stationary point of \mathbf{P} if and only if $\mathbf{z}^* = \psi^{-1}(\mathbf{x}^*)$ is also a
 1764 second-order KKT stationary point of \mathbf{H} .
 1765

1766 *Proof.* From Lemma D.5, there exists $\boldsymbol{\lambda}^*$ and ν^* such that $(\mathbf{x}^*, \boldsymbol{\lambda}^*)$ holds for first-order KKT
 1767 condition of \mathbf{P} if and only if (\mathbf{z}^*, ν^*) holds for first-order KKT condition of \mathbf{H} . Hence, it suffices to
 1768 show the equivalence of condition 19 and 17.

1769 1) Let's first suppose \mathbf{x}^* is a second-order KKT stationary point, i.e., eq. (17) holds.
 1770

1771 Note

$$\nabla_{\mathbf{z}}^2 \mathcal{L}_{\mathbf{H}}(\mathbf{z}^*, \nu^*) = \nabla^2 h(\mathbf{z}^*) + 2\nu^* \mathbf{I}_n,$$

1773 where \mathbf{I}_n is identity matrix of size $n \times n$. We just need to show $\mathbf{d}^\top \nabla \mathcal{L}_{\mathbf{H}}(\mathbf{z}^*, \nu^*) \mathbf{d} \geq 0$ for any
 1774 $\mathbf{d} \in \mathbf{C}_{\mathcal{B}}(\mathbf{z}^*)$. Recall that
 1775

$$\nabla^2 h(\mathbf{z}^*) = \mathbf{J}_{\psi}(\mathbf{z}^*)^\top \nabla^2 f(\psi(\mathbf{z}^*)) \mathbf{J}_{\psi}(\mathbf{z}^*) + \sum_{i=1}^n \frac{\partial f}{\partial \mathbf{x}_i}(\psi(\mathbf{z}^*)) \nabla^2 \psi_i(\mathbf{z}^*),$$

1779 and

$$\nabla^2 G_i(\mathbf{z}^*) = \mathbf{J}_{\psi}(\mathbf{z}^*)^\top \nabla^2 g_i(\psi(\mathbf{z}^*)) \mathbf{J}_{\psi}(\mathbf{z}^*) + \sum_{k=1}^n \frac{\partial g_i}{\partial \mathbf{x}_k}(\psi(\mathbf{z}^*)) \nabla^2 \psi_k(\mathbf{z}^*), \quad k = 1, 2, \dots, m.$$

1782 From eq. (12), note that
 1783

$$1784 \nabla^2 G_k(\mathbf{z}^*) = 2\mathbf{I}_n, \forall k \in \mathcal{A}(\mathbf{x}^*) \cap \{k : G_k(\mathbf{z}^*) = 0\}.$$

1786 From Lemma D.5, $\nu^* = \sum_i \lambda_i^*$. Then we have
 1787

$$1789 \nabla^2 \mathcal{L}_H(\mathbf{z}^*, \nu^*) = \nabla^2 h(\mathbf{z}^*) + \sum_{i=1}^m \lambda_i^* \nabla^2 G_i(\mathbf{z}^*) \quad (21a)$$

$$1792 = \mathbf{J}_\psi(\mathbf{z}^*)^\top \nabla^2 f(\psi(\mathbf{z}^*)) \mathbf{J}_\psi(\mathbf{z}^*) + \sum_{i=1}^m \mathbf{J}_\psi(\mathbf{z}^*)^\top \lambda_i^* \nabla^2 g_i(\psi(\mathbf{z}^*)) \mathbf{J}_\psi(\mathbf{z}^*) \quad (21b)$$

$$1794 + \sum_{k=1}^n \frac{\partial f}{\partial \mathbf{x}_k}(\psi(\mathbf{z}^*)) \nabla^2 \psi_k(\mathbf{z}^*) + \sum_{k=1}^n \sum_{i=1}^m \lambda_i^* \frac{\partial g_i}{\partial \mathbf{x}_k}(\psi(\mathbf{z}^*)) \nabla^2 \psi_k(\mathbf{z}^*). \quad (21c)$$

1797 From first-order KKT stationarity of \mathbf{P} , i.e.,
 1798

$$1800 \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(\mathbf{x}^*) = \mathbf{0},$$

1803 We have
 1804

$$1805 \frac{\partial f}{\partial \mathbf{x}_k}(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \frac{\partial g_i}{\partial \mathbf{x}_k}(\mathbf{x}^*) = 0.$$

1809 Hence for any $\mathbf{d} \in C_B(\mathbf{z}^*)$, we have the second term (21c) is equal to 0.

1810 Now we note it's trivial that $C_K(\mathbf{x})^* = C_B(\mathbf{z}^*) = \mathbb{R}^n$ if $\mathbf{z}^* \in \text{int}(\mathcal{K})$ where $\mathbf{x} = \psi(\mathbf{z}^*)$. Hence in
 1811 this case if $\mathbf{d} \in C_B(\mathbf{z}^*)$, we will have $\mathbf{J}_\psi(\mathbf{z}^*) \mathbf{d} \in C_K(\mathbf{x}^*)$
 1812

1813 If $\mathbf{x}^* \in \partial \mathcal{K}$. Then $\mathcal{A}(\mathbf{x}^*) \neq \emptyset$. For $\mathbf{d} \in C_B(\mathbf{z}^*)$, i.e., $\mathbf{d}^\top \mathbf{z}^* = 0$, we have
 1814

$$1815 (\mathbf{J}_\psi(\mathbf{z}^*) \mathbf{d})^\top \nabla g_i(\mathbf{x}^*) = \mathbf{d}^\top \mathbf{J}_\psi(\mathbf{z}^*)^\top \nabla g_i(\mathbf{x}^*) = \mathbf{d}^\top G_i(\mathbf{z}^*) = 2\mathbf{d}^\top \mathbf{z}^* = 0, \quad \text{for } i \in \mathcal{A}(\mathbf{x}^*),$$

1817 or $\mathbf{J}_\psi(\mathbf{z}^*) \mathbf{d} \in C_K(\mathbf{x}^*)$.
 1818

1819 So for $\mathbf{d}^\top \in C_B(\mathbf{z}^*)$, we have the following holds about the first term of $\nabla^2 \mathcal{L}_H(\mathbf{z}^*, \nu^*)$.
 1820

$$1821 (\mathbf{J}_\psi(\mathbf{z}^*) \mathbf{d})^\top \nabla^2 f(\psi(\mathbf{z}^*)) \mathbf{J}_\psi(\mathbf{z}^*) \mathbf{d} + (\mathbf{J}_\psi(\mathbf{z}^*) \mathbf{d})^\top \left(\sum_{i=1}^m \lambda_i^* \nabla^2 g_i(\psi(\mathbf{z}^*)) \right) \mathbf{J}_\psi(\mathbf{z}^*) \mathbf{d} \geq 0$$

1824 where the last ' \geq ' is from the assumption that \mathbf{x}^* is the second-order KKT stationary point of
 1825 \mathbf{P} . Hence, we have $\mathbf{d}^\top \nabla^2 \mathcal{L}_H(\mathbf{z}^*, \nu^*) \mathbf{d} \geq 0$ for any $\mathbf{d}^\top \in C_B(\mathbf{z}^*)$, i.e., $\mathbf{z}^* = \psi^{-1}(\mathbf{x}^*)$ is also a
 1826 second-order KKT stationary point.
 1827

1828 2) Let's suppose \mathbf{z}^* is a second-order KKT stationary point and show that \mathbf{x}^* is a second-order KKT
 1829 stationary point.

1830 If $\mathbf{z}^* \in \text{int}(\mathcal{B})$, the proof is trivial because $\nu^* = 0$ according to the similar analysis. So we assume
 1831 $\mathbf{z}^* \in \partial \mathcal{B}$. Define $\mathcal{A}(\mathbf{z}^*) = \{i : G_i(\mathbf{z}^*) = 0\}$, and $\lambda_i^* = 0$ for $i \notin \mathcal{A}(\mathbf{z}^*)$, $\lambda_i^* = \nu^*/|\mathcal{A}(\mathbf{z}^*)|$ for
 1832 $i \in \mathcal{A}(\mathbf{z}^*)$.
 1833

1834 Note for any $\mathbf{w} \in C_K(\mathbf{x}^*)$, we have
 1835

$$\mathbf{0} = \mathbf{w}^\top \nabla g_i(\mathbf{x}^*) = \mathbf{w}^\top \mathbf{J}_\psi^{-1}(\mathbf{z}^*) \nabla G_i(\mathbf{z}^*) = (\mathbf{J}_\psi^{-1}(\mathbf{z}^*) \mathbf{w})^\top \mathbf{z}^*, \quad \text{for } i \in \mathcal{A}(\mathbf{x}^*) = \mathcal{A}(\mathbf{z}^*).$$

1836 Hence $J_{\psi}^{-1}(\mathbf{z}^*)\mathbf{w} \in C_{\mathcal{B}}(\mathbf{z}^*)$. Then for any $\mathbf{w} \in C_{\mathcal{K}}(\mathbf{x}^*)$,

1837

1838
$$\mathbf{w}^\top \nabla_{\mathbf{x}}^2 \mathcal{L}_{\mathbf{P}}(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{w}$$

1839

1840
$$= \mathbf{w}^\top \nabla^2 f(\mathbf{x}^*) \mathbf{w} + \mathbf{w}^\top \sum_{i=1}^m \lambda_i^* \nabla^2 g_i(\mathbf{x}^*) \mathbf{w}$$

1841

1842
$$= (J_{\psi}^{-1}(\mathbf{z}^*)\mathbf{w})^\top J_{\psi}(\mathbf{z}^*) \nabla^2 f(\mathbf{x}^*) J_{\psi}(\mathbf{z}^*) J_{\psi}^{-1}(\mathbf{z}^*) \mathbf{w}$$

1843

1844
$$+ (J_{\psi}^{-1}(\mathbf{z}^*)\mathbf{w})^\top J_{\psi}(\mathbf{z}^*) \left(\sum_{i=1}^m \lambda_i^* \nabla^2 g_i(\mathbf{x}^*) \right) J_{\psi}(\mathbf{z}^*) J_{\psi}^{-1}(\mathbf{z}^*) \mathbf{w}$$

1845

1846
$$+ (J_{\psi}^{-1}(\mathbf{z}^*)\mathbf{w})^\top \left[\sum_{k=1}^n \frac{\partial f}{\partial \mathbf{x}_k}(\psi(\mathbf{z}^*)) \nabla^2 \psi_k(\mathbf{z}^*) + \sum_{k=1}^n \sum_{i=1}^m \lambda_i^* \frac{\partial g_i}{\partial \mathbf{x}_k}(\psi(\mathbf{z}^*)) \nabla^2 \psi_k(\mathbf{z}^*) \right] J_{\psi}^{-1}(\mathbf{z}^*) \mathbf{w}$$

1847

1848
$$= (J_{\psi}^{-1}(\mathbf{z}^*)\mathbf{w})^\top \mathcal{L}_{\mathbf{H}}(\mathbf{z}^*, \boldsymbol{\nu}^*) J_{\psi}^{-1}(\mathbf{z}^*) \mathbf{w} \geq 0$$

1849

1850

1851 where the sum of last term of the second ' = ' is exactly 0 and the last ' \geq ' is from the assumption that
1852 \mathbf{z}^* is a second-order KKT stationary point.

□

1853

1854

1855 **Definition D.7** (Non-degenerate KKT stationary point). A second-order KKT point \mathbf{x}^* of \mathbf{P} is said
1856 to be non-degenerate if there exists $\boldsymbol{\lambda}^*$ such that

$$\mathbf{d}^\top \nabla^2 \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{d} > 0$$

1857 for all $0 \neq \mathbf{d} \in C_{\mathcal{K}}(\mathbf{x}^*)$. Here the Lagrangian function is

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}).$$

1858

1859

1860

1861

1862

1863 **Lemma D.8.** Suppose strict complementary slackness holds for problem \mathbf{P} and \mathbf{H} . Then \mathbf{x}^* is
1864 a non-degenerate KKT point of optimization \mathbf{P} if and only if \mathbf{z}^* satisfying $\mathbf{x}^* = \psi(\mathbf{z}^*)$ is also a
1865 non-degenerate KKT point of problem \mathbf{H} .

1866

1867 *Proof.* 1) Suppose \mathbf{x}^* is a non-degenerate KKT stationary point. Note that for $\mathbf{d} \in C_{\mathcal{B}}(\mathbf{z}^*)$, we
1868 have $J_{\psi}(\mathbf{z}^*)\mathbf{d} \in C_{\mathcal{K}}(\mathbf{x}^*)$ from the proof of Lemma D.6. Moreover, from $J_{\psi}(\mathbf{z}^*) \neq 0$ we have
1869 $J_{\psi}(\mathbf{z}^*)\mathbf{d} \neq 0$ if and only if $\mathbf{d} \neq 0$. Then the conclusion is trivial from eq. (21) in the proof of Lemma
1870 D.6.

1871 2) Now, we suppose \mathbf{z}^* is a non-degenerate KKT stationary point. It follows from the proof of
1872 Lemma D.6 that for any $\mathbf{w} \in C_{\mathcal{K}}(\mathbf{x}^*)$, we have $J_{\psi}^{-1}(\mathbf{z}^*)\mathbf{w} \in C_{\mathcal{B}}(\mathbf{z}^*)$. Hence, the conclusion is also
1873 trivial from the proof of item (2) of Lemma D.6.

□

1874 E CONVERGENCE ANALYSIS: OPTIMIZATION OVER NON-CONVEX BH SET

1875

1876

1877 In this section, we then provide the proof of Theorem 1. Before moving on, we first introduce some
1878 definitions and notations below.

1879

1880

1881 **Definition E.1** (Approximate stationary point). A point \mathbf{x}^* is called ϵ -stationary point for problem
1882 $\min_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x})$ with convex set \mathcal{K} , if the gradient norm mapping

$$1883 \text{Gr}_f^{\mathcal{K}}(\mathbf{x}; \alpha) := \frac{1}{\alpha} [\mathbf{x} - \Pi_{\mathcal{K}}(\mathbf{x} - \alpha \nabla f(\mathbf{x}))]$$

1884 satisfies $\|\text{Gr}_f^{\mathcal{K}}(\mathbf{x}; \alpha)\| \leq \epsilon$ for proper $\alpha > 0$.

1885

1886 **Definition E.2** (Normal cone). The normal cone $N_S(\mathbf{x})$ of a closed and convex set \mathcal{K} at $\mathbf{x} \in \mathcal{K}$ is
1887 defined as

$$1888 N_{\mathcal{K}}(\mathbf{x}) = \{\mathbf{y} : \langle \mathbf{y}, \mathbf{z} - \mathbf{x} \rangle \leq 0 \text{ for any } \mathbf{z} \in \mathcal{K}\}.$$

1890 **Notations.**

1891

1892 • Recall that ψ is the exact homeomorphic mapping and Φ is the learned, approximate homeomorphic
 1893 mapping. Thus, we denote $\mathcal{B} := \psi^{-1}(\mathcal{K})$ as a unit ball and $\tilde{\mathcal{B}} := \Phi^{-1}(\mathcal{K})$ as an approximate unit
 1894 ball. Moreover, as Assumption 2 holds, we have

$$1895 \quad \|\text{BP}_{\tilde{\mathcal{B}}}(\mathbf{z}) - \Pi_{\mathcal{B}}(\mathbf{z})\| \leq \epsilon_{\text{inn}}.$$

1896

- 1897 • We denote $h := f \circ \psi$ and $H = f \circ \Phi$.
- 1898 • We denote the bi-Lipschitz continuous constant of Φ as l_{Φ} and u_{Φ} , i.e.,

$$1899 \quad l_{\Phi} \|\mathbf{u} - \mathbf{v}\| \leq \|\Phi(\mathbf{u}) - \Phi(\mathbf{v})\| \leq u_{\Phi} \|\mathbf{u} - \mathbf{v}\|. \quad (22)$$

1900

1901 Recall that the bi-Lipschitz continuous property of an INN composed of affine coupling layers is
 1902 satisfied by its design (Prop. B.1). Under this condition, we have

$$1903 \quad \|\mathbf{J}_{\Phi}(\mathbf{z})\| \leq u_{\Phi}, \|\mathbf{J}_{\Phi^{-1}}(\mathbf{z})\| \leq \frac{1}{l_{\Phi}}.$$

1904

1905 **E.1 PROOF OF THEOREM 1**

1906

1907 We list some help lemmas first in the following.

1908

1909 **Lemma E.3.** Suppose an error $\epsilon > 0$ is sufficiently small. Consider $\min_{\mathbf{z} \in \mathcal{B}} h(\mathbf{z})$. If $\|\text{Gr}_h^{\mathcal{B}}(\mathbf{z}'; \alpha)\| \leq$
 1910 ϵ for some $\mathbf{z}' \in \mathcal{B}$, then \mathbf{z}' is an $\mathcal{O}(\epsilon)$ -KKT stationary point of problem $\min_{\mathbf{z} \in \mathcal{B}} h(\mathbf{z})$. Specifically,
 1911 there exists ν^* such that

$$\begin{aligned} 1912 \quad \|\nabla h(\mathbf{z}') + 2\nu^* \mathbf{z}'\| &\leq \alpha(1 + \beta)\epsilon, \\ 1913 \quad \|\mathbf{z}'\| - 1 &\leq 0, \\ 1914 \quad \nu^* \geq 0, |\nu^*(\|\mathbf{z}'\|^2 - 1)| &\leq \beta\epsilon, \end{aligned}$$

1915

where β is a constant depending on \mathbf{z}' .

1916

1917 *Proof.* Suppose $\mathbf{z}^+ = \Pi_{\mathcal{B}}(\mathbf{z}' - \alpha \nabla h(\mathbf{z}'))$ and $\text{Gr}(\mathbf{z}') = \text{Gr}_h^{\mathcal{K}}(\mathbf{z}'; \alpha)$ for conciseness of notation.
 1918 Then $\text{Gr}(\mathbf{z}') = \frac{1}{\alpha}(\mathbf{z}' - \mathbf{z}^+)$.

1919

From the optimality of orthogonal projection (Prop. C.1), we have

1920

$$\langle \mathbf{z}' - \alpha \nabla h(\mathbf{z}') - \mathbf{z}^+, \mathbf{z} - \mathbf{z}^+ \rangle \leq 0$$

1922

for any $\mathbf{z} \in \mathcal{B}$. Let $\zeta = \mathbf{z}' - \mathbf{z}^+ - \alpha \nabla h(\mathbf{z}')$. We have $\zeta \in N_{\mathcal{B}}(\mathbf{z}^+)$ by [definition of the normal cone](#).
 1923 Moreover, the normal cone of a unit ball can be written as

1924

$$N_{\mathcal{B}}(\mathbf{z}^+) = \{\beta \mathbf{z}^+ : \beta > 0\} \text{ for } \mathbf{z}^+ \in \partial \mathcal{B}; \text{ and } N_{\mathcal{B}}(\mathbf{z}^+) = \{\beta \mathbf{z}^+ : \beta = 0\} \text{ for } \mathbf{z}^+ \in \text{int}(\mathcal{B}).$$

1925

Hence we have $\zeta = \beta \mathbf{z}^+$ for some $\beta \geq 0$, i.e.,

1926

$$\alpha \nabla h(\mathbf{z}') + \beta \mathbf{z}^+ = \mathbf{z}' - \mathbf{z}^+.$$

1927

Equivalently,

1929

$$\nabla h(\mathbf{z}') + \frac{1}{\alpha}[\beta \mathbf{z}' + \beta(\mathbf{z}^+ - \mathbf{z}')] = \frac{1}{\alpha}[\mathbf{z}' - \mathbf{z}^+].$$

1931

Thus,

1932

$$\|\nabla h(\mathbf{z}') + \frac{\beta}{\alpha} \mathbf{z}'\| \leq (1 + \beta) \|\text{Gr}(\mathbf{z}')\| \leq (1 + \beta)\epsilon.$$

1933

By defining $\nu^* = \frac{\beta}{2\alpha} \geq 0$, we have

1935

$$\|\nabla h(\mathbf{z}') + 2\nu^* \mathbf{z}'\| \leq (1 + \beta) \|\text{Gr}(\mathbf{z}')\| \leq (1 + \beta)\epsilon.$$

1936

Next, note that \mathbf{z}' is feasible, thereby $\|\mathbf{z}'\| - 1 \leq 0$.

1937

Finally, we show

1939

$$|\nu^*(\|\mathbf{z}'\|^2 - 1)| \leq \beta\epsilon.$$

1940

If $\mathbf{z}^+ \in \text{int}(\mathcal{B})$, we have $\beta = 0$ by the definition of β , i.e., $\nu^* = 0$. In this case, the proof is trivial.
 1941 Hence, we assume $\mathbf{z}^+ \in \partial \mathcal{B}$. It follows that $\|\mathbf{z}^+\|^2 = 1$. Then we have

1942

1943

$$|\nu^*(\|\mathbf{z}'\|^2 - 1)| = |\nu^*(\|\mathbf{z}'\|^2 - \|\mathbf{z}^+\|^2)| \leq 2\nu^* \|\mathbf{z}' - \mathbf{z}^+\| \leq 2\nu^* \alpha \|\text{Gr}(\mathbf{z}')\| \leq \beta\epsilon.$$

□

1944
 1945 **Lemma E.4.** Consider the optimization problem \mathbf{H}_{inn} : $\min_{\mathbf{z} \in \tilde{\mathcal{B}}} H(\mathbf{z})$. Let $\epsilon > 0$ be a sufficiently
 1946 small error and Assumption 2 hold. Suppose $\{\mathbf{z}_k\}_{k \geq 0}$ is a sequence generated by Hom-PGD+ with
 1947 step-size $\alpha \in (0, \frac{1}{L_H}]$. Then $\{\mathbf{z}_k\}_{0 \leq k \leq K}$ contains a point \mathbf{z}' with $K = \mathcal{O}(L_H \epsilon^{-2})$ such that

$$1948 \quad \|\text{Gr}_H^{\mathcal{B}}(\mathbf{z}')\| \leq c\epsilon + \mathcal{O}(\sqrt{L_H \epsilon_{\text{inn}}})$$

1949 where c is a constant independent of ϵ that can be small arbitrarily.

1950 *Proof.* We denote $\mathbf{z}_+ = \Pi_{\mathcal{B}}(\mathbf{z} - \alpha \nabla H(\mathbf{z}))$ and $\mathbf{z}^- = \text{BP}_{\mathcal{B}}(\mathbf{z} - \alpha \nabla H(\mathbf{z}))$. We know that $\|\mathbf{z}_+ - \mathbf{z}^-\| \leq \epsilon_{\text{inn}}$. According to the L_H smoothness of H , we have

$$1954 \quad H(\mathbf{z}^-) \leq H(\mathbf{z}) + \langle \nabla H(\mathbf{z}), \mathbf{z}^- - \mathbf{z} \rangle + \frac{L_H}{2} \|\mathbf{z} - \mathbf{z}^-\|^2$$

$$1955 \quad = H(\mathbf{z}) + \langle \nabla H(\mathbf{z}), \mathbf{z}^- - \mathbf{z}_+ \rangle + \langle \nabla H(\mathbf{z}), \mathbf{z}_+ - \mathbf{z} \rangle + \frac{L_H}{2} \|\mathbf{z} - \mathbf{z}^-\|^2.$$

1956 From Prop. C.1, we have

$$1957 \quad \langle \mathbf{z} - \alpha \nabla H(\mathbf{z}) - \mathbf{z}_+, \mathbf{z} - \mathbf{z}_+ \rangle \leq 0,$$

1958 i.e.,

$$1959 \quad \langle \nabla H(\mathbf{z}), \mathbf{z} - \mathbf{z}_+ \rangle \leq -\frac{1}{\alpha} \|\mathbf{z}_+ - \mathbf{z}\|^2.$$

1960 Hence, we have

$$1961 \quad H(\mathbf{z}^-) \leq H(\mathbf{z}) + \langle \nabla H(\mathbf{z}), \mathbf{z}^- - \mathbf{z}_+ \rangle + \langle \nabla H(\mathbf{z}), \mathbf{z}_+ - \mathbf{z} \rangle + \frac{L_H}{2} \|\mathbf{z} - \mathbf{z}^-\|^2$$

$$1962 \quad \leq H(\mathbf{z}) + \left(\frac{L_H}{2} - \frac{1}{\alpha}\right) \|\mathbf{z}_+ - \mathbf{z}\|^2 + \frac{L_H}{2} \|\mathbf{z}_+ - \mathbf{z}^-\|^2 + \|\nabla H(\mathbf{z})\| \cdot \|\mathbf{z}^- - \mathbf{z}_+\|.$$

1963 It follows that

$$1964 \quad H(\mathbf{z}_k) - H(\mathbf{z}_{k+1}) + \frac{L_H}{2} \epsilon_{\text{inn}}^2 + L_{H,0} \epsilon_{\text{inn}} \geq \alpha \left(1 - \frac{\alpha L_H}{2}\right) \|\text{Gr}(\mathbf{z}_k)\|^2 \quad (23)$$

1965 where we denote

$$1966 \quad \text{Gr}(\mathbf{z}) := \text{Gr}_H^{\mathcal{B}}(\mathbf{z}) = \frac{1}{\alpha} [\mathbf{z} - \Pi_{\mathcal{B}}(\mathbf{z} - \alpha \nabla H(\mathbf{z}))].$$

1967 Let $M = \alpha \left(1 - \frac{\alpha L_H}{2}\right)$. We sum up Eq. (23) from $k = 0$ to $k = K$, and then we have

$$1968 \quad H(\mathbf{z}_0) - H^* \geq H(\mathbf{z}_0) - H(\mathbf{z}_{K+1}) + (K+1) \left(\frac{L_H}{2} \epsilon_{\text{inn}}^2 + L_{H,0} \epsilon_{\text{inn}}\right)$$

$$1969 \quad \geq M \sum_{k=1}^K \|\text{Gr}(\mathbf{z}_k)\|^2 \geq (K+1) \|\text{Gr}(\mathbf{z}')\|^2$$

1970 where $\mathbf{z}' = \arg \min_{k=0,1,\dots,K} \|\text{Gr}(\mathbf{z}_k)\|$. It follows that

$$1971 \quad \|\text{Gr}(\mathbf{z}')\| \leq \sqrt{\frac{H(\mathbf{z}_0) - H^*}{M(K+1)} + \frac{L_H}{2} \epsilon_{\text{inn}}^2 + L_{H,0} \epsilon_{\text{inn}}} = \mathcal{O}\left(\frac{1}{\sqrt{K}}\right) + \mathcal{O}(\sqrt{L_H \epsilon_{\text{inn}}}).$$

1972 With $K = \mathcal{O}(L_H \epsilon^{-2})$, we get the conclusion. \square

1973 **Lemma E.5.** If \mathbf{z}' is a **feasible** ϵ -approximate KKT point of problem $\min_{\mathbf{z} \in \mathcal{B}} H(\mathbf{z}) = f \circ \Phi(\mathbf{z})$ over
 1974 a unit ball, i.e., $\mathbf{z} \in \mathcal{B}$, then $\mathbf{x}' = \Phi(\mathbf{z}')$ is an $(\epsilon / \min\{l_{\Phi}, 1\} + \mathcal{O}(\epsilon_{\text{inn}}))$ -approximate KKT point of
 1975 problem \mathbf{P} .

1976 *Proof.* Note that

$$1977 \quad \mathcal{B} := \{\|\mathbf{z}\|^2 - 1 \leq 0\} = \{G_i(\mathbf{z}) := g_i(\psi(\mathbf{z})) \leq 0, i = 1, 2, \dots, m\}$$

1978 and

$$1979 \quad \tilde{\mathcal{B}} = \Phi^{-1}(\mathcal{K}) = \{Q_i(\mathbf{z}) := g_i(\Phi(\mathbf{z})) \leq 0, i = 1, 2, \dots, m\}.$$

1998 We derive
 1999

$$\begin{aligned}
 2000 \quad \|\nabla G_i(\mathbf{z}) - \nabla Q_i(\mathbf{z})\| &= \|\mathbf{J}_\psi(\mathbf{z})\nabla g_i(\psi(\mathbf{z})) - \mathbf{J}_\Phi(\mathbf{z})\nabla g_i(\Phi(\mathbf{z}))\| \\
 2001 \quad &\leq \|\mathbf{J}_\psi(\mathbf{z})\nabla g_i(\psi(\mathbf{z})) - \mathbf{J}_\psi(\mathbf{z})\nabla g_i(\Phi(\mathbf{z}))\| + \\
 2002 \quad &\quad \|\mathbf{J}_\psi(\mathbf{z})\nabla g_i(\Phi(\mathbf{z})) - \mathbf{J}_\Phi(\mathbf{z})\nabla g_i(\Phi(\mathbf{z}))\| \\
 2003 \quad &\leq L_{\psi,0} L_{g_i} \epsilon_{\text{inn}} + L_{g_i,0} \epsilon_{\text{inn}}.
 \end{aligned}$$

2005 By assumption, there exists $\nu' \geq 0$ such that
 2006

$$\begin{aligned}
 2007 \quad \|\nabla h(\mathbf{z}') + 2\nu' \mathbf{z}'\| &\leq \epsilon, \\
 2008 \quad \|\mathbf{z}'\|^2 - 1 &\leq 0, \\
 2009 \quad |\nu'(\|\mathbf{z}'\|^2 - 1)| &\leq \epsilon.
 \end{aligned}$$

2012 First, we show it is a fact that there exists λ' such that
 2013

$$\begin{aligned}
 2015 \quad \|\nabla h(\mathbf{z}') + \sum_{i=1}^m \lambda'_i \nabla G_i(\mathbf{z}')\| &\leq \epsilon, \\
 2016 \quad G_i(\mathbf{z}') &\leq 0, \quad i = 1, 2, \dots, m \\
 2017 \quad \lambda' \geq \mathbf{0}, \quad |\lambda'_i G_i(\mathbf{z}')| &\leq \epsilon/|\mathcal{A}|, \quad i = 1, 2, \dots, m.
 \end{aligned}$$

2021 where we define $\mathcal{A} := \{i \mid G_i(\mathbf{z}) = \|\mathbf{z}\|^2 - 1 \text{ at } \mathbf{z}'\}$ and denote $\lambda'_i := 0$ for $i \notin \mathcal{A}$ and $\lambda'_i := \nu'/|\mathcal{A}|$
 2022 for $i \notin \mathcal{A}$. Moreover, the second inequality is from the feasibility of \mathbf{z}' . Now, it is easy to check that
 2023 the above approximate KKT condition holds.

2024 Note that $G_i(\mathbf{z}') \leq 0$ implies $[G_i(\mathbf{z}^+)]_+ = 0$. Next, we derive the following.
 2025

$$\begin{aligned}
 2026 \quad \left\| \nabla h(\mathbf{z}') + \sum_{i=1}^m \lambda'_i \nabla Q_i(\mathbf{z}') \right\| &\leq \left\| \nabla h(\mathbf{z}') + \sum_{i=1}^m \lambda'_i \nabla G_i(\mathbf{z}') \right\| + \left\| \sum_{i=1}^m \lambda'_i \nabla Q_i(\mathbf{z}') - \sum_{i=1}^m \lambda'_i \nabla G_i(\mathbf{z}') \right\| \\
 2027 \quad &\leq \epsilon + \mathcal{O}(\epsilon_{\text{inn}}), \\
 2028 \quad [Q_i(\mathbf{z}')]_+ &\leq [G_i(\mathbf{z}')]_+ + [Q_i(\mathbf{z}') - G_i(\mathbf{z}')]_+ \leq L_{g_i,0} \epsilon_{\text{inn}}, \\
 2029 \quad |\lambda'_i Q_i(\mathbf{z}')| &\leq |\lambda'_i G_i(\mathbf{z}')| + |\lambda'_i (Q_i(\mathbf{z}') - G_i(\mathbf{z}'))| \leq \epsilon + \lambda'_i L_{g_i,0} \epsilon_{\text{inn}}.
 \end{aligned}$$

2034 Moreover, we have
 2035

$$\begin{aligned}
 2036 \quad \left\| \nabla h(\mathbf{z}') + \sum_{i=1}^m \lambda'_i \nabla Q_i(\mathbf{z}') \right\| &\leq \epsilon + \mathcal{O}(\epsilon_{\text{inn}}), \\
 2037 \quad \|[\mathbf{Q}(\mathbf{z}')]_+\| &\leq \sum_{i=1}^m [Q_i(\mathbf{z}')]_+ \leq \sum_{i=1}^m ([G_i(\mathbf{z}')]_+ + [Q_i(\mathbf{z}') - G_i(\mathbf{z}')]_+) \leq m L_{\mathbf{g},0} \epsilon_{\text{inn}}, \\
 2038 \quad \sum_{i=1}^m |\lambda'_i Q_i(\mathbf{z}')| &\leq \sum_{i=1}^m (|\lambda'_i G_i(\mathbf{z}')| + |\lambda'_i (Q_i(\mathbf{z}') - G_i(\mathbf{z}'))|) \\
 2039 \quad &= \sum_{i \in \mathcal{A}} |\lambda'_i G_i(\mathbf{z}')| + \sum_{i \notin \mathcal{A}} |\lambda'_i G_i(\mathbf{z}')| + \sum_{i=1}^m |\lambda'_i (Q_i(\mathbf{z}') - G_i(\mathbf{z}'))| \\
 2040 \quad &\leq \epsilon + \lambda'_{\max} |\mathcal{A}| L_{\mathbf{g},0} \epsilon_{\text{inn}}
 \end{aligned}$$

2049 where $L_{\mathbf{g},0} = \max_{i=1,2,\dots,m} \{L_{g_i,0}\}$ and $\lambda'_{\max} = \max_{i=1,2,\dots,m} \{\lambda'_i\}$. Here in the second line we
 2050 use the inequality $[a+b]_+ \leq [a]_+ + [b]_+$ for $a, b \in \mathbb{R}$.
 2051

That is \mathbf{z}' is an $\epsilon + \mathcal{O}(\epsilon_{\text{inn}})$ -KKT points of problem \mathbf{H} with homeomorphic mapping Φ .

2052 Next, we derive
 2053

$$\begin{aligned}
 2054 \quad & \left\| \nabla f(\mathbf{x}') + \sum_{i=1}^m \lambda'_i \nabla g_i(\mathbf{x}') \right\| \leq \left\| \mathbf{J}_\Phi(\mathbf{z}')^{-\top} \right\| \cdot \left\| \mathbf{J}_\Phi(\mathbf{z}')^\top \nabla f(\mathbf{x}') + \sum_{i=1}^m \lambda'_i \mathbf{J}_\Phi(\mathbf{z}')^\top \nabla g_i(\mathbf{x}') \right\|, \\
 2055 \quad & \leq \frac{\epsilon}{l_\Phi} + \mathcal{O}(\epsilon_{\text{inn}}), \\
 2056 \quad & [\mathbf{g}(\mathbf{x}')]_+ = [\mathbf{Q}(\mathbf{z}')]_+ \leq \mathcal{O}(\epsilon_{\text{inn}}), \\
 2057 \quad & \sum_{i=1}^m |\lambda'_i g_i(\mathbf{x}')| = \sum_{i=1}^m |\lambda'_i Q_i(\mathbf{z}_i)| \leq \epsilon + \mathcal{O}(\epsilon_{\text{inn}}).
 \end{aligned}$$

2063 It follows that $\mathbf{x}' = \Phi(\mathbf{z}')$ is an $(\epsilon / \min\{1, l_\Phi\} + \mathcal{O}(\epsilon_{\text{inn}}))$ -approximate KKT point. \square
 2064

2065 *Proof of Theorem 1.* This is the direct corollary of the above lemmas. From Lemma E.4, we have
 2066 that Hom-PGD+ can find an approximate stationary point \mathbf{z}' such that
 2067

$$2068 \quad \|\mathbf{Gr}_H^{\mathcal{B}}(\mathbf{z}')\| \leq c\epsilon + \mathcal{O}(\sqrt{L_H \epsilon_{\text{inn}}})$$

2069 in $\mathcal{O}(L_H \epsilon^2)$ iterations.
 2070

2071 Then, it follows from Lemma E.3 that \mathbf{z}' is also an approximate KKT point of optimization
 2072 $\min_{\mathbf{z} \in \mathcal{B}} H(\mathbf{z})$. Specifically, we have that there exists $\nu^* \in \mathbb{R}_{\geq 0}$
 2073

$$\begin{aligned}
 2074 \quad & \|\nabla H(\mathbf{z}') + 2\nu^* \mathbf{z}'\| \leq \alpha(1 + \beta)c\epsilon + \mathcal{O}(\sqrt{L_H \epsilon_{\text{inn}}}), \\
 2075 \quad & \|\mathbf{z}'\| - 1 \leq 0, \\
 2076 \quad & \nu^* \geq 0, |\nu^*(\|\mathbf{z}'\|^2 - 1)| \leq c\beta\epsilon + \mathcal{O}(\sqrt{L_H \epsilon_{\text{inn}}}),
 \end{aligned}$$

2078 Finally, by Lemma E.5, $\mathbf{x}' = \Phi(\mathbf{z}')$ is an $[c\alpha(1 + \beta)\epsilon / \min\{1, l_\Phi\} + \mathcal{O}(\sqrt{L_H \epsilon_{\text{inn}}})]$ -approximate
 2079 KKT point of problem \mathbf{P} . By choosing appropriate c , e.g.,
 2080

$$2081 \quad c = \min \left\{ \frac{l_\Phi}{\alpha(1 + \beta)}, 1 \right\},$$

2083 $\mathbf{x}' = \Phi(\mathbf{z}')$ becomes an $[\epsilon + \mathcal{O}(\sqrt{L_H \epsilon_{\text{inn}}})]$ -approximate KKT point of problem \mathbf{P} . \square
 2084

2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105

2106 **F EXPERIMENTS SETTING**
 2107

2108 **F.1 PROBLEM FORMULATIONS AND INSTANCE GENERATION**
 2109

2110 **F.1.1 NON-CONVEX QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMMING**
 2111

2112 We consider the following non-convex QCQP problem:

2113
$$\min_{L \leq \mathbf{x} \leq U} \frac{1}{2} \mathbf{x}^\top \mathbf{Q}_0 \mathbf{x} + \mathbf{q}_0^\top \mathbf{x} + r_0, \quad (24)$$

 2114

2115
$$\text{s.t. } \frac{1}{2} \mathbf{x}^\top \mathbf{Q}_i \mathbf{x} + \mathbf{q}_i^\top \mathbf{x} + r_i \leq 0, \quad i = 1, \dots, m, \quad (25)$$

 2116

2117 where $\mathbf{x} \in [L, U]^n$ is the decision variable, $\mathbf{Q}_i \in \mathbb{R}^{n \times n}$ are symmetric matrices (not necessarily
 2118 positive semidefinite), $\mathbf{q}_i \in \mathbb{R}^n$, and $r_i \in \mathbb{R}$.
 2119

2120 **Instance Generation:** For the objective matrix \mathbf{Q}_0 , we generate eigenvalues uniformly from $[-1, 1]$
 2121 to create a mix of positive and negative eigenvalues, ensuring non-convexity. We construct $\mathbf{Q}_0 =$
 2122 $\text{Udiag}(\boldsymbol{\lambda})\mathbf{U}^\top/n$, where \mathbf{U} is a random orthogonal matrix obtained via QR decomposition of a
 2123 standard Gaussian matrix, and $\boldsymbol{\lambda}$ contains the mixed eigenvalues. The linear term \mathbf{p} is sampled from
 2124 $\mathcal{N}(0, 1/n)$. For the constraint matrices $\{\mathbf{Q}_i\}_{i=1}^m$, eigenvalues are uniformly sampled from $[-1, 1]$
 2125 to maintain the non-convex structure across constraints. Each \mathbf{Q}_i is constructed using the same
 2126 eigendecomposition approach with independent random orthogonal matrices and normalized by
 2127 $1/n$. The corresponding linear terms \mathbf{p}_i are sampled from $\mathcal{N}(0, 1/n)$. To ensure feasibility, we first
 2128 generate a random initial point $\mathbf{x}_0 \sim \mathcal{N}(0, 0.1)$ and clip it to satisfy the box constraints with a margin
 2129 of 0.1. The constraint bounds are then set as $b_i = \frac{1}{2} \mathbf{x}_0^\top \mathbf{Q}_i \mathbf{x}_0 + \mathbf{p}_i^\top \mathbf{x}_0 + \epsilon_i$, where $\epsilon_i \sim |\mathcal{N}(0, 1)| \cdot 0.1$
 2130 provides a feasibility margin. This construction guarantees that \mathbf{x}_0 is feasible and ensures the problem
 2131 has a non-empty feasible region. For the illustrative example, we sample a 2-dimensional instance
 2132 with 2 quadratic constraints.

2133 **F.1.2 JOINT CHANCE CONSTRAINED DC OPTIMAL POWER FLOW**
 2134

2135 In electrical power systems, operators must satisfy stochastic demand while maintaining system reliability
 2136 across multiple nodes simultaneously. This presents a challenging multi-constraint optimization
 2137 problem under uncertainty, where violations at any node can compromise system-wide stability.
 2138

We first introduce the standard DC optimal power flow (DC-OPF) problem:

2139
$$\min_{\mathbf{p}, \boldsymbol{\theta}} \sum_{i=1}^G (c_i^q p_i^2 + c_i^l p_i), \quad (26)$$

 2140

2142
$$\text{s.t. } \mathbf{p}^{\min} \leq \mathbf{p} \leq \mathbf{p}^{\max}, \quad \boldsymbol{\theta}^{\min} \leq \boldsymbol{\theta} \leq \boldsymbol{\theta}^{\max}, \quad (27)$$

 2143

2144
$$\mathbf{B}_{\text{bus}} \boldsymbol{\theta} = \mathbf{p} - \mathbf{d}, \quad (28)$$

 2145

2146
$$\mathbf{B}_{\text{line}} \boldsymbol{\theta} \leq \mathbf{S}^{\max}, \quad (29)$$

2147 where $\mathbf{p} \in \mathbb{R}^G$ is the power generation vector, $\boldsymbol{\theta} \in \mathbb{R}^B$ are voltage phase angles, and $\mathbf{d} \in \mathbb{R}^B$ is
 2148 the demand vector. The matrices $\mathbf{B}_{\text{bus}} \in \mathbb{R}^{B \times B}$ and $\mathbf{B}_{\text{line}} \in \mathbb{R}^{L \times B}$ are the bus and line susceptance
 2149 matrices, with B buses, L transmission lines, and G generators. The vector $\mathbf{S}^{\max} \in \mathbb{R}^L$ denotes
 2150 maximum line capacities.

2151 To handle dependency between decision variables and uncertain parameters, we eliminate the slack
 2152 bus from the system equations. Let $\tilde{\mathbf{B}}_{\text{bus}} \in \mathbb{R}^{(B-1) \times (B-1)}$ be the reduced bus susceptance matrix,
 2153 and $\tilde{\mathbf{p}} \in \mathbb{R}^{G-1}$, $\tilde{\boldsymbol{\theta}} \in \mathbb{R}^{B-1}$, $\tilde{\mathbf{d}} \in \mathbb{R}^{B-1}$, $\tilde{\boldsymbol{\xi}} \in \mathbb{R}^{B-1}$ be the corresponding reduced vectors. The phase
 2154 angles for non-slack buses are:

2155
$$\tilde{\boldsymbol{\theta}}(\boldsymbol{\xi}) = \tilde{\mathbf{B}}_{\text{bus}}^{-1} (\tilde{\mathbf{p}} - \tilde{\mathbf{d}} - \tilde{\boldsymbol{\xi}}), \quad (30)$$

 2156

2157 and the slack bus generation adjusts to maintain power balance:

2158
$$p_s(\boldsymbol{\xi}) = \sum_{i \in \mathcal{N}} (d_i + \xi_i) - \sum_{j \in \mathcal{G} \setminus s} p_j, \quad (31)$$

 2159

2160

2161 Table 4: Network characteristics and DC-OPF formulation complexity for PGLib test cases

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

Power Grids	200-Bus	500-Bus
Network Topology		
Buses	200	500
Generators	69	145
Branches	245	597
DC-OPF Formulation		
<i>Decision Variables</i>		
Real Power Generation (P_g)	69	145
Voltage Angles (θ)	199	499
Total Variables	268	644
<i>Equality Constraints</i>		
Power Balance	200	500
<i>Inequality Constraints</i>		
Generator Limits	138	290
Voltage Angle Limits	398	998
Line Flow Limits	490	1194
Total Inequalities	1026	2482

where \mathcal{N} , \mathcal{G} , and s denote the sets of all buses, generator buses, and the slack bus, respectively.

The joint chance-constrained optimal power flow (JCC-OPF) extends the deterministic DC-OPF to handle demand uncertainty ξ while ensuring system reliability:

$$\min_{\bar{\mathbf{p}}} \mathbb{E}_{\xi} \left[\sum_{i=1}^G (c_i^q p_i(\xi)^2 + c_i^l p_i(\xi)) \right], \quad (32)$$

$$\text{s.t. } \mathbb{P} \left(\begin{array}{l} \mathbf{p}^{\min} \leq \mathbf{p}(\xi) \leq \mathbf{p}^{\max} \\ \boldsymbol{\theta}^{\min} \leq \boldsymbol{\theta}(\xi) \leq \boldsymbol{\theta}^{\max} \\ \mathbf{B}_{\text{line}} \boldsymbol{\theta}(\xi) \leq \mathbf{S}^{\max} \end{array} \right) \geq 1 - \epsilon, \quad (33)$$

where $\epsilon \in (0, 1)$ is the prescribed violation probability. All operational constraints must be satisfied jointly with probability at least $1 - \epsilon$, ensuring comprehensive system reliability under uncertainty.

Given sampled scenarios $\xi^{(k)} k = 1^N$, we have the Sample Average Approximation (SAA) for the chance constraints:

$$\frac{1}{N} \sum_{k=1}^N \mathbb{I} \left(\begin{array}{l} \mathbf{p}^{\min} \leq \mathbf{p}(\xi^{(k)}) \leq \mathbf{p}^{\max} \\ \boldsymbol{\theta}^{\min} \leq \boldsymbol{\theta}(\xi^{(k)}) \leq \boldsymbol{\theta}^{\max} \\ \mathbf{B}_{\text{line}} \boldsymbol{\theta}(\xi^{(k)}) \leq \mathbf{S}^{\max} \end{array} \right) \geq 1 - \epsilon, \quad (34)$$

where $\mathbb{I}(\cdot)$ is the indicator function that equals 1 if all constraints are satisfied and 0 otherwise.

To solve it exactly via an existing solver such as GUROBI, we can reformulate it using the mixed-integer formulations by introducing binary variables $z^{(k)} \in \{0, 1\}$ for each scenario::

$$\frac{1}{N} \sum_{k=1}^N z^{(k)} \geq 1 - \epsilon, \quad (35)$$

$$\mathbf{p}^{\min} - M(1 - z^{(k)}) \leq \mathbf{p}(\xi^{(k)}) \leq \mathbf{p}^{\max} + M(1 - z^{(k)}), \quad k = 1, \dots, N, \quad (36)$$

$$\boldsymbol{\theta}^{\min} - M(1 - z^{(k)}) \leq \boldsymbol{\theta}(\xi^{(k)}) \leq \boldsymbol{\theta}^{\max} + M(1 - z^{(k)}), \quad k = 1, \dots, N, \quad (37)$$

$$\mathbf{B}_{\text{line}} \boldsymbol{\theta}(\xi^{(k)}) \leq \mathbf{S}^{\max} + M(1 - z^{(k)}), \quad k = 1, \dots, N, \quad (38)$$

$$z^{(k)} \in \{0, 1\}, \quad k = 1, \dots, N, \quad (39)$$

where $z^{(k)}$ is a binary indicator that equals 1 if all constraints are satisfied for scenario k , and M is a sufficiently large constant. This mixed-integer linear programming formulation provides a tractable approximation with convergence guarantees as N increases.

Instance Generation: We use IEEE test systems from PGLIB (Babaeinejadsarookolaee et al., 2019), which provide standardized network topologies, transmission line parameters, generator characteristics, and baseline demand profiles for power system benchmarking. Uncertainty scenarios $\{\xi^{(k)}\}_{k=1}^N$ are generated from multivariate normal distributions $\mathcal{N}(\mathbf{0}, \Sigma)$, where Σ captures spatial correlation in demand uncertainty. We construct Σ using an exponential decay model based on geographical distance: $\Sigma_{ij} = \sigma_i \sigma_j \exp\left(-\frac{d_{ij}}{\ell}\right)$, where σ_i is the standard deviation of demand uncertainty at bus i (set to 5% of nominal demand d_i), d_{ij} is the electrical distance between buses i and j measured by the shortest path length in the network graph, and ℓ is the correlation length parameter that controls the spatial decay rate. We sample ℓ from $[1, 5]$ to generate instances with different correlation structures: small ℓ values produce localized correlations, while large ℓ values create system-wide correlated demand fluctuations.

F.2 BASELINE ALGORITHMS AND HYPER-PARAMETERS

We implement the baselines as follows:

- **EPM** : Exact Penalty Method (Cartis et al., 2011). It solves an unconstrained reformulated problem of (\mathbf{P}) as follows

$$\min_{\mathbf{x}} f(\mathbf{x}) + \rho \|\mathbf{g}(\mathbf{x})\| \quad (40)$$

where ρ is the penalty parameter. Moreover, for a large enough parameter ρ , the critical points of the unconstrained reformulation (40) correspond to the KKT stationary points of the original problem (\mathbf{P}) , provided by usual constraint qualifications Nocedal & Wright (1999). Based on this reformulation, one can use any appropriate algorithm to solve (40), such as gradient descent methods, trust region methods Cartis et al. (2011).

- **ALM**: Augmented Lagrangian Methods (Sahin et al., 2019; Xie & Wright, 2019; Birgin et al., 2003).

$$\mathbf{x}_{k+1} = \arg \min_{\mathbf{x}} \{f(\mathbf{x}) + \boldsymbol{\lambda}_k^T \mathbf{g}(\mathbf{x}) + \rho_k \|[\mathbf{g}(\mathbf{x})]_+\|^2\}, \quad (41)$$

$$\boldsymbol{\lambda}_{k+1} = [\boldsymbol{\lambda}_k + \rho_k \cdot \mathbf{g}(\mathbf{x}_{k+1})]_+, \quad (42)$$

where $\boldsymbol{\lambda}_k$ is the Lagrange multipliers, $\mathbf{g}(\mathbf{x})$ represents the constraint functions, and $\rho_k > 0$ is the dual step size. The inner unconstrained optimization problem is non-convex due to the non-convexity of the constraint functions \mathbf{g} and is solved using gradient descent to a stationary point, making it an inexact method.

- **PPP** : Proximal-Point Penalty Method (Lin et al., 2022). For the optimization (\mathbf{P}) , let

$$\phi_k(\mathbf{x}) := f(\mathbf{x}) + \frac{\gamma_k}{2} \|\mathbf{x} - \mathbf{x}_k\|^2 + \frac{\beta_k}{2} (\|[\mathbf{g}(\mathbf{x})]_+\|^2), \quad (43)$$

where $\beta_k > 0$ is the penalty parameter and $\gamma_k > 0$ is the proximal parameter. A sufficiently large parameter γ_k will make the problem (43) a strongly convex optimization provided by the weakly convex constraints \mathbf{g} .

In each iteration, one will solve the problem (43) to a stationary point using (sub)gradient descent by finding \mathbf{x}_{k+1} such that

$$\|\nabla \phi_k(\mathbf{x}_{k+1})\| \leq \hat{\varepsilon}_k \quad (44)$$

given a desired error $\hat{\varepsilon}_k > 0$.

- **Hom-PGD⁺**. Given the reformulated problem $(\mathbf{H}_{\text{inn}})$ and a step-size α_k in each iteration, we update by the rules

$$\mathbf{z}_{k+1} = \text{BP}_{\tilde{\mathcal{B}}}(\mathbf{z}_k - \alpha_k \nabla f(\Phi(\mathbf{z}_k))) \quad (45)$$

where BP denotes the bisected projection onto the approximate unit ball $\tilde{\mathcal{B}}$, and Φ is the INN-learned homeomorphism. The solution is mapped to the original space after convergence as $\mathbf{x}^* = \Phi(\mathbf{z}^*)$.

- **IPOPT**: Interior Point Optimizer, a state-of-the-art nonlinear programming solver that implements a primal-dual interior point method with line search. It uses exact second-order information and adaptive barrier parameter updates to handle inequality constraints through logarithmic barrier functions. IPOPT is particularly effective for large-scale continuous optimization problems with smooth nonlinear constraints.
- **GUROBI**: Commercial mixed-integer programming solver that employs branch-and-bound algorithms with advanced cutting plane generation, presolving techniques, and heuristics. For the SAA formulation of the JCC-OPF problem, GUROBI provides the exact optimal solution to the mixed-integer linear program, serving as the ground truth baseline for comparison with other approximate methods.

Gradient calculation: For simple quadratic objective functions, gradients are calculated via closed-form formulations. Other non-trivial gradient calculations across the various algorithms are implemented using auto-differentiation in PyTorch. We note that replacing auto-differentiation with closed-form gradient implementations could further improve the computational efficiency of the algorithms.

Handling Non-differentiable Chance Constraint: Since the indicator-based chance constraint is non-differentiable, making direct application of all first-order algorithms challenging. To tackle this challenge, we compute the robust scenario penalty following (Nemirovski & Shapiro, 2006), which computes the constraint violation for the worst-case scenario and treats it as a penalty in INN training or as the constraint violation/residual/penalty for other first-order algorithms. Specifically, we replace the non-differentiable indicator function with a smooth approximation:

$$\frac{1}{N} \sum_{k=1}^N \mathbb{I}(\mathbf{g}(\mathbf{x}, \boldsymbol{\xi}_k) \leq 0) \geq 1 - \epsilon \Rightarrow \max_{k \in \{1, \dots, N\}} [\mathbf{g}(\mathbf{x}, \boldsymbol{\xi}^{(k)})]_+ \leq 0 \quad (46)$$

Notably, when evaluating the chance constraint feasibility, we still follow the exact indicator-based formulation, which is used in the membership oracle for our Hom-PGD⁺ method to ensure accurate feasibility assessment during optimization or the final evaluation for solutions obtained from different algorithms.

Step-size: Theoretically, different algorithms employ their own step size selection strategies, such as explicit dependence on smoothness and convexity parameters, or implicit step sizes that depend on the optimal objective value Grimmer (2024b). For practical implementation, we initialize a fixed step size (e.g., 10^{-3}) and decay it by a factor of 0.999 if the objective value does not decrease, which helps identify a sufficient step size for convergence.

Computation environment: All algorithms are implemented in Pytorch and executed on an Ubuntu server with an NVIDIA A800 GPU and an AMD EPYC 7763 64-Core Processor.

F.3 INVERTIBLE NEURAL NETWORK IMPLEMENTATION

We adopt the coupling layer-based INN as our homeomorphism approximator. Specifically, it consists of 3 layers, each layer containing two sub-layers:

- **Invertible Linear Layers:** Following the GLOW architecture (Kingma & Dhariwal, 2018), we employ invertible linear layers with learnable bias terms. These layers implement affine transformations of the form $\mathbf{y} = \mathbf{W}\mathbf{x} + \mathbf{b}$, where the weight matrix \mathbf{W} is constrained to be invertible through LU decomposition parameterization. This parameterization ensures invertibility by construction while allowing efficient computation of the log-determinant of the Jacobian as the sum of logarithms of the diagonal elements from the decomposition.
- **Coupling layer:** We implement coupling layers using MADE (Masked Autoencoder for Distribution Estimation) (Germain et al., 2015), which enables highly efficient computation through masked forward propagation. MADE applies element-wise affine transformations in an autoregressive manner, where each output dimension is conditioned on all preceding input dimensions according to a predefined ordering. This structure maintains the coupling layer property while providing computational efficiency through parallelizable masked operations.

Conditional Embedding: To incorporate conditional input θ , we employ a dedicated fully connected neural network that embeds the conditional information into a latent representation. This embedding

is then added to the intermediate variables at each coupling layer, allowing the transformation to adapt based on the conditioning information. For the scenario-based input in JCC-DC-OPF, where the number of scenarios can vary across problem instances, we adopt a DeepSet-based architecture (Zaheer et al., 2017) to handle the permutation invariance property inherent in scenario sets. The DeepSet encoder maps variable-size scenario collections into a fixed-dimensional embedding space (64 dimensions in our implementation), ensuring consistent representation regardless of the number of scenarios while preserving the exchangeability of individual scenarios.

INN Training: We apply the Adam (Kingma & Ba, 2014) optimizer to train the INN with a batch size of 64, where each batch is sampled from the unit ball and input parameter space. We set the initial learning rate to 5×10^{-4} with a decay factor of 0.9 every 1,000 iterations. The maximum number of training iterations is set to 10,000. The coefficient for the penalty term is 10, and the Lipschitz regularizer is 0.1.

G SUPPLEMENTARY EXPERIMENTS RESULTS

G.1 INN TRAINING DETAILS

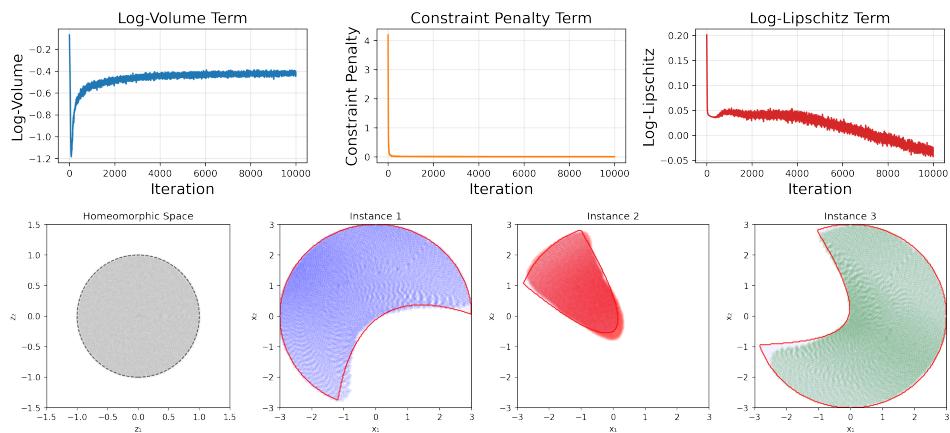


Figure 6: Training and evaluation of the 3-layer INN. Top: convergence of the volume term, penalty term, and Lipschitz term across different sampled input parameters θ during training. Bottom: visualization of the trained INN mapping the unit ball to different target constraint sets under various test input parameters. The training algorithm stably learns homeomorphisms by maximizing volume within constraints while regularizing the Lipschitz constant, demonstrating effective approximation quality and capturing the complex constraint geometry under unseen input parameters.

We provide training details for the invertible neural network used in homeomorphism learning. Specifically, we examine the convergence behavior of the training loss components and demonstrate the network’s ability to learn bidirectional mappings between unit balls and constraint sets.

Training Convergence: The INN is trained by optimizing three loss components: the volume term (ensuring volume preservation), the penalty term (enforcing constraints), and the Lipschitz term (controlling smoothness). Figure 6 (top) shows the convergence of these components across different sampled input parameters θ , demonstrating stable optimization. The training dynamics include three stages:

- **Initialization phase:** The INN parameters are randomly initialized (e.g., Gaussian), causing the initial mapping output $\Phi(\mathcal{B})$ to violate the constraint $\Phi(\mathcal{B}) \subseteq \mathcal{K}$. This results in a large constraint penalty term that dominates the total loss (as evident in the second subfigure showing high penalty loss).
- **Shrinking phase:** To reduce constraint violations, the network learns to shrink the mapped region and adjust its position. This shrinking decreases the volume (and thus log-volume drop), while it also reduces the constraint penalty by pushing $\Phi(\mathcal{B})$ fits within \mathcal{K} . During this phase, minimizing the penalty term takes priority over maximizing volume.

2376 • Expansion phase: Once the constraint is approximately satisfied (indicated by low penalty
 2377 loss in the second subfigure), the volume maximization term becomes dominant. The net-
 2378 work then learns to expand $\Phi(\mathcal{B})$ to occupy as much of \mathcal{K} as possible, ultimately approaching
 2379 a homeomorphism approximately.

2380 **Learned Mapping Properties:** The trained INN learns parameter-dependent bidirectional mappings.
 2381 In the forward direction, it maps the unit ball to constraint sets that vary with the input parameter θ .
 2382 In the inverse direction, it maps points from these constraint sets back to the unit ball, providing a
 2383 normalized representation of the feasible region.

2384 • Assumption 2 requires bounded homeomorphism error, meaning the trained INN must
 2385 approximate the true homeomorphism between the unit ball and the constraint set with
 2386 bounded error ϵ_{inn} . Due to the bijective property of homeomorphisms, this is equivalent
 2387 to requiring that $\Phi(\mathcal{B})$ closely approximates the true constraint set \mathcal{K} (or equivalently, that
 2388 $\Phi^{-1}(\mathcal{K})$ approximates \mathcal{B}). For straightforward visualization and comparison, we validate
 2389 the forward direction by examining how well $\Phi(\mathcal{B})$ covers and matches the true constraint
 2390 set \mathcal{K} .
 2391 • As shown in Figure 6, the mapped set $\Phi(\mathcal{B})$ accurately approximates the non-convex
 2392 geometry of the target constraint set under different input parameters, demonstrating the
 2393 effectiveness of our INN training method. To quantify this approximation quality, we can
 2394 compute the Hausdorff distance between $\Phi(\mathcal{B})$ and \mathcal{K} , defined as
 2395

$$d_H(\Phi(\mathcal{B}), \mathcal{K}) = \max \left\{ \sup_{x \in \Phi(\mathcal{B})} \inf_{y \in \mathcal{K}} \|x - y\|, \sup_{y \in \mathcal{K}} \inf_{x \in \Phi(\mathcal{B})} \|x - y\| \right\},$$

2396 which measures the maximum distance between the two sets. if $d_H(\Phi(\mathcal{B}), \mathcal{K}) = 0$, then
 2397 $\Phi(\mathcal{B}) = \mathcal{K}$ given $\mathcal{B} \cong \mathcal{K}$, meaning INN Φ is a perfect homeomorphic mapping between \mathcal{B}
 2398 and \mathcal{K} and $\epsilon_{\text{inn}} = 0$.

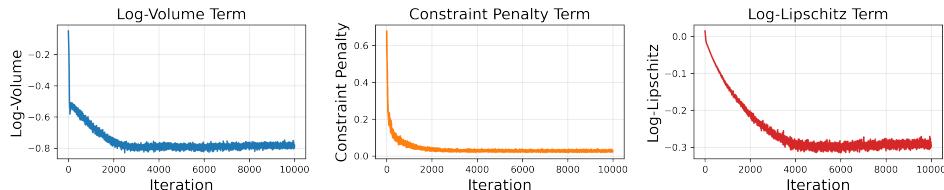
2403 G.2 ABALATION STUDY

2404 We conduct ablation studies on QCQP optimization problems to analyze two key aspects of our
 2405 method: **(i) INN Complexity and Performance:** We examine how INN depth (1/3/5 layers) affects
 2406 approximation error (Assumption 2), Lipschitz constants, and downstream optimization performance,
 2407 demonstrating that a 3-layer INN achieves the best balance between approximation capability and
 2408 parameter complexity. **(ii) Bisection Complexity and Performance:** We show that reducing bisection
 2409 iterations decreases per-iteration cost but may increase the optimality gap.

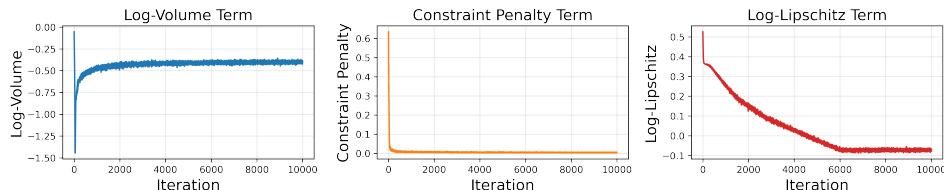
2412 G.3 MORE QCQP RESULTS

2413 We visualize the comparison of Hom-PGD⁺ and other baseline methods on QCQP optimization
 2414 under different input parameters. We show the convergence with respect to iteration and total time,
 2415 the constraint violation with respect to running time and per-iteration cost, and visualize the iteration
 2416 trajectory of different methods.

2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429

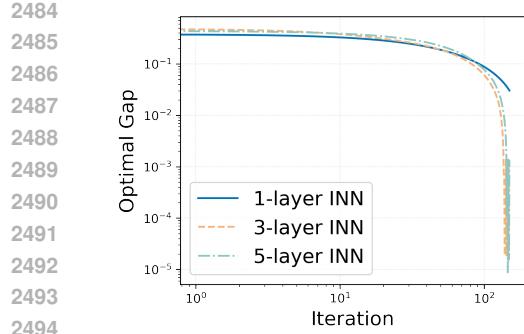


(a) 1-layer INN training (top) and evaluation (bottom) under different input parameters.

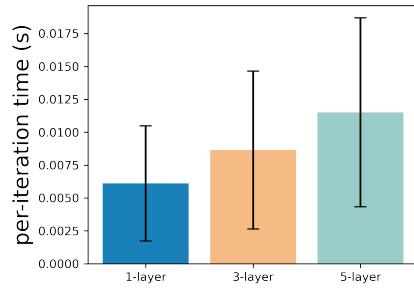


(b) 5-layer INN training (top) and evaluation (bottom) under different input parameters.

Figure 7: INN training and evaluation across different network depths. Top panels show training loss (Eq. (1)) convergence, including volume, penalty, and Lipschitz terms. Bottom panels visualize learned mappings under different input parameters. Key observations: (i) The 1-layer INN fails to capture constraint geometry accurately (average Hausdorff distance > 1.5), while 3- and 5-layer INNs achieve better approximation quality (average Hausdorff distance < 0.3). (ii) The 1-layer INN exhibits the smallest Lipschitz constant due to limited model expressiveness, whereas deeper networks show larger Lipschitz constants during training. The trade-off between approximation accuracy and smoothness can be controlled via the Lipschitz regularization term in the INN loss function.



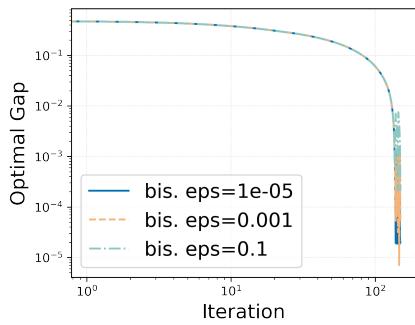
(a) Convergence



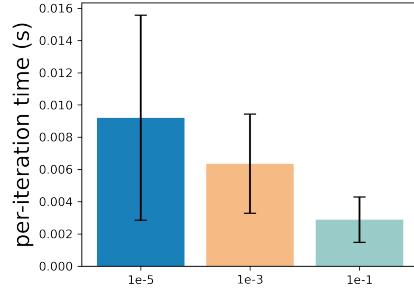
(b) Per-iteration costs.

2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Figure 8: Performance comparison of Hom-PGD⁺ across different INN architectures (1-layer, 3-layer, 5-layer). Single-layer INNs exhibit poor approximation capability, leading to large learning errors when approximating the constraint set. In contrast, 3-layer and 5-layer INNs provide sufficient representational capacity to capture the constraint set and demonstrate superior convergence behavior.

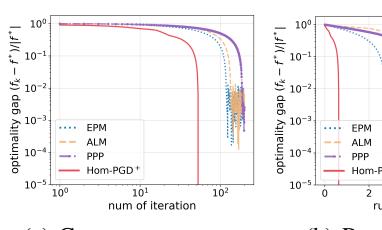


(a) Convergence

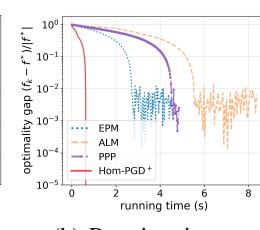


(b) Per-iteration costs

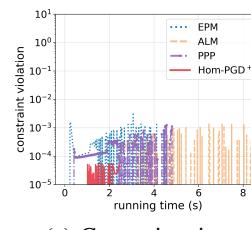
Figure 9: Performance comparison of Hom-PGD⁺ across different bisection tolerance levels (10^{-5} , 10^{-3} , 10^{-1}). Higher tolerance values accelerate the algorithm by reducing bisection iterations within the projection operator, but result in larger optimality gaps due to less precise convergence to the constraint boundary.



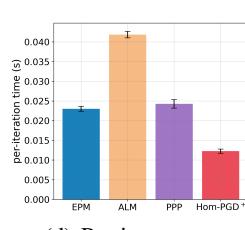
(a) Convergence rate.



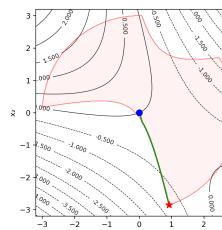
(b) Running time.



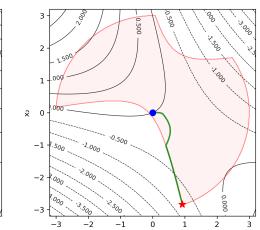
(c) Constraint vio.



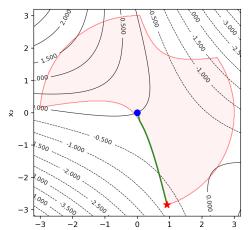
(d) Per-iter. cost.



(e) EPM iter.



(f) ALM iter.



(g) PPP iter.

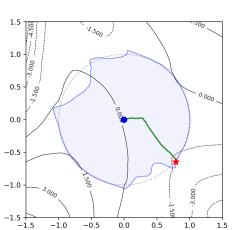
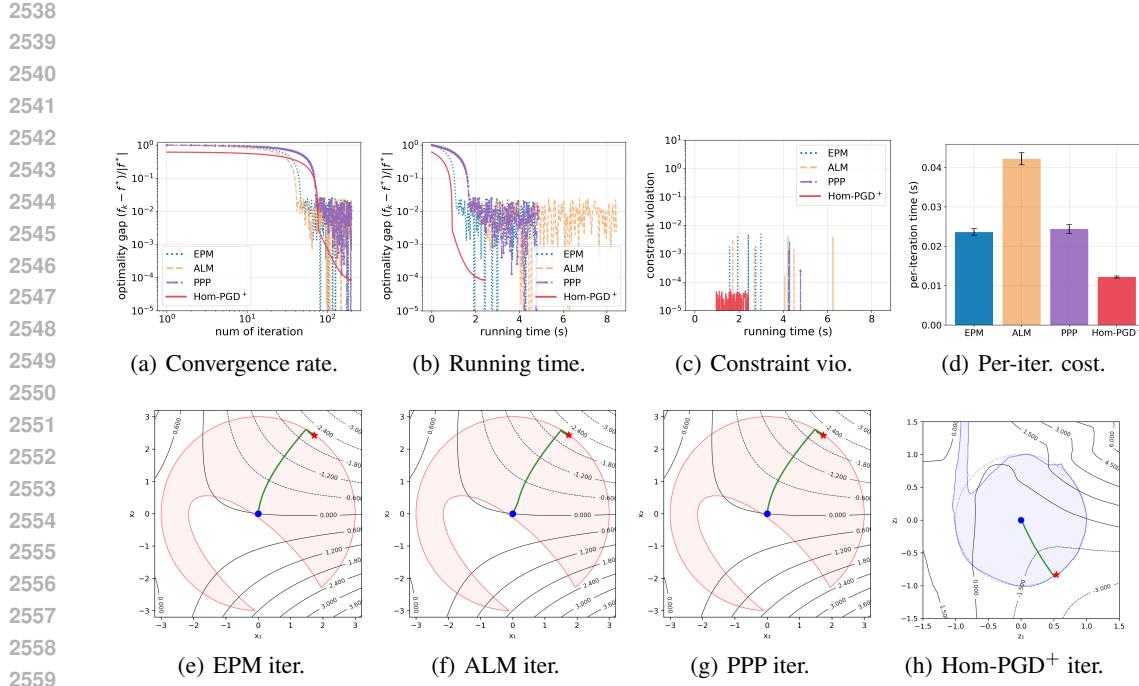
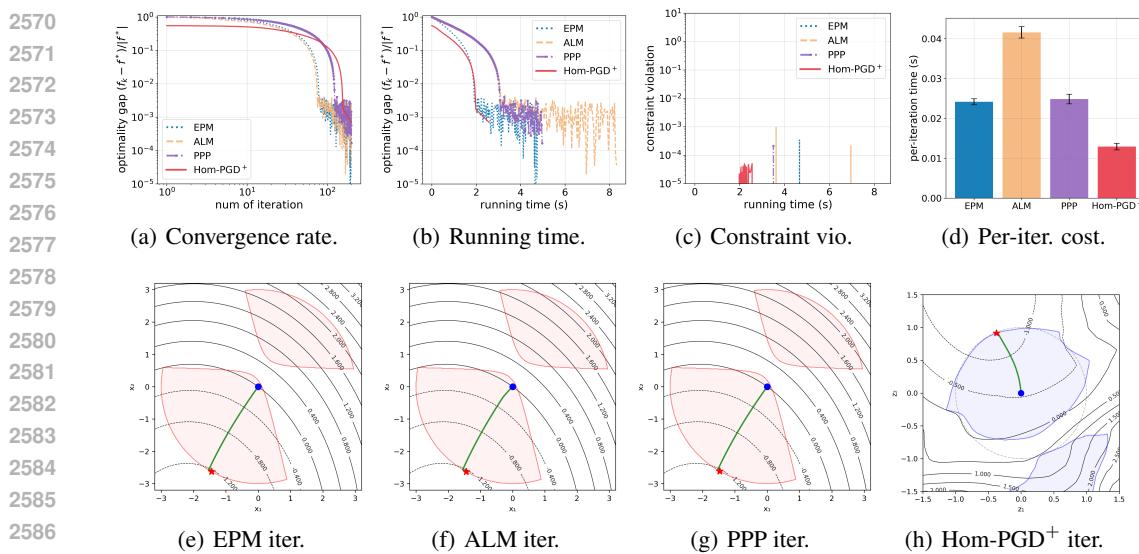
(h) Hom-PGD⁺ iter.

Figure 10: Illustrative examples of Hom-PGD⁺ for solving QCQP with non-convex BH constraints.

Figure 11: Illustrative examples of Hom-PGD⁺ for solving QCQP with non-convex BH constraints.Figure 12: Illustrative examples of Hom-PGD⁺ for solving QCQP with non-BH constraints.

2588
2589
2590
2591