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Figure 1: Our policy learns to infer object motion and intrinsic from history observation, following
how humans open a door even with covered eyes. Our impedance-aware policy achieves 84% suc-
cess rate in the real world, using only one first-frame RGBD image.

Abstract: Fine manipulation tasks like articulated object manipulation pose a
unique challenge as the object itself represents a dynamic environment. In this
work, we present a novel RL-based pipeline equipped with variable impedance
control and motion adaptation for generalizable articulated object manipulation,
focusing on smooth and dexterous motion during zero-shot sim-to-real transfer.
To mitigate the sim-to-real gap, our pipeline diminishes reliance on vision by ex-
tracting useful low-dimensional data via off-the-shelf modules and inferring object
motion and intrinsic properties via observation history. Furthermore, we develop
a well-designed training setting with great randomization and a specialized reward
system that enables multi-staged, end-to-end manipulation without heuristic mo-
tion planning. To the best of our knowledge, our policy is the first to report 84%
success rate for extensive real-world experiments with various unseen objects.
Project website: https://watch-less-feel-more.github.io/
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1 Introduction

A generalist robot represents a big milestone for the robot learning community, with the potential
to revolutionize our daily life. Amid the great progress in the embodied AI field in these couple
of years[1, 2, 3, 4], generalizable articulated object manipulation remains an open question due to
various reasons. One major challenge is that the true articulation characteristics (e.g. pivot center,
friction, stiffness) could only be identified after physical contact is made. As a result, it necessitates
a closed-loop pipeline that can adaptively infer these characteristics during the manipulation stage.
Additionally, fine manipulation tasks like articulated object manipulation are also hard due to the
joint constraints of objects. These constraints require the applied actions to comply with the actual
object joint motion to prevent potential damages.

Recent articulated object manipulation works often rely on visual information as the dominant input
for their pipelines, either in the form of pointcloud [5, 6, 7] or RGB images [8, 9, 10, 11, 12, 6], to
predict actionable parts and action sequence. This action sequence is then directly executed in an
open-loop manner neglecting all possible physical interaction with objects as well as their intrinsic
properties. Other works leverage RL backbones [13, 14, 15, 16] to output actions in a closed-loop
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fashion based on vision feedback but suffer the substantial vision sim-to-real gap inherited from
vision modules [9, 6]. Additionally, during the manipulation stage, this approach might output
suboptimal action due to the occlusion of the actionable part.

In this project, we propose combining closed-loop RL with learnable impedance control for gener-
alizable articulated object manipulation. First, we use observation history to manipulate objects in
a closed-loop fashion as an alternative for vision input. We evidence our intuition by exemplifying
how humans can open a door in the dark: we gradually adjust the opening actions while inferring
the door handle position, even without direct vision input (Fig. 1). This paradigm helps mitigate the
vision sim-to-real gap and implicitly learn the movement of objects, thus enabling a generalizable
closed-loop pipeline. Second, we address the importance of compliant action for articulated ob-
ject manipulation by introducing variable impedance control to our pipeline. While implementing a
high-frequency variable impedance controller in simulation, we also learn its parameters jointly with
our RL policy to generate smooth and continuous motions that comply with object joint movements.
We find learning motion instead of a single action or discrete waypoints [17, 11, 12] can yield a
higher success rate in the real world.

2 Proposed method

2.1 Online policy distillation with Observation History

Figure 2: In the simulation, we train a Privileged Observa-
tion Encoder ϕ to extract the latent representation of privi-
leged information zt and simultaneously train an Adaptation
Module σ to infer this representation z̃t from H = 10 pre-
vious (ot, at−1) pairs. In the real world, we rollout trained
policy with Adaptation Module σ in an end-to-end man-
ner, executing smooth reaching, grasping, and manipulating
with only first-frame RGBD image.

Articulated object manipulation
poses a unique challenge compared
to rigid object manipulation because
the object itself is a dynamic envi-
ronment. The fact that object motion
can only be observed via physical
interactions or that joint ground-truth
position is hidden inside the object
resembles locomotion tasks where
environment parameters (e.g. terrain
friction, slope) are difficult to pre-
dict. To this end, we adopt the online
policy distillation pipeline, which is
widely applied for locomotion tasks
[18, 3, 4, 19], and learn two separate
modules: Adaptation Module σ and
Privileged Observation Encoder ϕ
(Fig. 2).

Privileged Observation Encoder ϕ is
a shallow MLP, which is utilized dur-
ing training to learn the latent representation zt of privileged observations. This 20-dimensional vec-
tor is then concatenated with an (observation, action) pair pt = (ot⊕at−1) at the current timestep to
form actor inputs. We design the Adaptation Module σ to be a temporal architecture to extract latent
information about the environment from H = 10 pt pairs. We keep only parts of action history as
inputs for σ: position command ∆t

xyz , gripper command Gt, and controller gain ktp.

As the conventional two-staged teacher-student pipeline might result in realizability gap and sim-to-
real gap [18], we simultaneously train Adaptation Module and Privileged Observation Encoder in a
single training by formulating a supervision-regularization loss λ∥z−sg[z̃]∥2+∥sg[z]− z̃∥2 on top
of PPO objectives.
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2.2 Reward Design and Domain Randomization

While the proposed framework is adopted widely for locomotion tasks, it remains non-trivial how
to transfer this pipeline for fine-manipulation tasks like articulated object manipulation. To facilitate
a single end-to-end policy that can efficiently perform multi-staged motions, we introduce stage-
conditioned rewards, including task-aware rewards and motion-aware rewards. Task-aware rewards
focus on executing a proper motion sequence, complying grasp-then-open order, rather than cheat-
ing to gain success rewards immediately. Motion-aware rewards encourage our policy to generate
smooth motions while maintaining a high success rate. We argue that incorporating these regular-
ization terms is crucial and helps bridge the sim-to-real gap by preventing unnecessary motion or
non-achievable target poses. More details in Appendix B.

Recent manipulation works [13, 6, 8] demonstrate that training a policy with domain randomization
may benefit sim-to-real transfer. To cover a reasonable workspace for real-world settings, we ran-
domize object positions and object yaw rotations during training. In terms of physical intrinsic, we
vary the joint friction, stiffness, and mass for more robust sim-to-real transfer. For desired grasping
poses, after we infer a pose from part bounding boxes, we introduce random noise along y and z
axes, together with a random rotation target from a pre-defined spherical cone.

2.3 Variable Impedance Control

The design of impedance control follows a mass-spring-damper system that can dynamically adjust
target setpoints based on feedback force as well as the stiffness of the environment: M(ẍc − ẍd) +
D(ẋc−ẋd)+K(xc−xd) = Fext, where M is the mass-inertia matrix of the robot, D is the damping
matrix, K is the stiffness matrix, and [ẍc, ẋc, xc] is impedance trajectory outputs. In our pipeline, we
learn to predict the stiffness factor kp of our Cartesian impedance controller and expand it into a six-
dimensional diagonal matrix K. Following [20, 21], we scale the gain by ctkp

= clip(atkp
,−1, 1) ∗

40 + 100 to ensure system stability and then infer the damping matrix with the critical damping
condition D = 2

√
MK.

3 Experiments

Figure 3: We extensively evaluate our policy in
the real world with a wide range of unseen objects
with diverse characteristics in a large workspace.

To verify the effectiveness of the proposed
method, we conduct extensive evaluations in
both simulation and real-world settings.

3.1 Data and Task Settings

In the simulation, following the settings of Part-
Manip [13], we conduct our experiments with
the large-scale PartNet-Mobility dataset [22]
including 346 objects in IsaacGym. In the real-
world setting, we perform experiments with a variety of household objects using a Franka Emika
equipped with a RealSenseD415. We leverage Segment Anything (SAM) [23] for actionable part
pointcloud extraction using a first-framed RGBD image and GSNet [24] for grasp prediction. We
evaluate our proposed pipeline with two following tasks: 1) OpenDoor/OpenDoor+: A door is ini-
tially closed, the agent needs to open the door larger than 15%/80% of the maximum door swing; 2)
OpenDrawer/OpenDrawer+: A drawer is initially closed, the agent needs to open the drawer larger
than 20%/80% of the maximum opening length. The key requirement for our task setting is that the
gripper should firmly grasp the handle while opening the door without cheating by opening from the
side or with the robot body. We adopt Success Rate (SR) as the major evaluation metric.

3.2 Baselines and Ablation Study Design
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Figure 4: Our learned controller gain actively
adapts to the manipulation stages: stiffer while
reaching, softer while opening.

We compare our proposed method with
articulated-object manipulation pipelines that
follow sim-to-real RL paradigm including PPO,
Where2Act [11], PartManip [13], RGBMa-
nip [8], GAPartNet [6].

To highlight the contribution and effectiveness
of each module within our approach, we con-
ducted four comprehensive ablation studies:
Ours w/o Policy Distillation, Ours w/o Variable
Impedance Control, Ours w/o Regularization,
Ours w/o Randomization.

3.3 Results and Findings

Results of simulation experiments are shown in
Table 1, from which we can see that our method maintains consistently strong performance on the
evaluation set without a sharp drop, highlighting the excellent generalization ability of our approach.
We also find our controller learns to adapt to different manipulation stages, even without any direct
gain rewards (Fig. 4).

Our policy rollout performance in real world can be found in Table 2. We conduct 50 experiments
for our pipeline and each ablated model (500 runs in total) on diverse objects (Fig. 3). For Open-
Door+, we find 6/50 inferences fail during Grasping Stage while only 4/50 fail during Opening
Stage, suggesting that if a stable grasping pose is initiated, our policy might yield 40/44 = 0.90%
SR. For OpenDrawer+, 7/8 failure cases are due to unsuccessful grasping.

Baselines Type OpenDoor OpenDrawer OpenDoor+ OpenDrawer+
Train Test Train Test Train Test Train Test

PPO Closed-loop 0.04 0.05 0.09 0.11 0.02 0.02 0.03 0.02
Where2act [11] Open-loop 0.22 0.14 0.31 0.27 0.02 0.02 0.01 0.01
RGBManip [8] Closed-loop 0.62 0.59 0.63 0.67 0.38 0.41 0.49 0.42
GAPartNet [6] Open-loop 0.70 0.75 0.51 0.59 0.40 0.44 0.45 0.49
PartManip [13] Closed-loop 0.75 0.70 0.83 0.77 0.68 0.57 0.62 0.59

Ours Closed-loop 0.96 0.95 0.97 0.96 0.96 0.93 0.97 0.96

Table 1: Comparison with Baselines in Simula-
tion

With the ablation study results demonstrated in
Table 2, apart from SR drop in both simulation
and the real world, we aim to highlight the non-
smooth motions of real-world executions. For
W/o Impedance Control, we find the main reason
for failure cases (40% drop) is the low flexibility
of position control, which requires each predicted
action to be executed precisely. This would generate large joint torque to overcome the feedback
force of objects, resulting in the robot arm being triggered to stop. In simulation, this behavior does
not seem to severely hurt the performance, as evidenced by > 0.8 success rate. However, in the real
world, large torque is substantially dangerous and would trigger an emergency stop, emphasizing
the necessity for impedance control.

Methods OpenDoor+ OpenDrawer+
Train Test Real Train Test Real

W/o Distillation 0.80 0.77 0.62 0.78 0.74 0.60
W/o Imp. Ctr. 0.84 0.82 0.40 0.90 0.90 0.44

W/o Reg. 0.88 0.86 0.64 0.92 0.87 0.70
W/o Rand. 0.91 0.89 0.66 0.93 0.91 0.64

Ours 0.96 0.93 0.80 0.97 0.96 0.84

Table 2: Ablation Study and Real-world Perfor-
mance

For W/o Distillation and W/o Randomization,
the policy often finishes the task halfway, even
when we manually tune a stiffer base value for
the impedance controller. We claim that this
behavior is due to the physics sim-to-real gap
which resulted from non-diverse training settings
and short-term observation. For W/o Regulariza-
tion, the reaching and opening motions are jerky,
which are highly undesirable and result in grasp failure and contact lost during execution.

4 Conclusion

In this work, we introduce a reliable RL policy for articulated object manipulation that can be seam-
lessly deployed in diverse real-world settings. Our experiments, conducted in both simulation and
real-world scenarios, achieve over 80% SR to unseen objects and demonstrate the great generaliz-
ability of our policy.
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A Action and Observation Space

We design our framework to facilitate one dexterous action prediction at a time instead of short-
horizon primitive actions. Our action for each step at ∈ R11 includes the target delta position
∆t

xyz ∈ R3, target 6D orientation Rt ∈ R6, gripper action Gt ∈ R1, and impedance control
parameter ktp ∈ R1. Our raw robot action at is later converted into robot commands ct ∈ R9 using
an action scaler.

Our observation ot consists of desired grasping pose gt ∈ R7, robot joint configuration qt ∈ R7,
robot-object relative distance δt ∈ R1, end-effector pose eet ∈ R9 with three-dimensional position
and 6D rotation, and graspability 1tgrasp ∈ R1. Here, desired grasping poses are directly inferred
from the handle bounding box in the simulation and from off-the-shelf grasp prediction modules
in the real world. Our graspability signal is a distance-based and contact-aware condition, rather
than a direct command for open/close gripper. In terms of task-aware observation, for instance, with
DoorOpen task, we incorporate noisy pivot center r̃tpivot ∈ R3, noisy pivot radius r̃tradius ∈ R1,
and right-hinged boolean r̃trh ∈ R1. These motion-related arguments serve as high-level guidance
for smoother implementation.

ot = [gt, qt, δt, eet, 1tgrasp, r̃
t
pivot, r̃

t
radius, r̃

t
rh] ∈ R30

Our privileged observation otpriv , including values that are difficult to track in real-world settings,
is used only in simulation for better environment understanding. These values are: pivot center
rtpivot ∈ R3, pivot radius rtradius ∈ R1, object stiffness rtstiff ∈ R1, object mass rtm ∈ R1, object
joint position qtobj ∈ R1, handle grasped signal 1tgrasped ∈ R1.

otpriv = [rtpivot, r
t
radius, r

t
m, rtstiff , q

t
obj , 1

t
grasped] ∈ R8

B Reward functions

Term Formula Weight
Nomenclature

1d δ ≤ 0.05 -
1dy 0.02 ≤ δ ≤ 0.08 -
1g δ ≤ 0.015 ∧ 1contact -
τ joint torque -
q̇ joint velocity -
wlen episode length weight -
at[y] action on y axis -
at[z] action on z axis -

Task-aware rewards
success 0.051d ∗ 0.51g ∗ 1s 40.0
distance exp(−10 ∗ (2δ0.5))/2 ∗ 0.81g 0.6
object state qobj ∗ 0.51g ∗ 0.51d ∗ wlen 1.0
grasp 0.2 ∗ 1g 0.05

Motion-aware rewards
energy

∑
(τ q̇)0.5 ∗ 1g -0.05

track pos. exp(−4(cpos − eepos)) ∗ 1d 0.025
track rot. exp(−4∆(cori − eeori)) ∗ 1d 0.004
smoothness

∑
1[sgn(at) ̸=sgn(at−1)] ∗ (at − at−1) -0.001

y reg. 1dy ∗ (at[y] ∗ 15)2 -0.005
z reg. 1g ∗ (at[z] ∗ 15)2 -0.07

Table 3: Reward functions
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