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Abstract

This study explores enhancing grammatical
error correction (GEC) through artificial er-
ror generation (AEG) using language models
(LMs). Specifically, we fine-tune Llama 2-
based LMs for error generation and find that
this approach yields synthetic errors akin to
human errors. Next, we train GEC Llama mod-
els with the help of these artificial errors and
outperform previous state-of-the-art error cor-
rection models, with gains ranging between 0.8
and 6 Fy 5 points across all tested languages
(German, Ukrainian, and Estonian). Moreover,
we demonstrate that generating errors by fine-
tuning smaller sequence-to-sequence models
and prompting large commercial LMs (GPT-
3.5 and GPT-4) also results in synthetic errors
beneficially affecting error generation models.
We openly release trained models for error gen-
eration and correction and all the synthesized
error datasets for the covered languages.

1 Introduction

The grammatical error correction (GEC) task aims
to correct spelling and grammatical errors in text,
making it valuable for a wide range of people.
The best-performing GEC approaches currently
use deep learning models (Junczys-Dowmunt et al.,
2018; Omelianchuk et al., 2020; Rothe et al., 2021,
and several others), which are known to be data-
hungry. Simultaneously, the amount of openly avail-
able error correction data is severely limited, even
for high-resource languages like German, Arabic,
and Czech (Bryant et al., 2023). This lack of data
complicates the development of effective GEC sys-
tems for these and other even less-resourced lan-
guages.

The scarcity of correction data is commonly
addressed through the creation of synthetic data,
where errors are automatically added into correct
sentences — also called artificial error generation
(AEQG). In low-resource settings, the overwhelm-
ingly most employed approach for AEG is apply-

ing random probabilistic perturbation (deletion, in-
sertion, replacement) of words and/or characters
(Grundkiewicz et al., 2019; Rothe et al., 2021; Na-
plava and Straka, 2019, and others). Alternatives
include usage of intricate hand-crafted rules and
confusion sets (Rozovskaya and Roth, 2010; Xu
et al., 2019; Kara et al., 2023; Bondarenko et al.,
2023) and automatically learning to generate errors
(Xie et al., 2018; Kiyono et al., 2019; Stahlberg and
Kumar, 2021) — also referred to as back-translation
(BT)*. However, to the best of our knowledge, none
of the related work on AEG uses pre-trained foun-
dation models or applies this methodology in a low-
resource setting.

This gap is precisely the focus of the present
work: we are using pre-trained language models
for synthetic error generation and demonstrate the
simplicity and effectiveness of the approach in
low-resource scenarios. We approach the task by
fine-tuning open language models (LMs) based on
Llama 2 (Touvron et al., 2023) for error generation
and correction, resulting in quality AEG data and
state-of-the-art GEC models even when very lim-
ited human error data is available. Our analysis
shows that the resulting errors can be categorized
similarly to human errors. We also compare fine-
tuning approach to prompting commercial LMs
(GPT-3.5 and GPT-4: OpenAl, 2023) to perform
AEG, as well as include other open models com-
monly employed for GEC and tune them for AEG:
mT5 (Rothe et al., 2021; Palma Gomez et al., 2023)
and NLLB (Luhtaru et al., 2024).

Our final goal and evaluation setting is improv-
ing grammatical error correction for low-resource
languages. In particular, we focus on German,
Ukrainian, and Estonian GEC. Our experimental
results show that Llama-based language models
with fewer learned parameters can beat state-of-the-
art results achieved with a bigger model. When

“by analogy with the machine translation technique (Sen-
nrich et al., 2016)



pre-trained on our LM-generated synthetic errors,
the resulting GEC models achieve the best current
results on the included benchmarks in all three eval-
uated cases, including previous state-of-the-art and
4-shot GPT-4.

We publicly release AEG and GEC models from
our work and the generated data. The datasets in-
clude one million sentences for German, Ukrainian,
and Estonian, each processed with three different
models, as well as an additional set of 100k sen-
tences with GPT models.

In summary, our contributions are as follows:

* We show that pre-trained language models
can be fine-tuned to generate high-quality syn-
thetic errors even with limited data.

* We compare the influence of different models
applied to AEG (LLama/GPT/mT5/NLLB) on
subsequent GEC models.

* We achieve new state-of-the-art GEC results
across all tested languages with Llama 2-based
models outperforming related work as well as
GPT-4.

* We openly release GEC and AEG models as
well as AEG datasets to facilitate future re-
search’.

The paper is structured as follows. We outline re-
lated work in Section 2, methodology experimental
settings in Section 3, and results in Section 4. Addi-
tional questions on the same topic are discussed in
Section 6 and the paper is concluded in Section 5.

2 Related Work

The use of synthetic data is a common concept in
GEC. The first effective neural method proposed by
Junczys-Dowmunt et al. (2018) approaches GEC as
low-resource Machine Translation (MT), making
it a relatively resource-heavy method encouraging
synthetic data generation. Over the years, there
have been different approaches to deliberately intro-
ducing errors into monolingual text, like rule-based
and probabilistic methods, methods based on con-
fusion sets and error patterns, models trained for
error generation and using round-trip translation
(Bryant et al., 2023).

"Models: huggingface.co/anonymous—-acl/
models, datasets: huggingface.co/datasets/
anonymous—acl/aeg_data

One widely adopted approach to generating syn-
thetic data involves the probabilistic addition of er-
rors to monolingual corpora. This technique encom-
passes inserting, deleting, substituting, or moving
characters or words without considering the context,
as described by Grundkiewicz et al. (2019), Zhao
et al. (2019), and Rothe et al. (2021). Additionally,
Grundkiewicz et al. (2019) introduced a "reverse
speller” approach that suggests word replacements
from confusion sets based on the speller’s correc-
tions. This method has been applied to several lan-
guages such as German, Czech, Russian, Ukrainian,
Icelandic and Estonian (Naplava and Straka, 2019;
Trinh and Rozovskaya, 2021; Néplava et al., 2022;
Palma Gomez et al., 2023; Ing6lfsdéttir et al., 2023;
Luhtaru et al., 2024). As we show later, errors gen-
erated with the context-free probabilistic method
differ from human errors and thus cover a much
smaller number of error types, shown by signifi-
cantly lower GEC recall.

Learned methods of error generation typically
require more resources. Before the widespread
adoption of transformers and MT, various studies
explored alternative approaches for training mod-
els for error generation. For instance, Felice and
Yuan (2014) and Rei et al. (2017) utilized statistical
machine translation to generate errors, while Xie
et al. (2018) and Yuan et al. (2019) experimented
with convolutional neural networks (CNNs) for this
purpose. Additionally, Kasewa et al. (2018) investi-
gated using RNN-based sequence-to-sequence mod-
els with attention mechanisms.

Moving towards more modern MT architectures,
Htut and Tetreault (2019) tested various model
frameworks, including transformers, and Kiyono
et al. (2019) specifically employed transformer mod-
els. Both of the latter studies trained models from
scratch, utilizing datasets ranging from approxi-
mately 500,000 to over a million error correction
examples to train the artificial error generation sys-
tem. In contrast, our work generates up to 1 million
sentences with synthetic error while using between
9k and 33k human error sentences to fine-tune the
base models.

During the last few years, there has been no one
error-generation method that has proved its supe-
riority. It depends on language and available re-
sources. For English Stahlberg and Kumar (2021)
train Seq2Edit models (Stahlberg and Kumar, 2020)
from scratch for learning to create diverse sets of
errors. As mentioned in the beginning, synthetic
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probabilistic errors have found wide use for dif-
ferent languages. For instance, Ing6lfsdottir et al.
(2023) combine probabilistic character/word per-
mutations with a rule-based approach for Icelandic
and Kara et al. (2023) curate special rules for gen-
erating Turkish data.

Next, we present the key methodological details
of our work.

3 Methodology and Experiments

The primary target of our work is to apply genera-
tive language models to artificial error generation
(AEQG) via fine-tuning. Additionally, we experiment
with prompting large language models to perform
the same task and include two seq2seq models that
are fine-tuned to do the same.

The efficiency of proposed AEG solutions is eval-
uated using them to improve grammatical error cor-
rection (GEC). Thus, we also fine-tune generative
LMs to perform the GEC task and compare the re-
sults to prompting-based GEC results and related
work.

Our approach’s general pipeline is straightfor-
ward. First, we fine-tune a language model (LM) to
generate errors using human error data, where cor-
rect sentences are input and erroneous sentences are
output. Next, we use this AEG LM to create synthet-
ically erroneous sentences from correct ones. Then,
we fine-tune another LM on this synthetic dataset
to correct grammatical errors, reversing the direc-
tion of the sentence pairs from the first step. We
continue by fine-tuning the GEC LM on a smaller
dataset with human errors. Finally, we apply the
models to erroneous sentences in benchmark test
sets and evaluate the results.

Next, we describe the technical details of our
implementation and the experimental setup.

3.1 Data

We use two distinct types of data in our work.
Firstly, we rely on datasets containing examples
of grammatical error corrections to train our error
generation systems and correction models. Sec-
ondly, we incorporate monolingual data to create
synthetic datasets by introducing errors. See an
overview of used data in Table 1.

We use the language learners’ corpus from
the University of Tartu (UT-L2 GEC) (Rummo
and Praakli, 2017) for gold data in Estonian. In
Ukrainian, we use the UA-GEC corpus (Syvokon
et al., 2023) used in the UNLP 2023 Shared Task

Corpus Language Train Test
UT-L2 GEC ET 8,935 -
EstGEC-L2 ET - 2,029
UA-GEC UK 31,038 1,271
FM DE 19,237 2,337
ENC 2021 ET 1M/100k -
CC-100 UK/DE  1M/100k -

Table 1: Data used for training and testing.

on Grammatical Error Correction for Ukrainian
(Syvokon and Romanyshyn, 2023), using the
GEC+Fluency data for training. For German, we
rely on the widely used Falko-Merlin (FM) corpus
(Boyd, 2018).

For monolingual Estonian data, we employ the
Estonian National Corpus 2021 (Koppel and Kallas,
2022). We randomly sample equal sets from the lat-
est Wikipedia, Web, and Fiction subsets and shuffle
these together. For Ukrainian and German, we use
the CC-100 dataset (Conneau et al., 2020; Wenzek
et al., 2020). Depending on the experiments, we
sample the required number of sentences from the
larger corpora (i.e., one million or 100 thousand
sentences or a set equal to gold corpora sizes).

3.2 Models and Training

Llama-2-based models. We fine-tune models that
have been enhanced with bilingual capabilities us-
ing continued pre-training from Llama-2-7B (Tou-
vron et al., 2023). For Estonian, we use Llammas-
base*, and for German, LeoLM?®. For Ukrainian,
we apply continued pre-training to replicate the
conditions of Estonian LM by training with 5B
tokens from CulturaX (Nguyen et al., 2023) with
25% of the documents being in English and the rest
in Ukrainian. For GEC and AEG fine-tuning, we
formatted the training data with a prompt (see Ta-
ble 12 and 13) loosely based on Alpaca (Taori et al.,
2023). During fine-tuning, the loss is calculated
on the tokens of the correct sentence. Fine-tuning
details (including hyperparameters) are discussed
in Appendix A.1.

Other models we use are NLLB (Team et al.,
2022) and mT5 (Xue et al., 2021). Specifically, we
use the NLLB-200-1.3B-Distilled and mt5-large
(1.2B parameter) models for our experiments and
train NLLB models using Fairseq (Ott et al., 2019)

*huggingface.co/tartuNLP/Llammas-base
Yhuggingface.co/LeolM/leo-hessianai-7b
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and mT5 with HuggingFace Transformers (Wolf
et al., 2020). When training in two stages, first with
synthetic data and later with human errors, we keep
the state of the learning rate scheduler, following
the fine-tuning approach rather than retraining as
defined by Grundkiewicz et al. (2019). See Appen-
dices A.2 and A.3 for further details.

3.3 Generation

Fine-tuned models. We use sampling instead of
beam search to generate the synthetic errors and
sample from the top 50 predictions with a tempera-
ture of 1.0. During error correction, beam search
with a beam size of 4 is used without sampling as
regularly.

Prompt engineering. We perform iterative
prompt engineering, analyzing intermediate qualita-
tive results and updating the prompt. For instance,
we initially started with a simple 2-shot prompt
(temperature = 0.1) asking GPT-3.5 to add gram-
matical and spelling mistakes into the input text but
noticed that some error types were missing. We
then improved the prompt by specifying the miss-
ing error types, adding two more examples, and
upping the temperature. Our final prompt uses four
examples and a model temperature of 1.0. See Ap-
pendix D for the prompts. We randomly pick the
examples from each language’s train set for few-
shot prompting. When comparing the prompting
between GPT-4-Turbo and GPT-3.5-Turbo, we use
an identical random set of examples to ensure com-
parability.

Finally, we converged on using GPT-3.5-turbo
for more massive error generation (100,000 sen-
tence pairs per language). The motivation for that
is partially financial (as GPT-4/GPT-4-turbo are sev-
eral times more expensive) as well as performance-
driven (see Figure 1 and description for details).

We apply simple post-processing to the resulting
set because, in some cases, parts from the prompt
are duplicated in the output. If the model didn’t
generate a response due to safety model activation
or the response was too short or too long compared
to the input sentence, we replaced the output with
the source text (equivalent to adding no errors).

The precise model versions we prompt are
gpt—-4-1106-preview for GPT-4-Turbo (us-
ing the OpenAl API) and gpt-3.5-turbo (GPT-
3.5-Turbo) and gpt -4 (GPT-4) (using Azure Ope-
nAl API, version 0613 for both).

Probabilistic errors. We generate rule-based

synthetic errors as done in prior work (Grund-
kiewicz et al., 2019; Néplava and Straka, 2019;
Palma Gomez et al., 2023; Luhtaru et al., 2024)
using the same method and also employing the As-
pell speller! for replacing subwords.

3.4 Automatic Evaluation of Models

We evaluate the performance of our GEC models
using test sets and evaluation metrics consistent
with those employed in previous works (see datasets
in Table 1).

For Estonian, we evaluate our models using the
Estonian learner language corpus (EstGEC-L2)',
alongside a modified version of the MaxMatch
scorer*, following Luhtaru et al. (2024). The Esto-
nian scorer also outputs recall per error category,
accounting for both other errors within the word
order error scope and not accounting for these. We
report the ones that do consider other errors sepa-
rately. For Ukrainian, our evaluation methodology
aligns with that of the UNLP 2023 Shared Task
(Syvokon and Romanyshyn, 2023), utilizing the
Codal.ab platform for submissions to a closed test
set that uses the ERRANT scorer for evaluation
(Bryant et al., 2017). We follow the GEC+Fluency
track setting since it encompasses a wider range of
challenging errors. For German, we use the test set
from the Falko-Merlin (FM) corpus (Boyd, 2018)
that several works have reported their scores on and
the original MaxMatch scorer (Dahlmeier and Ng,
2012).

3.5 Human Evaluation of Generated Data

In addition to evaluating the quality of our data in
terms of its usefulness for training better models,
we perform a detailed evaluation of generated data
in Estonian. We apply the same annotation scheme
Allkivi-Metsoja et al. (2022) used for annotating
test and development sets to artificially generated
sentences. This comparison allows us to assess the
error distribution between training and generated
data and to see whether the errors can be catego-
rized into the same classes.

We select 100 random sentences from sets gen-
erated by Llama-based models, GPT-3.5-Turbo and
GPT-4-Turbo'", for annotation and also annotate

lﬂaspell.net
'github.com/tlu-dt-nlp/EstGEC-L2-Corpus/
“github.com/TartuNLP/estgec/tree/main/
M2_scorer_est
""We also considered annotating probabilistic denoising
errors, but these contained very few edits that could be catego-
rized based on the annotation scheme.
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Method Estonian Ukrainian German
P R Fo.s P R Fo.s P R Fo.5

GPT-4-turbo (4-shot) 70.86 57.35 67.67 39.62 42.13 40.1 64.15 69.34 65.12
GPT-4 (4-shot) 70.04 59.03 67.52 36.25 37.77 3654 6522 69.75 66.08
Old SOTA (rel. work) 7127 5538 6740 79.13 43.87 68.17 - - 75.96
Llama + gold 71.52 5523 6754 7998 51.76 72.12 76.86 65.60 74.31
Llama + 1M prob + gold 72.59 54.72 68.14 80.37 53.19 7292 7822 67.65 75.85
Llama + 1M BT + gold 73.85 57.83 69.97 82.03 5341 74.09 79.08 68.66 76.75

Table 2: Comparison of Llama 2-based models (denoted as Llama) after extended pre-training and GEC fine-tuning:
Models without synthetic data (LLM + gold) versus models with synthetic data generated with a probabilistic
reverse-speller method (LLM + 1M prob + gold) and back-translation style learned synthetic data (LLM + 1M BT +
gold). State-of-the-art benchmarks include Luhtaru et al. (2024) for Estonian (NLLB-200-1.3B-Distilled with mixed
synthetic and translation data training), Bondarenko et al. (2023) for Ukrainian (mnBART-based model with synthetic
data), and Rothe et al. (2021) for German (mT5 xx1 with multilingual synthetic data and GEC fine-tuning).

Lang/Model Llama NLLB mT5
ET (AEG only) 6530 6534 59.40
ET (AEG + gold) 69.97 69.73 68.57
UK (AEG only) 28.39  27.04 16.79
UK (AEG + gold) 74.09 7230 72.51
DE (AEG only) 71.29  69.13 54.96
DE (AEG + gold) 76.75 76.28 74.77

Table 3: Fy 5-scores for Llama-based models fine-tuned
with 1M sentences generated with different AEG models
and then further fine-tuned with gold GEC data. The
errors are generated with 7B Llama-2-based models,
1.3B NLLB model and 1.2B mT5 model.

100 sentences from the training set. We add labels
for problematic errors generated by the model, such
as hallucinations and truncation of words important
for understanding the meaning of sentence (HALL),
synonym swaps (SYN), optional edits (O), correc-
tions of mistakes in original sentences (INACC),
and transformations that make the original word
unrecognizable (UNREC).

4 Results

In this section, we evaluate the performance of
Llama-based models for GEC and AEG tasks.
We then compare the AEG effectiveness between
NLLB and mT5 models against Llama-based mod-
els to see if smaller, more efficient models can gener-
ate quality data. Separately, we assess AEG through
prompting with GPT-3.5-turbo versus Llama mod-
els with trained error generation. Finally, we exam-

ine the quality of generated errors against human
data and probabilistic reverse-speller errors and
compare the error type distributions for Estonian.

4.1 Artificial Error Generation and
Correction with Llama

We compare LLama-based large language model
(LLM) fine-tuning error corrections across three
configurations: (1) the baseline approach of training
exclusively on human error GEC data, (2) the estab-
lished related work approach of training on proba-
bilistic reverse-speller AEG data and then continu-
ing training with human error GEC data, and (3) our
approach of training on back-translation style AEG
data produced by fine-tuned Llama-based models
first, followed by fine-tuning on human data.

The resulting scores are compared in Table 2,
along with previous state-of-the-art (SOTA) scores
and results of GEC via 4-shot prompting of
GPT-4/GPT-4-turbo. Results show that llama-
based models, further enhanced through contin-
ued pre-training, exhibit strong correction capa-
bilities across languages in our study. Even with-
out synthetic data, these models outperform cur-
rent state-of-the-art (SOTA) methods in Estonian
and Ukrainian error correction, and are not too far
behind in German, trailing the best score by less
than two points. However, it’s important to note
the discrepancy in model sizes for a fair compar-
ison; our 7B Llama model significantly exceeds
the NLLB-200-1.3B-Distilled model (Team et al.,
2022) used for Estonian (Luhtaru et al., 2024) and
the mBART model (Tang et al., 2021) for Ukrainian
(Bondarenko et al., 2023) in size. At the same time,



Prompting Fine-tuning
Lang/Model GPT-3.5-turbo (100k) Llama (100k)
P R F0.5 P R F0.5

ET (AEG only) 7172 4420 63.78 67.57 50.89 63.41
ET (AEG + gold) 71.11 56.56 67.63 71.51 56.51 6791
UK (AEG only) 28.61 22.16 27.04 40.00 19.87 33.26
UK (AEG + gold) 80.82 51.33 7249 80.89 5031 72.12
DE (AEG only) 70.55 49.61 65.05 70.07 59.11 67.56
DE (AEG + gold) 78.06 67.06 75.58 78.80 67.52 76.25

Table 4: Scores of Llama-based models fine-tuned with 100k sentences generated by Llama-based model fine-tuned
for error generation and GPT-3.5-model prompted to add errors.

it is smaller than the 13B mT5-xxI model used for
German (Rothe et al., 2021).

Incorporating synthetic data as a preliminary step
to fine-tuning significantly enhances performance
across all languages and synthetic data types. No-
tably, our back-translation style synthetic data con-
sistently delivers superior precision and recall com-
pared to the probabilistic reverse-speller method.
This approach results in a 2-2.4 point increase in the
Fo.5 score relative to solely using gold data for fine-
tuning. Conversely, the gains from using probabilis-
tic reverse-speller data are more modest, ranging
from 0.6 to 1.5 points, highlighting the enhanced
utility of our learned AEG errors.

Our systems consistently outperform GPT-4 mod-
els in terms of precision across all languages stud-
ied. However, GPT-4 models exhibit higher recall
rates for Estonian and German. This discrepancy in-
dicates that while our systems are more accurate in
identifying correct instances, GPT-4 models better
retrieve a broader range of relevant errors in these
languages. On the other hand, the performance of
GPT-4 models on the Ukrainian test set is notably
lower compared to other methods and languages.

4.2 Artificial Error Generation with Smaller
Models

Since error generation with 7B Llama-based mod-
els can be costly and time-consuming and many
other architectures have proved useful for correc-
tion, we also explore smaller models for AEG: the
1.3B NLLB model and 1.2B mT5-large. The goal
here is to see if these can also produce useful errors.

Table 3 shows the results of the analysis. Both
models can learn valuable information that im-
proves performance beyond what is achieved with

fine-tuning on gold data alone. Notably, errors gen-
erated by the NLLB model are particularly effective,
delivering results close to those achieved by LLM-
generated errors in Estonian and German, almost
matching the performance of LLama-based models.
However, for Ukrainian, NLLB-generated errors
fall behind probabilistic reverse-speller errors. This
is likely because the dataset contains many special
punctuation characters that get normalized during
preprocessing (see more in Appendix C).

The mT5 models, in contrast, appear less adept
at error generation. The errors produced by mT5
lag behind those from probabilistic reverse speller
for Ukrainian and German and offer only a minimal
improvement for Estonian.

We can also see that the scores before gold fine-
tuning highlight that Ukrainian scores are notably
low across all methods. However, these scores re-
cover well after fine-tuning, suggesting the syn-
thetic data may not align well with the text domain
or error types specific to the Ukrainian language.
Estonian and German models show higher scores
for models trained with just AEG data and improve
less drastically with fine-tuning.

4.3 Artificial Error Generation with
Prompting

To assess the capability of generating errors with-
out additional LM training, we utilize advanced
commercial models, specifically exploring the effi-
ciency of error generation through prompting GPT-
3.5-turbo with datasets comprising 100,000 sen-
tences. We later also explore the effectiveness of
GPT-4-Turbo in a more limited setting (see Sec-
tion 4.4).

The generation cost depends on the sum of input
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Figure 1: Quality of generated errors compared to gold and probabilistic, as shown by GEC results of tuning
Llama-based models on same-sized synthetic or human (gold) error sets. GPT-3.5-turbo and GPT-4-turbo errors are
generated via prompting, Llama stands for Llama 2-based model fine-tuned on the AEG task.

and completion tokens. Ukrainian, our most expen-
sive language, had the highest number of tokens per
100,000 sentences: 98 million input and 12 million
completion tokens. The cost for input tokens with
GPT-3.5-Turbo in USD is $147, and for comple-
tion tokens, it is $25 — in total, $172 for generating
100,000 Ukrainian sentences. In comparison, the
costs with GPT-4-Turbo would have been $983 and
$370, respectively**.

Table 4 shows the results of continued pre-
training Llama-based models on the same amount
of sentences (100,000) with synthetic errors from
prompting or fine-tuning. In terms of error correc-
tion quality after gold fine-tuning, employing GPT-
3.5-turbo for prompting and fine-tuning Llama-2-
based models are both viable strategies for artifi-
cial error generation, as they lead to very close Fg 5
scores in all three languages (with a slight difference
in favor of fine-tuning errors for German: 75.58 vs
76.25).

Analyzing the performance before gold fine-
tuning reveals distinct differences between the two
methods. For Estonian and German, recall rates are
significantly higher with fine-tuning than prompt-
ing, though precision is slightly compromised.
Conversely, Ukrainian exhibits the reverse pattern.
However, it’s important to note that any dispari-
ties observed before gold fine-tuning are greatly
diminished after training on actual error correction
examples. The most considerable remaining differ-
ence is under 0.7 points for German, with smaller
discrepancies for Estonian and Ukrainian.

When comparing LLama model scores for 100k
to the ones with only gold tuning (see Table 2), we
can see that although scores increase more mod-
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Figure 2: Recall scores for most frequent categories in
Estonian EstGEC-L2 test set. The first letter corresponds
to the operation type (R - replaced, M - missing, U -
unnecessary).

estly, only 100k examples of synthetic data increase
the scores more for German (almost 2 F 5-score
points), a bit for Estonian (around 0.4 points) and
stay the same for Ukrainian with higher precision
and lower recall. The scores for models trained with
100k sentences are mostly lower than those trained
with 1M reverse-speller errors, which indicates that
the data quantity jump from 100,000 to 1M plays a
significant role.

4.4 Quality Compared to Human Data

Finally, we run a direct comparison between hu-
man errors and artificial ones. To do so we train
models using the same number of sentences as the
respective human error set sizes: 19k sentence pairs
for German, 33k for Ukrainian, and 9k sentence
pairs for Estonian. We include comparing these
models to ones based on one million probabilistic
sentences.

Our findings indicate that the precision of all
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synthetic data closely matches that of high-quality
(gold) data in both Estonian and German, as illus-
trated in Figure 1. A notable distinction, however, is
observed in recall rates. For Estonian and German,
the recall for errors generated by LLMs is more
comparable to human-generated (gold) data than
errors produced through probabilistic methods.

Ukrainian scores with synthetic data are substan-
tially worse than gold data, regardless of the AEG
method. Still, recall for LLM-generated errors is
significantly higher than for simple probabilistic
errors. This might be due to a larger mismatch
in the text domain or error frequency. Ukrainian
UA-GEC data predominantly contains punctuation
errors (43%) and has a two times smaller error rate
than German (8.2 vs 16.8) (Syvokon et al., 2023).

Comparing GPT-3.5-Turbo with GPT-4-Turbo,
we find similar performance overall. However, for
Estonian, GPT-4-Turbo exhibits higher recall but
lower precision. For German, GPT-4-Turbo shows
reductions in both precision and recall. Perfor-
mance is nearly identical for Ukrainian between
the two models. Overall, the Fy 5 scores of GPT-4-
Turbo are slightly lower for Estonian and German
and marginally higher for Ukrainian compared to
GPT-3.5-Turbo.

When analyzing the recall for various error cat-
egories in Estonian, it is evident that our models
trained with AEG data particularly face challenges
in inserting missing punctuation marks and cor-
recting errors related to word order, as depicted
in Figure 2. Errors generated probabilistically ex-
cel in identifying spelling mistakes and can correct
certain errors in noun and verb forms. However,
they generally perform poorly in addressing issues
beyond spelling errors.

4.5 Evaluation of Generated Errors: Case
Study with Estonian

We labeled 100 LM-generated sentences from dif-
ferent sets to determine if the errors made by models
are similar to those in the training corpus.

Based on the annotations, we can categorize a
large proportion of the changes according to the
annotation scheme, but there is still a considerable
amount of problematic edits ( 25-45%) (see Figure
3 and Table 7 in Appendix B). The human evalu-
ation also indicates that the models differ in their
error rates. GPT models generate fewer problem-
atic errors overall, but the error category distribu-
tion seems more similar to human data with Llama-
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Figure 3: Error type count in Estonian based on annotat-
ing 100 randomly selected sentences (R - replaced, M -
missing, U - unnecessary)

based models. This is likely due to a fine-tuning
approach instead of prompting.

As mentioned in the last section, compared to
human data, all models trained with generated data,
correct far fewer word order and missing punctua-
tion errors, and lexical changes are not well cor-
rected either. These results can be partially ex-
plained by examining the different error types in
generated data, where the same types are not as well
represented as in human data. Most problematic
edits involve generating lexical errors, which often
were synonymous or changed the original mean-
ing of the sentence, which could explain the poor
performance in correcting lexical errors. On the
other hand, verb or nominal form and spelling er-
rors were better or almost as well corrected as by
a model trained with gold data, and the data con-
tained more errors in these categories. This shows
that correction recall is closely tied to the error
types present in the training data, and the data gen-
erated with our approach generates realistic error
types that help correction in these categories.

5 Conclusion

In conclusion, our research demonstrates the signif-
icant potential of Llama-based LMs in addressing
the challenges of GEC for low-resource languages.
We have successfully developed state-of-the-art sys-
tems for Estonian, Ukrainian, and German by lever-
aging these models as both correctors and synthetic
data generators. We also explore other methods for
AEG and show that prompting stronger commer-
cial LLMs is another way of generating high-quality
data, and fine-tuning smaller models also has po-
tential when the resources are more limited.



6 Limitations

Our work focuses on three languages, recognizing
that numerous other languages with grammar error
correction (GEC) datasets exist outside our study’s
scope. We selected languages based on recent rele-
vant research activities: Ukrainian due to its recent
Shared Task; Estonian, a newly emerging language
in GEC research; and German for comparison with
a robust 13B model. To comprehensively validate
our method, further exploration across additional
languages is necessary.

Our objective was not to devise the optimal sys-
tem exhaustively. Therefore, several avenues re-
main unexplored, such as varying generation meth-
ods, testing different temperatures, and adjusting
parameters. Moreover, we capped the generation of
synthetic sentences at one million, below the vol-
ume utilized in many (though not all) synthetic data
studies. Questions about the ideal amount of data
needed its dependency on the quality of synthetic
and gold examples, remain unanswered.

Furthermore, our study lacks human evaluation
of GEC systems, a component for more reliably
assessing the real-world efficacy of GEC systems.
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approaches to grammatical error correction. In Pro-
ceedings of the Fourteenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 228-239, Florence, Italy.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical error
correction via pre-training a copy-augmented archi-
tecture with unlabeled data. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
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nesota.

A Training details

A.1 Llama-based models

The models are trained on 4 AMD MI250x GPUs
(each acting as 2 GPUs).

For fine-tuning, we used a learning rate of 5e-6
linearly decayed to 5e-7 (10%). The learning rate
was selected from {4e-5, 2e-5, le-5, S5e-6, 2.5¢-
6} based on highest Estonian GEC development
set F{y 5 score. The models were trained for three
epochs, although we chose the first epoch since it
almost always achieved the highest Fy 5 score. Ta-
ble 5 provides an overview of the hyperparameters.

For GEC and AEG fine-tuning, sentences are in
non-tokenized format or detokenized (for Estonian
and German). The crawled data used for AEG is
normalized with Moses (Koehn et al., 2007) for
Estonian and German.

For continued pre-training, we follow the param-
eters used by Llammas-base (see Table 6). The
training data is packed to fill the whole sequence
length.

Parameter Value
LR Se-6
LRﬁnal 5e-7
LR-schedule linear
Epochs 3
Max sequence length 1024
Batch size (total) 128
Gradient clipping 1.0
Weight decay 0.1
Optimizer AdamW
Precision bf16
DeepSpeed Zero Stage 2

Table 5: Llama-based GEC model fine-tuning parame-
ters.
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Parameter Value
LR 2e-5
LRﬁnal 2e-6
LR-schedule linear
Updates 19080
Max sequence length 1024
Batch size (total) 256
Gradient clipping 1.0
Weight decay 0.1
Optimizer AdamW
Precision bf16
DeepSpeed Zero Stage 2

Table 6: Llama continued pre-training parameters.

A.2 NLLB-based models

We follow the training process specified by Luhtaru
et al. (2024), including hyperparameters. The train-
ing is conducted on an AMD MI250x GPU. We are
training the AEG models for 20 epochs and picking
the 15th after arbitrary manual evaluation and test-
ing sets on checkpoints 5, 10, 15, and 20. The data
for NLLB models is first normalized with Moses
script, and we use the SentencePiece model (Kudo
and Richardson, 2018) for untokenized text.

A.3 mT5-based models

To learn to generate errors, we train on reversed hu-
man GEC data for three epochs with batch size 32,
max sequence length of 128, half-precision train-
ing, and a learning rate of 0.0001 without warmup
and scheduling. For generation, we use top 50 prob-
abilistic sampling.

B Problematic edits

We further explore the human annotation results
discussed in section 4.5. Table 7 displays the per-
centage of problematic error types out of all errors
generated by the model.

C NLLB correction

The GEC performance of the NLLB model with-
out any synthetic data is in Table 8. The zero-
shot results for Estonian and German are signifi-
cantly higher than for Ukrainian. We notice that the
Ukrainian dataset contains characters not present
in NLLB vocabulary, like special quotation marks,
which the normalization script unifies but appear

https://github.com/pluiez/NLLB-
inference/blob/main/preprocess/normalize-punctuation.perl
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Type Llama GPT-3.5 GPT-4

O 10.83 4.71 9.07
HALL 22.72 11.11 3.75
SYN 6.16 6.4 7.5

INACC 2.12 5.39 1.38
UNREC 3.82 6.73 3.94

Total %  45.65 34.34 25.64

Table 7: Percentages of problematic edits.

as errors while testing. In addition, the Ukrainian
test set contains far fewer edits, which, especially in
a zero-shot scenario, means worse scores because
NLLB paraphrases more rigorously (Luhtaru et al.,
2024).

D Prompts

We present the prompts used to generate 1) 100,000
sets with GPT-3.5-Turbo and 2) preliminary sets
with GPT-4-Turbo in Tables 9, 10, 11 for Estonian,
German, and Ukrainian respectively.
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Zero-shot

Gold fine-tuning

Lang

P R F0.5 P R I:"0.5
Estonian  43.89 45.31 44.17 61.14 49.48 58.39
Ukrainian 824 31.57 9.67 35.62 34.1 3531
German 43.66 41.52 4322 7371 6775 72.44

Table 8: Zero-shot and gold fine-tuning scores of NLLB-200-1.3B-Distilled models on Ukrainian UA-GEC

gec+fluency test set.

Muuda sisendteksti, genereerides sinna vigu, mida vdib teha
eesti keele dppija. Viljundtekstina tagasta sisendtekst, kuhu
oled genereerinud vead. Sisendteksti genereeri Gigekirja-,
grammatika-, sOnavaliku-, sénajirje-, kirjavahemirgi- ning
stiilivigu. Kui sisendtekstis on vigu, siis dra neid paranda, vaid
genereeri vigu juurde. Ulesande kohta on neli niidet:

Sisendtekst: {correct}
Viljundtekst: {incorrect}

Sisendtekst: {correct}
Viljundtekst: {incorrect}

Sisendtekst: {correct}
Viljundtekst: {incorrect}

Sisendtekst: {correct}
Viljundtekst: { incorrect}

Sisendtekst: {input}
Viljundtekst:

Table 9: GPT prompt - Estonian

Erzeugen Sie im Eingabetext Fehler, wie sie jemand, der
Deutsch lernt, machen konnte. Geben Sie als Ausgabe-
text den Eingabetext zuriick, in den Sie Fehler eingefiigt
haben. Erzeugen Sie Rechtschreib-, Grammatik-, Wortwahl-,
Wortreihenfolge-, Zeichensetzungs- und Stilfehler im Einga-
betext. Sollten im Eingabetext bereits Fehler vorhanden sein,
korrigieren Sie diese nicht, sondern erzeugen Sie zusitzliche
Fehler. Es gibt vier Beispiele fiir die Aufgabe:

Eingabetext: {correct}
Ausgabetext: {incorrect}

Eingabetext: {correct}
Ausgabetext: {incorrect}

Eingabetext: {correct}
Ausgabetext: {incorrect}

Eingabetext: {correct}
Ausgabetext: {incorrect}

Eingabetext: {input}
Ausgabetext:

Table 10: GPT prompt - German
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3MiHITh BXiJHUII TEKCT LUIAXOM I'eHepalii B HhOMy TTOMUJIOK,
SIKi Mir OU 3poOUTH yUeHb, 10 BUBYA€ YKpaiHCbKy MOBY. Ha
BUXO/li IOBEPTAiTe BXiAHUI TEKCT, Y KU BU BHECIH TTOMUJIKH.
Y BXiIHOMY TeKCTi reHepyiiTe MOMIIKH PaBOIUCY, IPaMaTu-
KU, BUOOPY CJIiB, TIOPSAKY CIIiB, PO3/IiIOBHX 3HAKIB Ta CTHJIIO.
SIKIIO y BXiIHOMY TEKCTi € IOMHWJIKH, TO HE BHITPABIISAITE
iX, a reHepy#iTe AOIATKOBI NOMWIKH. [aJli HaBeJeHi YOTUPH
MpPUKJIAAM J0 1€l 3aaaui

BxigHwnii TekcT: {correct}
Buxigamii TekcT: {incorrect}

Bxiguwuii TexcT: {correct}
Buxigamii TekcT: {incorrect}

BxigHwuii TekcT: {correct}
Buxigamii Tekct: {incorrect}

Bxiguwuii Texct: {correct}
BuxigHmii TekcT: {incorrect}

BxigHuii Tekct: {input }
BuxiaHuii TEKCT:

Table 11: GPT prompt - Ukrainian

### Instruction:

Reply with a corrected version of the input sentence in
{language} with all grammatical and spelling errors fixed.
If there are no errors, reply with a copy of the original sen-
tence.

### Input:
{input}

### Response:
{correction}

Table 12: Llama-based model GEC instruction format
loosely based on Alpaca (Taori et al., 2023). The instruc-
tion is based on Coyne et al. (2023).



### Instruction:

Reply with a grammatically incorrect version of the
{language} input sentence.

### Input:
{input}

### Response:
{correction}

Table 13: Llama-based model AEG instruction format
loosely based on Alpaca (Taori et al., 2023).
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