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Abstract
This study explores enhancing grammatical001
error correction (GEC) through artificial er-002
ror generation (AEG) using language models003
(LMs). Specifically, we fine-tune Llama 2-004
based LMs for error generation and find that005
this approach yields synthetic errors akin to006
human errors. Next, we train GEC Llama mod-007
els with the help of these artificial errors and008
outperform previous state-of-the-art error cor-009
rection models, with gains ranging between 0.8010
and 6 F0.5 points across all tested languages011
(German, Ukrainian, and Estonian). Moreover,012
we demonstrate that generating errors by fine-013
tuning smaller sequence-to-sequence models014
and prompting large commercial LMs (GPT-015
3.5 and GPT-4) also results in synthetic errors016
beneficially affecting error generation models.017
We openly release trained models for error gen-018
eration and correction and all the synthesized019
error datasets for the covered languages.020

1 Introduction021

The grammatical error correction (GEC) task aims022

to correct spelling and grammatical errors in text,023

making it valuable for a wide range of people.024

The best-performing GEC approaches currently025

use deep learning models (Junczys-Dowmunt et al.,026

2018; Omelianchuk et al., 2020; Rothe et al., 2021,027

and several others), which are known to be data-028

hungry. Simultaneously, the amount of openly avail-029

able error correction data is severely limited, even030

for high-resource languages like German, Arabic,031

and Czech (Bryant et al., 2023). This lack of data032

complicates the development of effective GEC sys-033

tems for these and other even less-resourced lan-034

guages.035

The scarcity of correction data is commonly036

addressed through the creation of synthetic data,037

where errors are automatically added into correct038

sentences – also called artificial error generation039

(AEG). In low-resource settings, the overwhelm-040

ingly most employed approach for AEG is apply-041

ing random probabilistic perturbation (deletion, in- 042

sertion, replacement) of words and/or characters 043

(Grundkiewicz et al., 2019; Rothe et al., 2021; Ná- 044

plava and Straka, 2019, and others). Alternatives 045

include usage of intricate hand-crafted rules and 046

confusion sets (Rozovskaya and Roth, 2010; Xu 047

et al., 2019; Kara et al., 2023; Bondarenko et al., 048

2023) and automatically learning to generate errors 049

(Xie et al., 2018; Kiyono et al., 2019; Stahlberg and 050

Kumar, 2021) – also referred to as back-translation 051

(BT)*. However, to the best of our knowledge, none 052

of the related work on AEG uses pre-trained foun- 053

dation models or applies this methodology in a low- 054

resource setting. 055

This gap is precisely the focus of the present 056

work: we are using pre-trained language models 057

for synthetic error generation and demonstrate the 058

simplicity and effectiveness of the approach in 059

low-resource scenarios. We approach the task by 060

fine-tuning open language models (LMs) based on 061

Llama 2 (Touvron et al., 2023) for error generation 062

and correction, resulting in quality AEG data and 063

state-of-the-art GEC models even when very lim- 064

ited human error data is available. Our analysis 065

shows that the resulting errors can be categorized 066

similarly to human errors. We also compare fine- 067

tuning approach to prompting commercial LMs 068

(GPT-3.5 and GPT-4: OpenAI, 2023) to perform 069

AEG, as well as include other open models com- 070

monly employed for GEC and tune them for AEG: 071

mT5 (Rothe et al., 2021; Palma Gomez et al., 2023) 072

and NLLB (Luhtaru et al., 2024). 073

Our final goal and evaluation setting is improv- 074

ing grammatical error correction for low-resource 075

languages. In particular, we focus on German, 076

Ukrainian, and Estonian GEC. Our experimental 077

results show that Llama-based language models 078

with fewer learned parameters can beat state-of-the- 079

art results achieved with a bigger model. When 080

*by analogy with the machine translation technique (Sen-
nrich et al., 2016)
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pre-trained on our LM-generated synthetic errors,081

the resulting GEC models achieve the best current082

results on the included benchmarks in all three eval-083

uated cases, including previous state-of-the-art and084

4-shot GPT-4.085

We publicly release AEG and GEC models from086

our work and the generated data. The datasets in-087

clude one million sentences for German, Ukrainian,088

and Estonian, each processed with three different089

models, as well as an additional set of 100k sen-090

tences with GPT models.091

In summary, our contributions are as follows:092

• We show that pre-trained language models093

can be fine-tuned to generate high-quality syn-094

thetic errors even with limited data.095

• We compare the influence of different models096

applied to AEG (LLama/GPT/mT5/NLLB) on097

subsequent GEC models.098

• We achieve new state-of-the-art GEC results099

across all tested languages with Llama 2-based100

models outperforming related work as well as101

GPT-4.102

• We openly release GEC and AEG models as103

well as AEG datasets to facilitate future re-104

search†.105

The paper is structured as follows. We outline re-106

lated work in Section 2, methodology experimental107

settings in Section 3, and results in Section 4. Addi-108

tional questions on the same topic are discussed in109

Section 6 and the paper is concluded in Section 5.110

2 Related Work111

The use of synthetic data is a common concept in112

GEC. The first effective neural method proposed by113

Junczys-Dowmunt et al. (2018) approaches GEC as114

low-resource Machine Translation (MT), making115

it a relatively resource-heavy method encouraging116

synthetic data generation. Over the years, there117

have been different approaches to deliberately intro-118

ducing errors into monolingual text, like rule-based119

and probabilistic methods, methods based on con-120

fusion sets and error patterns, models trained for121

error generation and using round-trip translation122

(Bryant et al., 2023).123

†Models: huggingface.co/anonymous-acl/
models, datasets: huggingface.co/datasets/
anonymous-acl/aeg_data

One widely adopted approach to generating syn- 124

thetic data involves the probabilistic addition of er- 125

rors to monolingual corpora. This technique encom- 126

passes inserting, deleting, substituting, or moving 127

characters or words without considering the context, 128

as described by Grundkiewicz et al. (2019), Zhao 129

et al. (2019), and Rothe et al. (2021). Additionally, 130

Grundkiewicz et al. (2019) introduced a "reverse 131

speller" approach that suggests word replacements 132

from confusion sets based on the speller’s correc- 133

tions. This method has been applied to several lan- 134

guages such as German, Czech, Russian, Ukrainian, 135

Icelandic and Estonian (Náplava and Straka, 2019; 136

Trinh and Rozovskaya, 2021; Náplava et al., 2022; 137

Palma Gomez et al., 2023; Ingólfsdóttir et al., 2023; 138

Luhtaru et al., 2024). As we show later, errors gen- 139

erated with the context-free probabilistic method 140

differ from human errors and thus cover a much 141

smaller number of error types, shown by signifi- 142

cantly lower GEC recall. 143

Learned methods of error generation typically 144

require more resources. Before the widespread 145

adoption of transformers and MT, various studies 146

explored alternative approaches for training mod- 147

els for error generation. For instance, Felice and 148

Yuan (2014) and Rei et al. (2017) utilized statistical 149

machine translation to generate errors, while Xie 150

et al. (2018) and Yuan et al. (2019) experimented 151

with convolutional neural networks (CNNs) for this 152

purpose. Additionally, Kasewa et al. (2018) investi- 153

gated using RNN-based sequence-to-sequencemod- 154

els with attention mechanisms. 155

Moving towards more modern MT architectures, 156

Htut and Tetreault (2019) tested various model 157

frameworks, including transformers, and Kiyono 158

et al. (2019) specifically employed transformermod- 159

els. Both of the latter studies trained models from 160

scratch, utilizing datasets ranging from approxi- 161

mately 500,000 to over a million error correction 162

examples to train the artificial error generation sys- 163

tem. In contrast, our work generates up to 1 million 164

sentences with synthetic error while using between 165

9k and 33k human error sentences to fine-tune the 166

base models. 167

During the last few years, there has been no one 168

error-generation method that has proved its supe- 169

riority. It depends on language and available re- 170

sources. For English Stahlberg and Kumar (2021) 171

train Seq2Edit models (Stahlberg and Kumar, 2020) 172

from scratch for learning to create diverse sets of 173

errors. As mentioned in the beginning, synthetic 174
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probabilistic errors have found wide use for dif-175

ferent languages. For instance, Ingólfsdóttir et al.176

(2023) combine probabilistic character/word per-177

mutations with a rule-based approach for Icelandic178

and Kara et al. (2023) curate special rules for gen-179

erating Turkish data.180

Next, we present the key methodological details181

of our work.182

3 Methodology and Experiments183

The primary target of our work is to apply genera-184

tive language models to artificial error generation185

(AEG) via fine-tuning. Additionally, we experiment186

with prompting large language models to perform187

the same task and include two seq2seq models that188

are fine-tuned to do the same.189

The efficiency of proposed AEG solutions is eval-190

uated using them to improve grammatical error cor-191

rection (GEC). Thus, we also fine-tune generative192

LMs to perform the GEC task and compare the re-193

sults to prompting-based GEC results and related194

work.195

Our approach’s general pipeline is straightfor-196

ward. First, we fine-tune a language model (LM) to197

generate errors using human error data, where cor-198

rect sentences are input and erroneous sentences are199

output. Next, we use this AEGLM to create synthet-200

ically erroneous sentences from correct ones. Then,201

we fine-tune another LM on this synthetic dataset202

to correct grammatical errors, reversing the direc-203

tion of the sentence pairs from the first step. We204

continue by fine-tuning the GEC LM on a smaller205

dataset with human errors. Finally, we apply the206

models to erroneous sentences in benchmark test207

sets and evaluate the results.208

Next, we describe the technical details of our209

implementation and the experimental setup.210

3.1 Data211

We use two distinct types of data in our work.212

Firstly, we rely on datasets containing examples213

of grammatical error corrections to train our error214

generation systems and correction models. Sec-215

ondly, we incorporate monolingual data to create216

synthetic datasets by introducing errors. See an217

overview of used data in Table 1.218

We use the language learners’ corpus from219

the University of Tartu (UT-L2 GEC) (Rummo220

and Praakli, 2017) for gold data in Estonian. In221

Ukrainian, we use the UA-GEC corpus (Syvokon222

et al., 2023) used in the UNLP 2023 Shared Task223

Corpus Language Train Test
UT-L2 GEC ET 8,935 -
EstGEC-L2 ET - 2,029
UA-GEC UK 31,038 1,271
FM DE 19,237 2,337

ENC 2021 ET 1M/100k -
CC-100 UK/DE 1M/100k -

Table 1: Data used for training and testing.

on Grammatical Error Correction for Ukrainian 224

(Syvokon and Romanyshyn, 2023), using the 225

GEC+Fluency data for training. For German, we 226

rely on the widely used Falko-Merlin (FM) corpus 227

(Boyd, 2018). 228

For monolingual Estonian data, we employ the 229

Estonian National Corpus 2021 (Koppel and Kallas, 230

2022). We randomly sample equal sets from the lat- 231

est Wikipedia, Web, and Fiction subsets and shuffle 232

these together. For Ukrainian and German, we use 233

the CC-100 dataset (Conneau et al., 2020; Wenzek 234

et al., 2020). Depending on the experiments, we 235

sample the required number of sentences from the 236

larger corpora (i.e., one million or 100 thousand 237

sentences or a set equal to gold corpora sizes). 238

3.2 Models and Training 239

Llama-2-based models. We fine-tune models that 240

have been enhanced with bilingual capabilities us- 241

ing continued pre-training from Llama-2-7B (Tou- 242

vron et al., 2023). For Estonian, we use Llammas- 243

base‡, and for German, LeoLM§. For Ukrainian, 244

we apply continued pre-training to replicate the 245

conditions of Estonian LM by training with 5B 246

tokens from CulturaX (Nguyen et al., 2023) with 247

25% of the documents being in English and the rest 248

in Ukrainian. For GEC and AEG fine-tuning, we 249

formatted the training data with a prompt (see Ta- 250

ble 12 and 13) loosely based on Alpaca (Taori et al., 251

2023). During fine-tuning, the loss is calculated 252

on the tokens of the correct sentence. Fine-tuning 253

details (including hyperparameters) are discussed 254

in Appendix A.1. 255

Other models we use are NLLB (Team et al., 256

2022) and mT5 (Xue et al., 2021). Specifically, we 257

use the NLLB-200-1.3B-Distilled and mt5-large 258

(1.2B parameter) models for our experiments and 259

train NLLB models using Fairseq (Ott et al., 2019) 260

‡huggingface.co/tartuNLP/Llammas-base
§huggingface.co/LeoLM/leo-hessianai-7b
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and mT5 with HuggingFace Transformers (Wolf261

et al., 2020). When training in two stages, first with262

synthetic data and later with human errors, we keep263

the state of the learning rate scheduler, following264

the fine-tuning approach rather than retraining as265

defined by Grundkiewicz et al. (2019). See Appen-266

dices A.2 and A.3 for further details.267

3.3 Generation268

Fine-tuned models. We use sampling instead of269

beam search to generate the synthetic errors and270

sample from the top 50 predictions with a tempera-271

ture of 1.0. During error correction, beam search272

with a beam size of 4 is used without sampling as273

regularly.274

Prompt engineering. We perform iterative275

prompt engineering, analyzing intermediate qualita-276

tive results and updating the prompt. For instance,277

we initially started with a simple 2-shot prompt278

(temperature = 0.1) asking GPT-3.5 to add gram-279

matical and spelling mistakes into the input text but280

noticed that some error types were missing. We281

then improved the prompt by specifying the miss-282

ing error types, adding two more examples, and283

upping the temperature. Our final prompt uses four284

examples and a model temperature of 1.0. See Ap-285

pendix D for the prompts. We randomly pick the286

examples from each language’s train set for few-287

shot prompting. When comparing the prompting288

between GPT-4-Turbo and GPT-3.5-Turbo, we use289

an identical random set of examples to ensure com-290

parability.291

Finally, we converged on using GPT-3.5-turbo292

for more massive error generation (100,000 sen-293

tence pairs per language). The motivation for that294

is partially financial (as GPT-4/GPT-4-turbo are sev-295

eral times more expensive) as well as performance-296

driven (see Figure 1 and description for details).297

We apply simple post-processing to the resulting298

set because, in some cases, parts from the prompt299

are duplicated in the output. If the model didn’t300

generate a response due to safety model activation301

or the response was too short or too long compared302

to the input sentence, we replaced the output with303

the source text (equivalent to adding no errors).304

The precise model versions we prompt are305

gpt-4-1106-preview for GPT-4-Turbo (us-306

ing the OpenAIAPI) andgpt-3.5-turbo (GPT-307

3.5-Turbo) and gpt-4 (GPT-4) (using Azure Ope-308

nAI API, version 0613 for both).309

Probabilistic errors. We generate rule-based310

synthetic errors as done in prior work (Grund- 311

kiewicz et al., 2019; Náplava and Straka, 2019; 312

Palma Gomez et al., 2023; Luhtaru et al., 2024) 313

using the same method and also employing the As- 314

pell speller¶ for replacing subwords. 315

3.4 Automatic Evaluation of Models 316

We evaluate the performance of our GEC models 317

using test sets and evaluation metrics consistent 318

with those employed in previous works (see datasets 319

in Table 1). 320

For Estonian, we evaluate our models using the 321

Estonian learner language corpus (EstGEC-L2)||, 322

alongside a modified version of the MaxMatch 323

scorer**, following Luhtaru et al. (2024). The Esto- 324

nian scorer also outputs recall per error category, 325

accounting for both other errors within the word 326

order error scope and not accounting for these. We 327

report the ones that do consider other errors sepa- 328

rately. For Ukrainian, our evaluation methodology 329

aligns with that of the UNLP 2023 Shared Task 330

(Syvokon and Romanyshyn, 2023), utilizing the 331

CodaLab platform for submissions to a closed test 332

set that uses the ERRANT scorer for evaluation 333

(Bryant et al., 2017). We follow the GEC+Fluency 334

track setting since it encompasses a wider range of 335

challenging errors. For German, we use the test set 336

from the Falko-Merlin (FM) corpus (Boyd, 2018) 337

that several works have reported their scores on and 338

the original MaxMatch scorer (Dahlmeier and Ng, 339

2012). 340

3.5 Human Evaluation of Generated Data 341

In addition to evaluating the quality of our data in 342

terms of its usefulness for training better models, 343

we perform a detailed evaluation of generated data 344

in Estonian. We apply the same annotation scheme 345

Allkivi-Metsoja et al. (2022) used for annotating 346

test and development sets to artificially generated 347

sentences. This comparison allows us to assess the 348

error distribution between training and generated 349

data and to see whether the errors can be catego- 350

rized into the same classes. 351

We select 100 random sentences from sets gen- 352

erated by Llama-based models, GPT-3.5-Turbo and 353

GPT-4-Turbo††, for annotation and also annotate 354

¶aspell.net
||github.com/tlu-dt-nlp/EstGEC-L2-Corpus/

**github.com/TartuNLP/estgec/tree/main/
M2_scorer_est

††We also considered annotating probabilistic denoising
errors, but these contained very few edits that could be catego-
rized based on the annotation scheme.
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Method Estonian Ukrainian German

P R F0.5 P R F0.5 P R F0.5
GPT-4-turbo (4-shot) 70.86 57.35 67.67 39.62 42.13 40.1 64.15 69.34 65.12
GPT-4 (4-shot) 70.04 59.03 67.52 36.25 37.77 36.54 65.22 69.75 66.08

Old SOTA (rel. work) 71.27 55.38 67.40 79.13 43.87 68.17 - - 75.96

Llama + gold 71.52 55.23 67.54 79.98 51.76 72.12 76.86 65.60 74.31
Llama + 1M prob + gold 72.59 54.72 68.14 80.37 53.19 72.92 78.22 67.65 75.85
Llama + 1M BT + gold 73.85 57.83 69.97 82.03 53.41 74.09 79.08 68.66 76.75

Table 2: Comparison of Llama 2-based models (denoted as Llama) after extended pre-training and GEC fine-tuning:
Models without synthetic data (LLM + gold) versus models with synthetic data generated with a probabilistic
reverse-speller method (LLM + 1M prob + gold) and back-translation style learned synthetic data (LLM + 1M BT +
gold). State-of-the-art benchmarks include Luhtaru et al. (2024) for Estonian (NLLB-200-1.3B-Distilled with mixed
synthetic and translation data training), Bondarenko et al. (2023) for Ukrainian (mBART-based model with synthetic
data), and Rothe et al. (2021) for German (mT5 xxl with multilingual synthetic data and GEC fine-tuning).

Lang/Model Llama NLLB mT5

ET (AEG only) 65.30 65.34 59.40
ET (AEG + gold) 69.97 69.73 68.57

UK (AEG only) 28.39 27.04 16.79
UK (AEG + gold) 74.09 72.30 72.51

DE (AEG only) 71.29 69.13 54.96
DE (AEG + gold) 76.75 76.28 74.77

Table 3: F0.5-scores for Llama-based models fine-tuned
with 1M sentences generated with different AEGmodels
and then further fine-tuned with gold GEC data. The
errors are generated with 7B Llama-2-based models,
1.3B NLLB model and 1.2B mT5 model.

100 sentences from the training set. We add labels355

for problematic errors generated by the model, such356

as hallucinations and truncation of words important357

for understanding the meaning of sentence (HALL),358

synonym swaps (SYN), optional edits (O), correc-359

tions of mistakes in original sentences (INACC),360

and transformations that make the original word361

unrecognizable (UNREC).362

4 Results363

In this section, we evaluate the performance of364

Llama-based models for GEC and AEG tasks.365

We then compare the AEG effectiveness between366

NLLB and mT5 models against Llama-based mod-367

els to see if smaller, more efficient models can gener-368

ate quality data. Separately, we assess AEG through369

prompting with GPT-3.5-turbo versus Llama mod-370

els with trained error generation. Finally, we exam-371

ine the quality of generated errors against human 372

data and probabilistic reverse-speller errors and 373

compare the error type distributions for Estonian. 374

4.1 Artificial Error Generation and 375

Correction with Llama 376

We compare LLama-based large language model 377

(LLM) fine-tuning error corrections across three 378

configurations: (1) the baseline approach of training 379

exclusively on human error GEC data, (2) the estab- 380

lished related work approach of training on proba- 381

bilistic reverse-speller AEG data and then continu- 382

ing training with human error GEC data, and (3) our 383

approach of training on back-translation style AEG 384

data produced by fine-tuned Llama-based models 385

first, followed by fine-tuning on human data. 386

The resulting scores are compared in Table 2, 387

along with previous state-of-the-art (SOTA) scores 388

and results of GEC via 4-shot prompting of 389

GPT-4/GPT-4-turbo. Results show that llama- 390

based models, further enhanced through contin- 391

ued pre-training, exhibit strong correction capa- 392

bilities across languages in our study. Even with- 393

out synthetic data, these models outperform cur- 394

rent state-of-the-art (SOTA) methods in Estonian 395

and Ukrainian error correction, and are not too far 396

behind in German, trailing the best score by less 397

than two points. However, it’s important to note 398

the discrepancy in model sizes for a fair compar- 399

ison; our 7B Llama model significantly exceeds 400

the NLLB-200-1.3B-Distilled model (Team et al., 401

2022) used for Estonian (Luhtaru et al., 2024) and 402

the mBARTmodel (Tang et al., 2021) for Ukrainian 403

(Bondarenko et al., 2023) in size. At the same time, 404
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Prompting Fine-tuning

Lang/Model GPT-3.5-turbo (100k) Llama (100k)

P R F0.5 P R F0.5
ET (AEG only) 71.72 44.20 63.78 67.57 50.89 63.41
ET (AEG + gold) 71.11 56.56 67.63 71.51 56.51 67.91

UK (AEG only) 28.61 22.16 27.04 40.00 19.87 33.26
UK (AEG + gold) 80.82 51.33 72.49 80.89 50.31 72.12

DE (AEG only) 70.55 49.61 65.05 70.07 59.11 67.56
DE (AEG + gold) 78.06 67.06 75.58 78.80 67.52 76.25

Table 4: Scores of Llama-based models fine-tuned with 100k sentences generated by Llama-based model fine-tuned
for error generation and GPT-3.5-model prompted to add errors.

it is smaller than the 13B mT5-xxl model used for405

German (Rothe et al., 2021).406

Incorporating synthetic data as a preliminary step407

to fine-tuning significantly enhances performance408

across all languages and synthetic data types. No-409

tably, our back-translation style synthetic data con-410

sistently delivers superior precision and recall com-411

pared to the probabilistic reverse-speller method.412

This approach results in a 2-2.4 point increase in the413

F0.5 score relative to solely using gold data for fine-414

tuning. Conversely, the gains from using probabilis-415

tic reverse-speller data are more modest, ranging416

from 0.6 to 1.5 points, highlighting the enhanced417

utility of our learned AEG errors.418

Our systems consistently outperformGPT-4mod-419

els in terms of precision across all languages stud-420

ied. However, GPT-4 models exhibit higher recall421

rates for Estonian and German. This discrepancy in-422

dicates that while our systems are more accurate in423

identifying correct instances, GPT-4 models better424

retrieve a broader range of relevant errors in these425

languages. On the other hand, the performance of426

GPT-4 models on the Ukrainian test set is notably427

lower compared to other methods and languages.428

4.2 Artificial Error Generation with Smaller429

Models430

Since error generation with 7B Llama-based mod-431

els can be costly and time-consuming and many432

other architectures have proved useful for correc-433

tion, we also explore smaller models for AEG: the434

1.3B NLLB model and 1.2B mT5-large. The goal435

here is to see if these can also produce useful errors.436

Table 3 shows the results of the analysis. Both437

models can learn valuable information that im-438

proves performance beyond what is achieved with439

fine-tuning on gold data alone. Notably, errors gen- 440

erated by the NLLBmodel are particularly effective, 441

delivering results close to those achieved by LLM- 442

generated errors in Estonian and German, almost 443

matching the performance of LLama-based models. 444

However, for Ukrainian, NLLB-generated errors 445

fall behind probabilistic reverse-speller errors. This 446

is likely because the dataset contains many special 447

punctuation characters that get normalized during 448

preprocessing (see more in Appendix C). 449

The mT5 models, in contrast, appear less adept 450

at error generation. The errors produced by mT5 451

lag behind those from probabilistic reverse speller 452

for Ukrainian and German and offer only a minimal 453

improvement for Estonian. 454

We can also see that the scores before gold fine- 455

tuning highlight that Ukrainian scores are notably 456

low across all methods. However, these scores re- 457

cover well after fine-tuning, suggesting the syn- 458

thetic data may not align well with the text domain 459

or error types specific to the Ukrainian language. 460

Estonian and German models show higher scores 461

for models trained with just AEG data and improve 462

less drastically with fine-tuning. 463

4.3 Artificial Error Generation with 464

Prompting 465

To assess the capability of generating errors with- 466

out additional LM training, we utilize advanced 467

commercial models, specifically exploring the effi- 468

ciency of error generation through prompting GPT- 469

3.5-turbo with datasets comprising 100,000 sen- 470

tences. We later also explore the effectiveness of 471

GPT-4-Turbo in a more limited setting (see Sec- 472

tion 4.4). 473

The generation cost depends on the sum of input 474
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Figure 1: Quality of generated errors compared to gold and probabilistic, as shown by GEC results of tuning
Llama-based models on same-sized synthetic or human (gold) error sets. GPT-3.5-turbo and GPT-4-turbo errors are
generated via prompting, Llama stands for Llama 2-based model fine-tuned on the AEG task.

and completion tokens. Ukrainian, our most expen-475

sive language, had the highest number of tokens per476

100,000 sentences: 98 million input and 12 million477

completion tokens. The cost for input tokens with478

GPT-3.5-Turbo in USD is $147, and for comple-479

tion tokens, it is $25 – in total, $172 for generating480

100,000 Ukrainian sentences. In comparison, the481

costs with GPT-4-Turbo would have been $983 and482

$370, respectively‡‡.483

Table 4 shows the results of continued pre-484

training Llama-based models on the same amount485

of sentences (100,000) with synthetic errors from486

prompting or fine-tuning. In terms of error correc-487

tion quality after gold fine-tuning, employing GPT-488

3.5-turbo for prompting and fine-tuning Llama-2-489

based models are both viable strategies for artifi-490

cial error generation, as they lead to very close F0.5491

scores in all three languages (with a slight difference492

in favor of fine-tuning errors for German: 75.58 vs493

76.25).494

Analyzing the performance before gold fine-495

tuning reveals distinct differences between the two496

methods. For Estonian and German, recall rates are497

significantly higher with fine-tuning than prompt-498

ing, though precision is slightly compromised.499

Conversely, Ukrainian exhibits the reverse pattern.500

However, it’s important to note that any dispari-501

ties observed before gold fine-tuning are greatly502

diminished after training on actual error correction503

examples. The most considerable remaining differ-504

ence is under 0.7 points for German, with smaller505

discrepancies for Estonian and Ukrainian.506

When comparing LLama model scores for 100k507

to the ones with only gold tuning (see Table 2), we508

can see that although scores increase more mod-509

‡‡https://openai.com/pricing
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Figure 2: Recall scores for most frequent categories in
Estonian EstGEC-L2 test set. The first letter corresponds
to the operation type (R - replaced, M - missing, U -
unnecessary).

estly, only 100k examples of synthetic data increase 510

the scores more for German (almost 2 F0.5-score 511

points), a bit for Estonian (around 0.4 points) and 512

stay the same for Ukrainian with higher precision 513

and lower recall. The scores for models trained with 514

100k sentences are mostly lower than those trained 515

with 1M reverse-speller errors, which indicates that 516

the data quantity jump from 100,000 to 1M plays a 517

significant role. 518

4.4 Quality Compared to Human Data 519

Finally, we run a direct comparison between hu- 520

man errors and artificial ones. To do so we train 521

models using the same number of sentences as the 522

respective human error set sizes: 19k sentence pairs 523

for German, 33k for Ukrainian, and 9k sentence 524

pairs for Estonian. We include comparing these 525

models to ones based on one million probabilistic 526

sentences. 527

Our findings indicate that the precision of all 528
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synthetic data closely matches that of high-quality529

(gold) data in both Estonian and German, as illus-530

trated in Figure 1. A notable distinction, however, is531

observed in recall rates. For Estonian and German,532

the recall for errors generated by LLMs is more533

comparable to human-generated (gold) data than534

errors produced through probabilistic methods.535

Ukrainian scores with synthetic data are substan-536

tially worse than gold data, regardless of the AEG537

method. Still, recall for LLM-generated errors is538

significantly higher than for simple probabilistic539

errors. This might be due to a larger mismatch540

in the text domain or error frequency. Ukrainian541

UA-GEC data predominantly contains punctuation542

errors (43%) and has a two times smaller error rate543

than German (8.2 vs 16.8) (Syvokon et al., 2023).544

Comparing GPT-3.5-Turbo with GPT-4-Turbo,545

we find similar performance overall. However, for546

Estonian, GPT-4-Turbo exhibits higher recall but547

lower precision. For German, GPT-4-Turbo shows548

reductions in both precision and recall. Perfor-549

mance is nearly identical for Ukrainian between550

the two models. Overall, the F0.5 scores of GPT-4-551

Turbo are slightly lower for Estonian and German552

and marginally higher for Ukrainian compared to553

GPT-3.5-Turbo.554

When analyzing the recall for various error cat-555

egories in Estonian, it is evident that our models556

trained with AEG data particularly face challenges557

in inserting missing punctuation marks and cor-558

recting errors related to word order, as depicted559

in Figure 2. Errors generated probabilistically ex-560

cel in identifying spelling mistakes and can correct561

certain errors in noun and verb forms. However,562

they generally perform poorly in addressing issues563

beyond spelling errors.564

4.5 Evaluation of Generated Errors: Case565

Study with Estonian566

We labeled 100 LM-generated sentences from dif-567

ferent sets to determine if the errors made bymodels568

are similar to those in the training corpus.569

Based on the annotations, we can categorize a570

large proportion of the changes according to the571

annotation scheme, but there is still a considerable572

amount of problematic edits ( 25-45%) (see Figure573

3 and Table 7 in Appendix B). The human evalu-574

ation also indicates that the models differ in their575

error rates. GPT models generate fewer problem-576

atic errors overall, but the error category distribu-577

tion seems more similar to human data with Llama-578
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Figure 3: Error type count in Estonian based on annotat-
ing 100 randomly selected sentences (R - replaced, M -
missing, U - unnecessary)

based models. This is likely due to a fine-tuning 579

approach instead of prompting. 580

As mentioned in the last section, compared to 581

human data, all models trained with generated data, 582

correct far fewer word order and missing punctua- 583

tion errors, and lexical changes are not well cor- 584

rected either. These results can be partially ex- 585

plained by examining the different error types in 586

generated data, where the same types are not as well 587

represented as in human data. Most problematic 588

edits involve generating lexical errors, which often 589

were synonymous or changed the original mean- 590

ing of the sentence, which could explain the poor 591

performance in correcting lexical errors. On the 592

other hand, verb or nominal form and spelling er- 593

rors were better or almost as well corrected as by 594

a model trained with gold data, and the data con- 595

tained more errors in these categories. This shows 596

that correction recall is closely tied to the error 597

types present in the training data, and the data gen- 598

erated with our approach generates realistic error 599

types that help correction in these categories. 600

5 Conclusion 601

In conclusion, our research demonstrates the signif- 602

icant potential of Llama-based LMs in addressing 603

the challenges of GEC for low-resource languages. 604

We have successfully developed state-of-the-art sys- 605

tems for Estonian, Ukrainian, and German by lever- 606

aging these models as both correctors and synthetic 607

data generators. We also explore other methods for 608

AEG and show that prompting stronger commer- 609

cial LLMs is another way of generating high-quality 610

data, and fine-tuning smaller models also has po- 611

tential when the resources are more limited. 612
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6 Limitations613

Our work focuses on three languages, recognizing614

that numerous other languages with grammar error615

correction (GEC) datasets exist outside our study’s616

scope. We selected languages based on recent rele-617

vant research activities: Ukrainian due to its recent618

Shared Task; Estonian, a newly emerging language619

in GEC research; and German for comparison with620

a robust 13B model. To comprehensively validate621

our method, further exploration across additional622

languages is necessary.623

Our objective was not to devise the optimal sys-624

tem exhaustively. Therefore, several avenues re-625

main unexplored, such as varying generation meth-626

ods, testing different temperatures, and adjusting627

parameters. Moreover, we capped the generation of628

synthetic sentences at one million, below the vol-629

ume utilized in many (though not all) synthetic data630

studies. Questions about the ideal amount of data631

needed its dependency on the quality of synthetic632

and gold examples, remain unanswered.633

Furthermore, our study lacks human evaluation634

of GEC systems, a component for more reliably635

assessing the real-world efficacy of GEC systems.636
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A Training details961

A.1 Llama-based models962

The models are trained on 4 AMD MI250x GPUs963

(each acting as 2 GPUs).964

For fine-tuning, we used a learning rate of 5e-6965

linearly decayed to 5e-7 (10%). The learning rate966

was selected from {4e-5, 2e-5, 1e-5, 5e-6, 2.5e-967

6} based on highest Estonian GEC development968

set F0.5 score. The models were trained for three969

epochs, although we chose the first epoch since it970

almost always achieved the highest F0.5 score. Ta-971

ble 5 provides an overview of the hyperparameters.972

For GEC and AEG fine-tuning, sentences are in973

non-tokenized format or detokenized (for Estonian974

and German). The crawled data used for AEG is975

normalized with Moses (Koehn et al., 2007) for976

Estonian and German.977

For continued pre-training, we follow the param-978

eters used by Llammas-base (see Table 6). The979

training data is packed to fill the whole sequence980

length.981

Parameter Value

LR 5e-6
LRfinal 5e-7
LR-schedule linear
Epochs 3
Max sequence length 1024
Batch size (total) 128
Gradient clipping 1.0
Weight decay 0.1
Optimizer AdamW
Precision bf16
DeepSpeed Zero Stage 2

Table 5: Llama-based GEC model fine-tuning parame-
ters.

Parameter Value

LR 2e-5
LRfinal 2e-6
LR-schedule linear
Updates 19080
Max sequence length 1024
Batch size (total) 256
Gradient clipping 1.0
Weight decay 0.1
Optimizer AdamW
Precision bf16
DeepSpeed Zero Stage 2

Table 6: Llama continued pre-training parameters.

A.2 NLLB-based models 982

We follow the training process specified by Luhtaru 983

et al. (2024), including hyperparameters. The train- 984

ing is conducted on an AMDMI250x GPU. We are 985

training the AEG models for 20 epochs and picking 986

the 15th after arbitrary manual evaluation and test- 987

ing sets on checkpoints 5, 10, 15, and 20. The data 988

for NLLB models is first normalized with Moses 989

script, and we use the SentencePiece model (Kudo 990

and Richardson, 2018) for untokenized text. 991

A.3 mT5-based models 992

To learn to generate errors, we train on reversed hu- 993

man GEC data for three epochs with batch size 32, 994

max sequence length of 128, half-precision train- 995

ing, and a learning rate of 0.0001 without warmup 996

and scheduling. For generation, we use top 50 prob- 997

abilistic sampling. 998

B Problematic edits 999

We further explore the human annotation results 1000

discussed in section 4.5. Table 7 displays the per- 1001

centage of problematic error types out of all errors 1002

generated by the model. 1003

C NLLB correction 1004

The GEC performance of the NLLB model with- 1005

out any synthetic data is in Table 8. The zero- 1006

shot results for Estonian and German are signifi- 1007

cantly higher than for Ukrainian. We notice that the 1008

Ukrainian dataset contains characters not present 1009

in NLLB vocabulary, like special quotation marks, 1010

which the normalization script unifies but appear 1011

https://github.com/pluiez/NLLB-
inference/blob/main/preprocess/normalize-punctuation.perl
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Type Llama GPT-3.5 GPT-4

O 10.83 4.71 9.07
HALL 22.72 11.11 3.75
SYN 6.16 6.4 7.5
INACC 2.12 5.39 1.38
UNREC 3.82 6.73 3.94

Total % 45.65 34.34 25.64

Table 7: Percentages of problematic edits.

as errors while testing. In addition, the Ukrainian1012

test set contains far fewer edits, which, especially in1013

a zero-shot scenario, means worse scores because1014

NLLB paraphrases more rigorously (Luhtaru et al.,1015

2024).1016

D Prompts1017

We present the prompts used to generate 1) 100,0001018

sets with GPT-3.5-Turbo and 2) preliminary sets1019

with GPT-4-Turbo in Tables 9, 10, 11 for Estonian,1020

German, and Ukrainian respectively.1021
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Lang Zero-shot Gold fine-tuning

P R F0.5 P R F0.5
Estonian 43.89 45.31 44.17 61.14 49.48 58.39
Ukrainian 8.24 31.57 9.67 35.62 34.1 35.31
German 43.66 41.52 43.22 73.71 67.75 72.44

Table 8: Zero-shot and gold fine-tuning scores of NLLB-200-1.3B-Distilled models on Ukrainian UA-GEC
gec+fluency test set.

Muuda sisendteksti, genereerides sinna vigu, mida võib teha
eesti keele õppija. Väljundtekstina tagasta sisendtekst, kuhu
oled genereerinud vead. Sisendteksti genereeri õigekirja-,
grammatika-, sõnavaliku-, sõnajärje-, kirjavahemärgi- ning
stiilivigu. Kui sisendtekstis on vigu, siis ära neid paranda, vaid
genereeri vigu juurde. Ülesande kohta on neli näidet:

Sisendtekst: {correct}
Väljundtekst: {incorrect}

Sisendtekst: {correct}
Väljundtekst: {incorrect}

Sisendtekst: {correct}
Väljundtekst: {incorrect}

Sisendtekst: {correct}
Väljundtekst: {incorrect}

Sisendtekst: {input}
Väljundtekst:

Table 9: GPT prompt - Estonian

Erzeugen Sie im Eingabetext Fehler, wie sie jemand, der
Deutsch lernt, machen könnte. Geben Sie als Ausgabe-
text den Eingabetext zurück, in den Sie Fehler eingefügt
haben. Erzeugen Sie Rechtschreib-, Grammatik-, Wortwahl-,
Wortreihenfolge-, Zeichensetzungs- und Stilfehler im Einga-
betext. Sollten im Eingabetext bereits Fehler vorhanden sein,
korrigieren Sie diese nicht, sondern erzeugen Sie zusätzliche
Fehler. Es gibt vier Beispiele für die Aufgabe:

Eingabetext: {correct}
Ausgabetext: {incorrect}

Eingabetext: {correct}
Ausgabetext: {incorrect}

Eingabetext: {correct}
Ausgabetext: {incorrect}

Eingabetext: {correct}
Ausgabetext: {incorrect}

Eingabetext: {input}
Ausgabetext:

Table 10: GPT prompt - German

Змiнiть вхiдний текст шляхом генерацiї в ньому помилок,
якi мiг би зробити учень, що вивчає українську мову. На
виходi повертайте вхiдний текст, у який ви внесли помилки.
У вхiдному текстi генеруйте помилки правопису, грамати-
ки, вибору слiв, порядку слiв, роздiлових знакiв та стилю.
Якщо у вхiдному текстi є помилки, то не виправляйте
їх, а генеруйте додатковi помилки. Далi наведенi чотири
приклади до цiєї задачi

Вхiдний текст: {correct}
Вихiдний текст: {incorrect}

Вхiдний текст: {correct}
Вихiдний текст: {incorrect}

Вхiдний текст: {correct}
Вихiдний текст: {incorrect}

Вхiдний текст: {correct}
Вихiдний текст: {incorrect}

Вхiдний текст: {input}
Вихiдний текст:

Table 11: GPT prompt - Ukrainian

### Instruction:
Reply with a corrected version of the input sentence in
{language} with all grammatical and spelling errors fixed.
If there are no errors, reply with a copy of the original sen-
tence.

### Input:
{input}

### Response:
{correction}

Table 12: Llama-based model GEC instruction format
loosely based on Alpaca (Taori et al., 2023). The instruc-
tion is based on Coyne et al. (2023).
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### Instruction:
Reply with a grammatically incorrect version of the
{language} input sentence.

### Input:
{input}

### Response:
{correction}

Table 13: Llama-based model AEG instruction format
loosely based on Alpaca (Taori et al., 2023).
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