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A B S T R A C T   

Feature point matching between two images is a fundamental and important process in machine vision. In many 
cases, mismatches are inevitable, and removing mismatches is an indispensable task. The existing methods 
attempt to find comprehensive constraints or sampling model to achieve better performance, which results in the 
increasingly complexity and may cause the weakness of the generality and scalability. To address this issue, a 
method called Local Topology similarity guided probabilistic Sampling consensus (LTS) is proposed. It constructs 
a topological network, then quantifies the mismatch probability in a concise approach based on comparing the 
topological relationship with neighbourhoods. Then, it detects and removes the mismatches by sampling guided 
by the mismatch probability. Compared with the state-of-the-art methods, LTS has an excellent performance in 
accuracy and robustness.   

1. Introduction 

Feature point matching is an important topic in machine vision, 
which is widely used in object detection, image registration, tracking, 
pose estimation, etc. In the task of feature point matching, it firstly ex
tracts the feature points to describe local information, for which many 
methods have been proposed such as SIFT (scale invariant feature 
transform) [1], SURF (Speeded up robust features) [2], ORB (Oriented 
FAST and Rotated BRIEF) [3], or deep learning-based as LIFT (Learned 
Invariant Feature Transform) [4], SuperPoint [5], and then it establishes 
a one-to-one matching relationship between feature points in different 
images. However, though these methods are becoming more and more 
accurate, it is inevitable to produce mismatches, especially in some 
complex cases, such as the texture of the object is not obvious or locally 
similar, or in the cases with strong external interference. The correctness 
of matching is the key to the realization of these visual tasks. Therefore, 
the removal of mismatching is of great importance. 

The existing methods to remove mismatches can be mainly divided 
into resampling-based, geometry-based, learning-based methods, 
combining methods. In resampling-based methods, points are sampled 
to obtain a transformation model. Geometry-based methods use geom
etry constraints between matching points, they are always popular and 
the performance of them is progressively improving. Learning-based 
method make judgements on matches by machine learning, which 

could deal with challenging issues better. The combining methods try to 
take benefits of both, instead of simply compose two kinds of method, 
which is not easy to achieve. 

In order to get more excellent result, the current study of resampling- 
based methods mainly focus on promotion of convergence efficiency and 
probability to proposed more complex sampling framework, and 
geometry-based methods also exhibit a tendency to entail numerous 
intricate geometric constraints to adapt more conditions. However, with 
the increasing complexity, the methods may lose the generality and 
scalability. Further, in pragmatic scenarios, we often prefer approaches 
that are easy to execute with uncomplicated principle, and also yield 
excellent results at the same time. 

For this case, a method called Local Topology similarity guided 
probabilistic Sampling consensus (LTS) is proposed. The proposed 
method calculates the mismatch probability based on topological simi
larity of each matching point in a concise way, and weights the possi
bility into the process of sampling to obtain the transform matrix, which 
makes the sample process converge quickly and also improves the effi
ciency and accuracy. Experiments show that the proposed method is of 
more robustness and accuracy compared with other state-of-art 
methods. 

The contributions of this paper can mainly be summarized as follows: 
(1) We propose a lightweight method for computing mismatch 

probability of each point pair based on comparing the local topology 
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relationship in two images. Different from the increasingly complicated 
existing methods of describing characteristics of local consensus, the 
proposed method describes the local topology using the simplest 
approach to extract the more essential features, avoiding complex op
erations by angle or distance constraints in traditional geometry. 

The topological structure of correct matched points exhibits local 
consensus, which is widely accepted as an important characteristic for 
mismatch removal. Utilizing this characteristic becomes the focus of 
many methods. Most methods attempt to find comprehensive con
straints, which results in the increasingly complexity of describing local 
consistency, in turn becoming a trend in the field. However, we consider 
that the more complex the method and the more constraints involved, 
the weaker its generalization. Therefore, we propose a method using a 
simple algorithm to describe the local topological structure to extract 
essential features but with stronger generalization. 

(2) We propose a sampling-refined method for mismatch removal by 
combining local consensus with sampling tightly. Instead of the simply 
combining topology and sampling, our method has a strong comple
mentary dependency between the local topology and sampling. 

Although directly combining existing geometry-based and sampling- 
based methods can improve the effectiveness, it has not achieved the 
optimal combination effect. These methods consist of complicated 
calculation of mismatching probability, leading to the limited exploi
tation of the advantages of the sampling method, which also limits the 
overall performance of the method. In our method, we simplify the 
mismatching probability calculation based on local consensus, even 
though which results in a decrease in accuracy of mismatching proba
bility, it can be fully compensated with sampling. Therefore, our method 
can achieve simplification of local consensus description, improved 
generalization with high performance in mismatching removal. 

2. Related works 

In this section, the existing mismatching removal theory and 
methods are summarized. The proposed mismatch removal methods can 
be divided into four categories as following. 

2.1. Resampling-based methods 

The basis of the resampling-based methods is the graphics principle 
that the correct matching points conform to a transform model, the 
outliers (the points do not conform to the model) are considered to be 
mismatches and be removed. 

The resampling-based method is to find a transform model that 
makes the maximum number or more than a certain number of matches 
that meet which. The most popular method in the area of mismatching 
removal is using RANSAC (Random Sample Consensus) [6,7], it esti
mates the optimal transform matrix of two images, the outliers of the 
model is considered the mismatches. However, it will be inefficient 
when there are a large number of mismatches. 

Therefore, various methods are proposed to improve RANSAC, 
including the optimization of sampling, optimization of loss function 
and optimization of model estimation typically. 

Optimization of loss function: it proposes new loss function instead 
of the function of RANSAC, such as MLESAC (maximum likelihood SAC), 
which enhances the accuracy of the calculation [8], but it provides a 
limited improvement. Optimization of model estimation: such as 
R-RANSAC (Randomized RANSAC) and SPRT-RANSAC (Randomized 
RANSAC with sequential probability ratio test), it will judge whether it 
is the correct model first after finding the model, and will continue to 
sample and iterate if not [11,12].Optimization of sampling: it focuses on 
more effective ways to sample, such as PROSAC (progressive sampling 
consensus), which firstly obtains the probability of each data being an 
inlier, then preferentially extracts the data with high probability [9]. 
GroupSAC, it firstly groups all of matches, the group with more 
matching points is preferred when in the sampling [10]. These two 

methods are well known, which accelerate convergence to some extent. 
SESAC (Sequential Evaluation on Sample Consensus) sorts the matches 
based on the similarity of the corresponding features, then selects the 
samples sequentially, which perform better than PROSAC [14]. Gao 
et al., improved the RANSAC by taking pre-validation and resampling 
during iterations, which accelerates efficiency [15]. As for the optimi
zation in the various aspects mentioned above, Rahul et al. summarized 
and proposed a universal framework, USAC, which obtains the advan
tages of some previous methods [37]. 

Recently, more advanced sampling methods are proposed. DL- 
RANSAC (Descendant Likelihood-RANSAC) introduces descending 
likelihood to reduce the randomness so that it converges faster [13]. 
MAGSAC (Marginalizing Sample Consensus) proposed new quality 
function with no need for a user-defined noise scale [36]. 

The resampling-based method is widely used in rigid feature 
matching. Generally, it performs well in ordinary scenes, where the 
mismatch ratio is not high. However, it is challenging for it to deal with 
the high mismatch cases. 

2.2. Geometry-based methods 

Many researchers focus on the geometry of the matching points to 
construct the geometric or topological constraint between the matching 
points to remove mismatch. 

GTM (Graph Transformation Matching) [16], proposed by Aguilar 
et al., is a typical method based on geometry, which continually con
structs the KNN undirected graph based on matching points and removes 
the mismatches until two images have similar graph, however it will be 
inefficient with large number of matches. GMS (Grid-based motion 
statistics) [17], based on theory of motion statistics, focus on the image 
pairs with high-speed transform. 

In [18], we proposed a robust method based on comparing triangular 
topology and distance constraint of feature points. Luo et al., analyzed 
the relationship of Euclidean distance between the matching points then 
correct the mismatch based on angular cosine [20]. Zhao et al., remove 
the mismatches according to the constraints that matching distances 
tend to be consistent [21]. 

These geometry-based methods can detect mismatches more effi
ciently compared with resampling-based method because it avoids the 
iteration of sample. However, it may fail to construct the correct con
straints in the cases of high mismatch ratio. 

Additionally, some have focused on studying local topological 
consensus to remove mismatches. LPM (Locality Preserving Matching) 
[25,40], proposed by Ma et.al., representative methods of 
geometry-based also, which uses the principle that the local neighbor
hood structures of true matches will maintain in different images, they 
interpolate vector fields between the two-point sets and removes mis
matches according to consensus of local points, which achieves good 
performance and also has low complexity. LGSC (Local Graph Structure 
Consensus) [28], PSC (Progressive Smoothness Consensus) [30] LOGO 
(Locality-guided Global-preserving Optimization) [29] are proposed 
based on the idea of preserving of local structure, which further 
improved the effectiveness of mismatch removal. And in [42], a method 
based on topological clustering for wide-baseline mismatch removal is 
proposed, which concludes the topological consensus in wide-baseline 
match, which performs well in that case. Especially in image registra
tion, the pervious work [39] extends the LPM [25] for firstly computing 
a set of good matches to guide removal in whole matching set. In [41] 
transformation is constrained with manifold regularization and used to 
learning to remove mismatches. Generally, most of methods based on 
local topological consensus have achieved better performances using 
more comprehensive constraints, which results in the increasingly 
complexity of describing local consistency. 
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2.3. Learning-based methods 

Learning-based matching approaches utilize the benefits of machine 
learning to generate geometric features and enhance the efficacy of 
mismatch removal. 

Yi et al. [31] initially undertook an effort to remove mismatches with 
depth neural network, which is based on multilayer perception for 
binocular vision. Nonetheless, the effectiveness of this relies upon the 
input of camera intrinsic parameters. SuperGlue [32] combines the 
inferred matching and outlier removal based on Graphic Neural 
Network (GNN), it has a good result combined with SuperPoint [5]. 
Recently, PGFNet [33] introduce a novel iterative filtering structure 
while MS2DG-net [43] capture sparse semantics similarity between two 
given images to remove mismatches and get the camera position. Zhang 
et al. [34] used order-aware networks (OAnet) to get probabilities of 
being correctly corresponded and regresses relative pose. 

However, these learning-based methods rely on training data greatly, 
which impacts the generality. Ma et al. [35] proposed a two-class clas
sifier LMR for removing mismatch data with linear time complexity, 
which has higher generality. 

In spite of the effectiveness of learning-based methods, practical vi
sual tasks often meet with indefinite issues. In addition, these methods 
essentially belong to extraction and processing of geometric informa
tion, the approaches in Section 2.2 have a more precise computation 
process, while computation of learning-based methods is done in a 
network with numerous parameters. 

2.4. Geometry and resampling-combining methods 

Recently, few geometry and resampling-combining methods have 
been proposed, which aim to integrate sampling and geometry con
straints to take both advantages, such as Zhu et al. [19] proposed 
improved RANSAC and Lan et al. proposed GMS-RANSAC [26]. How
ever, such a simple combination of geometry constraints and sampling 
shows a limited improvement. 

GC-RANSAC (Graph-Cut RANSAC), it induces the graph-cut algo
rithm to RANSAC, which proposed Graph Cutting algorithm based on 
spatial consistency to improve the accuracy of the RANSAC [38]. Our 
previous work [27] proposed an effective combination of geometry and 
resampling, which calculates the mismatch probability of each matches 
through triangulation constraints and calculates the transformation 
model of the image pairs through probability sampling. The method 
shows a good performance especially in a high mismatch rate compared 
to the existing methods. However, its calculation of network distortion is 
of large complexity. 

3. Methodology 

In practical, a compact and effective method to eliminate mis
matches is in crucial need. However, most of existing techniques, either 
sampling-based or geometry-based, involve complex and thorough cal
culations or sampling conditions. Learning-based methods, on the other 
hand, typically require a significant amount of data training and its 
generalization is affected by the training data and process. 

The combined methods are a better choice to achieve this, with 
process of sampling, a simple probability calculation approach can 
achieve comparable outcomes to existing state-of-art methods, with no 
need for accurate mismatch probability estimates. By combining ge
ometry and sampling, a more promising approach can be achieved with 
a limited prior probability. Considering this, we propose a simple yet 
effective method that leverages prior probability to guide sampling and 
improve the overall results. 

3.1. Framework 

The proposed method can be visualized by flowchart shown in Fig. 1 
In this paper, we first construct triangular topological network of 

matching points, then describe and quantify the local topology simi
larity of matching points for each matching points by comparing their 
local topological relations, and subsequently quantifies the correctly 
matched probability according to the topology similarity. The higher the 
local topology similarity of a pair of matching points, the more likely it is 
to be a correct match. Secondary, introduce the mismatch probability of 
each pair of matching points into the sampling progress, so that 
matching points pairs with a high mismatch probability are more likely 
to be selected by the sampling. After sampling, we obtain matrix with 
the best results and thus filter the correct matches. 

In addition, we can also improve the sampling consistency to speed 
up the convergence, such as MLESAC, which optimizes the loss function. 

3.2. Quantification of mismatching probability 

Generally, the position and shape of an object in two images conform 
to a certain transformation relationship, so we can suppose one image as 
the initial state and another as the result of the transformation. After 
transformation, the position of the object in the image changes, but the 
topological relationships of its components are preserved. As a result, for 
the matches between two images, they can be filtered according to the 
topological relationship. The correctly matched points will have similar 
topological relationship in the two images, while the mismatched points 
not because they do not conform to the transformation. 

Fig. 1. The summarization of proposed method.  
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3.2.1. Topology stability and local topology similarity 
The topology relationships mentioned in this paper are related to 

location relationship and inclusion relationship between points and 
their surrounding points, ignoring the quantitative distance and azi
muth. Topology stability means that these relationships preserved after 
transformation. 

For example, after 1D (one-dimensional) scaling transformation, 1D 
point clouds still maintain the same topology, as shown in Fig. 2(a), the 
relative proximity and local relationship between the points have not 
changed. For 2D planar point cloud, after homographic transformation, 
the relative position of each point and the inclusion relationship be
tween each point and the topological area formed by other points pre
serve. For example, point P4 is always in the area formed by pointsP2,P3, 
P5 andP7, only the absolute distance and angle has changed, as shown in 
Fig. 2(b). 

When a point cloud existed in a high-dimensional space originally, 
being transformed in high dimension and projected to a low- 
dimensional point cloud will cause loss of global topology stability, 
but retains local topology in the same low dimension space. 

For instance, 3-D points are projected onto a 2-D image plane and 
switching camera perspective is equivalent to the 3-D transformation for 
point clouds. Although there may be some loss of topology due to 3-D 
transformations, local point clouds within the same plane still retain 
their original topology relationships, conforming to the homography 
transformation as shown in Fig. 3. 

However, for some points with the same low dimension in a local 

area, such as the points on a plane in the 3-D space, the origin transform 
on this area is equivalent to a low-dimensional transformation. Conse
quently, the points in locally low-dimension still conform to topology 
stability after high-dimensional transformation. 

Therefore, for each point in a point cloud, its topological relationship 
before and after transformation is not always preserved same, but has 
some topological similarity, which means, there will always be neighbor 
points in or near the same low-dimensional space in high-dimensional 
space with this point, such as the same plane in 3-D space. Generally, 
as a part of the neighbor points around a point retains the topological 
relationship, the point has a topological similarity through the 
transformation. 

The more topological relationships preserved with neighbor points, 
the higher the local topology similarity, the more likely the point is 
correct matched, so we propose a method for calculating mismatching 
probability based on this. However, it is impossible to establish accurate 
relationships between correctness and local topology similarity, because 
it is impacted by various conditions such as number of neighborhoods, 
the position of the point in the network, etc. 

3.2.2. Quantification of local topology similarity 
In this paper, we construct triangular topological network of 

matching points, and quantify the local topology similarity through the 
connection between the points in the network then calculate the mis
matching probability. 

Here we define the first-order neighborhood, second-order 

Fig. 2. The topology stability of point cloud. (a) and (b) show the topology stability of 1D and 2D point cloud respectively.  

Fig. 3. Local topology stability, the vertex of S1 is on the local same plane with the red point, while S2 not. As a result, S1 remain the topology relation with red 
point, and S2 not. 
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neighborhood .… K-order neighborhood of each matching point as the 
set of all the neighbor points which are connected through one topology 
edge, two topology edges .… K topology edges. 

Suppose that two images P and Q are matched and m pair of matches 
is produced, and we record P1, P2, P3…Pm as the matching points in 
image P and Q1,Q2,Q3…Qm in image Q. For i ∈ {1, 2, 3…m}, the 
matching point Pi and Qi are matched, we record this match as Pi − Qi. 
Then construct triangular topology network of the two images. 

We firstly consider the topological relationship of first-order neigh
borhood, which is based on the direct connection of the topological 
edges. The local topological relationship between a point i and its 
neighborhood can be derived from the topological edges between them. 
And we use an m-D vector Vi to indicate the local topological relation
ship. The kth element of the vector indicates whether matching point k 
connect to this matching point (point i) based on a topological edge. 

Vi = [connect(i, 1) connect(i, 2)… connect(i,m)]
T
, (1)  

where 

connect(i, j) =
{

1 connected by topo edge
0 not connected or i = j (2) 

For the matching point P5 in Fig. 4 above, the corresponding vector 
is 

V5 = [0 0 1 1 0 1 1 1 1 0]T 

As the results of triangular topology, the calculation of each vector 
corresponding to each matching point can be accomplished. For the 
local topological relationship of all matching points in the image, we can 
use an m-D matrix M to represent it, the matrix is a symmetric matrix 

composed of vectors of each matching point. 

M = [V1 V2 V3… Vm] (3) 

After obtaining the topological relationship matrices Mp and Mq of 
the two images, we can compare the two matrices and get the edges 
which preserve the topological relationship in the two images. These 
edges can reflect the local topology similarity of the matching points in 
the two images directly. 

Then we multiply these two matrices by elements. 

Mpq = Mp . ∗ Mq (4) 

For two pair of matching points Pi − Qi and Pj − Qj, only if both 
connected in images P and Q, both Mp(i, j) = 1 and Mq(i, j) = 1 are valid 
with the result of 1 after operation, which indicates that the two pair of 
matching points have the same topology relationship in both images and 
they are neighbors of each other, so that it can be inferred that they are 
more likely to be the correct matching points. 

The operation above gets topology edges with the same neighbor
hood topology in the picture P and Q. As for matching points, it 
considered that the more such edges around, the more likely the local 
area is to be correctly corresponded in the picture P and Q, the lower the 
mismatch probability of the match Pi − Qi. Then we quantify this 
probability. Since the ith column in the matrix Mpq presents the first- 
order neighborhood topology similarity of the matching point Pi, we 
can sum over each column. The ith element in the vector SUM represents 
the number of local topological relationships of the pair of matching 
points Pi − Qi. The larger the sum, the more likely a pair of matching 
points to be correct. 

SUM = [ 1 1…1 1 ] ⋅ Mpq (5) 

Fig. 4. The example of feature matching and topology relationship between matching points.  

Fig. 5. Some cases that first neighborhood cannot deal with.  
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Generally, the first-order neighborhood can reflect the neighborhood 
topological relationship well, but it may preserve less topology rela
tionship in some case. As shown in Fig. 5, when there are more mis
matches, such as P3 − Q3, P8 − Q8,etc., the topology relationship around 
matching point P5 is different in two images, only P4 and P6 preserve the 
topology relationship with P5. 

In these cases, we consider the second-order neighbourhood topol
ogy, that is, the topological relationship between the matching point and 
its neighbour points’ neighbour points. In Fig. 6, match point P1, P2,P3,

P4, P6, P7,P8,P9, P10, P12,P12 are second-order neighbourhood of P5. As 
shown in Fig. 6(a), it can be seen that even if mismatches occur around 
matching point P5, the topological relationship between matching point 
P5 and P10 will not be affected, which remains a second-order neigh
bourhood topological relationship. For matching point P7 which is 
mismatched, the second-order neighbourhoods around it have changed 
dramatically. On the other hand, when under a huge perspective 
transformation between two images, there is another way of triangula
tion in a topological area, which also results in inconsistent topological 
relations between some correct matching points and their neighbour
hood. As shown in Fig. 6(b), the first-order neighbourhood topology 
between matching points P5 and P7 is not consistent, while both 
matching points are correct matches. As for second-order neighbour
hood, the topological relationship between matching points P5 and P7 is 
consist in two images. 

Assume that the first-order neighborhood topological relationship 
matrix M of the matching points in the images has been obtained above, 
the topological vector for a match Pi − Qi is Vi = [v1 v2 v3…vm]

T.As for 
second-order topology, we can also use a topological vector Vpi denotes, 
the kth element of the vector represents whether a pair of matching 
point Pk − Qk has a second-order neighborhood relationship to this pair 
of matching points Pi − Qi. Here, instead of limiting the value to 1 or 0, 
we give the second-order neighborhood relationship a weight of k, 
which meets 0<k<1. Taking the first-order neighborhood topology 
relationship into account, topological vector Vpican be calculated by the 
formula 2. 

Vpi = Vi + k(v1 ×V1 + v2 ×V2 +… + vm×Vm) ((6)) 

The vector can also be derived from the fist-order topological rela
tionship matrix M above: 

V′
i = Vi + k⋅MVi = (E+ kM)Vi ((7)) 

Similarly, we define a second-order topological relationship matrix 
Mp. 

Mp = [Vp1 Vp2 Vp3… Vpm] ((8)) 

After obtaining the topological relationship matrices of the two im
ages, we also multiply these two matrices by elements, and then calcu
late the sum of each column. At the same time, as the second-order 
topology is given the weight of k, it is indicated that the second-order 
topological relationship is weaker than the first-order topological rela
tionship as the basis for judging the matching points. 

For the third-order neighborhood or more, the principle is similar, 
while the effect cannot be improved more, so it will not be described 
here. 

3.2.3. Calculation of mismatching probability 
After obtaining the topological relations for each matching point, we 

assign the mismatch probability pi to a matching Pi − Qi which is cor
responding to the matching point i. And it obeys the following distri
bution with the number of topological relations SUM(i). As shown in 
Eqs. (3)–(6), the larger the number of topological relations, the lower its 
probability of being a mismatch, and it will be exactly 0.5 when number 
achieve the average value μ. σ represents the second moment, which is 
used to normalize the input parameters. The value of σ becomes larger 
when the topology network is sparse, the difference of topological re
lations between matching points is larger. 

pi = 1 −
1

1 + e−
SUM(i)− μ

σ
,where μ =

1
n

∑n

1
SUM(i), σ

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

1
(SUM(i) − μ)22

√

(9) 

However, we cannot directly use this probability to judge whether a 
match is correct or not, this probability is a reflect of its local topology 
similarity, which is not so accurate but enough for guiding sampling to 
remove mismatches. 

3.3. Probability sampling consensus 

The RANSAC calculates a model by sampling a small amount of data, 
and then substitutes transform matrix between two graphs. The trans
form matrix refers to fundamental matrix F for all of rigid trans
formations in 3D space, and it can also simplify to homography matrix H 
when the main content of images is on a plane. 

Specifically, the algorithm randomly samples n pairs of matching 
points and calculates the transform matrix, the matching points on the 
image should meet to the following equation, 

x′FxT = 0 or x′ = Hx (10) 

Exactly, and the error should be in a certain threshold. 

Fig. 6. Some cases based on first-order neighborhood will lead to inconsistent in two images (such as the point P5) while second-order neighborhood not be affected, 
the red lines indicate the difference between two topology network, the green lines indicate the second-order neighborhood relationship will not change in these 
cases. (a) indicates the cases that the neighbor points are mismatched. (b) indicates the cases that the different ways of triangulation. 
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x′FxT < threshold or |x′ − Hx| < threshold (11) 

After calculating the transform matrix, if a pair of matching points 
meet the condition above, it is considered as correctly matched, and if 
not, it will be removed. 

In this paper, according to the mismatch probability p of each pair of 
matching points, we assign the probability ps for each pair to be 
sampled. The relationship can be expressed by Formula 8. That is, the 
lower the mismatch probability p, the higher the probability of to be 
sampled. 

psi = (1 − pi)

/
∑n

1

(
1 − pj

)
(12) 

After obtaining the sampling probability, we sample the matching 
point pairs according to the probability ps. We sample 4 pairs of 
matching points each time for calculating the homography matrix H 
between image P and image Q, and sample 7 pairs of matching points to 
calculate the fundamental matrix F for image pairs with greater 
perspective transformation.While sampling, we calculate the error of 
each point under transformation matrix. The point with a low error is 
considered to be inlier, so that we find the homography matrix with the 
largest number of inliers. 

Finally, combining the transformation matrix obtained above, we 
can filter the inlier of the model (the matches that have a low repro
jection error under this transformation matrix), those we consider to be 
the correct matches. 

The time complexity of the algorithm is determined by two aspects, 
mismatching probability calculation and sampling. 

As for the probability calculation, it consists of the construction of 
network and the quantification of topological similarity. The former 
varies between O(n)and O(nlgn) in different approaches, where n is 
number of matches. The latter is implemented by traversing all the 
feature points, resulting in a linear time complexity (n) . The overall time 
complexity of this aspect can be considered between O(n)and O(nlgn)
depending on approaches to construct networks. 

As for sampling, in each sampling process, it contains probability 
sampling with complexity of O(n) and the transform model calculation 
with complexity of O(1). So the time complexity of sampling exhibits 
linear correlation to maximum iterations and number of matches O(kn),
(k is maximum iterations), which is the primary factor affecting algo
rithmic efficiency. 

Therefore, the complexity of proposed method is between O(kn)and 
O(nlgn + kn). With topological similarity facilitating convergence, fewer 
iterations can be utilized to attain more precise results, leading to the 
promotion of the efficiency. As for second or higher order of neighbor
hood, it will be slightly slower for extra matrix operation. 

4. Experiment 

The proposed method is compared with the state-of-art mismatching 
removal method. 

The experiments are performed on Windows 10 operating system of a 
Macbook Air (13-inch, 2017) computer with an Intel Core i5-5350K 
processor and 8-GB RAM. The algorithms in this paper are written in 
Python. And in all experiments, the correspondences are computed from 
the ORB and SIFT keypoints. 

4.1. Examples of mismatching removal 

Firstly, we extract the feature points and match them in a pair of 
images in Fig. 7. As shown in the figure, the green matches indicate 
correct matches which are judged based on the ground truth provided by 
the dataset, while the red ones are the incorrect. In this figure, there are 
320 matches, among them 233 are correct. 

We construct topological networks for both two images, and here we 
choose Delaunay triangular, as shown in Fig. 8(a). The topological 
network in Fig. 8(b) represents the first-order neighbourhood topology, 
where the red topology edge represents that the end points of them 
preserving the first-order neighbourhood topology in both graphs, and it 
shows that the matching points retaining the first-order neighbourhood 
topology are mostly the correct matching points; 

Fig. 7. The results of image matching. (a) used for image matching, and (b) shows the result of image matching, the green matches indicate correct matches while the 
red matches indicate incorrect. 
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In Fig. 8(c) the topological network represents a second-order 
neighborhood topology, the topology edges in the figure represent the 
matching points at the two ends of these edge preserving the second- 
order neighborhood topology in two figures, which is much more than 
edges in first-order neighborhood, and reduces the cases where some of 
the topological relationships are preserved but not identified. Since 
there will be more matching points preserved local topology relation
ship as the order of neighborhood more than 3, the edges in image will 
be denser, we do not present here. 

Subsequently, calculate the local topology similarity of each 
matching point in the two images, and calculate the mismatch proba
bility of matching point based on Eq. (9).For the first-order neighbour
hood topology, the probability of correct matching points is relatively 
discrete, while second-order neighbourhood topology is more detailed 
and differentiated compared to the first-order since the neighbourhood 
are considered more thoroughly. 

Finally, we import the probability of each match into the sampling 
process of probability sampling consensus and calculate the trans
formation matrix of the two images. Since the two images are approxi
mate to the affine transformation, the model of the sampling calculation 

can be set as the homography matrix between the two images. After 
calculating, the homography matrixes based on first-order and second- 
order neighborhood are obtained, which were: 

H =

⎡

⎣
0.572 0.472 25.25
− 0.469 0.569 349.2
∼ 0 ∼ 0 1

⎤

⎦ H′ =

⎡

⎣
0.568 0.471 25.08
− 0.468 0.566 347.7
∼ 0 ∼ 0 1

⎤

⎦

For the ground truth given in the database, the homography matrix 
between two images is: 

Htruth =

⎡

⎣
0.569 0.471 25.51
− 0.468 0.565 348.2
∼ 0 ∼ 0 1

⎤

⎦

The error of each parameter in the matrix is within 1 %, which in
dicates that we have achieved quite good results both in the first-order 
and the second-order neighborhood. Therefore, the LTS in following 
experiments is refer to first-order neighbourhood. After filtering the 
matches according to the homography matrix calculated above, we 
obtain the following results. For both the methods based on the first- 
order or the second-order neighborhood topology result in a good 

Fig. 8. Topology network and neighborhood of points in two images. (a) shows topology network of two images, (b) the green edges represent the first-order 
neighborhood which preserved, (c) the green edges represent the second-order neighborhood which preserved. 
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effect. The algorithm obtained 232 matches after mismatching removal, 
and all of them are correct, which represents that the proposed method 
has very high precision and recall, as shown in Fig. 9. 

Here we take more examples on the images. As shown in Fig. 10, the 
matches are produced by SIFT and ORB, each Figure consists of 2 pairs of 
images, containing the matches before and after mismatching removal. 

4.2. Comparative experiment 

4.2.1. Experimental setting 
In this Section, we conduct comparative experiments to compare the 

proposed method (with first-order neighborhood) with the all kinds of 
methods, RANSAC (abbreviated as RAN), LPM [25], GTM [16], GMS 
[17], TSAC [27], GC-RANSAC (abbreviated as GCR) [38], OA-Net [34]. 
And for the methods with process of sampling, we set the max iterations 

for sampling to be 100. 
To test the proposed method, we used the dataset of Mikolajczyk 

[22], HPatches [23], and hannover [24], which contain several scenes of 
images and their groundtruth transform matrix. 

The main indicators of the experiments are precision, recall, F-score, 
and runtime. We define the precision as the proportion of correct 
matches in the matches extracted by mismatching removal method; And 
Recall is defined as the proportion of correct matches after extraction in 
whole correct matches. Generally, precision and recall are always 
negatively correlated. Therefore, F-score is used to measure the whole 
performance of mismatching removal, which is define as Eq. (13). And 
runtime is tested with methods writing and running under Python. 

F − score =
2 ∗ precision ∗ recall

precision + recall
(13) 

Fig. 9. Result of mismatching removal.  

Fig. 10. Some examples for mismatching removal. (a) and (b) shows the result of mismatching removal for SIFT feature matches. (c) and (d) shows the result of 
mismatching removal for ORB feature matches. 
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We use cumulative distribution curves to reflect the characteristics of 
each method in the dataset, the slower the corresponding curve declines 
means that the method has better performance in the dataset. In the 
graph, for a method, the larger the horizontal ordinate (cumulative 
proportion) under a certain vertical ordinate (value of the indicator), the 
larger proportion of images have reached the value of the indicator. 

4.2.2. Experiments I 
We first carried out the experiments compared with some typical 

sampling-based and geometry-based methods. In order to reduce the 
contingency of random processes, we carried out experiments for ten 
times on each pair of images. The results are shown in Fig. 11 and 
Table 1. 

From the results, we can observe that GMS performs not so accurate, 
while RANSAC have a better performance on precision but tends to have 
a low recall, GTM performs not so well and also have a low speed, LPM 
did better on recall especially in change of viewpoints, and executes fast, 
but the precision is lower than the resampling-based method. Compared 
with these methods, the proposed method LTS obtains the superior 
performance, and behaves more accurate. As for execution time, the 
proposed method faster than RANSAC even it contains the process of 
construction of topology network, which indicates that the proposed 
method accelerates the process of sampling, and compared with most 
other methods, it also shows a higher speed. 

4.2.3. Experiments II 
To better assess our approach, we compared it with our peer 

methods, geometry and sampling combine methods, and typical deep 
learning method. Additionally, we combined the typical geometry-based 
methods, LPM and GTM with sampling for comparison. The results are 
shown in Fig. 12 and Table 2. 

From the results, we can observe that the performances of GMS+SAC 
and LPM+SAC are better than GMS and LPM, which indicates that the 
sampling step indeed improved the results to some extent, especially in 
precision. However, though these combinations achieve better results, 
their first stage to make judgements spend more time, and they are more 
inefficient combining with sampling. As for GC-RANSAC, it performs 
well with limited mismatches, and it becomes worse rapidly in high 
mismatching ratio. For our previous research TSAC, it performs better 
than GC-RANSAC. Learning-based method OA-Net achieves the best 
performance especially in recall. Compared with OA-Net, the proposed 
method LTS obtains the comparable performance, and behaves more 
accurate. As for execution time, the proposed method ran faster than any 
other method in this experiment, and almost 2 times faster than simple 
combination of sampling and geometry methods (e.g. LPM+SAC). 

4.2.4. Experiment under increasing mismatching ratio 
Then we compared the robustness of different methods under 

different mismatching ratios, which means whether the methods can 
adapt to worse mismatching situations. In these experiments, we pro
duced a certain proportion of mismatches by shuffling the certain pro
portion of correct matches, the results of the experiments are presented 
in the graphs in Fig. 13. 

Generally, as mismatches increases, the performance of all kinds of 
methods tend to be worse. Specifically, the recall of GMS remains high 
but its precision decreases rapidly, which shows that GMS aims to 
extract more but has a low accuracy. RANSAC performs well in precision 
in low mismatching ratio, as the ratio increases, it performs worse in 

Fig. 11. The experimental results on the datasets. Each row from up to below are the results of the dataset Mikolajczyk [22], Hpatches [23], and hannover [24], each 
consists of the cumulative distribution graph of the inlier rate, precision, recall, and F-score in the dataset. 

Table 1 
The average results on three datasets.  

outlier Indicator RANSAC GMS LPM GTM LTS 

0.594 precision 0.774 0.498 0.784 0.607 0.916 
recall 0.599 0.699 0.789 0.353 0.831 
F-score 0.643 0.559 0.785 0.427 0.865  
Runtime/ms 68 10(C++) 40 190 51  
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precision, and the recall of RANSAC is also low, which shows the lower 
robustness of RANSAC in high proportion of mismatching. OA-Net 
shows highest performance, which remains high precision, recall and 
F-score with increasing proportion of mismatches. GC-RANSAC perform 
well when mismatching rate is not so high, and it becomes invalid 
quickly when mismatching ratio increase, which shows a weak robust
ness. And the method LTS we proposed perform better than other 
method mentioned expect OA-Net, regardless of precision, recall or F- 
score, LTS declines more slowly. In summary, our method LTS is 
significantly excellent in accuracy and robustness. Although our LTS 
performs slightly worse than OA-Net, a representative deep learning- 
based method, it is still a good choice for mismatching removal with 
no training process and a stronger generalization ability. 

5. Conclusion 

In this paper, a method LTS for mismatch removal is proposed. It first 
simplifies the mismatching probability calculation based on local to
pology similarity in an extremely simplest way to extract the more 
essential features, and imports the probability into process of the 

sampling to fully compensate the advantage of sampling. It is proven by 
the experiment that it has high accuracy and robustness, with a good 
adaptability to high mismatching ratio conditions. 

However, the proposed approach relies on the establishment of a 
local topology network and becomes ineffective as the number of feature 
points in the image are limited, which prevents the construction of a 
stable topology. Furthermore, sampling requires the prior determination 
of a transformation model, rendering it unsuitable for non-rigid 
matching applications. 

Generally, the proposed method LTS has achieved good results as a 
geometry and resampling combining method, which shows the 
combining method have a huge potential in the fields of mismatch 
removal. 
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The authors declare that they have no known competing financial 
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Fig. 12. The experimental results on three indicators with ome combination methods and deep learning method. The inlier ratio of dataset is similar to Fig.11 (a).  

Table 2 
The average results on three datasets.  

outlier Indicator GMS+SAC LPM+SAC GCRANSAC TSAC OANet LTS 

0.594 precision 0.821 0.885 0.827 0.866 0.872 0.916 
recall 0.724 0.795 0.731 0.803 0.872 0.831 
F-score 0.756 0.829 0.792 0.827 0.866 0.865  
Runtime/ms >100 109 15(C++) 76 56 51  
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