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ABSTRACT

We propose Wyckoff Transformer, a generative model for materials conditioned
on space group symmetry. Most real–world inorganic materials have internal sym-
metry beyond lattice translation. Symmetry rules that atoms obey play a funda-
mental role in determining the physical, chemical, and electronic properties of
crystals. These symmetries form energy configurations, determine stability, and
influence key material structural and functional properties such as electrical and
thermal conductivity, optical and polarization behavior, and mechanical strength.
And yet, despite the recent advancements, state-of-the-art diffusion models strug-
gle to generate highly symmetric crystals. We use Wyckoff positions as the basis
for an elegant, compressed, and discrete structure representation. To model the
distribution we develop a permutation–invariant autoregressive model based on
Transformer and absence of positional encoding. Our experiments demonstrate
that Wyckoff Transformer has the best performance in generating novel diverse
stable structures conditioned on the symmetry space group, while also having
competitive metric values when compared to model not conditioned on symmetry.
We also show that it is able to predict formation energy and band gap within DFT
accuracy.

1 INTRODUCTION

Space of all possible combinations of atoms forming periodic structures is intractably large. It is not
possible to screen it fully, even with a fast machine learning algorithm. Practical materials, however,
occupy only a small part of it. Firstly, they must correspond to an energy minimum. Secondly,
occupying an energy minimum is not sufficient to establish if the material is synthesizable or indeed
experimentally stable. Having a generative model that outputs a priori stable materials is a step
towards speeding up automated material design by orders of magnitude.

1.1 SPACE GROUPS AND WYCKOFF POSITIONS

A crystal structure can be systematically described through its lattice and atomic basis. The lattice
provides a repeating geometric framework, defined as an infinite periodic arrangement of points in
space. Based on interactions between the constituent electrons and nuclei, atoms rearrange into such
a lattice and, therefore, follow a finite set of symmetries: the group of all such symmetry operations
that uniquely define the periodic arrangement is called the space group of the crystal. These arrange-
ments in a crystal are governed by a finite set of symmetry operations, such as rotations, reflections,
inversions, and translations. These operations combine to form the 230 distinct space groups, which
serve as a comprehensive classification system for all possible crystal symmetries in three dimen-
sions. Each space group defines the unique symmetry properties of a crystal structure, defining the
allowable positions for atoms within the unit cell. This ensures that every crystal possesses at least
the simplest level of symmetry, referred to as P1 symmetry, which involves only translational sym-
metry. The atomic basis specifies the arrangement of atoms associated with each lattice point, thus
defining the overall crystal structure.

Within a given space group, a subgroup forms the site symmetry, referring to the set of symmetry
operations that leave a specific point in the crystal invariant. These operations describe the local
symmetrical environment, such as mirror, screw axis, or inversions centered on that a given region.
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Higher site symmetry is in regions where multiple symmetry elements intersect, while those with
lower site symmetry include only one symmetry operation. Taking space group 225 Fm-3m as an
example, site symmetry subgroup m-3m represents a highly symmetric environment like the center
of a cubic unit cell, where multiple symmetry elements intersect, including mirror planes and a 3–
fold rotoinversion axis. In contrast, another lower site symmetry subgroup .3m corresponds to a less
symmetric environment with only a threefold rotation axis and a mirror plane.

These site symmetry points, classified by their symmetry properties, are grouped into Wyckoff posi-
tions (WPs) (Wyckoff, 1922). Mathematically, a WP encompasses all points whose site symmetry
groups are conjugate subgroups of the full space group Kantorovich (2004). Each WP is character-
ized by two key attributes:

1. Site symmetry
2. Symmetry equivalence: two different Wyckoff positions in the same space group can share

the same site symmetry but may still be symmetry equivalent. This equivalence arises
when the Wyckoff positions can be mapped onto each other using higher–order symmetry
operations, such as those defined by the Euclidean normalizer of the space group. These
symmetry–equivalent WPs form the basis for enumeration and augmentation in the subse-
quent sections of this work.

WPs for a given space group are commonly enumerated by Latin letters in the order of multiplicity,
the number of equivalent atomic positions in a crystal structure that are related by the symmetry
operations of the space group. WPS are denoted by a combination of the multiplicity value and
the letter, e. g. 2a. The number of distinct WPs in a space group is finite, ranging from a single
WP in the simplest symmetry group P1 to as many as 27 in the most complex space groups. These
classifications enable the description of not only discrete points but also more complex geometric
features. For example, some Wyckoff positions represent 1D lines, 2D planes, or even open 3D
regions within the unit cell, depending on the symmetry constraints. This flexibility underscores
the utility of Wyckoff positions in describing diverse crystallographic arrangements. By introduc-
ing these fundamental concepts – lattice, atomic basis, space groups, site symmetry, and Wyckoff
positions – this framework provides a foundation for understanding crystal structures.

Our work relies on a crucial insight: most (≈ 98%) known crystals have symmetry beyond the
lattice translation, see figure 1. Those symmetries are not merely a mathematical observation; opti-
cal, electrical, magnetic, structural and other properties are determined by symmetry, as shown by
Malgrange et al. (2014); Yang et al. (2005), as well as our results in section 3.4.

P-1 C2/m Pnma
Cmcm

P4/mmm
I4/mmm R-3m

P63/mmc
Pm-3m

Fm-3m

FlowMM
DiffCSP

WyCryst
DiffCSP++

CrystalFormer
WyForDiffCSP++

WyFormer
MP 20

Figure 1: Distribution of space groups in MP–20 dataset Xie et al. (2021) and the generated samples.
10 space groups most frequent in MP–20 are labeled, 98% of MP–20 structures belong to symmetry
groups other that P1, with internal symmetries. Plot design by Levy et al. (2024)

1.2 OUR CONTRIBUTION

Our contribution can be summarized as follows:

1. Representing a crystal as an unordered set of tokens fused from the chemical element and
Wyckoff position; section 2.1.

2. Encoding Wyckoff positions using their universally-defined symmetry point groups; sec-
tion 2.1.
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Figure 2: Wyckoff positions illustration of a toy 2D crystal Goodall et al. (2020). It contains 4 mirror
lines, and one rotation center. There are four Wyckoff positions, illustrated by shading. Magenta
is the Wyckoff position that is invariant under all the transformations, it only contains a single
point; red and yellow lie on the mirror lines, and teal is only invariant under identity transformation
and occupies the rest of the space. Markers of the corresponding colors show one of the possible
locations of an atom belonging to the corresponding Wyckoff position.

3. Wyckoff Transformer architecture and training protocol that combine autoregressive prob-
ability factorization with permutation invariance; section 2.3.

4. Model invariance with the respect to the arbitrary choice of the coset representative of the
space group affine normalizer; sections 2.1, 2.3.

5. Empirically, our model outperforms past methods in generating novel diverse materials
conditioned on space group symmetry; section 3.4.

6. Despite not using the information about atom coordinates, our model achieves performance
in band gap prediction competitive with the machine learning models that use it; Wyckoff
Transformer is also able to predict formation energy prediction within the level of DFT
accuracy; section 3.4.

1.3 RELATED WORK

Crystal generation is a burgeoning field, with a plethora of models operating in the 3D point cloud
space (Jiao et al., 2024a;b; Cao et al., 2024; Yang et al., 2023; Zeni et al., 2024; Xie et al., 2021).
Our approach complements them naturally by providing discrete symmetry constraints and/or initial
structure approximation.

Application of Wyckoff positions in machine learning. The concept of Wyckoff positions in
crystalline materials emerged from Ralph W. G. Wyckoff’s work on crystallography, originally pub-
lished more than a 100 years ago (Wyckoff, 1922), which laid the groundwork for understanding
equivalent positions in space groups, serving as a precursor to the International Tables for Crystal-
lography. Given their elegant representation, naturally, in modern times WPs have found their way
into material informatics and machine learning, first as feature engineering approach for property
prediction (Goodall et al., 2020; Jain & Bligaard, 2018; Möller et al., 2018), and recently for gen-
erative models. The main limiting factor was the ability of machine learning algorithms to handle
discrete structured data which is formed by WPs. Our work is inspired by Zhu et al. (2024), the first
generative model to utilize Wyckoff positions. It uses a VAE over one–hot–encoded information
about WPs. A concurrent work by Cao et al. (2024) independently explores an approach similar
to ours. The main differences between our and those two approaches is that they use a represen-
tation based on Wyckoff letters. Wyckoff letter definitions depends on the space group, unlike site
symmetry, leading to data fragmentation. Zhu et al. (2024); Cao et al. (2024) also don’t take into
account dependency of the Wyckoff letters on the arbitrary choice of the coset representative of the
space group Euclidean normalizer. Finally, Cao et al. (2024) use positional encoding to establish the
relationship between the chemical elements and Wyckoff positions they occupy, while we combine
them in one token.
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2 WYCKOFF TRANSFORMER (WYFORMER)

2.1 TOKENIZATION

A crystal can be represented as a space group, a set of WPs and chemical elements occupying
them, the fractional coordinates of the WP degrees of freedom, and free lattice parameters. Such
representation reduces the number of parameters by an order of magnitude without information loss.
For example, see figure 3.

Group: I4/mmm (139)
Lattice: a = b = 8.9013, c = 5.1991, α = 90.0, β = 90.0, γ = 90.0
Wyckoff sites:
Nd @ [ 0.0000 0.0000 0.0000], WP [2a] Site [4/m2/m2/m]
Al @ [ 0.2788 0.5000 0.0000], WP [8j] Site [mm2.]
Al @ [ 0.6511 0.0000 0.0000], WP [8i] Site [mm2.]
Cu @ [ 0.2500 0.2500 0.2500], WP [8f] Site [..2/m]

Figure 3: Wyckoff representation of Nd(Al2Cu)4 (mp-974729), variable parameters in bold. If rep-
resented as a point cloud, the structure has 13[atoms]×3[coordinates]+6[lattice] = 42 parameters;
if represented using WPs, it has just 4 continuous parameters (WPs 8i and 8j each have a free
parameter, and the tetragonal lattice has two), and 5 discrete parameters (space group number, and
WPs for each atom).

Of work is based on the observation that for stable materials space group symmetry and Wyckoff
sites almost completely define the structure – 98.3% of the structures in MP–20 dataset have unique
Wyckoff representations. Therefore our model only generates the discrete part; one could argue that
the symmetry captured by this discrete part is sufficient to determine a desired property of a material
(for example piezoelectricity via non-centrosymmetry, direct/indirect band gap via positions of the
valence/conduction bands in the Brillouin Zone, etc.), while the fractional coordinates can be linked
to the magnitude of that property. Given a Wyckoff representation that reflects the lattice symmetry,
coordinates can be determined as discussed in section 2.4.

We represent each structure as a set of tokens, as shown in figure 4. The first token contains the
space group, the others chemical elements and WPs. We encode a WP as a tuple containing site
symmetry and so-called enumeration. Several WPs can correspond to the isomorphic site symme-
tries, for example both yellow and red in figure 2 correspond to reflection, but with different axes.
To differentiate those WPs we enumerate them separately within each space group and site symme-
try according to the conventional WP order Aroyo et al. (2006). For example, in space group 225
present in figure 4 WP 4a is encoded as (m-3m, 0), 4b as (m-3m, 1), and 8c as (-43m,
0). The purpose of this encoding is to take advantage of the fact that, unlike Wyckoff letters, site
symmetry definition is universal across different space groups.

Element

Site symmetry

Enumeration

225

Mg

m-3m​

0

Tm

m-3m​

1

Hg

-43m​

0

Space 
group

Figure 4: An example of structure tokenization, TmMgHg2 mp-865981

The two-part encoding has another advantage. For some crystals enumerations part, and only this
part, of Wyckoff representation is not uniquely defined, as it depends on the arbitrary choice of the
coset representative of the space group Euclidean normalizer. See the example in figure 5.

2.2 MODEL ARCHITECTURE

Token embeddings are constructed by concatenating the embeddings for every part of the token
(element, site symmetry, enumeration). To each structure we add a STOP token. We use those
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0 1

Sr (1a=[m-3m, 0]) (0, 0, 0) 

Ti (1b=[m-3m, 1]) (1/2, 1/2, 1/2)  

O (3d=[4/mm.m, 1]) (1/2, 0, 0)

Sr (1b=[m-3m, 1]) (1/2, 1/2, 1/2) 

Ti (1a=[m-3m, 0]) (0, 0, 0)  

O (3c=[4/mm.m, 0]) (0, 1/2, 1/2)  

Figure 5: Two possible equivalent Wyckoff representations of SrTiO3, depending on the lattice
center choice:
[(Ti, (m-3m, 0)), (Sr, (m-3m, 1)), (O, (4/mm.m, 1))]
[(Ti, (m-3m, 1)), (Sr, (m-3m, 0)), (O, (4/mm.m, 0))]

sequences as an input for an encoder-only Transformer Vaswani (2017). Wyckoff representation is
permutation–invariant, so is Transformer; we don’t use positional encoding.

De novo generation To represent states where some parts of token are known and others are not,
we replace those values with MASK. We take the output of Transformer on the token containing
MASK value(s), concatenate it with a one-hot vector encoding presence of each token in the input
sequence, and use the result as the input for three fully-connected neural networks, one for each
predicted part of token.

Property prediction We take the average of the Transformer outputs and use it as input for a
fully-connected neural network that outputs a scalar predicted value.

2.3 TRAINING

We use data augmentation to encourage invariance with the respect to the choice of the coset repre-
sentative of the space group affine normalizer, by picking a randomly selected equivalent represen-
tation at every training epoch. It is made possible by the low number of variants; in MP–20 (Xie
et al., 2021) dataset for 96% structures there are less than 10.

De novo generation We use cross–entropy loss. We predict the next part of token in cascade: first
the chemical element, then, conditioned on it, site symmetry and, finally, enumeration.

Unlike Transformer itself, auto–regressive generation is not permutation–invariant. Fortunately for
us, the number of WPs is small, the average in MP-20 is just 3.0; this allows us to achieve permu-
tation invariant generation with just training augmentation. We shuffle the order of every Wyckoff
representation at every training epoch. We use multi–class loss when training to predict the fist
cascade part, chemical element, further reducing learning complexity. Model is trained for 9× 105

epochs; due to the efficiency of the representation, entire dataset fits into GPU memory. We use the
loss on the validation dataset for early stopping, learning rate scheduling, and manual hyperparam-
eter tuning.

Property prediction Training as a regular regression model using MSE loss over 150k epochs.
Accordingly, the model uses the entire sequence of tokens, i.e. all atom types and WPs.

5
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2.4 STRUCTURE GENERATION

We generate crystals conditioned on space group number. It is sampled from the combination of
training and validation datasets. Wyckoff representation is then autoregressively sampled using the
Wyckoff Transformer. We use two ways to generate the final crystal structure conditioned on the
representation, the details are described in appendix section A. They both start with sampling a
structure conditioned on the Wyckoff representation with pyXtal (Fredericks et al., 2021), and then
relaxing it with CHGNet (Deng et al., 2023) and CrySPR (Nong et al., 2024) or DiffCSP++ (Jiao
et al., 2024b).

3 EXPERIMENTAL EVALUATION

Dataset We use MP-20 Xie et al. (2021), which contains almost all experimentally stable materials
in Materials Project Jain et al. (2013) with a maximum of 20 atoms per unit cell, within 0.08 eV/atom
of the convex hull, and formation energy smaller than 2 eV/atom, 45229 structures in total.

3.1 METRICS

Structure property similarity metrics Coverage and Property EMD (Wasserstein) distance, have
been proposed as a low–cost proxy metric for de novo structure generation by Xie et al. (2021) and
then followed by most of the subsequent work.

Validity Xie et al. (2021) proposed verifying crystal feasibility according to two criteria:

Structural validity means that no two atoms are closer than 0.5Å. All structures in MP–20
and almost all structures produced by state–of–the–art model fulfill it.

Compositional validity means having neutral charge (Davies et al., 2019). Only 90%
of MP–20 structures pass this test meaning that nonconforming structures are physically
possible if somewhat rare.

Novelty and uniqueness The purpose of de novo generation is to obtain new materials. Generat-
ing materials that already exist in the training dataset increases the model performance according to
structure stability and similarity metrics, but such structures are useless for material design and just
increase the gap between the proxy metrics and the model fitness for its purpose. Therefore we ex-
clude generated materials that are not novel and unique from metric computation. On a deeper level,
generative models for materials are subject to exploration/exploitation trade–off: the more physi-
cally similar are the sampled materials to the training dataset, the more likely they are stable and
distributed similar to the data, but the less useful they are for the purpose of material design. From
a purely machine learning point of view, novelty percentage serves a proxy metric for overfitting.

Stability is estimated by computing energy above convex hull, and comparing it to a threshold
Ehull < 0.08 eV, same as used during construction of MP–20 dataset. Then we compute S.U.N. Zeni
et al. (2024) – the fraction of stable unique novel structures.

Due to DFT computational costs, we use CHGNet (Deng et al., 2023) for stability estimation of
the generated structures, and then compute DFT for a manageable sample from the novel structures
generated by the strongest models. Materials Project (Jain et al., 2013) is the source of the structures
for the hull; we computed CHGNet predicted energies for it to use as references.

Symmetry of the structures has paramount physical importance. Controlling symmetries also leads
to control over physical, electronic, and mechanical behavior, which is desirable in property–directed
inverse design of materials. For example, in electronic materials, higher symmetry can improve car-
rier mobility and uniformity in electronic band structure, enhancing performance in applications
such as semiconductors or optoelectronics. Furthermore, high–symmetry structures often exhibit
isotropic properties, meaning their behaviors are the same in all directions, making them more ver-
satile for industrial use. From a computational perspective, for a fixed set of atoms that constitute
a crystal, enforcing symmetries (beyond the basic P1 translation symmetry) allows for computing
permutations to search for useful materials while maintaining a focus on practical, synthesizable
crystal structures.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

This combination of stability, desirable properties, and computational efficiency makes symmetry
consideration in crystals especially valuable in generative models for materials discovery. While
higher symmetry is more tractable to compute, experimental realization could require external en-
ergy inputs (higher temperatures and pressures: think diamond vs graphite); most databases com-
puted with DFT today are only at 0K and hence do not include this degree of freedom. Keeping
this in mind, to evaluate the models according to their ability to reproduce symmetry properties we
propose four new metrics:

P1 is the percentage of the structures that have symmetry group P1. In MP–20 the cor-
responding number is just 1.7%, and yet more than a third of the structures generated
by some state–of–the–art models lack symmetry beyond lattice translation. We argue that
presence of symmetry is good proxy value for structure feasibility that is difficult to capture
in standard DFT computations, and would require finite–temperature calculations and/or
improved methodologies.

Novel Unique Templates (#) is the number of the novel uniquen element-
agnostic Wyckoff representations (section 2.1) in the generated sample. Element-
agnostic means that we remove the chemical element, while retaining the sym-
metry information. For example, for the TmMgHg2 in figure 4, it will
be as follows:{[(X, (m-3m, 0)), (X, (m-3m, 1)), (X, (-43m, 0))];
[(X, (m-3m, 1)), (X, (m-3m, 0)), (X, (-43m, 0))]}. The metric pro-
vides a lower limit on overfitting and physically meaningful sample novelty: if two mate-
rials have different symmetry templates, their physical properties will be different, while
inverse is not always true. It serves as an addition to the strict structure novelty, which
provides the upper bound. As discussed above, and previously in section 2.1, symmetry by
itself affects physical properties of materials. Crystals with higher symmetry tend to have
lower energy states due to more uniform atomic arrangements, which contributes to their
thermodynamic stability. This makes them more likely to be synthesizable and usable in
real–world applications.

Space Group χ2 is the χ2 statistic of difference of the frequencies of space groups between
the generated and test datasets.

S.S.U.N. is the percentage of the structures that are symmetric (space group not P1), stable,
unique and novel.

3.2 METHODOLOGY

Wyckoff Transformer was trained using MP–20 dataset following the original train/test/validation
split. We sampled 104 Wyckoff representations, then obtained 103 structures using pyXtal+CHGNet
and DiffCSP++ approaches described in section 3.2.

WyCryst (Zhu et al., 2024) only supports a limited number of unique elements per structure, there-
fore we trained it on a subsection of MP–20 containing only binary and ternary compounds, 35575
in total. Evaluation of Wyckoff Transformer trained on the same dataset as WyCryst is present
in Appendix E. As WyCryst also produces Wyckoff representations, and not structures, the same
pyXtal+CHGNet procedure was used to obtain them.

CrystalFormer (Cao et al., 2024) code and weights published by the authors were used by us to
produce the sample, conditioned on the space groups sampled from MP–20.

DiffCSP (Jiao et al., 2024a), DiffCSP++ (Jiao et al., 2024b), and FlowMM (Miller et al., 2024)
samples were provided by the authors.

Every data sample contained 1000 structures and was relaxed using CHGNet. The generated sam-
ples were filtered for uniqueness, more than 99.5% of structures for every method passed the filter-
ing, therefore its impact is minimal and not further discussed.

We computed for DFT for ∼ 90 novel structures for WyFormer and the baselines leading according
to CHGNet–based metrics; detailed description of the settings is available in Appendix C.
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Figure 6: Distribution of the number of unique elements per structure for MP–20 and novel gener-
ated structures.

3.3 DE NOVO STRUCTURE GENERATION RESULTS

Metric values are present in table 1. Wyckoff Transformer achieves the best template novelty, frac-
tion of asymmetric structures and space group distribution reproduction. Wyckoff Transformer and
DiffCSP have similar S.S.U.N. (T–test p = 0.8) and S.U.N. (T–test p = 0.2). Given the limited DFT
sample size, and DiffCSP’s superior S.U.N. computed with CHGNet, we are prepared to believe
that on a larger DFT sample it will surpass WyFormer. The correlation of CHGNet–determined
stability with DFT–determined is 0.33 – 0.44, meaning that CHGNet is a blunt, but still useful tool
for stability estimation.

Proxy metrics are present in table 1c. Every model wins in at least one category, with the second
place usually being close. We therefore would like to point out to some of the largest differences.
WyCryst and CrystalFormer have significantly lower novelty compared to the other models. While
manageable per se, it also means that the models have been overfitted, and their structures are more
similar to the training dataset. DiffCSP++ oversamples the structures with the large number of
unique elements, WyFormer matches the distribution most closely, as depicted in figure 6.

3.4 MATERIAL PROPERTY PREDICTION RESULTS

The results are shown in Table 2. As can be seen from the first column of the table, although our
model is inferior in quality to neural networks specifically trained to predict energy, its error is within
the difference between DFT calculations and experimental data, i.e. its results for predicting energy
are within the DFT error and can be used to assess the properties of the material in practice.

Our model outperforms 4 out of 6 the baselines in predicting the band gap – a much more difficult
property to predict.

From this we can conclude that the symmetries and composition of the crystal alone already carry
a considerable amount of information about its properties, and while knowledge of the coordinates
of the atoms is essential for predicting the energy, the symmetries play a much greater role for
predicting the band gap, since the Brillouin zones depend on them. This is evidence supporting
the notion that symmetries can determine the properties of a crystal virtually independently of the
coordinates.
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Table 1: Evaluation of the generated structures, symmetric properties in 1a, stability in 1b, distribu-
tion similarity in 1c; structures were relaxed with CHGNet Deng et al. (2023). Ehull < 0.08 stability
threshold is used, the same as in the training dataset, MP–20. WyForDiffCSP++ refers to Wyckoff
Transformer with DiffCSP++ structure generation.

(a) Evaluation of the methods according to the symmetry metrics. Sample size is 1000; the metrics are com-
puted only using novel structurally valid examples.

Method Novel Unique P1 (%) Space Group
Templates (#) ↑ ref = 1.7 χ2 ↓

WyFormer 180 3.24 0.223
WyForDiffCSP++ 186 1.46 0.212
DiffCSP++ 10 2.57 0.255
CrystalFormer 74 0.91 0.276
WyCryst 165 4.79 0.710

DiffCSP 76 36.57 7.989
FlowMM 51 44.27 12.423

(b) Stability of the generated structures, as estimated by DFT and CHGNet. Due to limited resources, DFT
was only computed for the baselines with the strongest CHGNet S.U.N. and S.S.U.N.; # refers to the number
of DFT samples; r is the Pearson correlation between structures’ stability determined by DFT and CHGNet.
Bold indicates the values within p = 0.1 statistical significance threshold from the best.

Method DFT ↑ r CHGNet ↑
# S.U.N. (%) S.S.U.N. (%) S.U.N. (%) S.S.U.N. (%)

WyFormer 96 7.5 7.5 0.33 39.2 38.2
WyFormerDiffCSP++ 95 14.1 14.1 0.44 36.7 36.0
DiffCSP++ 94 8.5 8.5 0.32 41.4 40.8
CrystalFormer – – – – 33.9 33.8
WyCryst – – – – 36.6 35.2
DiffCSP 82 20.8 13.1 0.36 57.4 40.6
FlowMM – – – – 49.2 29.9

(c) Evaluation of the methods according to validity and property distribution metrics. Following the reasoning
in section 3.1, we apply filtering by novelty and structural validity, and do not discard structures based on
compositional validity. An evaluation following the protocol proposed by Xie et al. (2021) is available in
Appendix D.

Method Novelty Validity (%) ↑ Coverage (%) ↑ Property EMD ↓
(%) ↑ Struct. Comp. COV-R COV-P ρ E Nelem

WyFormer 90.00 99.56 80.44 98.67 96.72 0.74 0.053 0.097
WyForDiffCSP++ 89.50 99.66 80.34 99.22 96.79 0.67 0.050 0.098
CrystalFormer 76.92 86.84 82.37 99.87 95.13 0.52 0.100 0.163
DiffCSP++ 89.69 100.00 85.04 99.33 95.80 0.15 0.036 0.504
WyCryst 52.62 99.81 75.53 98.85 87.10 0.96 0.113 0.286
DiffCSP 90.06 100.00 80.94 99.55 96.21 0.82 0.052 0.294
FlowMM 89.44 100.00 81.93 99.67 99.64 0.49 0.036 0.131

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: MAE values for different methods (Xie & Grossman, 2018; Schütt et al., 2017; Chen et al.,
2019; Louis et al., 2020; Choudhary & DeCost, 2021; Deng et al., 2023) All models use Materials
Project data, but a larger subsample was used by the baseline models compared to our calculations,
that used only MP–20. Results by Lin et al. (2023)). Xie & Grossman (2018); Jha et al. (2019)
report the error between DFT–computed and experimental results ≈ 0.08 eV for energy, and ≈ 0.6
eV for band gap.

Method Energy, eV Band Gap, eV
CGCNN 0.031 0.292
SchNet 0.033 0.345
MEGNet 0.030 0.307
GATGNN 0.033 0.280
ALIGNN 0.022 0.218
CHGNet 0.030 -
PotNet 0.019 0.204
WyFormer 0.044 0.247

4 CONCLUSIONS AND LIMITATIONS

Our work shares the limitation of most generative models for materials Zeni et al. (2024); Zhu et al.
(2024); Xie et al. (2021); Jiao et al. (2024a): we learn the distribution from the training dataset,
so there must be stable structures that are out-of-domain and won’t be generated. Ehull as a proxy
for stability is commonly used, but is imperfect, as it doesn’t take into account entropy, and the
hull determination relies on known structures. Using CHGNet for stability estimation is less precise
compared to DFT, even thought it’s one of the best models available, its energy prediction MAE on
matbench discovery benchmark (Riebesell et al., 2023) is ≈ 0.06 eV.

Novelty and diversity evaluation is crucial. A model can generate structures that are same or similar
to the ones in the training dataset, and are valid, but not very useful for material design. Counting
complete duplicates is a step in the right direction, but doesn’t measure substantial sample diver-
sity Hicks et al. (2021).

In conclusion, we show that our Wyckoff Transformer approach represents a novel advancement in
the generation of symmetric crystal structures by leveraging Wyckoff positions to encode material
symmetries more efficiently. Unlike previous methods, Wyckoff Transformer achieves a higher de-
gree of structure diversity while maintaining stability, by encoding the discrete symmetries of space
groups without relying on atomic coordinates. This unique tokenization of symmetry elements en-
ables the model to explore a reduced, yet highly representative space of possible configurations,
resulting in more stable and purportedly synthesizable crystals. The model respects the inherent
symmetry of crystalline materials, outperforms existing models in generating both novel and phys-
ically meaningful structures. These innovations underscore the method’s potential in accelerating
material discovery while maintaining accuracy in predicting key properties like formation energy
and band gap, comparable to complementary methods.

REPRODUCIBILITY STATEMENT

The code and trained model weights will be published with the paper under an open source license.
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Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions. Advances in neural information processing systems, 30, 2017.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Ralph Walter Graystone Wyckoff. The Analytical Expression of the Results of the Theory of Space-
groups, volume 318. Carnegie institution of Washington, 1922.

Tian Xie and Jeffrey C. Grossman. Crystal graph convolutional neural networks for an accurate and
interpretable prediction of material properties. arxiv.org/pdf/1710.10324, 2018.

Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola. Crystal dif-
fusion variational autoencoder for periodic material generation. ICLR 2022, arXiv preprint
arXiv:2110.06197, 2021.

Jiashi Yang et al. An introduction to the theory of piezoelectricity, volume 9. Springer, 2005.

Mengjiao Yang, KwangHwan Cho, Amil Merchant, Pieter Abbeel, Dale Schuurmans, Igor Mor-
datch, and Ekin Dogus Cubuk. Scalable diffusion for materials generation, 2023. URL
http://arxiv.org/abs/2311.09235.
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Shysheya, Jonathan Crabbé, Lixin Sun, Jake Smith, Bichlien Nguyen, Hannes Schulz, Sarah
Lewis, Chin-Wei Huang, Ziheng Lu, Yichi Zhou, Han Yang, Hongxia Hao, Jielan Li, Ryota
Tomioka, and Tian Xie. MatterGen: a generative model for inorganic materials design, 2024.
URL http://arxiv.org/abs/2312.03687.

12

https://link.aps.org/doi/10.1103/PhysRevB.13.5188
https://link.aps.org/doi/10.1103/PhysRevB.13.5188
https://chemrxiv.org/engage/chemrxiv/article-details/66b308a501103d79c5fd9b91
https://chemrxiv.org/engage/chemrxiv/article-details/66b308a501103d79c5fd9b91
https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
http://arxiv.org/abs/2311.09235
http://arxiv.org/abs/2312.03687


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ruiming Zhu, Wei Nong, Shuya Yamazaki, and Kedar Hippalgaonkar. WyCryst: Wyckoff inorganic
crystal generator framework. Matter, 2024. ISSN 2590-2385. doi: https://doi.org/10.1016/
j.matt.2024.05.042. URL https://www.sciencedirect.com/science/article/
pii/S2590238524003059.

APPENDIX

A STRUCTURE GENERATION DETAILS

The process of obtainining crystal structures from Wyckoff representations using PyXtal Fredericks
et al. (2021) begins by specifying a space group and defining WPs. PyXtal allows users to input
atomic species, stoichiometry, and symmetry preferences. Based on these parameters, PyXtal gen-
erates a random crystal structure that respects the symmetry requirements of the space group. Once
the initial structure is generated, we then perform energy relaxation using CHGNet. CHGNet is a
neural network-based model designed to predict atomic forces and energies, significantly speeding
up calculations that would traditionally require density functional theory (DFT). Energy relaxation
involves optimizing the atomic positions to reach a minimum energy configuration, which represents
the most stable form of the material. CHGNet, trained on vast DFT datasets, can efficiently relax
crystal structures by adjusting atomic positions to reduce the total energy. This approach ensures that
the final structure is not only symmetrical but also physically realistic in terms of energy stability.

For the 2nd structure generation method, DiffCSP++ is a diffusion-based crystal structure prediction
model that focuses on generating purpotedly stable crystal structures by sampling from an energy
landscape in a physically consistent manner. DiffCSP++ generation also starts with PyXtal sam-
pling.

B ENERGY ABOVE HULL CALCULATIONS

To obtain the Ehull, we firstly constructed the reference convex hull data by querying all 153235
structures from the Materials Project (MP), and then using CHGNet (Deng et al., 2023) with using
CrySPR interface (Nong et al., 2024) to do structure relaxations for all MP structures by relaxing
both lattice cells and atomic positions (vc-relax), which renders 153,226 valid entries for relaxed
structures and energies; secondly, for each 1,000 generated structures from each generative model,
we followed the same vc-relax procedure to get the relaxed structures and energies; finally, using
the pymatgen.analysis.phase diagram sub–module the Ehull for each entry of generated
structure was computed by referencing to the MP convex hull, Ehull = max{∆Ei}, where ∆Ei is
the decomposition energy of any possible path for a structure decomposing into the reference convex
hull.

C DFT DETAILS

All DFT structure relaxations were performed using the Vienna ab-initio simulation package (VASP)
with the plane-wave basis set. Kresse & Furthmüller (1996) The electron-ion interaction is described
by the projector augmented wave (PAW) pseudo-potentials. Kresse & Joubert (1999) The pseudo-
potentials recommended by the VASP team are used. The exchange-correlation of valence electrons
is treated with the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient ap-
proximation (GGA). Perdew et al. (1996) The cutoff for kinetic energy of plane waves was set to
520 eV. Convergence thresholds of 10−8 eV for total energy and 10−4 eV Å

−1
atom−1 for force

were set. The Monkhorst-Pack scheme of k-points sampling in the Brillouin zone with spacing of
0.15 Å

−1
is used Monkhorst & Pack (1976), in which the Γ point is included. The Dudarev et al.

simplified DFT+U scheme Dudarev et al. (1998) was adopted for the oxides and fluorides that con-
tain one or more of the following transition metals: Co (3.32 eV), Cr (3.7 eV), Fe (5.3 eV), Mn (3.9
eV), Mo (4.38 eV), Ni (6.2 eV), V (3.25 eV), W (6.2 eV), consistent with the MP. Spin-polarized
relaxations initialized with ferromagnetic, high-spin valence configurations were also performed to
check if there is any magnetic atom with magnetism ≥ 0.15 µB.
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The MP convex hull (v2023.11.1) was used as the reference hull. To do so comparably, addi-
tional DFT relaxations and self-consistent field (SCF) calculations using the VASP settings from
MPRelaxSet and MPStaticSet in pymatgen were further performed based on the previously
relaxed structures. The raw total energies of SCF calculations using the MPStaticSet are then
corrected using the correction scheme of MaterialsProject2020Compatibility before
putting into the PhaseDiagram to obtain the DFT Ehull. What should be emphasized here
is that the precision parameters, which are generated by MPRelaxSet and MPStaticSet,
are too coarse, regarding especially the convergence thresholds (2 × 10−4 eV for energy, and
2×10−3 eV Å

−1
for cumulative force) and the density of k-points sampling (equivalent to a spacing

of only 0.35 Å
−1

). The MPRelaxSet is not strictly appropriate for direct structure relaxations for
generated structures that typically are far off equilibrium.

D LEGACY METRICS

For completeness sake, in table 3 we present the metrics computed following the protocol set up
by Xie et al. (2021). We would like to again reiterate the issues with it. Firstly, the metrics are neg-
atively correlated with structure novelty, the raison d’être for material generative models. Secondly,
filtering by charge neutrality aka compositional validity means discarding viable structures.

Table 3: Method comparison according the protocol set up by Xie et al. (2021).

(a) Directly using structures produced by the methods, without additional relaxation. Note that CHGNet is an
integral part of generating structures with Wyckoff Transformer and WyCryst, so it’s used.

Method Validity (%) ↑ Coverage (%) ↑ Property EMD ↓
Struct. Comp. COV-R COV-P ρ E Nelem

WyckoffTransformer 99.60 81.40 98.77 95.94 0.39 0.078 0.081
WyFormerDiffCSP++ 99.80 81.40 99.51 95.81 0.36 0.083 0.079
CrystalFormer 93.39 84.98 99.62 94.56 0.19 0.208 0.128
DiffCSP++ 99.94 85.13 99.67 99.54 0.31 0.069 0.399
WyCryst 99.90 82.09 99.63 96.16 0.44 0.330 0.322
DiffCSP 100.00 83.20 99.82 99.51 0.35 0.095 0.347
FlowMM 96.87 83.11 99.73 99.39 0.12 0.073 0.094

(b) All structures have been relaxed with CHGNet.

Method Validity (%) ↑ Coverage (%) ↑ Property EMD ↓
Struct. Comp. COV-R COV-P ρ E Nelem

WyckoffTransformer 99.60 81.40 98.77 95.94 0.39 0.078 0.081
WyTransDiffCSP++ 99.70 81.40 99.26 95.85 0.33 0.070 0.078
CrystalFormer 89.92 84.88 99.87 95.45 0.19 0.139 0.119
DiffCSP++ 100.00 85.80 99.42 95.48 0.13 0.036 0.453
WyCryst 99.90 82.09 99.63 96.16 0.44 0.330 0.322
DiffCSP 100.00 82.50 99.64 95.18 0.46 0.075 0.321
FlowMM 100.00 82.83 99.71 99.56 0.17 0.046 0.093

E EVALUATION ON MP–20 BINARY & TERNARY

Comparison of WyFormer to WyCryst is presented in tables 4 and 5. Both models were trained on a
subset of MP–20 training data containing only binary and ternary structures, and similarly selected
subset of MP–20 testing dataset is used as the reference for property distributions. All generated
structures were relaxed with CHGNet. CHGNet was used for the formation energy computation for
both generated and hull reference structures.

WyFormer outperforms WyCryst across the board. S.U.N. values are close, but this is achieved by
WyCryst sacrificing sample diversity and property similarity metrics, with about half of the gener-
ated structures already existing in the training dataset.
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Method Template Novelty P1 (%) Space Group S.S.U.N.
(%) ↑ ref = 1.7 χ2 ↓ (%) ↑

WyFormer 25.63 1.43 0.224 37.9
WyCryst 18.51 4.79 0.815 35.2

Table 4: Evaluation of the methods according to the symmetry metrics. Aside from Template Nov-
elty, metrics are computed only using novel structurally valid structures.

Method Novelty Validity (%) ↑ Coverage (%) ↑ Property EMD ↓ S.U.N.
(%) ↑ Struct. Comp. COV-R COV-P ρ E Nelem (%) ↑

WyFormer 91.19 99.89 77.28 98.90 96.75 0.83 0.064 0.084 38.4
WyCryst 52.62 99.81 75.53 98.85 89.27 1.35 0.128 0.003 36.6

Table 5: Evaluation of the methods according to validity and property distribution metrics. Follow-
ing the reasoning in section 3.1, we apply filtering by novelty and structural validity, and do not
discard structures based on compositional validity. Validity is also computed only for novel struc-
tures.

F HYPERPARAMETERS

F.1 OPTIMIZER

We use SGD optimizer with starting learning rate 0.2, and ReduceLROnPlateau scheduler with
factor=0.8 and patience of 40k epochs monitoring the validation dataset loss.

G FINE-TUNING LLM WITH WYCKOFF REPRESENTATION

To challenge Wyckoff Transformer’s architecture, we compared it with pre–trained language models
that were used in vanilla mode as well as after fine–tuning. We explored two different textual
representations of crystals corresponding to a given space group:

• Naive, which contains the specifications of atoms at particular symmetry groups encoded
by Wyckoff symmetry labels: Na at a, Na at a, Na at a, Mn at a, Co
at a, Ni at a, O at a, O at a, O at a, O at a, O at a, O at
a

• Augmented, which contains the specifications of atom types with its’ symmetries and site
enumerations: Na @ m @ 0, Na @ m @ 0, Na @ m @ 0, Mn @ m @ 0, Co
@ m @ 0, Ni @ m @ 0, O @ m @ 0, O @ m @ 0, O @ m @ 0, O @ m
@ 0, O @ m @ 0, O @ m @ 0, where the set of valid symmetries is: [’2.22’,
’4/mmm’, ’1’, ’-3..’, ’6mm’, ’m-3m’, ’2’, ’3mm’, ’.m’,
’-6mm2m’, ’4mm’, ’.32’, ’322’, ’.2/m.’, ’-1’, ’.m.’, ’..m’,
’m.2m’, ’.3m’, ’3m’, ’m2m.’, ’2mm’, ’-32/m.’, ’2..’, ’..2’,
’.3.’, ’2/m’, ’-43m’, ’4/mm.m’, ’.2.’, ’2/m2/m.’, ’23.’,
’222’, ’m..’, ’mm.’, ’-3.’, ’m-3.’, ’3.’, ’4/m..’, ’.-3m’,
’2m.’, ’-32/m’, ’-42m’, ’m.mm’, ’4..’, ’m.m2’, ’422’, ’32.’,
’22.’, ’-622m2’, ’3m.’, ’.-3.’, ’mmm..’, ’222.’, ’mm2..’,
’-4m2’, ’2/m..’, ’mm2’, ’-3m2/m’, ’-4m.2’, ’2mm.’, ’3..’,
’-42.m’, ’..2/m’, ’4m.m’, ’-4..’, ’6/mm2/m’, ’m2m’, ’m2.’,
’2.mm’, ’mmm.’, ’mmm’, ’32’, ’m’, ’-6..’]

We fine-tuned the OpenAI chatGPT-4o-mini-2024-07-18 model using different represen-
tations and compared it with the vanilla OpenAI gpt-4o-2024-08-06 model. For each of
the cases prompt looked like: Provide example of a material for spacegroup
number X. The table below contains details of the model training:
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Model Base
Model

Representation Hyperparameters Training
Time

Inference
Time

Number of
Parameters

WyLLM-
vanilla

gpt-4o-
2024-08-06

Naive – – 74m ≈ 200B

WyLLM-
naive

gpt-4o-
mini-2024-
07-18

Naive epochs: 1, batch: 24, learn-
ing rate multiplier: 1.8

51m 51m ≈ 8B

WyLLM-
site-
symmetry

gpt-4o-
mini-2024-
07-18

Site Symmetry epochs: 1, batch: 24, learn-
ing rate multiplier: 1.8

95m 37m ≈ 8B

Table 6: Comparison of different models and their characteristics. Number of parameters is not
known exactly and is taken from public sources as an approximate estimation. For reference,
WyFormer has 150k parameters.

Both training and inference times were measured using batch job execution on OpenAI’s cloud. The
fine-tuned model returned a JSON string that was easy to parse, while the vanilla model required
additional parsing of its output.

Method Novelty Validity (%) ↑ Coverage (%) ↑ Property EMD ↓
(%) ↑ Struct. Comp. COV-R COV-P ρ E Nelem

WyFormer 89.50 99.66 80.34 99.22 96.79 0.67 0.050 0.098
WyLLM-naive 94.67 99.79 82.89 98.72 94.97 0.39 0.067 0.015
WyLLM-vanilla 95.59 99.82 88.75 94.46 59.67 2.23 0.234 0.253
WyLLM-site-symmetry 89.58 99.89 83.89 99.44 96.32 0.29 nan 0.039

Method Wyckoff Validity Novel Unique P1 (%) Space Group
(%) ↑ Templates (#) ↑ ref = 1.7 χ2 ↓

WyFormer 97.8 186 1.46 0.212
WyLLM-naive 94.9 237 1.38 0.167
WyLLM-vanilla 28.7 87 2.03 0.621
WyLLM-site-symmetry 89.6 191 2.24 0.158

Table 7: Comparison for WyFormer to different variant of WyLLM. All structures have been relaxed
with DiffCSP++. Sample size is 1000 structures per model. The metrics described in section 3.1.
nan is placed where the generated structures contained a rare element that crashed the property
computation code. Wyckoff Validity refers to the percentage of the generated outputs that are valid
Wyckoff representations. Aside from LLM–specific problems, such as non–existent elements, a
Wyckoff representation can be invalid if it places several atoms at Wyckoff position without degrees
of freedom, or refers to Wyckoff positions that do not exist in the space group.

Comparison the WyFormer to WyLLM is present in table 7. When fine–tuned, an LLM using Wyck-
off representations shows similar performance to WyFormer – at a much greater computational cost.
Using site symmetries instead of Wyckoff letters doesn’t unequivocally increase the LLM perfor-
mance, a possible explanation is that since this representation is our original proposition, the LLM
is less able to take advantage of pre–training that contained letter–based Wyckoff representations.
Without fine-tuning, the majority of LLM outputs are formally invalid, and the distribution of the
valid ones doesn’t match MP–20.
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