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Abstract
In existing remote sensing image retrieval (RSIR) datasets, the number of images among
different classes varies dramatically, which leads to a severe class imbalance problem.
Some studies propose to train the model with the ranking‐based metric (e.g., average
precision [AP]), because AP is robust to class imbalance. However, current AP‐based
methods overlook an important issue: only optimising samples ranking before each
positive sample, which is limited by the definition of AP and is prone to local optimum.
To achieve global optimisation of AP, a novel method, namely Optimising Samples after
positive ones & AP loss (OSAP‐Loss) is proposed in this study. Specifically, a novel
superior ranking function is designed to make the AP loss differentiable while providing a
tighter upper bound. Then, a novel loss called Optimising Samples after Positive ones
(OSP) loss is proposed to involve all positive and negative samples ranking after each
positive one and to provide a more flexible optimisation strategy for each sample. Finally,
a graphics processing unit memory‐free mechanism is developed to thoroughly address
the non‐decomposability of AP optimisation. Extensive experimental results on RSIR as
well as conventional image retrieval datasets show the superiority and competitive per-
formance of OSAP‐Loss compared to the state‐of‐the‐art.
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1 | INTRODUCTION

In recent years, with the investment in scientific research of
satellite remote sensing technology, a large amount of relevant
remote sensing data has been produced. As a result, numerous
application research studies have been derived, among which

remote sensing image processing applications have attracted
wide attention. At the same time, these applications are in
urgent need of effective remote sensing image retrieval (RSIR)
techniques, which refers to the task of ranking semantically
matched or similar images in a large remote sensing image
database based on their relevance to the query [2–4]. RSIR has
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been studied for many years, and its core is how to quickly and
accurately find the target image from a large number of remote
sensing images. The performance of the predicted results in
RSIR is often evaluated using ranking‐based metrics, for
example, the standard recall at k (Recall@k) [5], the normalised
discounted cumulative gain (NDGG) [6], average precision
(AP) [7, 8], and spearman coefficient [9]. Nevertheless, it is
challenging to design a high‐performance method for RSIR
due to the complex and variable geographic information
contained in remote sensing images.

With the continuous research and development of deep
learning, end‐to‐end training in RSIR has become the de facto
choice. Although deep neural networks (DNNs) combined
with deep metric learning have achieved some success for
RSIR, they are tenuous to class imbalance [10] (i.e. the number
of images among different classes varies dramatically in RSIR
datasets), which will lead to performance degradation. As the
ranking evaluation metrics are robust to class imbalance ac-
cording to their ranking‐based error definition [11]. It has been
proposed to directly optimise the well‐defined ranking‐based
evaluation metrics to deal with the class imbalance problem.
This intuition appears attractive, but it is notoriously difficult
due to two major challenges posed by these evaluation metrics:
(i) non‐differentiability and (ii) non‐decomposability. To tackle
these problems, intuitively surrogate loss functions such as 0–1
loss [12, 13], the area under the ROC curve [14, 15], and cross
entropy [16] were utilised extensively. These loss functions are
decomposable, that is, they can be decomposed over every
training sample. However, these attempts were merely made by
optimising a structured hinge‐loss upper bound to such eval-
uation metrics [6, 8] rather than the metrics themselves.
Recently, there have been many studies using asymptotic
methods to directly optimise, for example, binning approaches
[17–21], neural networks [22], and blackbox methods [23, 24].

These methods provide an elegant upper bound for such
metrics, but they are generally coarse approximations. Conse-
quently, some efforts have attempted to design more accurate
and smooth approximations [17–22, 25]. All studies conducted
over many years have greatly promoted the optimisation of
ranking‐based evaluation metrics for vision tasks, such as
conventional image retrieval (CIR) [26–30], face recognition
[31–33], person/vehicle re‐identification [34–39], and object
detection [11] etc. Among these evaluation metrics, the AP is a
pivotal evaluation metric in RSIR.

Therefore, we consider AP optimisation as a solution to
overcome the class imbalance problem in RSIR. However,
there is an important issue with AP optimisation that has been
overlooked by previous research: only optimising samples
ranking before each positive sample, resulting in that all sample
information after each positive sample is not fully exploited.
This issue easily makes AP optimisation fall into a local opti-
mum. Moreover, this issue has rarely received attention so far,
and it is the first to focus on this issue in this paper. In
addition, current AP‐based methods adopt one special gradient
strategy, which may assign a smaller gradient to positive or
negative samples with higher scores referenced to a positive
sample with a lower score. Therefore, it should have different
gradients for different positive and negative samples, which
facilitates adaptive optimisation and improves the robustness
of the trained model. As shown in Figure 1, the intra‐class
diversity and inter‐class similarity of remote sensing images
are exceptionally significant, which poses a great challenge to
the robustness of the learnt model. These issues and challenges
affect the retrieval results of AP optimisation for RSIR.

In this paper, we tackle the above issues of directly opti-
mising AP with the stochastic gradient descent (SGD) methods
for RSIR, which not only address the non‐differentiable and
non‐decomposable nature of ranking to AP, but also include the

F I GURE 1 Sample images of four different categories (e.g. baseball field, basketball court, freeway, and runway) from PatternNet [1] dataset. (a) Baseball
field and (b) basketball court images, where the images with the same category show significant diversity. And (c) freeway and (d) runway images, where extreme
similarity exists between the images of different categories.
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specific optimisation limited by the AP definition. Existing AP‐
based methods have investigated and achieved some success in
the non‐differentiability and non‐decomposability of AP, but
improvement is still limited (detailed theoretical analysis is
shown in Section 4). Therefore, a more accurate and effective
optimisation of AP loss remains an open and explorable issue.

To this end, we propose a novel method, namely Optimising
Samples after positive ones & AP loss (OSAP‐Loss) for RSIR,
which provides an efficient training objective for the optimisa-
tion and improvement of AP. Specifically, OSAP‐Loss includes
three components: LSRF

AP , LOSP, and memory‐free mechanism
(MFM). First, to address the non‐differentiability of AP and
avoid the vanishing gradient of some samples, a novel superior
ranking function (SRF) is proposed to enable AP loss differ-
entiable while providing a tighter upper bound, thereby ensuring
that it can be directly optimised using standard gradient descent
methods, that is, LSRF

AP . Then, we introduce a novel loss, called
Optimising Samples after Positive ones (OSP) loss (i.e.LOSP), to
reduce intra‐class variability and inter‐class similarity for further
optimising LSRF

AP . More importantly, the LOSP considers the
ranking of all positive and negative samples after each positive
one and offers a more flexible optimisation approach for each
sample, which maintains a margin between positive and negative
samples. In this case, the initial version of OSAP‐Loss (i.e.
LOSAP) is formulated, that is, by linearly combining LSRF

AP and
LOSP. To achieve a small deviation in AP optimisation, a
graphics processing unit (GPU) MFM is developed to sidestep
the hardware constraints of the GPU memory, which could
thoroughly address the non‐decomposability in AP optimisa-
tion. The MFM is inspired by the instance‐level retrieval work
[20], and we are the first to apply this technology to the field of
RSIR. It is possible to use a very large batch size with several
thousand high‐resolution images on a single GPU. At last,
LMFM

OSAP is derived from LOSAP with MFM. This straightforward
yet effective loss function can improve the robustness of the
trained model for large‐scale RSIR tasks. Meanwhile, we provide
a theoretical analysis and discussion to verify the superiority and
effectiveness of our proposed method.

In summary, the major contributions of this paper are as
follows:

1) We propose shifting ranking orders rather than modifying
the metric learning loss and minimising distances in the
embedding space. In this paper, we propose a new method,
named OSAP‐Loss, which provides an efficient training
objective for the optimisation and improvement of AP. To
avoid the vanishing gradient of some samples, we design a
novel SRF that is differentiable for the AP loss (i.e. LSRF

AP )
while providing a tighter upper bound, thus ensuring that it
can be directly optimised using standard gradient descent
methods.

2) To reduce intra‐class variability and inter‐class similarity for
further optimising LSRF

AP , we design a novel loss, for
example, OSP loss, to involve all samples after positive
ones while offering a more flexible optimisation approach
for each sample for global ranking optimisation. In

addition, we are the first to develop a GPU MFM to
thoroughly address the non‐decomposability of AP by
sidestepping memory constraints of GPU in RSIR. The
MEM enables the training of arbitrarily sized batches,
which guarantees the global optimisation of AP and thereby
improves the overall ranking performance.

3) A theoretical analysis is provided to show the superiority
and effectiveness of our method. More importantly, we
conduct extensive experiments on six image retrieval
benchmarks, that is, three RSIR benchmarks containing
UCMD [40], NWPU‐RESISC45 [41], and PatternNet [1],
as well as three CIR benchmarks, including CUB‐200‐2011
[42], Stanford Online Product (SOP) [43], and INaturalist‐
2018 [44]. Experimental results show that our proposed
OSAP‐Loss is on par with or superior to the state‐of‐the‐
art, which also demonstrates its effectiveness.

The rest of this paper is organised as follows. The relevant
works on CIR, RSIR, deep metric learning and direct optimi-
sation for the AP metric are discussed in Section 2. We
introduce some preliminaries used in this work in Section 3
and describe the proposed method in Section 4. In Section 5,
we elaborate experimental settings and extensive experimental
results. Finally, conclusions are drawn in Section 6.

2 | RELATED WORK

In this section, we first review the related works of CIR in
Section 2.1, and then we revisit the studies on RSIR in Sec-
tion 2.2. Next, Section 2.3 provides the description and analysis
of deep metric learning. Finally, we introduce the methods of
direct optimisation for AP in deep metric learning in
Section 2.4.

2.1 | Conventional image retrieval

CIR has been a fundamental and hot research topic in the field
of information retrieval. It aims to find all images with relevant
content to the query in the database. Existing efforts on CIR
mainly focus on two categories: (1) the speed of retrieval and (2)
the accuracy of retrieval. For the speed of retrieval, with the
explosive growth of image content on the Internet, how to
conduct fast and effective retrieval has emerged as major
attention, where deep hashing [45–47] has become a leading
technique for fast image retrieval. Previous studies mainly uti-
lised hand‐crafted image features like scale‐invariant feature
transform (SIFT) to learn hash functions for modelling data
structures to preserve image similarities. Existing hashing
methods directly extract features to learn hash codes or hash
functions [48, 49] with the help of capable DNNs. For the ac-
curacy of retrieval, it focuses on designing or learning more
efficient image representations to achieve higher accuracy image
retrieval performance. The earlier works aimed at obtaining
compact image descriptors composed of multiple local features,
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such as Fisher vectors [50] and vector of locally aggregated
descriptors (VLAD) [51, 52]. In recent years, DNNs have made
wonderful progress in CIR due to their powerful non‐linear
fitting and feature capturing capabilities. On the one hand,
discriminative descriptors are generated by designing specific
neural network structures. On the other hand, designing training
objectives [43, 53–58] to achieve robust and generalised feature
distributions is another highly typical research area, namely deep
metric learning. It is worth noting that CIR can be extensively
viewed as a problem of learning to rank. Meanwhile, the key to
deep metric learning is to design a loss function that optimises a
good ranking as opposed to classification, which is consistent
with the objective of image retrieval. Therefore, image retrieval
can be solved by combining deep metric learning with an
appropriate ranking loss.

2.2 | Remote sensing image retrieval

RSIR is closely similar to CIR, except that the images retrieved
are remote sensing images. In the last decade, RSIR has primarily
focussed on the effective and discriminative feature extraction [2,
4, 59–62] and the dataset construction [1, 40, 41] of remote
sensing image scenes. The field of feature extraction can be
roughly divided into two categories: (1) hand‐crafted features
(e.g. SIFT [61], colour features [62], texture features [63], shape
features [64], and spatial relationships [65] etc.); (2) deep features
extracted by DNNs [2, 4, 59, 60]. Compared with hand‐crafted
features, it has become a consensus that deep learning can
improve the accuracy of RSIR tasks, thanks to the tremendous
feature capabilities of DNNs. Meanwhile, with the construction
of research datasets in the field of remote sensing (e.g. RSIR
datasets containing NWPU‐RESISC45 [40], NWPUD [41], and
PatternNet [1] etc.), which provides a large amount of training
data for deep learningmethods. Currently, theDNN‐basedRSIR
method is to extract the features of remote sensing images with
DNNs, and then train the model using classification loss [4, 66].
And deep metric learning methods have great potential in RSIR.
The loss function plays a vital role in improving the discrimi-
nation and distribution of the learned features by DNNs. At
present, some loss functions have been applied to RSIR with
good results, including contrastive loss [67], triplet loss [68], N‐
Pair loss [69], Proxy NCA loss [70], lifted structured loss [43],
and distribution structure learning loss (DSLL) [71]. However,
these methods ignore the distribution of intra‐class and the
differences of inter‐class. To this problem, Fan et al. [2] proposed
distribution consistency loss (DCL) [2] to select multiple positive
and negative samples from different classes to maintain intra‐
class compactness as well as inter‐class differences by sepa-
rating the negative samples from different classes by different
distances. Despite these deep metric learning methods being
novel and effective for RSIR, these loss functions belong to local
optimisation and are challenging for high‐resolution images in
RSIR. As stated previously, image retrieval itself is a ranking
problem, and the current loss function optimises merely the
upper bound of the ranking loss. Therefore, a globally optimised
loss function is necessary for RSIR in deep metric learning.

2.3 | Deep metric learning

Deep metric learning plays a critical role in many tasks, which
has been studied for decades. It concentrates on constructing an
effective feature space that effectively reflects the similarity or
dissimilarity among images. The objective of deep metric
learning is to minimise intra‐class similarity while simultaneously
maximising inter‐class similarity. Metric learning has been
extensively investigated by learning Mahalanobis distance
functions [72] or projection matrix [73] before deep learning
received widespread attention. Existing studies based on
deep metric learning have mainly focussed on the designing of
suitable loss functions to guide feature representation learning.
For example, widely used pair‐wise (e.g. contrastive loss [67])
and tuple‐wise (e.g. triplet based loss [58, 68, 74–76] and n‐tuple‐
based loss [69, 70, 77]) have been investigated for many years in
the field of image retrieval. The essence of these losses is to
construct the similarity structure between positive and negative
samples by enlarging the inter‐class distance and reducing
the intra‐class distance (e.g. Euclidean distance or Cosine dis-
tance). Nevertheless, these methods typically perform a local
optimisation due to the fact that they act on a limited and fixed
number of samples during the training phase. In addition, these
methods need a series of iterative operations during training,
including the repeatedly random sampling of challenging image
pairs or tuples, especially time‐consuming hard sample mining,
as well as the calculation of losses and back‐propagating
gradients.

Moreover, a number of current studies [78–80] have
pointed out that above‐mentioned methods have some poten-
tial limitations resulting in the local optimisation. Firstly, it can
be noticed that in most of these methods, only a proportion of
informative samples is considered for constructing a similarity
structure. As a result, numerous non‐trivial samples are ignored,
biasing the construction of the similarity structure. Secondly,
intra‐class data distribution properties are often ignored by
most of these methods. Especially, these methods [43, 69, 75]
attempt to pull the samples from the same class as closely as
possible, and in extreme cases, compress the samples from the
same class into a single point, which may easily degrade their
similarity structure. Thirdly, these methods treat each sample
with a specific gradient optimisation strategy, which forces the
optimisation of the model to spend more capacity on some
samples that have a minor effect on the similarity structure.
Importantly, another often overlooked yet essential issue so far
is that these loss functions only optimise the upper bound
surrogate loss of true ranking loss [8, 23, 81–83]. Therefore,
when using the ranking metric for evaluation, the minimum of
the loss does not always correspond to the minimum of the true
ranking loss (i.e. sub‐optimal), namely the minimum of the loss
does not guarantee that it corresponds to the minimum of the
true ranking loss when using the ranking metric for evaluation.
Furthermore, the common property of existing deep metric
learning methods is that most of them are driven by minimising
distance (maximising similarity) and thus overlook the impor-
tance of shifting ranking orders, which is crucial when evaluated
with rank‐based metrics. In this case, there have been extensive
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research efforts [17, 20, 24, 83–85] focussing on the direct
optimisation of ranking metric, such as AP.

2.4 | Direct optimisation for AP

AP is a widely used evaluation metric in many tasks, such as
object detection, image retrieval, person/vehicle re‐
identification and etc. Consequently, AP is a good, direct,
and effective choice as an optimisation goal. Recently, some
methods [17, 20, 24, 83–85] have been developed to directly
optimise AP as the training objective. Nevertheless, there are
two major challenges for optimising the approximation of AP:
non‐differentiability and non‐decomposability. To address
these two challenges, there are many studies in image retrieval
proposed and dedicated to AP optimisation.

For the first challenge, it has been actually studied for many
years. On the one hand, one solution is to find the smooth
surrogate losses for AP approximation. The widely used sur-
rogate losses for image retrieval are often based on the familiar
losses (e.g. contrastive loss [67], triplet loss [68], quadruplet loss
[86], or n‐tuple loss [69, 70, 77]) to enforce local ranking. These
methods only provide a very coarse upper bound for optimising
the AP, and require a complex sampling strategy and some
experience tricks to be effective. To this end, studying and
designing a smooth upper bound on AP has received many
progressive investigations [8, 23, 81–83]. Initially, some works
have adapted structured SVM models [8, 87] to reduce the
complexity of the corresponding loss‐enhanced inference or to
adjust to weak supervision [81]. After that, there are many AP
optimisation methods, for example, using a large LSTM [22] or
blackbox optimisation [24] to approximate the ranking step. On
the other hand, another option is to design smooth approxi-
mations of the ranking function. The most typical approach is
the soft‐binning techniques [17–21] via smoothing discrete
approximation of similarity scores. In recent years, another
approach has been explored directly to approximate the non‐
differentiable part of the ranking function, such as neural net-
works [22] or sigmoid functions [25, 84]. These approaches
provide a more accurate approximation of AP by designing tight
and smooth approximations of the ranking function. Although
these two categories of methods provide applicable and smooth
AP approximation, there are still some limitations. Specifically,
the former methods provide subtle upper bounds, but it is
mostly a coarse AP approximation; although the latter methods
provide accurate AP approximation, they cannot guarantee to
provide an upper bound for AP loss.

For the second challenge, the main reason lies in that the
AP metric cannot be linearly decomposed into individual
samples. Specifically, due to the limited available computational
space, existing training methods are based on linearly dividing
the whole samples into multiple batches, in which there will be
a gap between the calculated AP of multiple batches and the
AP of the whole samples. Consequently, it delivers an incon-
sistent AP gradient estimator. To address this challenge,
effective batch sampling [5, 74, 88] or selecting informative
samples [69, 88–90] makes the data distribution in a mini‐batch

as close as possible to the whole data distribution. And, Wang
et al. [91] proposed the cross‐batch memory method to store
learned features and compute the global objective based on the
assumption of the slow drift in learned features. Non‐
decomposability has been effectively handled in AP optimisa-
tion by increasing the batch size with a brute‐force effort [17,
20, 23, 25]. Although this way is effective in mitigating non‐
decomposability and improving model performance, it in-
troduces an important overhead in the computation and
memory of GPU, including two main steps for the computa-
tion of AP loss and the update of back‐propagation gradients.
Therefore, Ramzi et al. [85] tried to enable good performance
for AP optimisation with a simple but effective loss Lcalibr,
which uses small batches without introducing any overhead.
Although these methods have been proposed to alleviate the
decomposability gap and achieve significant success, it does not
completely and essentially solve this issue.

Although the above works have been proposed to tackle
these two major challenges in AP optimisation, the improve-
ment of non‐differentiability and non‐decomposability is still
limited. In addition, there is an overlooked issue of AP opti-
misation: only optimising samples ranking before each positive
sample, which results in that all sample information after each
positive sample is not fully exploited. In other words, existing
AP based losses do not achieve genuine global ranking opti-
misation. In order to overcome these limitations, this paper
proposes a new optimised loss function, named OSAP‐Loss,
to achieve global ranking optimisation for RSIR. Furthermore,
we also discuss and analyse the superiority and effectiveness of
our proposed method theoretically.

3 | PRELIMINARIES

In this section, we introduce some fundamental preliminaries
that will be used throughout the paper. We first offer the
definition of the notations. Then, we review the calculation
process of AP and the form of AP loss. Finally, we present the
cautions of AP optimisation.

3.1 | Notations

Let Ω¼ xj; yj
� �� �N

j¼1 be the retrieval set in the retrieval sys-
tems, where xj; yj

� �
indicates jth image and its corresponding

relevant label yj ∈ 1; 0f g related to the query. Note that there
are a total of M queries contained in Ω, that is,
Q¼ qi

� �M
i¼1 ⊆ Ω. For each query qi, the label yj is assigned a

relevant value, that is, ‘1’ if xj is relevant to qi, and otherwise
‘0’. Thus, the retrieval set Ω can be spilt into the relevant Pi
and irrelevant N i sets, that is, Ω¼ Pi ∪N i, which are
comprised by all the same class and different classes respec-

tively. In detail, with respect to qi, Pi ¼ xj ∈ Ωjyjjqi
¼ 1

n o
and

N i ¼ xj ∈ Ωjyjjqi
¼ 0

n o
. Note that each element xj in Ω is

mapped to a vectorial embedding vj ∈ Rd , where d is the
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embedding size. In order to map all elements into the
embedding space, we employ a DNN with weights θ, that is,

fθ(⋅). Hence, we use V¼ vj ∈ Rdjvj ¼ fθ xj
� �n oN

j¼1
to denote

the vectorial embedding set.

3.2 | Average precision

AP is one of the most commonly used evaluation metrics for
information retrieval tasks. It is a value of the area under the
precision‐recall curve. For a query qi, the set SΩ of relevance
scores of all elements in Ω are calculated by a selected simi-
larity measure. In this paper, we adopt the cosine similarity, so
SΩ can be defined as follows:

SΩ ¼ s qi; xj
� �

js qi; xj
� �

¼
vqi
vqi
�
�

�
�

⋅
vj
vj
�
�
�
�

* +( )N

j¼1

ð1Þ

where vqi and vj are the vectorical embeddings of the queryqi and
the element xj in Ω, SΩ ¼ SPi ∪ SN i, and SPi ¼ sk; ∀k ∈ Pif g,

SN i ¼ sk; ∀k ∈N if g are the relevant and irrelevant score sets
respectively. Each query qi thus corresponds to the relevant
score set SPi and irrelevant score set SN i. Thus, we can get a
ranking list of images

RListN qi; fθ
� �

¼ x1; x2;⋯xj;⋯xN jxj ∈ Ω
� �

ð2Þ

ordered by their similarities SΩ to query qi, where N is the
number of returned images and fθ projects xj to the feature
space as vectorial embedding vj.

Next, some transformations are required to be formalised
in ranking‐based loss. Firstly, the difference transformation
transfers the relevant score s(qi, xj) to the difference form with
respect to the query qi:

∀j; k; δj;k ¼ s qi; xj
� �

− s qi; xk
� �

ð3Þ

where xj can be either an element of the relevant set Pi or of
the irrelevant set N i. Note that xk is always an element of the
relevant set (e.g. xk ∈ Pi), that is, qi and xk are of the same
class. The relevant label transformation transfers the relevant
labels yj to the corresponding pairwise relevant form:

∀j; k; γj;k ¼ 1 ð4Þ

where 1 is the indicator function, γj,k = 1 if yj = 1, yk = 1 and
γj,k = 0 otherwise. Then, the ranking position of an element xj
before xk in Ω can be defined as follows:

Rank k;Pið Þ ¼ 1þ
X

j∈Pi;j≠k

1 δj;k > 0
� �

Rank k;N ið Þ ¼
X

j∈N i;j≠k

1 δj;k > 0
� � ð5Þ

where Rank k;Pið Þ and Rank k;N ið Þ represent the ranking
positing of the element xj in Pi and Ω, and
Rankðk;ΩÞ ¼ Rank k;Pið Þ þ Rank k;N ið Þ. The AP of query
xi can be calculated as follows:

3.3 | AP loss

Finally, we can formulate the AP loss LAP by averaging all over
queries, that is, the optimisation of the ranking problem can be
formed as follows:

min
θ
LAPðθÞ ¼ 1 − AP 1; θð Þ ¼ 1 −

1
M

XM

i¼1

APi 1; θð Þ ð7Þ

where θ is the wights of the DNN and 1 corresponds to the
indicator function. Note that AP 1; θð Þ is non‐differentiable
with respect to θ due to the indicator function 1, which often
uses the Heaviside step function:

HðzÞ ¼ 1 z ≥ 0
0 z < 0

�

ð8Þ

APi ¼
1
jPij

X

k∈Pi

precisionðkÞ ¼
1
jPij

X

j∈Pi

Rank k;Pið Þ

Rankðk;ΩÞ

¼
1
jPij

X

k∈Pi

Rank k;Pið Þ

Rank k;Pið Þ þ Rank k;N ið Þ

¼
1
jPij

X

k∈Pi

1þ
P

j∈Pi;j≠k1 δj;k > 0
� �

1þ
P

j∈Pi;j≠k1 δj;k > 0
� �

þ
P

j∈N i;j≠k1 δj;k > 0
� �

ð6Þ
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where its curve is almost all horizontal with zero or undefined
gradient. Therefore, the specific smooth differentiable rank
approximations need to be designed such that the standard
gradient descent method can be used for optimisation.

3.4 | Cautions for AP optimisation

In order to achieve effective and better AP optimisation, some
cautions for the AP itself are noteworthy. Below, we describe
and analyse the key cautions for AP optimisation.

Non‐differentiability. It is extremely difficult for AP
optimisation due to the presence of the indicator function 1 in
Equations (6) and (7). Specifically, It is the indicator function 1

that leads to the nature of non‐convexity and non‐
differentiability in AP loss. Therefore, It is a critical challenge
to design a solution that is differentiable, effective, and alter-
native to the indicator function 1 in AP optimisation. Mean-
while, it is currently still an open problem.

Non‐decomposability. Using AP to evaluate the model
performance must be in the whole test set. Therefore, AP
essentially cannot linearly decompose into several batches.
Limited by GPU memory resources, the current direct AP
optimisation methods are based on mini‐batch approxima-
tions. Consequently, this small min‐batch approximation will
result in a large deviation between the estimated mAP and the
true mAP, that is, the above referred to as the decomposability
gap (detailed presentation shown in Figure 2).

Limited optimisation by AP definition. AP is a metric
that belongs to the ranking‐based metrics, which is brittle due
to the high probability of ties happening (shown in Figure 3).
The main reason for this limitation lies in that the size of
existing datasets is so large that there is a high degree of inter‐
class similarity. In addition, once the positive sample score is
higher than all the negative sample scores, the AP score does
not change regardless of the difference between the positive
and negative sample scores. In that case, if the difference be-
tween positive and negative sample scores is very slight, this
case is not further optimised, which would make it highly
sensitive on the test set due to the existence of potential shifts.

Therefore, the avoidance of ties has attracted attention in some
works [17, 18, 23]. Finally, AP only considers both positive and
negative samples before each positive sample without involving
the samples after it, which may lead to local optimisation due
to insufficient utilisation of sample information. Therefore, it is
necessary to make full use of all samples' information for
global optimisation.

4 | METHODOLOGY

In this section, we introduce the optimisation solution for the
previously mentioned problems of AP‐based methods. Addi-
tionally, we provide an analysis of the loss functions associated
with our proposed OSAP‐Loss, such as SmoothAP [25] and
ROADMAP [85]. The framework of our method is illustrated
in Figure 4.

4.1 | Superior ranking function

In Equation (7), it contains a discontinuous ranking function
(i.e. the indicator function 1) that is non‐differentiable. To
address this issue, we design a novel SRF, which provides a
differentiable approximation and guarantees a tighter upper
bound of the AP loss. The SRF ensures robust training directly
optimised using standard gradient descent methods. Specif-
ically, we use different operations for Rank k;Pið Þ and
Rank k;N ið Þ in Equation (6), by defining two functionsHþð⋅Þ
and H−ð⋅Þ.

For Rank k;Pið Þ, similar to ref. [85], Hþð⋅Þ remains to be
the Heaviside step function, that is, HþðzÞ ¼ HðzÞ (see
Figure 5a). The purpose of this operation is to avoid contra-
dictory gradient flow for some positive samples.

For Rank k;N ið Þ, we define a simple yet effective surro-
gate H−ðzÞ (see Figure 5b) as follows:

H−ðzÞ ¼

0:5 ⋅

z
γ

1þ
�
�
�
z
γ

�
�
�
þ 1

0

B
@

1

C
A z ≤ 0

0:5 ⋅

z
γ

1þ
�
�
�
z
γ

�
�
�
þ 1

0

B
@

1

C
Aþ δ z > 0

8
>>>>>>>>>><

>>>>>>>>>>:

ð9Þ

F I GURE 2 Illustration of estimated mAP versus batch size, including
the corresponding mean and standard deviation. Intuitively, it can be
noticed that the smaller the batch size is, the larger the estimated mAP (i.e.
corresponding AP optimisation) bias is. mAP, mean average precision.

F I GURE 3 Ranking sample scores may collapse when many ties
happen due to the positive and negative samples with close scores. Green
and red circles indicate positive and negative samples respectively.
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where γ and δ are hyperparameters, and γ is a scale factor and δ
is an offset to make LAP have an upper bound. It is worth
noting that H−ðzÞ also avoids the vanishing gradient problem
for negative samples after positive samples (see the left graph
in Figure 6) According to Equation (9), can achieve a superior

approximation Rank k;N ið ÞSRF ¼
P

j∈N i;j≠kH− δj;k
� �

, obtain-
ing the superior AP loss approximation as follows:

LSRF
AP ¼ 1 −

1
M

XM

i¼1

1
jPij

X

k∈Pi

Rank k;Pið Þ

Rank k;Pið Þ þ Rank k;N ið ÞSRF

ð10Þ

4.2 | Memory‐free mechanism

In Equation (7), AP is linearly decomposable with respect to
queries qi, while APi is non‐decomposable with respect to
samples. For a query qi, the decomposability gap (i.e. DGAP) is
defined in ref. [85] as follows:

DGAPðθÞ ¼
1
K

XK

b¼1

APb
i 1; θð Þ − APiðθÞ ð11Þ

where K = N/M, N is the size of the retrieval set Ω and M is
the number of the queries Q. To thoroughly address the

F I GURE 4 The framework of our proposed OSAP‐Loss employs the commonly used ResNet‐50 [92] as the backbone. During the training process, N
training images include an image as the query qi and the rest images as the gallery set Ω. The optimisation procedure consists of three steps. For the first step,
the network extracts the features of all images and then discards the intermediate tensors in the memory. For the second step, we first calculate the similarity
matrix SΩ (Equation 1), calculate the OSAP‐Loss LOSAP containing two parts: minθLAPðθÞ and LOSP, finally calculate the gradient of the loss regarding the
features. For the last step, in order to continue backpropagation through the network, the network extracts the features from an image again, saving the
intermediate tensors this time. Before the network weights are eventually updated, the gradients are accumulated, one image at a time. Best viewed in colour.

F I GURE 5 Illustration of proposed superior ranking function for
substituting the Heaviside step function: (a) HþðzÞ and (b) H−ðzÞ. In this
case, LSRF

AP becomes an upper bound of LAP, and H−ðzÞ ensures the correct
gradient flow as well as avoiding gradient vanishing.

8 - YUAN ET AL.
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decomposability gap, we introduce a GPU MFM by side-
stepping the memory constraints of GPU following ref. [20].
The MFM allows the model to train with arbitrary resolution
images and arbitrary batch size, which makes it possible to
achieve optimal AP loss, and also means that DGAP can be
thoroughly solved. The MFM is illustrated in Figure 4, and
involves three main steps.

For the first step, the network extracts the features of all
images and then discards the intermediate tensors in the
memory. In the second step, we first calculate the similarity
matrix SΩ (Equation 1), calculate the OSAP‐Loss LOSAP
containing two parts: minθLAPðθÞ and LOSP, finally calculate
the gradient of the loss regarding the features, that is, LAP

vj
. That

is, in this step, we stop the network parameters updating by
disrupting the back‐propagation. Since a certain amount of
feature vectors and similarity score matrices have to be saved,
this step consumes a considerable amount of memory. During
the last step, in order to continue back‐propagation through
the network, the network extracts the features from an image
again, saving the intermediate tensors this time. Since this step
consumes a lot of memory, we perform this operation on an
image by image. Before the network weights are eventually
updated, the gradients are accumulated in multiple steps, one
image at a time.

Although the MFM sidesteps the constraint of the GPU
memory resources to enable the training with a large batch size, it
will contain an important overhead in memory. Especially, the
last step of MFM is memory consuming, since the intermediate
tensors after extracting the image features need to be stored.
Therefore, this situation forces us to use the multistage back‐
propagation in the last step of MFM, that is, to forward one
image at a time and then to back‐propagate the corresponding

gradient. This multistage back‐propagation reduces the training
speed of the network, but the utilisation of MFM decreases the
number of the network iterations before the performance
converge [20], and more importantly, brings a significant per-
formance improvement (see Section 5.4). This paper focuses on
performance optimisation. Since the total network training time
does not increase much, the training time has not been explored
accordingly in the experiments.

4.3 | Optimising samples after positive ones

Limited by AP definition, existing AP optimisation methods
suffer from several problems leading to sub‐optimisation
(detailed discussion and analysis in Section 3.4). To address
the brittleness around ties, we a score shift in order to keep a
margin between the scores of different samples, which is
similar to the triplet loss [68] and the circle loss [55]. Specif-
ically, we apply a negative shift to the positive scores and a
positive shift to the negative scores as follows:

s
↔

qi; xj
� �

¼

s qi; xj
� �

þ
ϵ
2

if yj ¼ 0

s qi; xj
� �

−
ϵ
2

if yj ¼ 1

8
><

>:
ð12Þ

where ϵ is a tiny margin. Then, for the query qi, we use δ
↔

j;k
instead of δj,k in Equation (3) to perform the difference
transformation.

∀j; k; δ
↔

j;k ¼ s
↔

qi; xj
� �

− s
↔

qi; xk
� �

ð13Þ

F I GURE 6 Left: Comparison of gradient flow in AP loss for different samples in the left toy example. In contrast to SmoothAP [25] and SupAP [85],
LOSAP > LAP and correct gradient flow for all samples. Right: Comparison of approaches used to alleviate the decomposability gap in AP optimisation in the right
toy example. Previous solutions are conducted by increasing the size of a batch with brute force, which has achieved some success. However, this method often
requires a lot of computing costs. In each min‐batch, Lcalibr [85] solves this problem by dictating that the positive samples' scores be greater than α and the negative
samples' scores are lower than β. On the contrary, Our LMFM

OSAP employs a margin of m to make it more closely resemble its positive set than its negative set. Best
viewed in colour. AP, average precision.
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Then, we consider all samples after each positive sample to
fully exploit sample information for global optimisation. In
addition, we also take into account that different samples
should be assigned different gradients, thus allowing for high
flexibility of optimisation. Therefore, we design a novel loss
function to improve the optimisation of AP loss, that is, our
proposed OSP loss.

wp
ij ¼

exp si − sj
� �

þ

� �

P
yi¼yj¼1exp si − sj

� �

þ

� �;wn
ij

¼
exp sj þm

� �
− si

� �

þ

� �

P
yi¼1;yj¼0exp sj þm

� �
− si

� �

þ

� � ð15Þ

where yij = 1 if yi = yj = 1 and yij = 0 otherwise, m is a score
margin. T is the temperature parameter that controls the scale
of the sum of the score differences of all samples with respect
to the query. [⋅]+ represents the non‐negative operation. wp

ij
and wn

ij inherit the advantage of relative score optimisation
between positive and negative samples, which does not intro-
duce any hyperparameters. And LOSP has three hyper-
parameters, that is, the tiny margin ϵ, the score margin m
between positive and negative samples, and the temperature
parameter T.

4.4 | OSAP‐loss

Finally, our proposed OSAP‐Loss (i.e. LOSAP) is linearly
combined with LSRF

AP and LOSP via a relative weight ω.

LOSAP ¼ ð1 − ωÞLSRF
AP þ ωLOSP ð16Þ

To learn a deep model for image retrieval, we implement
the OSAP‐Loss based on SGD and min‐batch. The training
procedure using OSAP‐Loss is given in Algorithm 1.
Furthermore, we have added the MFM to enable further
improvement of LOSAP, that is, LMFM

OSAP.

4.5 | Further discussion

Finally, we here compare with SmoothAP [25] and ROAD-
MAP [85] (LSupAP and Lcalibr are two components of
ROADMAP), which were recently proposed and are also most
relevant to our proposed LMFM

OSAP. As shown in Figure 6, we
have compared and analysed them accordingly, and there are
three major differences: (1) it can well solve the issue of
gradient vanishing; (2) it thoroughly solves the issue of non‐
decomposability in AP optimisation; (3) it solves the brittle-
ness around ties in AP optimisation procedure, as well as en-
hances the separability of positive and negative samples.

Firstly, due to the sigmoid function, LSmoothAP will suffer
from gradient vanishing and contradictory gradient flow for
positive samples. Although the recently proposed LSupAP in
ROADMAP addresses the contradictory gradient flow, it does
not sufficiently tackle the gradient vanishing due to the use of
the sigmoid function (see the left graph of Figure 6). Instead of
continuing to optimise the sigmoid function, our designed SRF
H−ðzÞ in LSRF

AP is optimised by using improved softsign func-
tion, which can eliminate the gradient vanishing more effec-
tively while solving the contradictory gradient flow. Secondly, it
has been demonstrated that large batch sizes will obtain better
performance in refs. [17, 20, 23, 25, 85]. The reason lies in the
fact that the AP is not linearly decomposed into multiple
batches for optimisation. Therefore, the larger the batch size,
the closer the estimated AP value is to the true AP, and the
smaller the DGAP is. To overcome the memory constraints of
GPU, our proposed MFM is to train the deep model with a large
batch size, which can thoroughly solve the non‐
decomposability of AP (see the right graph of Figure 6).

LOSP ¼ log 1þ exp
1
jPj

XjPj

i

XjΩj

j;j≠i
T yij ⋅ wp

ij si − sj
� �

þ
þ 1 − yij
� �

⋅ wn
ij sj þm
� �

− si
� �

þ

n o
0

@

1

A ð14Þ

Algorithm 1 Training with OSAP-Loss
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Thirdly, for ranking‐based metrics, one of the major drawbacks
is the easy occurrence of ties, especially in large datasets. Our
LOSP solves the brittleness around ties with score shift opera-
tion as well as improves the robustness of the learned model.
These differences provide a significant performance improve-
ment over several image retrieval datasets (Section 5).

Furthermore, we discuss the comparison of our method
with other methods in terms of computational complexity. In
total, we compare three types of losses, that is, proxy‐based, pair‐
based and AP‐based losses in Table 1. For proxy‐based and pair‐
based losses, we can find that their computational complexity is
much larger compared to AP‐based losses. Meanwhile, in
contrast to the general ranking function, they are all optimised
based on local samples or sample pairs, which makes them easy
to fall into local optimisation. For QS‐Suitable [83] and SoftBin*
[20], although they use APas the optimisation objective and have
a relatively small computational complexity, they do not employ a
general ranking function, which leads to a very coarse AP
approximation. Therefore, it is necessary to use an appropriate
general ranking function for AP optimisation. With the help of
the general ranking function, the AP‐based losses can be
continuously optimised towards the global optimum. However,
these methods (BlackBox [24], PNP‐Dq [84], FastAP [17], and
SoDeep [22]) perform a coarse AP approximation even by
operating a general ranking function. Aiming to design tighter

smooth AP approximation (SmoothAP [25] and SupAP [25]),
our LSRF

AP proposed to design smooth differentiable approxi-
mation of the ranking function, where the core idea is similar to
SupAP [85] with the same computational complexity
ðO N þPð ÞPð ÞÞ.We can see that the computational complexity
of SmoothAP [25] isO M2� �

, which is larger than that of SupAP
[25] and our LSRF

AP . Compared to these methods, it is noted that
our method is superior to both of them, as already discussed and
analysed above.

5 | EXPERIMENTS

In this section, we first introduce the implementation details of
our proposed method, the test protocol, and the benchmarks
used for experiments, including three remote sensing image
datasets and three CIR datasets. Then, we provide the relevant
ablation study results and give a detailed analysis. Finally, we
compare OSAP‐Loss with several state‐of‐the‐art methods.

5.1 | Datasets

We evaluate OSAP‐Loss on the following three RSIR datasets
(UCMD [40], NWPUD [41], and PatternNet [1]) and three

TABLE 1 Comparison of the
computational complexity for three types of
losses, including proxy‐based, pair‐based and
AP‐based loss functions

Loss Type Computational complexity General ranking (AP approximation)

Proxy‐Anchor [80] Proxy OðMCÞ ✗(−)

Proxy‐NCA [70] OðMCÞ ✗(−)

SoftTriple [76] O MCU2� �
✗(−)

Contrastive [93, 94] Pair O M2� �
✗(−)

Triplet (smart) [74] O M2� �
✗(−)

Triplet (semi‐hard) [68] O M3=
�

B2Þ ✗(−)

N‐pair [69] O M3� �
✗(−)

Lifted structure [43] O M3� �
✗(−)

QS‐suitable [83] AP O N log Pð Þ ✗(Coarse)

SoftBin* [20] O NPð Þ ✗(Coarse)

BlackBox [24] O N log Nð Þ ✔(Coarse)

PNP‐Dq [84] O NPð Þ ✔(Coarse)

FastAP [17] O N þPð ÞLð Þ ✔(Coarse)

SoDeep [22] O N þ Pð ÞH2� �
✔(Coarse)

SmoothAP [25] O M2� �
✔(Smooth)

SupAP [85] O N þPð ÞPð Þ ✔(Smooth)

OSAP LSRF
AP

� �
O N þPð ÞPð Þ ✔(Smooth)

Note: For proxy based and pair based losses, the numbers of training samples, classes, batch size in each epoch, and proxies
of each class are represented byM, C, B, and U respectively. For AP based losses, P and N ðP þN ¼MÞ denote the
number of relevant (positive) and irrelevant (negative) samples respectively. The number of bins is denoted by L for FastAP.
For SoDeep, H denotes the hidden state size ðH ≈NÞ in LSTM. SmoothAP, SupAP, and our LSRF

AP are smooth AP
approximations, which makes the AP calculation more accurate in practice.
Abbreviation: AP, average precision.

YUAN ET AL. - 11
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CIR datasets (CUB‐200‐2011 [42], SOP [43], and INaturalist‐
2018 [44]). The number of images, classes, and the average
number of images per class are statistics in Table 2. We have
counted the number of images (# Imges), classes (# Classes),
and images/class (# Avg) in the training set and testing set for
each dataset. Next, we describe the datasets in more detail.

1) RSIR Datasets
� UCMD [40] is collected by the University of California

Merced from the United States Geological Survey
(USGS) for land use and cover. This dataset has 2100
high‐resolution images with 21 different scene classes,
which are 256 � 256 pixels and are 0.3 m in spatial
resolution. We follow the standard protocol [95], which
uses 50% images of each class as the training set and the

rest as the test set. The sample images of each class are
shown in Figure 7.

� NWPU‐RESISC45 (NWPUD) [41] is collected by the
North‐western Polytechnical University from Google
Earth. This dataset contains 31,500 images of 45 classes.
Each image is also 256 � 256 pixels and varies from 0.2
to 30 m in spatial resolution. All images cover more than
100 countries. Following the standard data splitting
protocol [41], 80% images for training and the rest of
20% images for evaluation. Figure 8 illustrates samples
of each class.

� PatternNet [1] is a large‐scale high‐resolution dataset
collected from Google Earth imagery or via Google Map
API for RSIR. This dataset includes 30,400 images with
38 classes, and there are 800 images of 256 � 256 pixels

TABLE 2 Dataset composition for
training and evaluation

Dataset # Images # Classes # Avg

Remote sensing image retrieval datasets UCMD train [40] 1100 21 52.4

UCMD test [40] 1100 21 52.4

NWPUD train [41] 25,200 45 560.0

NWPUD test [41] 6300 45 140.0

PatternNet train [1] 24,320 38 640.0

PatternNet test [1] 6080 38 160.0

Conventional image retrieval datasets CUB train [42] 5864 100 58.6

CUB test [42] 5924 100 59.2

SOP train [43] 59,551 11,318 5.3

SOP test [43] 60,502 11,316 5.3

INaturalist train [44] 325,846 5690 57.3

INaturalist test [44] 136,093 2452 55.5

F I GURE 7 Illustration of sample images of different scenes from UCMD dataset.

12 - YUAN ET AL.
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per class. The spatial resolution ranges from 0.062 to
4.693 m. We follow the standard splitting protocol in ref.
[1], that is, 80% training set and 20% testing set. Figure 9
shows corresponding sample images in the dataset.

2) CIR Datasets
� CUB‐200‐2011 [42] is a challenging dataset of 200 bird

species. This dataset has 11,788 images. Following the
standard protocol, we use the first 100 classes with 5864
images as the training set and the rest of the 100 classes
with 5924 images as the testing set.

� Stanford Online Product (SOP) is an online products
dataset collected by Oh Song et al. [43] from eBay.com.
This dataset contains 120,053 images with 22,634 classes.
Referring to ref. [43], we use 11,318 classes with 59,551
images as the training set and 11,316 classes with 60,502
images as the testing set.

� INaturalist‐2018 [44] is a real‐world dataset with
461,939 images. This dataset includes 8142 iNaturalist
species. Similar to ref. [25], we use 325,846 images of
5690 classes for training and 136,093 images of 2452
classes for testing.

5.2 | Implementation details

Our method includes training and evaluation, both imple-
mented in the PyTorch framework. In our experiments, we use
ResNet‐50 [92] as the backbone. The model is initialized by the
pre‐trained parameters on ImageNet [96]. We use Adam [97] to
optimize model training, and use standard data pre‐processing
procedure and augmentation strategy during training, that is,
normalizing all images to 256 � 256 and randomly cropping
them to 224 � 224 as input images. The crops are flipped
horizontally with a 50% probability. During the evaluation, all
images are normalized to 256 � 256 and then center cropped
to 224 � 224. We use 333 as the fixed random seed in our all
experiments to avoid seed performance fluctuations. We set
the buffer size to 512 in MFM. For RSIR datasets, we train the
models with a learning rate of 10−6 for 400 epochs. For CIR
datasets, we also set the learning rate to 10−6 on CUB for 200
epochs. For SOP and INaturalist, we set the initial learning rate
to 10−5 and drop the learning rate by 70% on 30 and 70
epochs. And the models are trained on SOP for 100 epochs
and on INaturalist for 90 epochs. For all experiments in Sec-
tion 5.4 and the models in Section 5.5, we use ω = 0.2 for

F I GURE 8 Illustration of sample images of different scenes from NWPUD dataset.
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LOSAP in Equation (16), γ = 0.001 and δ = 0.65 for LSRF
AP in

Equation (10), ϵ = 0.20 on RSIR datasets, ϵ = 0.02 on CIR
datasets, and m = 0.25 for LOSP in Equation (14).

5.3 | Test protocol

To evaluate the model performance, we describe here the used
protocols in our experiments. For all image retrieval datasets,
each sample from each class is utilised as the query qi in turn,
and the retrieval set Ω is made up of all the remaining samples.
For RSIR, we use standard precision at k (P@k, precision of
the top‐k retrieval results) and mean average precision (mAP,
detailed calculation given in Section 3). For CIR, we use
standard recall at k (R@k, hit rate of the top‐k retrieval results)
and mAP at R (mAP@R) [79]. Below, we introduce the
computation of the mentioned evaluation metrics.

Precision@K The Precision@K in Equation (17) is often
used in the retrieval task. For each query, the Precision@K
is precision at k, that is, precision of the top‐k retrieval
results. The Precision@K is averaged over all the queries.

P@K ¼
PM

i¼1 PkðiÞ
M

;where PkðiÞ is the precision at k: ð17Þ

Recall@K The Recall@K in Equation (18) is another
evaluation metric for the retrieval task. For each query, the
Recall@K is Recall at k, Recall@K = 1 if a positive sample
appears in the top‐k retrieval results and Recall@K = 0
otherwise. The Recall@K is averaged over all the queries
in Equation (18), where R(i) = 1 if a positive sample has a
higher ranking than K, and R(i) = 0 otherwise.

F I GURE 9 Illustration of sample images of different scenes from PatternNet dataset.
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R@K ¼

PM

i¼1
RðiÞ

M
ð18Þ

mAP@R The mAP@R in Equation (19) is proposed in
ref. [79]. It is less noisy and easily obtains the better
performance of the model. The mAP@R is essentially a
partial AP, which is an AP of R retrieved positive samples
with respect to a query.

mAP@R¼

PR
j¼1 PðjÞ
R

;where PðjÞ is the precision at j: ð19Þ

5.4 | Ablation study

For a fair comparison, we conduct all our experiments here
with the same settings (Backbone: ResNet‐50; Batch size: 64;
Embedding size: 512). Such comparisons allow us to directly
observe the impact of different parts or parameters on the final
performance.

5.4.1 | Impact of our designed components

To investigate more deeply the impact of our designed com-
ponents, the relevant results of the ablation experiments are
shown in Tables 3 and 4. Here, Table 3 shows the results on
RSIR datasets and Table 4 shows the results on CIR datasets.
In Table 3, it is clear to see that the performance of the
SmoothAP baseline [25] is already impressive on three RSIR
datasets. Meanwhile, we find that the performance of using
LSRF

AP or LOSP alone does not perform better or slightly de-
grades on UCMD, NWPUD, and SOP. We presume that such
performance degradation may be caused by local optimisation
arising from the low diversity caused by the small number of
samples within the batch. The performance improvement from
using MFM alone and from using MFM on LOSAP shows that
our presumption is plausible. In Table 4, it can be obviously
observed that compared to SmoothAP [25], our method per-
forms a great improvement by replacing the sigmoid with Hþ
and H− for LSRF

AP in Equation (10) especially on CUB. Note
that the use of LOSP in Equation (14) on LSRF

AP further boosts
the experimental performance. After using MFM, we can see
that LOSAP receives a further performance improvement of
mAP/mAP@R on RSIR datasets (~3pt on UCMD, ~7pt on
NWPUD, and 0.01pt on PatternNet) and CIR datasets (~6pt

TABLE 3 Ablation study on our
designed OSAP‐Loss

Dataset SRF OSP MFM mAP P@5 P@10 P@50 P@100 P@1000

UCMD ✗ ✗ ✗ 96.49 99.98 99.98 99.91 78.79 7.90

✔ ✗ ✗ 96.33 99.88 99.85 99.77 78.84 7.90

✗ ✔ ✗ 93.20 98.26 97.99 96.88 76.98 7.90

✗ ✗ ✔ 96.60 99.99 99.99 99.98 78.99 7.90

✔ ✔ ✗ 96.29 99.80 99.76 99.68 78.85 7.90

✔ ✔ ✔ 99.54 100.00 100.00 99.92 78.98 7.92

NWPUD ✗ ✗ ✗ 92.53 95.35 95.16 94.37 93.00 13.89

✔ ✗ ✗ 90.38 94.31 93.99 92.94 91.15 13.88

✗ ✔ ✗ 88.94 92.84 92.40 90.95 89.87 13.90

✗ ✗ ✔ 97.79 98.49 98.50 98.30 97.87 13.89

✔ ✔ ✗ 92.60 94.83 94.48 93.72 92.63 13.90

✔ ✔ ✔ 99.73 100.00 100.00 99.91 99.80 13.93

PatternNet ✗ ✗ ✗ 99.93 99.95 99.95 99.95 99.95 55.90

✔ ✗ ✗ 99.87 99.91 99.90 99.88 99.87 55.88

✗ ✔ ✗ 99.97 99.97 99.97 99.96 99.96 55.90

✗ ✗ ✔ 99.98 99.98 99.98 99.98 99.98 55.90

✔ ✔ ✗ 99.98 99.98 99.98 99.98 99.98 55.90

✔ ✔ ✔ 99.99 100.00 100.00 99.99 99.99 56.14

Note: The results are shown with the different designed components, and the SmoothAP baseline (i.e. SRF (✗), OSP (✗), and
MFM (✗)) on UCMD, NWPUD, and PatternNet datasets. The results in bold indicate the best performance.
Abbreviations: mAP, mean average precision; MFM, memory‐free mechanism; OSAP, Optimising samples after positive ones
& average precision loss; OSP, Optimising Samples after Positive ones; SRF, superior ranking function.
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on SOP, 0.6pt on CUB, and 1.3pt on INaturalist). In Table 3,
LSRF

AP has a greater contribution compared to LOSP, and the
result can be further improved by adding LOSP to LSRF

AP on
UCMD and NWPUD. Differently, LSRF

AP and LOSP contribute
approximately the same to the performance improvement on
CUB and INaturalist in Table 4. However, LSRF

AP and LOSP
perform not especially well on SOP. We postulate that the
reason may be # Avg is too small to optimise on SOP, as
shown in Table 2. Note that the performance improvement of
adding MFM is much more significant. This is explained by the
fact that the MFM reduces the decomposability gap in Equa-
tion (11). We can see that MFM is very effective for improving
performance and brings large gains both on RSIR datasets and
CIR datasets.

5.4.2 | Impact of the hyperparameters

In this section, we will exploit the impact of the hyper-
parameters in LOSAP without MFM. We analyse the impact of
five hyperparameters, that is, the scale factor γ and the offset δ
in Equation (9), the tiny margin ϵ in Equation (12), the score
margin m and the temperature parameter T in Equation (14),
and the relative weight ω in Equation (16) on RSIR and CIR
tasks respectively. Note that we only change one parameter at a
time.

1) The hyperparameters in SRF. Here, we first exploit the
effect of different hyperparameters in LSRF

AP , including the
scale factor γ, and the offset δ. We vary the two hyper-
parameters in a series of values to observe the effect on the
experimental results, and the results are shown in Table 5
and Figure 10.
� Effect of scale factor γ. γ governs the smoothing of

softsign that is used to approximate the indicator function
in LSRF

AP . The scale factor is essential in lots of AP
approximation methods [25, 84, 85]. It determines the
region range size for gradient backpropagation of nega-
tive samples with high scores. We set γ to different values
and the performances are shown in Table 5. The ablation
results show that a value of 0.001 leads to the best per-
formance (i.e. mAP@R and R@1), which achieves the
trade‐off of AP approximation and gradient optimisation.
Furthermore, the setting of the suitable scale factor is
supposed to ensure a smooth AP approximation while
also providing a large enough optimisation region for the
gradient optimisation, thus achieving considerable
optimisation.

� Effect of offset δ. δ controls the upper bound of AP in
H− and determines the degree of AP optimisation. We
vary δ from 0 to 1 (with 0.05 as the interval) and visualise
the results on UCMD and CUB in Figure 10. For
UCMD, it can be observed that the change of δ0 value
has very little impact on the performance. For CUB, we
can see that the performance is gradually improving
when the value of δ from 0 to 0.65. Note that the best

TABLE 5 Ablation study over different hyperparameters of scale
factor γ

γ
UCMD CUB

mAP R@1 mAP@R

1 93.24 40.19 11.43

0.1 96.62 52.58 18.58

0.01 96.62 61.21 23.87

0.001 96.33 64.30 24.38

0.0001 94.07 52.53 13.49

Note: The results are reported on UCMD and CUB. The results in bold indicate the best
performance.

F I GURE 1 0 Illustration of the effect of offset δ on (a) UCMD and
(b) CUB datasets respectively.

TABLE 4 Ablation study on our
designed OSAP‐Loss

Method SRF OSP MFM

SOP CUB INaturalist

R@1 mAP@R R@1 mAP@R R@1 mAP@R

SmoothAP [25] ✗ ✗ ✗ 80.1 54.6 62.1 23.9 59.7 20.7

OSAP ✔ ✗ ✗ 79.5 52.7 65.0 25.5 61.6 21.7

✗ ✔ ✗ 77.3 49.6 65.0 23.7 61.2 21.1

✗ ✗ ✔ 82.2 56.3 66.2 26.1 66.8 26.3

✔ ✔ ✗ 78.7 51.4 67.1 26.5 66.3 25.4

✔ ✔ ✔ 84.2 57.1 69.6 26.1 70.6 26.7

Note: The results are shown with the different designed components, and the SmoothAP baseline on SOP, CUB and
INaturalist datasets. The results in bold indicate the best performance.
Abbreviations: mAP, mean average precision; MFM, memory‐free mechanism; OSAP, Optimising samples after positive
ones & average precision loss; OSP, Optimising Samples after Positive ones; SOP, Stanford Online Product; SRF, superior
ranking function.
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performance is achieved when the value of δ is 0.65.
There is a significant degradation when δ > 0.65 possibly
due to AP's overestimation.

2) The hyperparameters in OSP. Then, we exploit the ef-
fect of different hyperparameters in LOSP. It includes three
hyperparameters, that is, the tiny margin ϵ, the score margin
m, and the temperature parameter T. ϵ is set to 0.20 on
UCMD and 0.02 on CUB empirically in all experiments.
Therefore, we study the effect of T and m. And the results
are shown in Table 6.
� Effect of score margin m. m determines the score

margin between positive and negative samples. Here, we
set m to 0, 0.15, 0.25, 0.35, and 0.45. And we report the
results in Table 6. For UCMD, the performance is rela-
tively stable, holding at around 95.00%. For CUB, it can be
observed that mAP@R is consistently stable at 23.7% in
[0.25, 0.45], but R@1 increases and then decreases in [0.25,
0.45]. And R@1 and mAP@R achieve the best results
(65.0% R@1 and 23.7% mAP@R) when m is 0.25.

� Effect of temperature parameter T. T determines the
scale of the sum of optimisation scores of positive and
negative samples. It is critical in optimisation of LOSP.
We vary T from 45 to 85 (with 10 as the interval) and
report the results in Table 6. For UCMD, LOSP achieve
the best performance (95.58% mAP) when T = 45. For
CUB, we can see that the best performance (65.0% R@1
and 23.7% mAP@R) when T = 65. It can be observed

that the performance is relatively stable on UCMD and
CUB in refs. [45, 85].

3) Effect of relative weight ω. In Figure 11, we show the
effect of relative weight ω of LOSAP on UCMD and CUB
respectively. The relative weight ω in Equation (16) con-
trols the weight between our two training losses LSRF

AP and
LOSP: ω = 0 reduces LOSAP to LSRF

AP while ω = 1 to LOSP.
We can see in Figure 11 that training with the complete
LOSAP with both LSRF

AP and LOSAP is always better than
using only one of the two losses. On UCMD and CUB
datasets, the results both increase by ~2pt in the [0, 0.2]
range and then decrease by ~2pt in the [0.2, 1] range.
Consequently, the value of 0.2 is the optimal relative weight,
achieving the best results on the two datasets.

5.5 | Comparison with state‐of‐the‐arts

In this section, we compare our OSAP‐Loss to the recent AP
approximation methods and some relevant state‐of‐the‐art
deep metric methods on three RSIR datasets and three CIR
datasets. Firstly, we perform a comparison and analysis of AP
approximation methods to verify the contribution in our paper.
Secondly, we then conduct a further state‐of‐the‐art compari-
son to demonstrate the superiority and effectiveness of our
OSAP‐Loss.

F I GURE 1 1 Illustration of the effect of relative weight ω on
(a) UCMD and (b) CUB datasets respectively.

TABLE 7 Comparison between OSAP and state‐of‐the‐art AP
approximation methods

Method

CUB SOP INaturalist

R@1 mAP@R R@1 mAP@R R@1 mAP@R

FastAP [17] 58.9 22.9 78.2 51.3 53.5 19.6

SoftBin [20] 61.2 24.0 80.1 53.5 56.6 20.1

BlackBox [24] 62.6 23.9 80.0 53.1 52.3 15.2

SmoothAP [25] 62.1 23.9 80.9 54.6 59.8 20.7

ROADMAP [85] 64.2 25.3 82.0 56.5 64.5 25.1

OSAP (ours) 67.1 26.5 78.7 51.4 66.3 25.4

Method
UCMD NWPUD PatternNet
mAP mAP mAP

FastAP [17] 96.60 94.16 99.95

SoftBin [20] 96.58 96.66 99.84

BlackBox [24] 52.15 15.33 6.93

SmoothAP [25] 96.49 92.53 99.93

ROADMAP [85] 95.76 90.35 99.84

OSAP (ours) 96.29 92.60 99.98

Note: We report the results on six datasets. The results in bold indicate the best
performance.
Abbreviations: AP, average precision; mAP, mean average precision; OSAP, Optimising
samples after positive ones & average precision loss; SOP, Stanford Online Product.

TABLE 6 Ablation study over different hyperparameters: score
margin m and temperature parameter T

m
UCMD CUB

T
UCMD CUB

mAP R@1 mAP@R mAP R@1 mAP@R

0 95.45 65.1 23.6 45 95.58 65.0 23.4

0.15 95.07 64.9 23.7 55 95.30 64.9 23.6

0.25 95.05 65.0 23.7 65 95.05 65.0 23.7

0.35 94.98 64.6 23.7 75 94.84 64.7 23.7

0.45 94.89 64.6 23.7 85 94.68 64.1 23.6

Note: The results are reported on UCMD and CUB. The results in bold indicate the best
performance.

YUAN ET AL. - 17

 24682322, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12151, W

iley O
nline L

ibrary on [25/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



T
A

B
L
E

8
C
om

pa
ris

on
w

ith
st

at
e‐

of
‐th

e‐
ar

t
lo

ss
fu

nc
tio

ns
on

U
C
M

D
[4

0]
,N

W
PU

D
[4

1]
an

d
Pa

tte
rn

N
et

[1
]

M
et
ho

d
Ve

nu
e

U
C
M
D

N
W
P
U
D

Pa
tt
er
nN

et

m
A
P

P
@
5

P
@
10

P
@
50

P
@
10
0

P
@
10
00

m
A
P

P
@
5

P
@
10

P
@
50

P
@
10
0

P
@
10
00

m
A
P

P
@
5

P
@
10

P
@
50

P
@
10
0

P
@
10
00

Tr
ip

le
t
[7

5]
IC

C
V

’1
7

92
.9

6
98

.0
4

96
.6

3
92

.6
2

46
.1

6
4.

69
93

.8
2

98
.6

5
96

.8
5

96
.0

7
94

.8
3

15
.3

4
94

.9
4

99
.5

2
97

.9
2

96
.1

3
95

.0
7

15
.6

1

N
‐p

ai
r‐

m
c

[6
9]

N
IP

S’
16

91
.8

1
94

.0
4

91
.4

6
90

.4
9

45
.0

8
4.

67
93

.0
6

97
.8

6
95

.1
2

94
.3

5
98

.1
5

15
.4

6
94

.1
1

97
.9

4
95

.1
5

94
.3

3
98

.1
7

15
.5

2

Pr
ox

yN
C
A

[7
0]

IC
C
V

’1
7

95
.7

2
97

.9
8

96
.6

5
94

.2
3

47
.0

2
4.

71
97

.6
8

97
.5

4
97

.5
7

97
.9

1
97

.4
4

15
.6

9
97

.7
1

98
.5

6
98

.6
9

98
.8

9
98

.4
5

15
.7

4

Li
ft
ed

St
ru

ct
[4

3]
C
V

PR
’1

6
96

.0
8

98
.9

0
97

.8
2

95
.7

8
47

.4
6

4.
76

97
.4

7
97

.0
3

97
.4

2
97

.6
3

97
.7

2
15

.7
6

98
.5

8
98

.0
5

98
.6

2
98

.7
5

98
.8

8
15

.7
9

D
SL

L
[7

1]
E

nt
ro

py
’1

9
97

.3
4

98
.9

8
98

.4
2

96
.9

3
48

.6
7

4.
86

98
.5

4
99

.0
5

98
.1

5
96

.3
4

98
.4

5
15

.7
8

98
.5

2
99

.0
9

98
.0

3
96

.6
8

98
.6

9
15

.8
3

D
C
L

[2
]

Re
m

ot
e

Se
ns

in
g’

20
98

.7
6

10
0.

00
10

0.
00

99
.3

3
49

.8
2

5.
21

99
.4

4
10

0.
00

10
0.

00
99

.9
1

99
.7

0
16

.4
2

99
.4

3
10

0.
00

10
0.

00
99

.8
9

99
.6

6
16

.3
8

R
R
L

[3
]

T
G

R
S’

20
99

.5
2

10
0.

00
10

0.
00

99
.8

0
−

−
99

.6
1

−
−

−
−

−
−

−
−

−
−

−

Fa
st

A
P

[1
7]

C
V

PR
’1

9
96

.6
1

10
0.

00
10

0.
00

99
.9

9
78

.9
9

7.
90

94
.3

8
95

.7
4

95
.5

4
95

.1
2

94
.5

2
13

.8
8

99
.9

5
99

.9
6

99
.9

6
99

.9
6

99
.9

6
55

.8
9

B
la
ck

B
ox

[2
4]

C
V

PR
’2

0
52

.7
0

86
.4

0
80

.5
2

58
.9

8
44

.2
5

7.
80

15
.3

5
40

.6
5

35
.2

5
22

.5
3

17
.4

5
6.

24
4.

17
2.

63
2.

63
2.

63
2.

63
2.

63

Sm
oo

th
A

P
[2

5]
E

C
C
V

’2
0

96
.4

9
99

.9
8

99
.9

6
99

.9
1

78
.9

4
7.

90
92

.6
7

95
.5

3
95

.2
5

94
.5

2
93

.1
2

13
.8

9
99

.9
3

99
.9

6
99

.9
5

99
.9

5
99

.9
5

55
.8

9

So
ft
B
in

*
[2

0]
IC

C
V

’1
9

96
.5

8
10

0.
00

10
0.

00
99

.9
8

78
.9

9
7.

90
94

.0
5

95
.8

5
95

.6
6

95
.2

0
94

.3
0

13
.6

9
99

.9
5

99
.9

7
99

.9
7

99
.9

7
99

.9
7

55
.9

2

RO
A

D
M

A
P

[8
5]

N
IP

S’
21

95
.9

4
99

.7
3

99
.7

1
99

.4
7

78
.5

1
7.

90
90

.3
7

94
.5

0
94

.1
4

93
.0

0
91

.5
2

13
.8

0
99

.9
1

99
.9

6
99

.9
6

99
.9

5
99

.9
4

55
.8

8

O
SA

P
(w

/o
M

FM
)

T
hi

s
w

or
k

96
.4

7
99

.8
8

99
.8

9
99

.8
6

78
.9

4
7.

90
93

.5
5

95
.3

4
95

.1
4

94
.4

9
93

.5
6

13
.9

0
99

.9
8

99
.9

8
99

.9
8

99
.9

8
99

.9
8

55
.9

0

O
SA

P
(w

/M
FM

)
T
hi

s
w

or
k

99
.6
4

10
0.
00

10
0.
00

99
.9
4

79
.5
4

7.
94

99
.7
6

10
0.
00

10
0.
00

99
.9
5

99
.8
4

13
.9
7

99
.9
9

10
.0
0

10
0.
00

10
0.
00

10
0.
00

56
.3
1

N
ot
e:

T
he

em
be

dd
in

g
siz

e
is

20
48

.W
e

re
po

rt
th

e
re

su
lts

of
m

A
P

an
d

P@
k.

A
ll

m
et

ho
ds

re
ly

on
a

st
an

da
rd

co
nv

ol
ut

io
na

lb
ac

kb
on

e
(g

en
er

al
ly

Re
sN

et
‐5

0)
.T

he
re

su
lts

in
bo

ld
in

di
ca

te
th

e
be

st
pe

rf
or

m
an

ce
.

A
bb

re
vi

at
io

ns
:m

A
P,

m
ea

n
av

er
ag

e
pr

ec
isi

on
;M

FM
,m

em
or

y‐
fr

ee
m

ec
ha

ni
sm

;O
SA

P,
O

pt
im

isi
ng

sa
m

pl
es

af
te

r
po

sit
iv

e
on

es
&

av
er

ag
e

pr
ec

isi
on

lo
ss

.

18 - YUAN ET AL.

 24682322, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12151, W

iley O
nline L

ibrary on [25/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



5.5.1 | Comparison to AP approximation
methods

Here, we train all models using the same experimental setting
(Backbone: ResNet‐50; Batch size: 64; Embedding size: 512) as
in Section 5.4. And, to compare our OSAP with recently
proposed AP approximation methods, we conduct the exper-
iments on three RSIR datasets and three CIR datasets. We
report the results in Table 7. Specifically, we compare OSAP on
three RSIR datasets and to recent AP approximation losses,
including the soft‐binning approaches FastAP [17] and SoftBin
[20], BlackBox [24], SmoothAP [25], PNP‐Dq [84] and
ROADMAP [85]. We can see that OSAP outperforms most of
the current AP approximation methods by a significant margin.
The performance improvement is especially significant on
large‐scale datasets, such as the PatternNet dataset in RSIR and
the INaturalist dataset in CIR.

5.5.2 | Comparison with state‐of‐the‐arts

We use the same setting as in Section 5.4. For RSIR datasets,
we only change the embedding size to 2048. For CIR datasets,
we follow standard practices for ResNet‐50 by using larger

images (256 � 256 on SOP and CUB) and using max instead
of average pooling and layer normalisation for CUB. We
compare OSAP‐Loss to other state‐of‐the‐art methods across
three RSIR datasets and three CIR datasets, and we report the
results in Tables 8 and 9 respectively. We divide the comparison
methods into two main categories: deep metric learning and
AP approximation methods. OSAP‐Loss falls in the second
category. We show the results of OSAP‐Loss with MFM and
without MFM separately.

In Table 8, OSAP‐Loss (w/o MFM) outperforms all pre-
vious methods on PatternNet dataset. We can see that the
performances of the methods on the RSIR dataset are close to
saturation. In Table 9, OSAP‐Loss (w/o MFM) outperforms
all previous AP approximation methods on CUB dataset and
INaturalist dataset. It can be observed that MFM can increase
the performance of OSAP‐Loss by a large margin on all
datasets, which further demonstrates the effectiveness of
MFM.

5.5.3 | Visual assessment results

As a qualitative assessment, we show some retrieval results of
OSAP‐Loss on RSIR datasets in Figure 12. We show the query

TABLE 9 Comparison of state‐of‐the‐art loss functions on SOP [43], CUB [42], and INaturalist [44]

Method Venue Dim

SOP CUB INaturalist

1 10 100 1 2 4 8 1 4 16 32

Deep metric learning LiftedStruct [43] CVPR’16 512 62.1 79.8 91.3 47.2 58.9 70.2 80.2 − − − −

Margin [75] ICCV’17 512 72.7 86.2 93.8 63.6 74.4 83.1 90.0 58.1 75.5 86.8 90.7

ProxyNCA [70] ICCV’17 512 73.7 − − 49.2 61.9 67.9 72.4 61.6 77.4 87.0 90.6

MIC [53] ICCV’19 512 77.2 89.4 95.6 66.1 76.8 85.6 − − − − −

MS [54] CVPR’19 512 78.2 90.5 96.0 65.7 77.0 86.3 91.2 − − − −

SoftTriple [76] ICCV’19 512 78.3 90.3 95.9 65.4 76.4 84.5 90.4 − − − −

Circle [55] CVPR’20 512 78.3 90.5 96.1 66.7 77.4 86.2 91.2 − − − −

SEC [56] NIPS’20 512 78.7 90.8 96.6 68.8 79.4 87.2 92.5 − − − −

HORDE [57] ICCV’19 512 80.1 91.3 96.2 66.8 77.4 85.1 91.0 − − − −

XBM [91] CVPR’20 128 80.6 91.6 96.2 65.8 75.9 84.0 89.9 − − − −

Triplet SCT [58] ECCV’20 512/64 81.9 92.6 96.8 57.7 69.8 79.6 87.0 − − − −

AP‐based loss FastAP [17] CVPR’19 512 76.4 89.0 95.1 − − − − 60.6 77.0 87.2 90.6

BlackBox [24] CVPR’20 512 78.6 90.5 96.0 64.0 75.3 84.1 90.6 62.9 79.4 88.7 91.7

SmoothAP [25] ECCV’20 512 80.1 91.5 96.6 − − − − 67.2 81.8 90.3 93.1

SoftBin* [20] ICCV’19 512 80.6 91.3 96.1 61.2 73.14 83.0 89.5 64.2 77.1 82.7 91.7

PNP‐Dq [84] AAAI’22 512 81.1 92.7 96.3 − − − − 66.6 81.1 89.7 92.6

ROADMAP [85] NIPS’21 512 83.1 92.2 96.8 68.5 78.7 86.6 91.9 69.1 83.1 91.3 93.9

OSAP (w/o MFM) This work 512 79.9 91.3 96.5 69.8 79.6 88.0 92.8 70.7 84.3 92.5 94.7

OSAP (w/MFM) This work 512 84.4 93.1 97.3 70.5 80.2 88.3 93.2 71.0 84.7 92.8 94.9

Note: The embedding size is 512. We report the results of Recall@k. All methods rely on a standard convolutional backbone (generally ResNet‐50). The results in bold indicate the best
performance.
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images, the most five similar retrieved images, and the corre-
sponding retrieval accuracy.We can find that the semantic quality
of the retrieval results is very good. These results also further
demonstrate the effectiveness of our proposed OSAP‐Loss.

6 | CONCLUSION

In this paper, we introduce a novel OSAP‐Loss for RSIR, which
improves the retrieval performance by directly optimising AP.
Specifically, OSAP‐Loss consists of three components: LSRF

AP ,
LOSP, and MFM. To solve the weakness of sigmoid‐based AP
approximation, we proposed a SRF to replace the sigmoid‐
based ranking function, leading to the LSRF

AP being accurate.
Afterwards, to overcome the non‐decomposability in AP opti-
misation, we equip the LSRF

AP with LOSP to reduce the decom-
posability gap. Moreover, we develop an MFM to further
thoroughly address the non‐decomposability in AP optimisa-
tion, which sidesteps the constraint of the GPU memory to use
large batch size training on a single GPU. We provide theoretical
analysis as well as experimental results to demonstrate the su-
periority and effectiveness of OSAP‐Loss. Extensive experi-
ments that OSAP‐Loss show the superiority and competitive
performance on three RSIR datasets and three CIR datasets
compared to the state‐of‐the‐arts.

Furthermore, our OSAP‐Loss is a data‐driven method,
which has the potential of propagating dataset biases. On some
datasets, we find that the performance cannot be remarkable.
We find that the performance cannot be exceptionally good on
some datasets. OSAP‐Loss is on par with or superior to
existing loss functions. Future work plans to improve the
robustness of our method and reduce the impact of bias in the
dataset. We also plan to improve the stability of our approach
and enhance its extensibility and applicability.
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