
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VERIFYTHISBENCH: GENERATING CODE, SPECIFICA-
TIONS, AND PROOFS ALL AT ONCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable progress in code
generation, but many existing benchmarks are approaching saturation and offer little
guarantee on the trustworthiness of the generated programs. To improve visibility
into model reasoning on formal correctness, we introduce VerifyThisBench,
a new benchmark that evaluates end-to-end program verification from natural
language descriptions: models must (i) extract formal specifications, (ii) implement
in a verification-aware language, and (iii) construct machine-checkable proofs.
Our evaluation reveals that even state-of-the-art (SOTA) models, such as o3-mini,
achieve a pass rate of less than 4%, with many outputs failing to compile. To
isolate sources of difficulty, we further propose VerifyThisBenchXS, a relaxed
variant in which partial implementations or proofs are provided. Across nine models
and seven verification tools on both benchmarks, we observe consistent gains
with feedback-driven refinement, but overall pass rates remain low, underscoring
substantial gaps in formal reasoning. We release the benchmark and the unified
evaluation environment to catalyze the verification capabilities for future models.

1 INTRODUCTION

Large language models (LLMs) have unequivocally revolutionized the landscape of automated code
generation. Models like OpenAI (2024) GPT-4o, Google (2024) Gemini, Anthropic (2024) Claude,
and GitHub (2021) Copilot excel at generating functional code snippets and translating between
languages. These capabilities are now integrated into AI-powered IDEs, such as Cursor and Visual
Studio, to support large-scale software development. This proficiency had led to increasing needs on
established benchmarks, as early as HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021),
to reflect the capability of each LLM tool. However, this rapid progress raises critical questions about
the trustworthiness and reliability of the generated artifacts. Many existing benchmarks, while useful
for gauging functional correctness through test suites, are approaching saturation (Kiela et al., 2021;
Ghosh et al., 2025; Gu et al., 2024; Xia et al., 2024) and inherently offer limited guarantees regarding
the deeper aspects of program correctness. Test cases, by their nature, can demonstrate the presence
of bugs, but cannot prove their absence (Dijkstra, 1972), leaving a significant gap in assessing the
formal robustness and true reasoning capabilities of these powerful models.

Reliable software must go beyond passing tests to be trustworthy, precisely follow specifications,
and even self-validate. Formal verification offers the most rigorous approach to achieving these
guarantees. This paradigm involves providing machine-checked mathematical proofs to show that a
program adheres to its formal specification, thereby guaranteeing critical properties such as functional
correctness, liveness (ensuring the program eventually does something good), and safety (ensur-
ing the program never does something bad) (Huth & Ryan, 2004). Modern program verification
infrastructures, such as Dafny (Leino, 2010), Frama-C (Kirchner et al., 2015), Verus (Lattuada
et al., 2023), Isabelle/HOL (Nipkow et al., 2002), and Lean (de Moura et al., 2018), coupled with
powerful automated theorem provers and SMT solvers like Z3 (de Moura & Bjørner, 2008) and
CVC5 (Barbosa et al., 2022), have significantly streamlined the process of writing and checking
such verified software. These tools allow developers to express complex specifications and then
automatically or semi-automatically verify that the implementation meets these specifications.

Although researchers have developed multiple benchmarks to assess LLMs on formal verification
subtasks (Kamath et al., 2023; Chakraborty et al., 2023; Pei et al., 2023; Endres et al., 2024), none

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Description: This challenge is an instance of Kaldewaij's Search by
Elimination, where an element with a given property is located by
eliminating elements that do not have that property. The
challenge was selected as it involves a relatively simple but interesting
invariant, expressing that the maximal element is in the remaining search space
rather than maintaining the maximal element found so far.

Task: Please implement and verify that the index returned by the method max()
given points to an element maximal in the array

Iterative refinement
through feedback

Code w/ spec & proofs VerifyThis Challenge(2011 - 2024)

Relaxed setting
w/ partial solutions

Language models

Figure 1: Evaluation workflow of VerifyThisBench and its relaxed settings.

evaluates end-to-end program verification solely from natural-language inputs. Instead, existing
suites either require verifying or synthesizing small programs against a given formal specification, or
focus on aiding proof completion by suggesting individual verification steps. Consequently, even
though state-of-the-art LLMs have been reported to solve up to 97.8% of these benchmark tasks (Wu
et al., 2024), those numbers do not reflect their true capability for end-to-end program verification.

To bridge this gap and rigorously evaluate the capabilities of LLMs in this demanding domain, we
introduce VerifyThisBench, a novel benchmark designed to assess end-to-end program verifi-
cation, as shown in Figure 1. Inspired by the annual VerifyThis Competition Series where human
contestants devise implementations and accompanying formal proofs in verification-aware languages,
VerifyThisBench tasks LLMs with interpreting natural language problem descriptions, formu-
lating formal specifications, generating the corresponding code, and constructing machine-checkable
correctness proofs – all at once, to produce compiled and verified artifacts. While recent efforts (Ye
et al., 2025; Thakur et al., 2025) also benchmark LLMs on end-to-end verification tasks in Lean,
our work differs by building on the long-standing VerifyThis Challenge, offering multi-framework
coverage, research-grade tasks, and competition-vetted difficulty, with solution lengths up to 648
lines compared to a maximum of 225 in prior work.

Our evaluation using VerifyThisBench reveals that even state-of-the-art (SOTA) models, such
as o3-mini, achieve a zero-shot pass rate of 3.62% on this end-to-end task, with a significant number
of outputs failing even to compile, and only reach a pass rate of 9.37% after five rounds of feedback.
These results underscore the profound challenge this domain presents. To dissect these challenges
further and explore capabilities in a more guided setting, we also propose VerifyThisBenchXS,
a variant where partial specification, implementation code, or proofs are provided, and the LLM is
tasked to complete the missing components. In this setting, o3-mini achieves 2.24% in zero-shot
attempt and 8.28% after refinement.

This paper makes the following key contributions:

• VerifyThisBench: We present VerifyThisBench, a new benchmark suite for evaluating
the ability of LLMs to generate fully verified programs (code, specifications, and proofs)
from natural language descriptions.

• Relaxed VerifyThisBench: We introduce VerifyThisBenchXS, a relaxed version of
the VerifyThisBench, to assess LLM performance when provided with partial artifacts
and tasked with completing them.

• Unified Environment: We provide a unified evaluation environment that integrates seven
verification tools and an automated pipeline, enabling consistent and scalable benchmarking
across diverse formal verification tasks.

• SOTA LLM Evaluation: We conduct a systematic evaluation of nine SOTA LLMs on both
benchmarks, revealing current capabilities and significant limitations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND & RELATED WORK

2.1 UNVERIFIED CODE SYNTHESIS BENCHMARKS

Recent benchmarks for code generation include APPS (Hendrycks et al., 2021), HumanEval (Chen
et al., 2021), MBPP (Austin et al., 2021), CodeContests (Li et al., 2022), DS-1000(Lai et al., 2022),
SWEBench (Jimenez et al., 2024), and EvalPlus (Liu et al., 2023), among others. These benchmarks
present programming tasks, often sourced from online competitions or community platforms, and
evaluate models based on whether generated solutions pass a set of input-output test cases. While
effective in emulating daily software development, they do not involve formal verification.

In contrast, VerifyThisBench requires models to go beyond functional testing: they must
formalize natural language intents into specifications, generate code in verification-aware languages,
and produce proofs that pass a formal logic verifier. This makes VerifyThisBench a substantially
more rigorous and comprehensive benchmark than traditional code synthesis tasks.

2.2 PROGRAM VERIFICATION BENCHMARKS

Benchmarks built in the context of formal verification include SV-COMP (SV-COMP-org), Sy-
GuS (Sygus-org), and Code2Inv (Si et al., 2020). SV-COMP and Code2Inv focus solely on
verification tasks that do not require implementation generation. For more contexts, the former
contains large-scale C/Java benchmarks verifying fixed safety properties, and the latter targets
loop-invariant generation over small C-style programs. SyGuS focuses on constraint-based synthesis.

More recent efforts like DafnyBench (Loughridge et al., 2024) and VerusBench (Yang et al., 2024)
collect verified programs in Dafny and Verus respectively, primarily to train and evaluate ML-based
tools in aiding proof completion and suggesting verification steps, rather than end-to-end program
generation from natural language.

These benchmarks evaluate components of the verification pipeline but typically assume a preset
formal specification or verification goal. In contrast, VerifyThisBench uses the end-to-end setup
to explicitly evaluate the model’s ability in interpreting and encoding natural-language descriptions
into provably correct formal programs, a capability not tested in existing benchmarks.

2.3 END-TO-END VERIFICATION BENCHMARKS

Parallel work includes Verina (Ye et al., 2025) (189 tasks) and Clever (Thakur et al., 2025) (161
tasks), exploring end-to-end verification in Lean, with sources translated from programming tasks
in HumanEval, MBPP and Leetcode etc. VerifyThisBench differs in the source, scope and
diversity, with 734 tasks derived from the VerifyThis competition series, which presents realistic,
research-grade verification challenges across multiple domains. Rather than focusing on Lean,
VerifyThisBench spans seven verification frameworks across multiple programming languages,
including Verus (Lattuada et al., 2023) and Frama-C (Kirchner et al., 2015) that are established for
production codebases. Moreover, VerifyThisBench includes tasks that require reasoning about
memory safety, concurrency, and complex data structures beyond arrays and trees. See Appendix E
for detailed comparison of description lengths and solution sizes.

2.4 FORMAL METHODS IN SOFTWARE VERIFICATION: A PRIMER

Formal methods in software verification aim to mathematically prove program correctness against
a formal specification—a precise, unambiguous description of what a program should do, often
expressed in a logical language. This contrasts with testing, which can only show the presence of bugs
for specific inputs. The verification process typically relies on several key components embedded
within or alongside the executable program code:

• Contracts: These formalize the obligations and guarantees of a code segment.
– Pre-conditions (requires clauses): Properties that must hold true before a function

or code block executes for it to behave correctly.
– Post-conditions (ensures clauses): Properties guaranteed to be true after a function

or code block finishes, provided its pre-conditions were met.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• Intermediate Assertions: Assistive hints are often needed to bridge any reasoning gaps
between the pre&post-conditions where the underlying solver cannot automatically address.

• Loop Invariants: For iterative constructs, loop invariants are crucial properties that hold
at the start of a loop, are preserved by each iteration, and, in conjunction with the loop’s
termination, help prove the loop’s correctness.

The typical verification flow in systems utilizing these concepts is as follows:

1. Annotation: Developers write code in a verification-aware language (e.g., Dafny (Leino,
2010), Frama-C, Verus and annotate it with formal specifications and proof hints, including
pre-conditions, post-conditions, assertions, and loop invariants.

2. Generation of Proof Obligations: A tool, often a Verification Condition Generator (VCG),
processes the annotated code and its specifications. It translates them into a series of
mathematical proof obligations (verification conditions) that, if all true, logically imply the
program’s correctness with respect to its specification.

3. Automated Proving: These verification conditions are then fed to backend automated
theorem provers, typically Satisfiability Modulo Theories (SMT) solvers like Z3 (de Moura
& Bjørner, 2008) or CVC5 (Barbosa et al., 2022). These solvers attempt to mathematically
prove each obligation.

4. Feedback: The system reports to the developer whether the proofs succeeded or failed.
Failures often pinpoint inconsistencies between the code and its specification, or missing/in-
correct annotations.

Successfully generating code within this paradigm, as targeted by our VerifyThisBench, requires
an LLM not only to produce the algorithmic implementation but also to understand, formulate,
and correctly express intricate formal specifications and proof structures that enable automated
verification.

3 VERIFYTHISBENCH BENCHMARK

VerifyThisBench is inspired by the annual VerifyThis Challenges (VerifyThis Competition
Series), a competition where participants are tasked with formalizing specifications, implementing
solutions, and verifying that the implementations meet the specification. We focus on this benchmark
because it is a dedicated formal methods competition, designed not only to evaluate participants’
skills but also to assess the maturity of verification tools (Denis & Siegel, 2024). Each challenge
is designed to be completed within a 90-minute session and varies in difficulty. Submissions are
evaluated based on correctness, completeness, and additional quality criteria such as elegance and the
degree of automation. Similarly, in VerifyThisBench, the task is to interpret natural language
problem descriptions and implement code and write proofs.

3.1 BENCHMARK CONSTRUCTION

We collected challenges from the annual competition series between 2011 and 2024, each with
natural-language descriptions (seldom include pseudo-code) and associated (one or more) tasks.
Tasks are categorized as either implementation (completing an algorithm) or verification (proving a
model or implementation correct against a specification). The resulting dataset includes 41 challenges
and 154 tasks, with an example in Appendix H and detailed statistics in Appendix E. The dataset is
available in supplementary material and will be made public after the anonymity period.

3.2 ENVIRONMENT

To facilitate evaluation, we provide a unified environment supporting seven verification tools. Five
of them, Dafny (Leino, 2010), Why3, VeriFast, VerCors, and Frama-C (Kirchner et al., 2015),
are widely used in past VerifyThis competitions. To broaden tool diversity, we additionally include
Verus (Lattuada et al., 2023) and CBMC (Kroening et al., 2023), covering Rust, C, and other
imperative or deductive platforms. Tool versions and brief descriptions can be found in Appendix C.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 FEATURES OF VERIFYTHISBENCH

End-to-end verification tasks with natural language problem descriptions: All tasks start with
informal, natural language prompts (often with pseudo-code). Models must interpret the intent
and formalize it into precise logical specifications. They are required to generate specifications,
implementations, and formal proofs in a verification-aware language, ensuring the code passes
machine-checkable verification. Example challenge and solution can be found in Appendix H.

Graded difficulty and multi-step challenges: Challenges are drawn from the VerifyThis competition
and span a range of difficulties (see Appendix E.). Many include sequential subtasks, allowing fine-
grained assessment of model capability on step-wise tasks.

Tool diversity: Multiple tools are provided and tested on. Models must conform to the syntax and
semantics of real-world verification frameworks.

3.4 RELAXATION

We observe that most language models fail to generate compilable code when targeting specific
verification tools. This is often due to the syntactic complexity and precise annotations required
by these tools. To isolate the sources of difficulty and better assess LLM capabilities under more
supportive conditions, we construct a set of relaxed subtasks derived from past human-written
solutions. Specifically, we define three forms of relaxation. In Code-Gen, we provide the function
specifications, omitting both the implementation and the proof annotations. In Specification-Gen,
we provide the implementation and its proof, but remove the function specifications. In Loop-Gen,
we provide specifications and implementations, but remove loop invariants needed for verification.

In total, we create a set of 580 tasks. Specifically, there are 226 code-gen task, 121 loop-gen tasks, and
233 spec-gen tasks. Table 6 in Appendix A shows the statistics of VerifyThisBenchXS. Since
no prior solutions exist for CBMC and Verus, and given notable community interest, we developed
new Verus solutions to enrich the dataset; CBMC solutions remain unavailable and are therefore not
included in the relaxed experiments.

4 EXPERIMENT RESULTS

4.1 MODEL SETUP

We evaluate a diverse set of SOTA language models, covering both proprietary and open-source
systems. Representatives are selected from the OpenAI (2025) family (GPT-4o, GPT-4omini, o3-mini,
o4-mini), Anthropic (2025) (Claude-3.7-Sonnet), Google (Gemini-2.5-Flash) (DeepMind, 2025),
DeepSeek (Deepseek-chat-v3) (DeepSeek-AI, 2024), Meta (Llama3.3-70B-Instruct) and Alibaba
(Qwen-2.5-72B-Instruct) (Qwen, 2024). This selection enables a comprehensive comparison across
different model architectures and training paradigms. Model versions are provided in Appendix B.

4.2 EXPERIMENT DESIGN AND METRICS

For both VerifyThisBench and VerifyThisBenchXS, we conduct experiments with iterative
refinement based on tool-generated error messages. To evaluate correctness, we pass the generated
code to the target verification tool and check whether it compiles and verifies successfully. A task is
marked as pass/succeed if no error is returned.

In addition to correctness checking, we introduce a coherence check as a relaxed evaluation metric.
In this step, the model self-assesses whether its generated code semantically aligns with the original
problem intent – an aspect difficult to verify automatically. This metric helps determine how
well the specification matches the task description and provides insight into the model’s ability in
auto-formalization and symbol grounding.

Each task is attempted five times per model. The first attempt uses only the task prompt; the next four
incorporate feedback from previous errors. During refinement, the model has access to the full history
of its prior attempts and corresponding feedback for the current task, enabling iterative correction.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

In VerifyThisBench, a challenge may have multi-stage tasks that are completed sequentially.
Only the final attempt from the previous subtask is carried over to the next, preserving essential
contexts while keeping the prompts concise. In contrast, VerifyThisBenchXS tasks have isolated
contexts and are completed independently, with no progress carried over between tasks.

To ensure fairness, we use the same prompt (see Appendix D) across all models and set the temperature
to 0.7 when applicable. Timeout of one minute is enforced for all experiments on the verifiers. The
experiments were conducted on a machine with an Intel i7-1360P CPU and 16GB of RAM.

4.3 OVERALL PASS RATE

Table 1 presents the performance of the SOTA models on VerifyThisBench. For each verification
tool, we report pass rates on the initial zero-shot attempt and after four additional refinement attempts
using feedback.

In the first attempt, most models perform poorly, with success rates under 4%. The top performers
are o3-mini, Llama, and Claude, indicating that even the strongest models struggle initially. By the
fifth attempt, performance improves significantly across all models. o3-mini leads overall, followed
by Claude, o4-mini, and Llama. These results highlight the effectiveness of iterative refinement and
feedback in enhancing model performance.

Each model exhibits distinct strengths across different verification tools, underscoring that no single
model consistently outperforms the rest. For example, o3-mini, the top overall performer, excels
especially in CBMC and Verus. On the other hand, Claude shows consistent strength in Dafny and
Frama-C. Gemini, while generally average, performs exceptionally well on VerCors. Llama, another
open-source model, performs best on Verus. In contrast, Qwen shows consistently low performance
across all tools, suggesting limitations in its current proof synthesis capabilities. Further insights into
tool-specific performance are discussed in Section 4.6.

Table 1: Overall Pass Rate On VerifyThisBench
Attempt GPT4o GPT4o-mini o3-mini o4-mini Claude Gemini Llama Deepseek Qwen

CBMC zero-shot 8.44% 7.14% 8.44% 1.30% 6.49% 1.95% 7.14% 0.65% 1.30%
refinement 20.13% 19.48% 25.32% 15.58% 22.08% 14.94% 20.13% 22.08% 3.25%

Dafny zero-shot 0 0 4.55% 1.95% 3.90% 0 0 1.30% 0
refinement 1.30% 0.65% 9.74% 10.39% 11.04% 1.30% 2.60% 2.60% 0.65%

Frama-C zero-shot 0 0.65% 0 0 3.90% 0.65% 0 1.95% 0
refinement 7.14% 1.95% 2.60% 3.25% 11.04% 8.44% 0.65% 3.25% 0

VerCors zero-shot 0 1.30% 1.30% 1.95% 0 5.84% 8.44% 1.95% 0
refinement 1.95% 1.30% 1.95% 5.19% 1.30% 16.88% 11.69% 4.55% 3.25%

VeriFast zero-shot 0 0 0 0 0 0 0 0 0
refinement 0 0 0 2.60% 0 0 0.65% 0.65% 0

Verus zero-shot 1.95% 6.49% 10.39% 0.65% 0.65% 0.65% 7.79% 0.65% 0.65%
refinement 12.99% 9.09% 21.43% 8.44% 1.30% 0.65% 17.53% 1.30% 0.65%

Why3 zero-shot 0 0 0.65% 0.65% 1.30% 1.30% 0 0.65% 0
refinement 0 0 4.55% 10.39% 9.09% 5.84% 1.95% 1.95% 0

Overall zero-shot 1.48% 2.23% 3.62% 0.93% 2.32% 1.48% 3.34% 1.02% 0.28%
refinement 6.22% 4.64% 9.37% 7.98% 7.98% 6.86% 7.88% 5.19% 1.11%

Improvement 4.73% 2.41% 5.75% 7.05% 5.66% 5.38% 4.55% 4.17% 0.83%

Table 2 shows the results on VerifyThisBenchXS. Similarly, at the first attempt, absolute
numbers remain low (less than 4%) for all models. At the fifth iteration, o4-mini tops the competition
with 17.24%, followed closely by Deepseek (16.72%), Claude (16.03%), and Llama (11.55%).
Feedback leads to substantial improvement for most models, achieving relative gains of over 10%.

In conclusion, while few models succeed from scratch, many become competitive when guided by
partial context. Open-source models like Deepseek, and Llama outperform many closed-source
counterparts, showing strong potential for real-world deployment in assisted formal verification.
These results also underscore the importance of combining structural hints, feedback loops, and
domain-specific strengths when applying LLMs to formal reasoning tasks.

Key Insights: Average pass rates for all evaluated models remain low at 10% on
VerifyThisBench and 18% on VerifyThisBenchXS, revealing the challenges formal verifi-
cation poses even to SOTA LLMs. All models improve with feedback.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Overall Pass Rate On VerifyThisBenchXS
Attempt GPT4o GPT4o-mini o3-mini o4-mini Claude Gemini Llama Deepseek Qwen

Dafny zero-shot 0 1.35% 2.70% 1.35% 1.35% 1.35% 0 2.70% 1.35%
refinement 17.57% 9.46% 31.08% 37.84% 41.89% 17.57% 8.11% 21.62% 8.11%

Frama-C zero-shot 0 0 1.85% 0 1.85% 1.85% 0 1.85% 0
refinement 0 0 5.56% 18.52% 9.26% 1.85% 0 5.56% 0

VerCors zero-shot 0 0 0 0 0 0 0 0 0
refinement 0 0 0 7.69% 0 0 3.85% 0 0

VeriFast zero-shot 7.58% 4.55% 3.03% 6.06% 6.06% 0 4.55% 12.12% 3.03%
refinement 12.12% 6.06% 4.55% 10.61% 27.27% 0 9.09% 13.64% 6.06%

Verus zero-shot 7.07% 5.05% 8.08% 14.14% 14.14% 4.04% 3.03% 7.07% 5.05%
refinement 15.15% 6.06% 17.17% 30.30% 30.30% 16.16% 13.13% 20.20% 7.07%

Why3 zero-shot 0 0 0 0.38% 0.38% 0.77% 0 0.38% 0
refinement 7.66% 2.30% 0.77% 8.81% 3.45% 1.15% 15.71% 18.77% 1.15%

Overall zero-shot 2.07% 1.55% 2.24% 3.45% 3.62% 1.38% 1.03% 3.28% 1.38%
refinement 9.66% 3.97% 8.28% 17.24% 16.03% 5.69% 11.55% 16.72% 3.45%

Improvement 7.59% 2.42% 6.04% 13.79% 12.41% 4.31% 10.52% 13.44% 2.07%

4.4 FAILURE MODE DISTRIBUTION

0%

25%

50%

75%

100%

GPT4o

GPT4o
mini

o3
mini

o4
mini

Clau
de

Gem
ini

Lla
ma

Dee
ps

ee
k

Qwen

NOGEN Compile Error Timeout Partial Succeed

Figure 2: zero-shot on VerifyThisBench

0%

25%

50%

75%

100%

GPT4o

GPT4o
mini

o3
mini

o4
mini

Clau
de

Gem
ini

Lla
ma

Dee
ps

ee
k

Qwen

NOGEN Compile Error Timeout Partial Succeed

Figure 3: refinement on VerifyThisBench

0%

25%

50%

75%

100%

GPT4o

GPT4o
mini

o3
mini

o4
mini

Clau
de

Gem
ini

Lla
ma

Dee
ps

ee
k

Qwen

NOGEN Compile Error Timeout Partial Succeed

Figure 4: zero-shot on VerifyThisBenchXS

0%

25%

50%

75%

100%

GPT4o

GPT4o
mini

o3
mini

o4
mini

Clau
de

Gem
ini

Lla
ma

Dee
ps

ee
k

Qwen

NOGEN Compile Error Timeout Partial Succeed

Figure 5: refinement on VerifyThisBenchXS

We categorize outcomes as NOGEN (no code detected), Compile Error, Timeout (compiles but
exceeds verifier time budget), Partial (some but not all obligations proved), and Succeed. Figures 2
to 5 show clear improvements in model’s performance when partial solution templates are provided
in the relaxed settings.

Specifically, partial success rates increase significantly, indicating that template hints help models
generate more accurate solutions. Timeout rates remain relatively stable. This state indicates
that models are making meaningful progress toward valid proofs, but the verifier struggles to find
counterexamples on difficult obligations. Compilation errors still dominate but tend to decrease
under the relaxed setting for some models, demonstrating that not needing to generate from scratch
helps reduce syntax-level mistakes. However, some models like GPT4o-mini and o3-mini exhibit
mixed trends, suggesting that while the template helps, the model’s internal understanding and code
generation fidelity still vary.

If we relax the metric to consider compilable code rather than fully verified solutions,
Claude, GPT-4o, and Deepseek consistently emerge as the top performers across both

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

benchmarks. Notably, Claude generates compilable outputs in nearly 50% of attempts
on VerifyThisBenchXS and around 25% on VerifyThisBench in the first at-
tempt alone, highlighting its strong baseline capability even without iterative feedback.
Key Insights: While compilation error dominates in both benchmarks, in the relax setting we observe
decreases in such failures and increases of partial correct or compilable solutions, moving model
performance closer to usable verification outputs even when full correctness is not achieved.

4.5 COHERENCE

Table 3 reports each model’s coherence confidence, i.e. whether the model believes its generated spec-
ification matches the intended problem requirement. Importantly, this “self” alignment assessment is
computed in a separate pass without chain-of-thought disclosure of how the answer was generated
by the model and is thus a statistically independent evaluation. This metric is evaluated across
the verified fraction of the outputs. While passing a formal verifier indicates syntactic and logical
correctness, it does not address the alignment problem (i.e., whether the verified implementation
perfectly aligns with the user-intent expressed in natural language descriptions); hence, coherence
offers complementary insight. Notably, except o3-mini and Qwen, models’s confidence is less than
50% on passed solutions.

The results reveal considerable variance across models in their self-assessment behavior. Models
like o3-mini and Claude exhibit high confidence, often reporting over 80% coherence even in the
zero-shot setting, suggesting strong internal certainty—though this may reflect overconfidence rather
than accurate introspection. In contrast, models like GPT-4o and Llama show much more conservative
estimates, with coherence below 30%, indicating either better-calibrated uncertainty or limited self-
awareness. Interestingly, refinement tends to reduce overconfidence for some models (e.g., Claude)
while slightly improving coherence calibration for others (e.g., GPT-4o and Deepseek), suggesting
iterative attempts help align perceived and actual correctness.

Table 3: Self-Assessment of Specification Coherence on VerifyThisBench
Attempt GPT4o GPT4o-mini o3-mini o4-mini Claude Gemini Llama Deepseek Qwen

CBMC zero-shot 15.38% 0% 84.62% 0% 80.00% 33.33% 0% 100% 100%
refinement 16.13% 0% 61.54% 12.50% 26.47% 13.64% 3.23% 20.59% 100%

Dafny zero-shot - - 100% 100% 100% - - 100% -
refinement 50.00% 100% 100% 62.50% 76.47% 50.00% 25.00% 100% 0%

Frama-C zero-shot - 100% - - 100% 0% - 100% -
refinement 100% 100% 75.00% 80.00% 70.59% 53.85% 0% 100% -

VerCors zero-shot - 100% 100% 33.33% - 66.67% 69.23% 100% -
refinement 66.67% 100% 100% 62.50% 0% 46.15% 61.11% 85.71% 80.00%

VeriFast zero-shot - - - - - - - - -
refinement - - - 0% - - 0% 100% -

Verus zero-shot 0% 30.00% 100% 0% 0% 0% 8.33% 0% 0%
refinement 0% 28.57% 93.94% 7.69% 0% 0% 3.70% 0% 0%

Why3 zero-shot - - 100% 100% 100% 0% - 100% -
refinement - - 100% 53.33% 35.71% 22.22% 0% 100% -

Average zero-shot 12.50% 25.00% 94.87% 50.00% 88.00% 43.75% 27.78% 90.91% 66.67%
refinement 28.36% 20.00% 82.00% 36.47% 45.35% 34.25% 16.47% 46.43% 75.00%

We manually inspected a subset of successful solutions to validate if generated specifications align
with the intended problem. Except for o3-mini, most models appear honest in their coherence self-
assessments, with no false negatives found. Thus, our evaluation reflects an optimistic upper bound
on true alignment—assuming coherence estimates are accurate and verifier passes indicate best-case
correctness. Automatically verifying the alignment between generated specifications and user intent
in natural language remains an open technical challenge (Lahiri, 2024). Our benchmark serves as
a valuable resource for systematically investigating this specification–intent alignment problem in
future research. In addition, we explore a test-based evaluation approach, with preliminary results
presented in Appendix F

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Key Insights: Models show a wide range in coherence confidence level, suggesting varied internal
behaviors. On average, only 43% of passed solutions are judged coherent and our manual review
suggests strong alignment.

4.6 PERFORMANCE BY TOOLS

Table 4 shows that all tools benefit from iterative refinement through feedback. In the
VerifyThisBench setting, CBMC and Verus exhibit the most pronounced improvements, likely
due to their syntactic resemblance to C and Rust, making them more accessible to language models.
Dafny also shows moderate gains in this setting. In VerifyThisBenchXS, improvements are even
more substantial. Dafny, in particular, demonstrates a leap from near-zero success rate to over 21.4%;
Verus observes an improvement around 10%. In contrast, tools such as VeriFast, Frama-C, and
Why3 remain largely stagnant on both benchmarks, suggesting either stricter syntactic or semantic
constraints, or a structural mismatch with current model capabilities.

Table 4: Average Pass Rates across Tools
Attempt CBMC Dafny Frama-C VerCors VeriFast Verus Why3

VerifyThisBench
zero-shot 4.76% 1.30% 0.79% 2.31% 0 3.32% 0.51%

refinement 18.11% 4.47% 4.26% 5.34% 0.43% 8.15% 3.75%

VerifyThisBenchXS
zero-shot - 1.35% 0.82% 0 5.22% 7.52% 0.21%

refinement - 21.47% 4.53% 1.28% 9.93% 17.28% 6.64%

4.7 PERFORMANCE BY RELAXATION

Table 5: Overall Performance across Different Relaxation Settings in VerifyThisBenchXS
Code Specification Loop

Model Zero-shot Refinement Zero-shot Refinement Zero-shot Refinement

GPT4o 0.88% 11.06% 3.00% 9.87% 2.48% 6.61%
GPT4omini 0.88% 3.98% 2.15% 3.86% 1.65% 4.13%
o3mini 0.88% 7.52% 2.58% 7.72% 4.13% 10.74%
o4mini 0.88% 14.16% 5.15% 18.45% 4.96% 20.66%
Claude 2.21% 15.04% 4.29% 19.31% 4.96% 11.57%
Gemini 1.33% 6.19% 1.29% 4.72% 1.65% 6.61%
Llama 0.44% 11.95% 1.72% 12.88% 0.83% 8.26%
Deepseek 0.44% 15.49% 4.72% 19.31% 5.79% 14.05%
Qwen 1.33% 3.54% 1.29% 3.86% 1.65% 2.48%

Overall 1.05% 9.73% 2.90% 11.27% 3.20% 9.81%

Table 5 breaks down VerifyThisBenchXS results by Code-Gen, Spec-Gen, and Loop-Gen.
Iterative refinement consistently improves pass rates across all categories.

Among the three, spec-gen yields the highest overall pass rates, suggesting that models can more
readily articulate reasoning about what a program is supposed to do, given a working implementation
and its proof context. Completing loop invariant, arguably the most abstract and logically demanding
task, results in pass rate lower than 10%, though still showing solid gains with retries. This points to
the inherent difficulty models face in understanding and completing partial proofs.

Key Insights: Generating the entire solution holistically (overall pass rate@9.73%) may not be
more difficult than generating a specific one, e.g., loop invariant (overall pass rate@9.81%).

5 CONCLUSION

In this work, we introduce VerifyThisBench and VerifyThisBenchXS to evaluate the
formal verification capabilities of large language models, systematically assessing their performance
across a range of tools, tasks, and relaxation settings. Despite the use of SOTA models, results show
generally poor performance, particularly in strict end-to-end settings that require complete formal
reasoning without assistance. These findings highlight significant gaps in current models’ ability to
generate semantically and logically correct solutions in formal domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Introducing the next generation of claude, 2024. URL https://www.anthropic.
com/news/claude-3-family/.

Anthropic. Claude 3.7 sonnet and claude code, 2025. URL https://www.anthropic.com/
news/claude-3-7-sonnet.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Ab-
dalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias
Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A versatile and
industrial-strength smt solver. In Dana Fisman and Grigore Rosu (eds.), Tools and Algorithms
for the Construction and Analysis of Systems, pp. 415–442, Cham, 2022. Springer International
Publishing. ISBN 978-3-030-99524-9.

Saikat Chakraborty, Shuvendu K. Lahiri, Sarah Fakhoury, Akash Lal, Madanlal Musuvathi, Aseem
Rastogi, Aditya Senthilnathan, Rahul Sharma, and Nikhil Swamy. Ranking llm-generated loop
invariants for program verification. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023,
pp. 9164–9175. Association for Computational Linguistics, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings of the 14th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2008), pp. 337–340. Springer, 2008.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer.
The Lean Theorem Prover (system description). 6 2018. doi: 10.1184/R1/6492815.
v1. URL https://kilthub.cmu.edu/articles/journal_contribution/The_
Lean_Theorem_Prover_system_description_/6492815.

Google DeepMind. Gemini-2.5-flash, 2025. URL https://deepmind.google/
technologies/gemini/flash/.

DeepSeek-AI. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.
19437.

Xavier Denis and Stephen F. Siegel. Verifythis 2023: An international program verification
competition. In TOOLympics Challenge 2023: Updates, Results, Successes of the Formal-
Methods Competitions, pp. 147–159, Berlin, Heidelberg, 2024. Springer-Verlag. ISBN 978-
3-031-67694-9. doi: 10.1007/978-3-031-67695-6_5. URL https://doi.org/10.1007/
978-3-031-67695-6_5.

Edsger W. Dijkstra. The humble programmer. Technical Report EWD340, EWD, 1972. Technical
report from the EWD series.

Madeline Endres, Sarah Fakhoury, Saikat Chakraborty, and Shuvendu K. Lahiri. Can large language
models transform natural language intent into formal method postconditions? Proc. ACM Softw.
Eng., 1(FSE):1889–1912, 2024.

10

https://www.anthropic.com/news/claude-3-family/
https://www.anthropic.com/news/claude-3-family/
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://kilthub.cmu.edu/articles/journal_contribution/The_Lean_Theorem_Prover_system_description_/6492815
https://kilthub.cmu.edu/articles/journal_contribution/The_Lean_Theorem_Prover_system_description_/6492815
https://deepmind.google/technologies/gemini/flash/
https://deepmind.google/technologies/gemini/flash/
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://doi.org/10.1007/978-3-031-67695-6_5
https://doi.org/10.1007/978-3-031-67695-6_5

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shaona Ghosh, Heather Frase, Adina Williams, Sarah Luger, Paul Röttger, Fazl Barez, Sean McGre-
gor, Kenneth Fricklas, Mala Kumar, Quentin Feuillade-Montixi, Kurt Bollacker, Felix Friedrich,
Ryan Tsang, Bertie Vidgen, Alicia Parrish, Chris Knotz, Eleonora Presani, Jonathan Bennion,
Marisa Ferrara Boston, Mike Kuniavsky, Wiebke Hutiri, James Ezick, Malek Ben Salem, Ra-
jat Sahay, Sujata S. Goswami, Usman Gohar, Ben Huang, Supheakmungkol Sarin, Elie Al-
hajjar, Canyu Chen, Roman Eng, Kashyap Ramanandula Manjusha, Virendra Mehta, Eileen
Long, Murali Emani, Natan Vidra, Benjamin Rukundo, Abolfazl Shahbazi, Kongtao Chen, Ra-
jat Ghosh, Vithursan Thangarasa, Pierre Peigné, Abhinav Singh, Max Bartolo, Satyapriya Kr-
ishna, Mubashara Akhtar, Rafael Gold, Cody Coleman, Luis Oala, Vassil Tashev, Joseph Marvin
Imperial, Amy Russ, Sasidhar Kunapuli, Nicolas Miailhe, Julien Delaunay, Bhaktipriya Rad-
harapu, Rajat Shinde, Tuesday, Debojyoti Dutta, Declan Grabb, Ananya Gangavarapu, Saurav
Sahay, Agasthya Gangavarapu, Patrick Schramowski, Stephen Singam, Tom David, Xudong Han,
Priyanka Mary Mammen, Tarunima Prabhakar, Venelin Kovatchev, Ahmed Ahmed, Kelvin N.
Manyeki, Sandeep Madireddy, Foutse Khomh, Fedor Zhdanov, Joachim Baumann, Nina Vasan,
Xianjun Yang, Carlos Mougn, Jibin Rajan Varghese, Hussain Chinoy, Seshakrishna Jitendar,
Manil Maskey, Claire V. Hardgrove, Tianhao Li, Aakash Gupta, Emil Joswin, Yifan Mai,
Shachi H. Kumar, Cigdem Patlak, Kevin Lu, Vincent Alessi, Sree Bhargavi Balija, Chenhe
Gu, Robert Sullivan, James Gealy, Matt Lavrisa, James Goel, Peter Mattson, Percy Liang, and
Joaquin Vanschoren. AILuminate: Introducing v1.0 of the AI risk and reliability benchmark
from mlcommons. CoRR, abs/2503.05731, 2025. doi: 10.48550/ARXIV.2503.05731. URL
https://doi.org/10.48550/arXiv.2503.05731.

GitHub. Introducing GitHub Copilot. https://github.blog/2021/06/29/
introducing-github-copilot, 2021. Blog post announcing GitHub Copilot.

Google. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context, 2024.
URL https://arxiv.org/abs/2403.05530.

Alex Gu, Baptiste Rozière, Hugh James Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida
Wang. CRUXEval: A benchmark for code reasoning, understanding and execution. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=Ffpg52swvg.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps, 2021. URL https://arxiv.org/abs/2105.09938.

Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press, 2004.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Adharsh Kamath, Aditya Senthilnathan, Saikat Chakraborty, Pantazis Deligiannis, Shuvendu K
Lahiri, Akash Lal, Aseem Rastogi, Subhajit Roy, and Rahul Sharma. Finding inductive loop
invariants using large language models. arXiv preprint arXiv:2311.07948, 2023.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, Zhiyi Ma, Tristan Thrush, Sebastian
Riedel, Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit Bansal, Christopher Potts, and Adina
Williams. Dynabench: Rethinking benchmarking in NLP. In Kristina Toutanova, Anna Rumshisky,
Luke Zettlemoyer, Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy
Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2021, Online, June 6-11, 2021, pp. 4110–4124. Association for Computational Linguistics,
2021. doi: 10.18653/V1/2021.NAACL-MAIN.324. URL https://doi.org/10.18653/
v1/2021.naacl-main.324.

Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski.
Frama-c: A software analysis perspective. volume 27, pp. 573–609. Springer, 2015.

11

https://doi.org/10.48550/arXiv.2503.05731
https://github.blog/2021/06/29/introducing-github-copilot
https://github.blog/2021/06/29/introducing-github-copilot
https://arxiv.org/abs/2403.05530
https://openreview.net/forum?id=Ffpg52swvg
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2310.06770
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.18653/v1/2021.naacl-main.324

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Daniel Kroening, Peter Schrammel, and Michael Tautschnig. CBMC: The C bounded model checker,
2023. URL https://arxiv.org/abs/2302.02384.

Shuvendu K. Lahiri. Evaluating llm-driven user-intent formalization for verification-aware languages,
2024. URL https://arxiv.org/abs/2406.09757.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for
data science code generation, 2022. URL https://arxiv.org/abs/2211.11501.

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon
Howell, Bryan Parno, and Chris Hawblitzel. Verus: Verifying rust programs using linear ghost
types. Proceedings of the ACM on Programming Languages, 7(OOPSLA1):286–315, 2023.

K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In Proceedings of
the 2010 International Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI), pp. 348–352. Springer, 2010.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, December 2022. ISSN 1095-9203. doi:
10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.abq1158.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation, 2023.
URL https://arxiv.org/abs/2305.01210.

Chloe Loughridge, Qinyi Sun, Seth Ahrenbach, Federico Cassano, Chuyue Sun, Ying Sheng, Anish
Mudide, Md Rakib Hossain Misu, Nada Amin, and Max Tegmark. Dafnybench: A benchmark for
formal software verification. arXiv preprint arXiv:2406.08467, 2024.

Meta. Llama3.3-70b-instruct. URL https://www.llama.com/docs/
model-cards-and-prompt-formats/llama3_3/.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

OpenAI. Hello GPT-4o, 2024. URL https://openai.com/index/hello-gpt-4o/.

OpenAI. Openai model list, 2025. URL https://platform.openai.com/docs/models.

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. Can large language models
reason about program invariants? In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 27496–27520. PMLR, 2023.

Qwen. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Xujie Si, Aaditya Naik, Hanjun Dai, Mayur Naik, and Le Song. Code2inv: A deep learning framework
for program verification. In Computer Aided Verification: 32nd International Conference, CAV
2020, Los Angeles, CA, USA, July 21–24, 2020, Proceedings, Part II 32, pp. 151–164. Springer,
2020.

SV-COMP-org. https://sv-comp.sosy-lab.org/.

Sygus-org. Sygus. https://sygus.org/.

Amitayush Thakur, Jasper Lee, George Tsoukalas, Meghana Sistla, Matthew Zhao, Stefan Zetzsche,
Greg Durrett, Yisong Yue, and Swarat Chaudhuri. Clever: A curated benchmark for formally
verified code generation, 2025. URL https://arxiv.org/abs/2505.13938.

12

https://arxiv.org/abs/2302.02384
https://arxiv.org/abs/2406.09757
https://arxiv.org/abs/2211.11501
http://dx.doi.org/10.1126/science.abq1158
https://arxiv.org/abs/2305.01210
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://openai.com/index/hello-gpt-4o/
https://platform.openai.com/docs/models
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://sv-comp.sosy-lab.org/
https://sygus.org/
https://arxiv.org/abs/2505.13938

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

VerCors. Vercors tool. URL https://github.com/utwente-fmt/vercors.

VeriFast. Verifast tool. URL https://github.com/verifast/verifast.

VerifyThis Competition Series. VerifyThis Competition Series, 2025. URL https://www.pm.
inf.ethz.ch/research/verifythis.html.

Why3. Why3 project. URL https://www.why3.org/.

Guangyuan Wu, Weining Cao, Yuan Yao, Hengfeng Wei, Taolue Chen, and Xiaoxing Ma. LLM meets
bounded model checking: Neuro-symbolic loop invariant inference. In Vladimir Filkov, Baishakhi
Ray, and Minghui Zhou (eds.), Proceedings of the 39th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2024, Sacramento, CA, USA, October 27 - November 1,
2024, pp. 406–417. ACM, 2024.

Chunqiu Steven Xia, Yinlin Deng, and Lingming Zhang. Top leaderboard ranking= top coding profi-
ciency, always? evoeval: Evolving coding benchmarks via llm. arXiv preprint arXiv:2403.19114,
2024.

Chenyuan Yang, Xuheng Li, Md Rakib Hossain Misu, Jianan Yao, Weidong Cui, Yeyun Gong,
Chris Hawblitzel, Shuvendu Lahiri, Jacob R Lorch, Shuai Lu, et al. Autoverus: Automated proof
generation for rust code. arXiv preprint arXiv:2409.13082, 2024.

Zhe Ye, Zhengxu Yan, Jingxuan He, Timothe Kasriel, Kaiyu Yang, and Dawn Song. Verina:
Benchmarking verifiable code generation. arXiv preprint arXiv:2505.23135, 2025.

13

https://github.com/utwente-fmt/vercors
https://github.com/verifast/verifast
https://www.pm.inf.ethz.ch/research/verifythis.html
https://www.pm.inf.ethz.ch/research/verifythis.html
https://www.why3.org/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A COMPOSITION OF VERIFYTHISBENCHXS

Table 6 presents the composition of VerifyThisBenchXS, summarizing the number of verifica-
tion tasks by tool and category. It includes counts of implementations, specifications, and loop-related
completion tasks for six verification tools: Dafny, Frama-C, VerCors, Verifast, Why3, and Verus. In
total, the benchmark comprises 580 tasks, with 226 implementations, 233 specifications, and 121
loop invariants related examples.

Table 6: Composition of VerifyThisBenchXS
Tool Implementaion Specification Loop Total

Dafny 28 25 21 74
Frama-C 15 15 24 54
VerCors 8 8 10 26
VeriFast 26 31 9 66
Why3 118 117 26 261
Verus 31 27 31 99

Total 226 233 121 580

B MODEL VERSIONS

GPT-4o was evaluated using the version from August 6, 2024, while GPT-4o-mini and o4-mini
correspond to the July 18, 2024 versions. The o3-mini model was accessed as of January 31, 2025.
Claude refers to the Claude-3.7-Sonnet version released on February 24, 2025, and Gemini-2.5
Flash on the April 17, 2025 release. For open-source models, we used LLaMA3.3-70b Instruct
from December 6, 2024, DeepSeek-chat-v3 from March 24, 2025, and Qwen2.5-72b Instruct from
September 19, 2024. These version references ensure the reproducibility and consistency of our
benchmarking results.

C TOOL VERSIONS

We report exact toolchain versions for reproducibility and summarize each tool’s verification model.
The Verus verifier was run using version v0.2025.04.03.0f22710, while Why3 was evaluated with
version v1.6.0. For Frama-C, we used version v30.0, and VeriFast experiments were conducted with
version v25.02. The Dafny toolchain ran on version v4.10.0, and VerCors with v2.3.0. Finally, we
used CBMC version v6.5.0.

Docker container images and unified toolchain launch scripts are included in the released dataset.
Below we briefly describe each tool:

• Dafny: A verification-aware programming language with built-in specification support
(pre/post-conditions, invariants) and an automatic static verifier.

• Why3: A platform for deductive verification with its own intermediate language (WhyML)
and integration with external theorem provers.

• VeriFast: A verifier for C and Java using separation logic, enabling modular reasoning
about memory safety and functional correctness.

• VerCors: A verifier for concurrent programs in Java, C, and OpenCL, supporting permission-
based separation logic and parallel reasoning.

• Frama-C: A modular analysis platform for C, using the ACSL specification language and
combining abstract interpretation with deductive verification.

• Verus: A verifier for Rust programs that checks user-defined specifications using SMT
solving, supporting low-level features and ownership semantics.

• CBMC: A bounded model checker for C and C++ that verifies safety and functional
correctness by translating code into SAT/SMT formulas.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D PROMPT FORMATS

As prompt optimization was not the focus of this work, we used a simple, uniform structure for all
models to ensure fairness across different tools. Each prompt consists of a system prompt describing
the verification tool, followed by the problem description and task. System prompts used in our
experiments are included in the released dataset (see artifact).

(1) System prompt: a concise tool description and key syntax/semantics reminders.

1 You are an assistant that writes formally verified programs in <TOOL>.
2 - Use <language/syntax> with pre/postconditions, assertions, and loop invariants as required.
3 - The solution must compile and pass the <TOOL> verifier with a 60s timeout.
4 - Do not use unsupported features: <list>.
5 - Return a single <file-type>, with all annotations needed for verification.

(2) User prompt: the natural-language problem overview and the specific task.

1 # Description
2 <Problem overview in natural language; may include pseudo-code.>
3
4 # Task
5 <Explicit instruction: implement/specify/prove/refine the desired property.>

E STATISTICS OF VERIFYTHISBENCH AND VERIFYTHISBENCHXS

0 0.2k 0.4k 0.6k 0.8k 1.0k 1.2k 2.0k
Number of Words

0

1

2

3

4

5

6

7

8

9

10

11

12

Co
un

t

Natural Language Description (Problem Overview + Tasks)

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Lines of Code

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Co
un

t

Lines of Code in Ground Truth Solutions

Figure 6: Distributions of dataset characteristics. (Left) Word count distribution of natural language
descriptions for challenges. (Right) Line-of-code distribution of collected ground-truth solutions.

To provide empirical support for our claim regarding the range of difficulty in the dataset, we
report several descriptive statistics. The natural language descriptions (problem overview and task
statements) vary substantially in length, with an average of 467 words, ranging from 30 to 1802 words.
The distribution, shown in Figure 6 (left), indicates that most challenges fall within the 200–799
word range, with a small number extending beyond 1000 words. In terms of solution complexity,
we analyzed 48 collected ground-truth implementations, which range from as short as 28 lines to
648 lines, with an average of 189.44 lines and a median of 124 lines per solution. As illustrated in
Figure 6 (right), the majority of these solutions are under 300 lines, with a few extending beyond 500
lines.

Beyond length, the diversity of task types also reflects difficulty variation: 15 out of 41 challenges
involve relatively simple data structures such as binary trees and one-dimensional arrays, whereas the
remaining challenges address more complex structures, including linked lists, graphs, queues, and
specialized task-specific data types. Additionally, 11 out of 41 challenges explicitly require memory
safety proofs, further illustrating the technical depth of the dataset.

Natural language descriptions in Verina (Ye et al., 2025) have a median length of 110 and max length
of 296 words, with accompanying code and specifications of up to 100 lines. Clever (Thakur et al.,
2025) reports proof lengths ranging from 10 to 225 lines. In contrast, our benchmark spans a much
broader range of difficulty.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F EXPLORATION OF TEST-BASED SPECIFICATION VERIFICATION

Inspired by parallel work (Ye et al., 2025), we further explore a test-based proxy to evaluate specifi-
cation alignment. We manually construct desired input-output pairs of a problem, and verify them
against the specifications generated by the models. We check if the inputs imply the described
pre-conditions, and if the outputs satisfy the post-conditions. Our setup supports open-ended, com-
plex verification problems, without restrictions on how the function signatures or data structures
are defined. As a preliminary experiment, we evaluated on all passed or failed samples of Dafny
specifications generated from the VerifyThisBench end-to-end tasks using test cases, on the
following two benchmark problems:

1. Finding the maximum in an array, and
2. Finding the maximum in a tree.

For the array version, 87.5% of the generated specifications passed the test cases (as a reference, the
model’s self-assessment on coherence: 93%). For the tree version, only 10% passed, mainly due to
syntax errors, helper function verifiability, and other issues (reference on the model’s self-assessment
on coherence: 87%).

These results differ from our manual evaluations and the model’s self-assessments. Model’s assess-
ment focuses on intent alignment, whereas testing requires functional correctness. This illustrates the
complementary nature of different evaluation methods.

G VERIFYTHISBENCHXS DATA SOURCE

Table 7 lists the sources of solutions used to construct VerifyThisBenchXS. It includes the year
of publication, the name of the verification challenge, the verification tool used, and the authors or
contributors of each solution. We include canonical community solutions where available; in addition
to the list, we contribute new Verus solutions (see Section 3.4).

Table 7: Solution used to generate VerifyThisBenchXS.
Year Challenge Name Tool Authors

2024 The Rope Data Structure Why3 Jean-Christophe Filliâtre
2024 Smart Array Copy by Shuffled Subsegments Why3 Jean-Christophe Filliâtre
2023 Binary Decision Diagrams Why3 Martin Clochard and Yannick Moy
2021 Lexicographic Permutations Why3 Jean-Christophe Filliâtre and Andrei Paskevich
2021 Lexicographic Permutations VerCors Marieke Huisman and Sebastiaan Joosten
2021 DLL to BST Why3 Jean-Christophe Filliâtre and Andrei Paskevich
2021 Shearsort Why3 Jean-Christophe Filliâtre and Andrei Paskevich
2019 Monotonic Segments and GHC sort Frama-C Virgile Prevosto and Virgile Robles
2019 Monotonic Segments and GHC sort Dafny Sample answer from report
2019 Cartesian Trees Frama-C Virgile Prevosto and Virgile Robles
2019 Sparse Matrix Multiplication Frama-C Virgile Prevosto and Virgile Robles
2018 Array Based Queuing Lock Why3 Raphael Rieu
2018 Gap buffer Why3 Raphael Rieu
2018 Colored tiles Why3 Raphael Rieu
2017 Pair Insertion Sort Frama-C Lionel Blatter and Jean-Christophe Léchenet
2017 Pair Insertion Sort Dafny Jon Mediero Iturrioz
2017 Pair Insertion Sort VerCors Marieke Huisman, Wytse Oortwijn
2017 Maximum-sum Array(one-dimension) Frama-C Lionel Blatter and Jean-Christophe Léchenet
2017 Odd-even Transposition Sort Frama-C Lionel Blatter and Jean-Christophe Léchenet
2017 Tree Buffer Frama-C Lionel Blatter and Jean-Christophe Léchenet
2017 Tree Buffer VerCors Marieke Huisman, Wytse Oortwijn
2016 Matrix Multiplication VeriFast Bart Jacobs
2016 Matrix Multiplication Dafny Luca Weibel and Christiaan Dirkx
2016 Matrix Multiplication Why3 Martin Clochard and Léon Gondelman and Mário Pereira
2016 Binary Tree Traversal VeriFast Bart Jacobs
2016 Binary Tree Traversal Why3 Martin Clochard and Léon Gondelman and Mário Pereira
2016 Static Tree Barrier VeriFast Bart Jacobs
2015 RELAXED PREFIX Why3 Jean-Christophe Filliâtre and Guillaume Melquiond
2015 PARALLEL GCD Why3 Jean-Christophe Filliâtre and Guillaume Melquiond
2015 DANCING LINKS Why3 Jean-Christophe Filliâtre and Guillaume Melquiond
2012 Longest Common Prefix VeriFast Bart Jacobs and Jan Smans
2012 Prefix-Sum VeriFast Bart Jacobs and Jan Smans
2012 Tree Del VeriFast Bart Jacobs and Jan Smans
2011 Finding the Maximum in an Array Dafny Julian Tschannen and Nadia Polikarpova
2011 Finding the Maximum in a Tree Dafny Julian Tschannen and Nadia Polikarpova
2011 Finding Two Duplets in an Array Dafny Julian Tschannen and Nadia Polikarpova

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

H EXAMPLE CHALLENGE AND SOLUTION

1 // # Description
2 // This challenge is an instance of Kaldewaij’s Search by Elimination, where an element with a

given property is located by eliminating elements that do not have that property. The
challenge was selected as it involves a relatively simple but interesting invariant,
expressing that the maximal element is in the remaining search space rather than
maintaining the maximal element found so far. A pseudo-code implementation is as follows:

3 // int max(int[] a) {
4 // int x = 0;
5 // int y = a.length-1;
6 // while (x != y) {
7 // if (a[x] <= a[y]) x++;
8 // else y--;
9 // }

10 // return x;
11 // }
12 // # Task
13 // Please implement and verify that the index returned by the method max() given points to an

element maximal in the array
14 pub fn max(a: &[int]) -> (result: usize)
15 requires
16 a.len() > 0,
17 ensures ({
18 result < a.len(),
19 forall|i: int| 0 <= i && i < a.len() ==> a[result as int] >= a[i],
20 }),
21 {
22 let mut x: usize = 0;
23 let mut y: usize = a.len() - 1;
24 ...
25 while x != y
26 invariant
27 ...
28 x as int <= max_idx && max_idx <= y as int,
29 forall|i: int| 0 <= i && i < a.len() ==> a[max_idx] >= a[i],
30 decreases y - x
31 {
32 if a[x] <= a[y] {
34 proof {
35 ...
36 if max_idx == x as int {
37 assert(a[x] == a[y]);
38 max_idx = y as int;
39 }
40 ...
41 assert(x as int + 1 <= max_idx && max_idx <= y as int);
42 }
43 x += 1;
44 } else {
45 proof {
46 ...
47 }
48 y -= 1;
49 }
50 }
51 ...
52 return x;
53 }

Figure 7: An example challenge stated in natural language highlighted in green and its potential
solution in Verus with code implementation in grey, spec in yellow and proof in orange and
invariants (a special kind of proof) in pink. This challenge is from 2011 and the solution is
generated by Claude-3.7-Sonnet.

I DECLARATION OF LLM USAGE

This research evaluates LLM’s performance on formal verification tasks. As for the paper preparation,
LLM is ONLY used to polish the writing.

17

	Introduction
	Background & Related Work
	Unverified Code Synthesis Benchmarks
	Program Verification Benchmarks
	End-to-end Verification Benchmarks
	Formal Methods in Software Verification: A Primer

	VerifyThisBench Benchmark
	Benchmark Construction
	Environment
	Features of VerifyThisBench
	Relaxation

	Experiment Results
	Model Setup
	Experiment Design and Metrics
	Overall Pass Rate
	Failure Mode Distribution
	Coherence
	Performance by Tools
	Performance by Relaxation

	Conclusion
	Composition of VerifyThisBenchXS
	Model Versions
	Tool Versions
	Prompt Formats
	Statistics of VerifyThisBench and VerifyThisBenchXS
	Exploration of test-based specification verification
	VerifyThisBenchXS Data Source
	Example Challenge and Solution
	Declaration of LLM Usage

