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ABSTRACT

Large language models (LLMs) have demonstrated remarkable progress in code
generation, but many existing benchmarks are approaching saturation and offer little
guarantee on the trustworthiness of the generated programs. To improve visibility
into model reasoning on formal correctness, we introduce VerifyThisBench,
a new benchmark that evaluates end-to-end program verification from natural
language descriptions: models must (i) extract formal specifications, (ii) implement
in a verification-aware language, and (iii) construct machine-checkable proofs.
Our evaluation reveals that even state-of-the-art (SOTA) models, such as o3-mini,
achieve a pass rate of less than 4%, with many outputs failing to compile. To
isolate sources of difficulty, we further propose VerifyThisBenchXS, a relaxed
variant in which partial implementations or proofs are provided. Across nine models
and seven verification tools on both benchmarks, we observe consistent gains
with feedback-driven refinement, but overall pass rates remain low, underscoring
substantial gaps in formal reasoning. We release the benchmark and the unified
evaluation environment to catalyze the verification capabilities for future models.

1 INTRODUCTION

Large language models (LLMs) have unequivocally revolutionized the landscape of automated code
generation. Models like OpenAI (2024) GPT-4o, Google (2024) Gemini, Anthropic (2024) Claude,
and GitHub (2021) Copilot excel at generating functional code snippets and translating between
languages. These capabilities are now integrated into AI-powered IDEs, such as Cursor and Visual
Studio, to support large-scale software development. This proficiency had led to increasing needs on
established benchmarks, as early as HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021),
to reflect the capability of each LLM tool. However, this rapid progress raises critical questions about
the trustworthiness and reliability of the generated artifacts. Many existing benchmarks, while useful
for gauging functional correctness through test suites, are approaching saturation (Kiela et al., 2021;
Ghosh et al., 2025; Gu et al., 2024; Xia et al., 2024) and inherently offer limited guarantees regarding
the deeper aspects of program correctness. Test cases, by their nature, can demonstrate the presence
of bugs, but cannot prove their absence (Dijkstra, 1972), leaving a significant gap in assessing the
formal robustness and true reasoning capabilities of these powerful models.

Reliable software must go beyond passing tests to be trustworthy, precisely follow specifications,
and even self-validate. Formal verification offers the most rigorous approach to achieving these
guarantees. This paradigm involves providing machine-checked mathematical proofs to show that a
program adheres to its formal specification, thereby guaranteeing critical properties such as functional
correctness, liveness (ensuring the program eventually does something good), and safety (ensur-
ing the program never does something bad) (Huth & Ryan, 2004). Modern program verification
infrastructures, such as Dafny (Leino, 2010), Frama-C (Kirchner et al., 2015), Verus (Lattuada
et al., 2023), Isabelle/HOL (Nipkow et al., 2002), and Lean (de Moura et al., 2018), coupled with
powerful automated theorem provers and SMT solvers like Z3 (de Moura & Bjørner, 2008) and
CVC5 (Barbosa et al., 2022), have significantly streamlined the process of writing and checking
such verified software. These tools allow developers to express complex specifications and then
automatically or semi-automatically verify that the implementation meets these specifications.

Although researchers have developed multiple benchmarks to assess LLMs on formal verification
subtasks (Kamath et al., 2023; Chakraborty et al., 2023; Pei et al., 2023; Endres et al., 2024), none
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Description: This challenge is an instance of Kaldewaij's Search by
Elimination, where an element with a given property is located by
eliminating elements that do not have that property. The
challenge was selected as it involves a relatively simple but interesting
invariant, expressing that the maximal element is in the remaining search space
rather than maintaining the maximal element found so far.

Task: Please implement and verify that the index returned by the method max()
given points to an element maximal in the array

Iterative refinement
through feedback

Code w/ spec & proofs VerifyThis Challenge(2011 - 2024)

Relaxed setting
w/ partial solutions

Language models

Figure 1: Evaluation workflow of VerifyThisBench and its relaxed settings.

evaluates end-to-end program verification solely from natural-language inputs. Instead, existing
suites either require verifying or synthesizing small programs against a given formal specification, or
focus on aiding proof completion by suggesting individual verification steps. Consequently, even
though state-of-the-art LLMs have been reported to solve up to 97.8% of these benchmark tasks (Wu
et al., 2024), those numbers do not reflect their true capability for end-to-end program verification.

To bridge this gap and rigorously evaluate the capabilities of LLMs in this demanding domain, we
introduce VerifyThisBench, a novel benchmark designed to assess end-to-end program verifi-
cation, as shown in Figure 1. Inspired by the annual VerifyThis Competition Series where human
contestants devise implementations and accompanying formal proofs in verification-aware languages,
VerifyThisBench tasks LLMs with interpreting natural language problem descriptions, formu-
lating formal specifications, generating the corresponding code, and constructing machine-checkable
correctness proofs – all at once, to produce compiled and verified artifacts. While recent efforts (Ye
et al., 2025; Thakur et al., 2025) also benchmark LLMs on end-to-end verification tasks in Lean,
our work differs by building on the long-standing VerifyThis Challenge, offering multi-framework
coverage, research-grade tasks, and competition-vetted difficulty, with solution lengths up to 648
lines compared to a maximum of 225 in prior work.

Our evaluation using VerifyThisBench reveals that even state-of-the-art (SOTA) models, such
as o3-mini, achieve a zero-shot pass rate of 3.62% on this end-to-end task, with a significant number
of outputs failing even to compile, and only reach a pass rate of 9.37% after five rounds of feedback.
These results underscore the profound challenge this domain presents. To dissect these challenges
further and explore capabilities in a more guided setting, we also propose VerifyThisBenchXS,
a variant where partial specification, implementation code, or proofs are provided, and the LLM is
tasked to complete the missing components. In this setting, o3-mini achieves 2.24% in zero-shot
attempt and 8.28% after refinement.

This paper makes the following key contributions:

• VerifyThisBench: We present VerifyThisBench, a new benchmark suite for evaluating
the ability of LLMs to generate fully verified programs (code, specifications, and proofs)
from natural language descriptions.

• Relaxed VerifyThisBench: We introduce VerifyThisBenchXS, a relaxed version of
the VerifyThisBench, to assess LLM performance when provided with partial artifacts
and tasked with completing them.

• Unified Environment: We provide a unified evaluation environment that integrates seven
verification tools and an automated pipeline, enabling consistent and scalable benchmarking
across diverse formal verification tasks.

• SOTA LLM Evaluation: We conduct a systematic evaluation of nine SOTA LLMs on both
benchmarks, revealing current capabilities and significant limitations.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND & RELATED WORK

2.1 UNVERIFIED CODE SYNTHESIS BENCHMARKS

Recent benchmarks for code generation include APPS (Hendrycks et al., 2021), HumanEval (Chen
et al., 2021), MBPP (Austin et al., 2021), CodeContests (Li et al., 2022), DS-1000(Lai et al., 2022),
SWEBench (Jimenez et al., 2024), and EvalPlus (Liu et al., 2023), among others. These benchmarks
present programming tasks, often sourced from online competitions or community platforms, and
evaluate models based on whether generated solutions pass a set of input-output test cases. While
effective in emulating daily software development, they do not involve formal verification.

In contrast, VerifyThisBench requires models to go beyond functional testing: they must
formalize natural language intents into specifications, generate code in verification-aware languages,
and produce proofs that pass a formal logic verifier. This makes VerifyThisBench a substantially
more rigorous and comprehensive benchmark than traditional code synthesis tasks.

2.2 PROGRAM VERIFICATION BENCHMARKS

Benchmarks built in the context of formal verification include SV-COMP (SV-COMP-org), Sy-
GuS (Sygus-org), and Code2Inv (Si et al., 2020). SV-COMP and Code2Inv focus solely on
verification tasks that do not require implementation generation. For more contexts, the former
contains large-scale C/Java benchmarks verifying fixed safety properties, and the latter targets
loop-invariant generation over small C-style programs. SyGuS focuses on constraint-based synthesis.

More recent efforts like DafnyBench (Loughridge et al., 2024) and VerusBench (Yang et al., 2024)
collect verified programs in Dafny and Verus respectively, primarily to train and evaluate ML-based
tools in aiding proof completion and suggesting verification steps, rather than end-to-end program
generation from natural language.

These benchmarks evaluate components of the verification pipeline but typically assume a preset
formal specification or verification goal. In contrast, VerifyThisBench uses the end-to-end setup
to explicitly evaluate the model’s ability in interpreting and encoding natural-language descriptions
into provably correct formal programs, a capability not tested in existing benchmarks.

2.3 END-TO-END VERIFICATION BENCHMARKS

Parallel work includes Verina (Ye et al., 2025) (189 tasks) and Clever (Thakur et al., 2025) (161
tasks), exploring end-to-end verification in Lean, with sources translated from programming tasks
in HumanEval, MBPP and Leetcode etc. VerifyThisBench differs in the source, scope and
diversity, with 734 tasks derived from the VerifyThis competition series, which presents realistic,
research-grade verification challenges across multiple domains. Rather than focusing on Lean,
VerifyThisBench spans seven verification frameworks across multiple programming languages,
including Verus (Lattuada et al., 2023) and Frama-C (Kirchner et al., 2015) that are established for
production codebases. Moreover, VerifyThisBench includes tasks that require reasoning about
memory safety, concurrency, and complex data structures beyond arrays and trees. See Appendix E
for detailed comparison of description lengths and solution sizes.

2.4 FORMAL METHODS IN SOFTWARE VERIFICATION: A PRIMER

Formal methods in software verification aim to mathematically prove program correctness against
a formal specification—a precise, unambiguous description of what a program should do, often
expressed in a logical language. This contrasts with testing, which can only show the presence of bugs
for specific inputs. The verification process typically relies on several key components embedded
within or alongside the executable program code:

• Contracts: These formalize the obligations and guarantees of a code segment.
– Pre-conditions (requires clauses): Properties that must hold true before a function

or code block executes for it to behave correctly.
– Post-conditions (ensures clauses): Properties guaranteed to be true after a function

or code block finishes, provided its pre-conditions were met.
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• Intermediate Assertions: Assistive hints are often needed to bridge any reasoning gaps
between the pre&post-conditions where the underlying solver cannot automatically address.

• Loop Invariants: For iterative constructs, loop invariants are crucial properties that hold
at the start of a loop, are preserved by each iteration, and, in conjunction with the loop’s
termination, help prove the loop’s correctness.

The typical verification flow in systems utilizing these concepts is as follows:

1. Annotation: Developers write code in a verification-aware language (e.g., Dafny (Leino,
2010), Frama-C, Verus and annotate it with formal specifications and proof hints, including
pre-conditions, post-conditions, assertions, and loop invariants.

2. Generation of Proof Obligations: A tool, often a Verification Condition Generator (VCG),
processes the annotated code and its specifications. It translates them into a series of
mathematical proof obligations (verification conditions) that, if all true, logically imply the
program’s correctness with respect to its specification.

3. Automated Proving: These verification conditions are then fed to backend automated
theorem provers, typically Satisfiability Modulo Theories (SMT) solvers like Z3 (de Moura
& Bjørner, 2008) or CVC5 (Barbosa et al., 2022). These solvers attempt to mathematically
prove each obligation.

4. Feedback: The system reports to the developer whether the proofs succeeded or failed.
Failures often pinpoint inconsistencies between the code and its specification, or missing/in-
correct annotations.

Successfully generating code within this paradigm, as targeted by our VerifyThisBench, requires
an LLM not only to produce the algorithmic implementation but also to understand, formulate,
and correctly express intricate formal specifications and proof structures that enable automated
verification.

3 VERIFYTHISBENCH BENCHMARK

VerifyThisBench is inspired by the annual VerifyThis Challenges (VerifyThis Competition
Series), a competition where participants are tasked with formalizing specifications, implementing
solutions, and verifying that the implementations meet the specification. We focus on this benchmark
because it is a dedicated formal methods competition, designed not only to evaluate participants’
skills but also to assess the maturity of verification tools (Denis & Siegel, 2024). Each challenge
is designed to be completed within a 90-minute session and varies in difficulty. Submissions are
evaluated based on correctness, completeness, and additional quality criteria such as elegance and the
degree of automation. Similarly, in VerifyThisBench, the task is to interpret natural language
problem descriptions and implement code and write proofs.

3.1 BENCHMARK CONSTRUCTION

We collected challenges from the annual competition series between 2011 and 2024, each with
natural-language descriptions (seldom include pseudo-code) and associated (one or more) tasks.
Tasks are categorized as either implementation (completing an algorithm) or verification (proving a
model or implementation correct against a specification). The resulting dataset includes 41 challenges
and 154 tasks, with an example in Appendix H and detailed statistics in Appendix E. The dataset is
available in supplementary material and will be made public after the anonymity period.

3.2 ENVIRONMENT

To facilitate evaluation, we provide a unified environment supporting seven verification tools. Five
of them, Dafny (Leino, 2010), Why3, VeriFast, VerCors, and Frama-C (Kirchner et al., 2015),
are widely used in past VerifyThis competitions. To broaden tool diversity, we additionally include
Verus (Lattuada et al., 2023) and CBMC (Kroening et al., 2023), covering Rust, C, and other
imperative or deductive platforms. Tool versions and brief descriptions can be found in Appendix C.
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3.3 FEATURES OF VERIFYTHISBENCH

End-to-end verification tasks with natural language problem descriptions: All tasks start with
informal, natural language prompts (often with pseudo-code). Models must interpret the intent
and formalize it into precise logical specifications. They are required to generate specifications,
implementations, and formal proofs in a verification-aware language, ensuring the code passes
machine-checkable verification. Example challenge and solution can be found in Appendix H.

Graded difficulty and multi-step challenges: Challenges are drawn from the VerifyThis competition
and span a range of difficulties (see Appendix E.). Many include sequential subtasks, allowing fine-
grained assessment of model capability on step-wise tasks.

Tool diversity: Multiple tools are provided and tested on. Models must conform to the syntax and
semantics of real-world verification frameworks.

3.4 RELAXATION

We observe that most language models fail to generate compilable code when targeting specific
verification tools. This is often due to the syntactic complexity and precise annotations required
by these tools. To isolate the sources of difficulty and better assess LLM capabilities under more
supportive conditions, we construct a set of relaxed subtasks derived from past human-written
solutions. Specifically, we define three forms of relaxation. In Code-Gen, we provide the function
specifications, omitting both the implementation and the proof annotations. In Specification-Gen,
we provide the implementation and its proof, but remove the function specifications. In Loop-Gen,
we provide specifications and implementations, but remove loop invariants needed for verification.

In total, we create a set of 580 tasks. Specifically, there are 226 code-gen task, 121 loop-gen tasks, and
233 spec-gen tasks. Table 6 in Appendix A shows the statistics of VerifyThisBenchXS. Since
no prior solutions exist for CBMC and Verus, and given notable community interest, we developed
new Verus solutions to enrich the dataset; CBMC solutions remain unavailable and are therefore not
included in the relaxed experiments.

4 EXPERIMENT RESULTS

4.1 MODEL SETUP

We evaluate a diverse set of SOTA language models, covering both proprietary and open-source
systems. Representatives are selected from the OpenAI (2025) family (GPT-4o, GPT-4omini, o3-mini,
o4-mini), Anthropic (2025) (Claude-3.7-Sonnet), Google (Gemini-2.5-Flash) (DeepMind, 2025),
DeepSeek (Deepseek-chat-v3) (DeepSeek-AI, 2024), Meta (Llama3.3-70B-Instruct) and Alibaba
(Qwen-2.5-72B-Instruct) (Qwen, 2024). This selection enables a comprehensive comparison across
different model architectures and training paradigms. Model versions are provided in Appendix B.

4.2 EXPERIMENT DESIGN AND METRICS

For both VerifyThisBench and VerifyThisBenchXS, we conduct experiments with iterative
refinement based on tool-generated error messages. To evaluate correctness, we pass the generated
code to the target verification tool and check whether it compiles and verifies successfully. A task is
marked as pass/succeed if no error is returned.

In addition to correctness checking, we introduce a coherence check as a relaxed evaluation metric.
In this step, the model self-assesses whether its generated code semantically aligns with the original
problem intent – an aspect difficult to verify automatically. This metric helps determine how
well the specification matches the task description and provides insight into the model’s ability in
auto-formalization and symbol grounding.

Each task is attempted five times per model. The first attempt uses only the task prompt; the next four
incorporate feedback from previous errors. During refinement, the model has access to the full history
of its prior attempts and corresponding feedback for the current task, enabling iterative correction.
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In VerifyThisBench, a challenge may have multi-stage tasks that are completed sequentially.
Only the final attempt from the previous subtask is carried over to the next, preserving essential
contexts while keeping the prompts concise. In contrast, VerifyThisBenchXS tasks have isolated
contexts and are completed independently, with no progress carried over between tasks.

To ensure fairness, we use the same prompt (see Appendix D) across all models and set the temperature
to 0.7 when applicable. Timeout of one minute is enforced for all experiments on the verifiers. The
experiments were conducted on a machine with an Intel i7-1360P CPU and 16GB of RAM.

4.3 OVERALL PASS RATE

Table 1 presents the performance of the SOTA models on VerifyThisBench. For each verification
tool, we report pass rates on the initial zero-shot attempt and after four additional refinement attempts
using feedback.

In the first attempt, most models perform poorly, with success rates under 4%. The top performers
are o3-mini, Llama, and Claude, indicating that even the strongest models struggle initially. By the
fifth attempt, performance improves significantly across all models. o3-mini leads overall, followed
by Claude, o4-mini, and Llama. These results highlight the effectiveness of iterative refinement and
feedback in enhancing model performance.

Each model exhibits distinct strengths across different verification tools, underscoring that no single
model consistently outperforms the rest. For example, o3-mini, the top overall performer, excels
especially in CBMC and Verus. On the other hand, Claude shows consistent strength in Dafny and
Frama-C. Gemini, while generally average, performs exceptionally well on VerCors. Llama, another
open-source model, performs best on Verus. In contrast, Qwen shows consistently low performance
across all tools, suggesting limitations in its current proof synthesis capabilities. Further insights into
tool-specific performance are discussed in Section 4.6.

Table 1: Overall Pass Rate On VerifyThisBench
Attempt GPT4o GPT4o-mini o3-mini o4-mini Claude Gemini Llama Deepseek Qwen

CBMC zero-shot 8.44% 7.14% 8.44% 1.30% 6.49% 1.95% 7.14% 0.65% 1.30%
refinement 20.13% 19.48% 25.32% 15.58% 22.08% 14.94% 20.13% 22.08% 3.25%

Dafny zero-shot 0 0 4.55% 1.95% 3.90% 0 0 1.30% 0
refinement 1.30% 0.65% 9.74% 10.39% 11.04% 1.30% 2.60% 2.60% 0.65%

Frama-C zero-shot 0 0.65% 0 0 3.90% 0.65% 0 1.95% 0
refinement 7.14% 1.95% 2.60% 3.25% 11.04% 8.44% 0.65% 3.25% 0

VerCors zero-shot 0 1.30% 1.30% 1.95% 0 5.84% 8.44% 1.95% 0
refinement 1.95% 1.30% 1.95% 5.19% 1.30% 16.88% 11.69% 4.55% 3.25%

VeriFast zero-shot 0 0 0 0 0 0 0 0 0
refinement 0 0 0 2.60% 0 0 0.65% 0.65% 0

Verus zero-shot 1.95% 6.49% 10.39% 0.65% 0.65% 0.65% 7.79% 0.65% 0.65%
refinement 12.99% 9.09% 21.43% 8.44% 1.30% 0.65% 17.53% 1.30% 0.65%

Why3 zero-shot 0 0 0.65% 0.65% 1.30% 1.30% 0 0.65% 0
refinement 0 0 4.55% 10.39% 9.09% 5.84% 1.95% 1.95% 0

Overall zero-shot 1.48% 2.23% 3.62% 0.93% 2.32% 1.48% 3.34% 1.02% 0.28%
refinement 6.22% 4.64% 9.37% 7.98% 7.98% 6.86% 7.88% 5.19% 1.11%

Improvement 4.73% 2.41% 5.75% 7.05% 5.66% 5.38% 4.55% 4.17% 0.83%

Table 2 shows the results on VerifyThisBenchXS. Similarly, at the first attempt, absolute
numbers remain low (less than 4%) for all models. At the fifth iteration, o4-mini tops the competition
with 17.24%, followed closely by Deepseek (16.72%), Claude (16.03%), and Llama (11.55%).
Feedback leads to substantial improvement for most models, achieving relative gains of over 10%.

In conclusion, while few models succeed from scratch, many become competitive when guided by
partial context. Open-source models like Deepseek, and Llama outperform many closed-source
counterparts, showing strong potential for real-world deployment in assisted formal verification.
These results also underscore the importance of combining structural hints, feedback loops, and
domain-specific strengths when applying LLMs to formal reasoning tasks.

Key Insights: Average pass rates for all evaluated models remain low at 10% on
VerifyThisBench and 18% on VerifyThisBenchXS, revealing the challenges formal verifi-
cation poses even to SOTA LLMs. All models improve with feedback.
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Table 2: Overall Pass Rate On VerifyThisBenchXS
Attempt GPT4o GPT4o-mini o3-mini o4-mini Claude Gemini Llama Deepseek Qwen

Dafny zero-shot 0 1.35% 2.70% 1.35% 1.35% 1.35% 0 2.70% 1.35%
refinement 17.57% 9.46% 31.08% 37.84% 41.89% 17.57% 8.11% 21.62% 8.11%

Frama-C zero-shot 0 0 1.85% 0 1.85% 1.85% 0 1.85% 0
refinement 0 0 5.56% 18.52% 9.26% 1.85% 0 5.56% 0

VerCors zero-shot 0 0 0 0 0 0 0 0 0
refinement 0 0 0 7.69% 0 0 3.85% 0 0

VeriFast zero-shot 7.58% 4.55% 3.03% 6.06% 6.06% 0 4.55% 12.12% 3.03%
refinement 12.12% 6.06% 4.55% 10.61% 27.27% 0 9.09% 13.64% 6.06%

Verus zero-shot 7.07% 5.05% 8.08% 14.14% 14.14% 4.04% 3.03% 7.07% 5.05%
refinement 15.15% 6.06% 17.17% 30.30% 30.30% 16.16% 13.13% 20.20% 7.07%

Why3 zero-shot 0 0 0 0.38% 0.38% 0.77% 0 0.38% 0
refinement 7.66% 2.30% 0.77% 8.81% 3.45% 1.15% 15.71% 18.77% 1.15%

Overall zero-shot 2.07% 1.55% 2.24% 3.45% 3.62% 1.38% 1.03% 3.28% 1.38%
refinement 9.66% 3.97% 8.28% 17.24% 16.03% 5.69% 11.55% 16.72% 3.45%

Improvement 7.59% 2.42% 6.04% 13.79% 12.41% 4.31% 10.52% 13.44% 2.07%

4.4 FAILURE MODE DISTRIBUTION
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Figure 2: zero-shot on VerifyThisBench

0%

25%

50%

75%

100%

GPT4o

GPT4o
mini

o3
mini

o4
mini

Clau
de

Gem
ini

Lla
ma

Dee
ps

ee
k

Qwen

NOGEN Compile Error Timeout Partial Succeed

Figure 3: refinement on VerifyThisBench
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Figure 4: zero-shot on VerifyThisBenchXS
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Figure 5: refinement on VerifyThisBenchXS

We categorize outcomes as NOGEN (no code detected), Compile Error, Timeout (compiles but
exceeds verifier time budget), Partial (some but not all obligations proved), and Succeed. Figures 2
to 5 show clear improvements in model’s performance when partial solution templates are provided
in the relaxed settings.

Specifically, partial success rates increase significantly, indicating that template hints help models
generate more accurate solutions. Timeout rates remain relatively stable. This state indicates
that models are making meaningful progress toward valid proofs, but the verifier struggles to find
counterexamples on difficult obligations. Compilation errors still dominate but tend to decrease
under the relaxed setting for some models, demonstrating that not needing to generate from scratch
helps reduce syntax-level mistakes. However, some models like GPT4o-mini and o3-mini exhibit
mixed trends, suggesting that while the template helps, the model’s internal understanding and code
generation fidelity still vary.

If we relax the metric to consider compilable code rather than fully verified solutions,
Claude, GPT-4o, and Deepseek consistently emerge as the top performers across both
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benchmarks. Notably, Claude generates compilable outputs in nearly 50% of attempts
on VerifyThisBenchXS and around 25% on VerifyThisBench in the first at-
tempt alone, highlighting its strong baseline capability even without iterative feedback.
Key Insights: While compilation error dominates in both benchmarks, in the relax setting we observe
decreases in such failures and increases of partial correct or compilable solutions, moving model
performance closer to usable verification outputs even when full correctness is not achieved.

4.5 COHERENCE

Table 3 reports each model’s coherence confidence, i.e. whether the model believes its generated spec-
ification matches the intended problem requirement. Importantly, this “self” alignment assessment is
computed in a separate pass without chain-of-thought disclosure of how the answer was generated
by the model and is thus a statistically independent evaluation. This metric is evaluated across
the verified fraction of the outputs. While passing a formal verifier indicates syntactic and logical
correctness, it does not address the alignment problem (i.e., whether the verified implementation
perfectly aligns with the user-intent expressed in natural language descriptions); hence, coherence
offers complementary insight. Notably, except o3-mini and Qwen, models’s confidence is less than
50% on passed solutions.

The results reveal considerable variance across models in their self-assessment behavior. Models
like o3-mini and Claude exhibit high confidence, often reporting over 80% coherence even in the
zero-shot setting, suggesting strong internal certainty—though this may reflect overconfidence rather
than accurate introspection. In contrast, models like GPT-4o and Llama show much more conservative
estimates, with coherence below 30%, indicating either better-calibrated uncertainty or limited self-
awareness. Interestingly, refinement tends to reduce overconfidence for some models (e.g., Claude)
while slightly improving coherence calibration for others (e.g., GPT-4o and Deepseek), suggesting
iterative attempts help align perceived and actual correctness.

Table 3: Self-Assessment of Specification Coherence on VerifyThisBench
Attempt GPT4o GPT4o-mini o3-mini o4-mini Claude Gemini Llama Deepseek Qwen

CBMC zero-shot 15.38% 0% 84.62% 0% 80.00% 33.33% 0% 100% 100%
refinement 16.13% 0% 61.54% 12.50% 26.47% 13.64% 3.23% 20.59% 100%

Dafny zero-shot - - 100% 100% 100% - - 100% -
refinement 50.00% 100% 100% 62.50% 76.47% 50.00% 25.00% 100% 0%

Frama-C zero-shot - 100% - - 100% 0% - 100% -
refinement 100% 100% 75.00% 80.00% 70.59% 53.85% 0% 100% -

VerCors zero-shot - 100% 100% 33.33% - 66.67% 69.23% 100% -
refinement 66.67% 100% 100% 62.50% 0% 46.15% 61.11% 85.71% 80.00%

VeriFast zero-shot - - - - - - - - -
refinement - - - 0% - - 0% 100% -

Verus zero-shot 0% 30.00% 100% 0% 0% 0% 8.33% 0% 0%
refinement 0% 28.57% 93.94% 7.69% 0% 0% 3.70% 0% 0%

Why3 zero-shot - - 100% 100% 100% 0% - 100% -
refinement - - 100% 53.33% 35.71% 22.22% 0% 100% -

Average zero-shot 12.50% 25.00% 94.87% 50.00% 88.00% 43.75% 27.78% 90.91% 66.67%
refinement 28.36% 20.00% 82.00% 36.47% 45.35% 34.25% 16.47% 46.43% 75.00%

We manually inspected a subset of successful solutions to validate if generated specifications align
with the intended problem. Except for o3-mini, most models appear honest in their coherence self-
assessments, with no false negatives found. Thus, our evaluation reflects an optimistic upper bound
on true alignment—assuming coherence estimates are accurate and verifier passes indicate best-case
correctness. Automatically verifying the alignment between generated specifications and user intent
in natural language remains an open technical challenge (Lahiri, 2024). Our benchmark serves as
a valuable resource for systematically investigating this specification–intent alignment problem in
future research. In addition, we explore a test-based evaluation approach, with preliminary results
presented in Appendix F
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Key Insights: Models show a wide range in coherence confidence level, suggesting varied internal
behaviors. On average, only 43% of passed solutions are judged coherent and our manual review
suggests strong alignment.

4.6 PERFORMANCE BY TOOLS

Table 4 shows that all tools benefit from iterative refinement through feedback. In the
VerifyThisBench setting, CBMC and Verus exhibit the most pronounced improvements, likely
due to their syntactic resemblance to C and Rust, making them more accessible to language models.
Dafny also shows moderate gains in this setting. In VerifyThisBenchXS, improvements are even
more substantial. Dafny, in particular, demonstrates a leap from near-zero success rate to over 21.4%;
Verus observes an improvement around 10%. In contrast, tools such as VeriFast, Frama-C, and
Why3 remain largely stagnant on both benchmarks, suggesting either stricter syntactic or semantic
constraints, or a structural mismatch with current model capabilities.

Table 4: Average Pass Rates across Tools
Attempt CBMC Dafny Frama-C VerCors VeriFast Verus Why3

VerifyThisBench
zero-shot 4.76% 1.30% 0.79% 2.31% 0 3.32% 0.51%

refinement 18.11% 4.47% 4.26% 5.34% 0.43% 8.15% 3.75%

VerifyThisBenchXS
zero-shot - 1.35% 0.82% 0 5.22% 7.52% 0.21%

refinement - 21.47% 4.53% 1.28% 9.93% 17.28% 6.64%

4.7 PERFORMANCE BY RELAXATION

Table 5: Overall Performance across Different Relaxation Settings in VerifyThisBenchXS
Code Specification Loop

Model Zero-shot Refinement Zero-shot Refinement Zero-shot Refinement

GPT4o 0.88% 11.06% 3.00% 9.87% 2.48% 6.61%
GPT4omini 0.88% 3.98% 2.15% 3.86% 1.65% 4.13%
o3mini 0.88% 7.52% 2.58% 7.72% 4.13% 10.74%
o4mini 0.88% 14.16% 5.15% 18.45% 4.96% 20.66%
Claude 2.21% 15.04% 4.29% 19.31% 4.96% 11.57%
Gemini 1.33% 6.19% 1.29% 4.72% 1.65% 6.61%
Llama 0.44% 11.95% 1.72% 12.88% 0.83% 8.26%
Deepseek 0.44% 15.49% 4.72% 19.31% 5.79% 14.05%
Qwen 1.33% 3.54% 1.29% 3.86% 1.65% 2.48%

Overall 1.05% 9.73% 2.90% 11.27% 3.20% 9.81%

Table 5 breaks down VerifyThisBenchXS results by Code-Gen, Spec-Gen, and Loop-Gen.
Iterative refinement consistently improves pass rates across all categories.

Among the three, spec-gen yields the highest overall pass rates, suggesting that models can more
readily articulate reasoning about what a program is supposed to do, given a working implementation
and its proof context. Completing loop invariant, arguably the most abstract and logically demanding
task, results in pass rate lower than 10%, though still showing solid gains with retries. This points to
the inherent difficulty models face in understanding and completing partial proofs.

Key Insights: Generating the entire solution holistically (overall pass rate@9.73%) may not be
more difficult than generating a specific one, e.g., loop invariant (overall pass rate@9.81%).

5 CONCLUSION

In this work, we introduce VerifyThisBench and VerifyThisBenchXS to evaluate the
formal verification capabilities of large language models, systematically assessing their performance
across a range of tools, tasks, and relaxation settings. Despite the use of SOTA models, results show
generally poor performance, particularly in strict end-to-end settings that require complete formal
reasoning without assistance. These findings highlight significant gaps in current models’ ability to
generate semantically and logically correct solutions in formal domains.
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A COMPOSITION OF VERIFYTHISBENCHXS

Table 6 presents the composition of VerifyThisBenchXS, summarizing the number of verifica-
tion tasks by tool and category. It includes counts of implementations, specifications, and loop-related
completion tasks for six verification tools: Dafny, Frama-C, VerCors, Verifast, Why3, and Verus. In
total, the benchmark comprises 580 tasks, with 226 implementations, 233 specifications, and 121
loop invariants related examples.

Table 6: Composition of VerifyThisBenchXS
Tool Implementaion Specification Loop Total

Dafny 28 25 21 74
Frama-C 15 15 24 54
VerCors 8 8 10 26
VeriFast 26 31 9 66
Why3 118 117 26 261
Verus 31 27 31 99

Total 226 233 121 580

B MODEL VERSIONS

GPT-4o was evaluated using the version from August 6, 2024, while GPT-4o-mini and o4-mini
correspond to the July 18, 2024 versions. The o3-mini model was accessed as of January 31, 2025.
Claude refers to the Claude-3.7-Sonnet version released on February 24, 2025, and Gemini-2.5
Flash on the April 17, 2025 release. For open-source models, we used LLaMA3.3-70b Instruct
from December 6, 2024, DeepSeek-chat-v3 from March 24, 2025, and Qwen2.5-72b Instruct from
September 19, 2024. These version references ensure the reproducibility and consistency of our
benchmarking results.

C TOOL VERSIONS

We report exact toolchain versions for reproducibility and summarize each tool’s verification model.
The Verus verifier was run using version v0.2025.04.03.0f22710, while Why3 was evaluated with
version v1.6.0. For Frama-C, we used version v30.0, and VeriFast experiments were conducted with
version v25.02. The Dafny toolchain ran on version v4.10.0, and VerCors with v2.3.0. Finally, we
used CBMC version v6.5.0.

Docker container images and unified toolchain launch scripts are included in the released dataset.
Below we briefly describe each tool:

• Dafny: A verification-aware programming language with built-in specification support
(pre/post-conditions, invariants) and an automatic static verifier.

• Why3: A platform for deductive verification with its own intermediate language (WhyML)
and integration with external theorem provers.

• VeriFast: A verifier for C and Java using separation logic, enabling modular reasoning
about memory safety and functional correctness.

• VerCors: A verifier for concurrent programs in Java, C, and OpenCL, supporting permission-
based separation logic and parallel reasoning.

• Frama-C: A modular analysis platform for C, using the ACSL specification language and
combining abstract interpretation with deductive verification.

• Verus: A verifier for Rust programs that checks user-defined specifications using SMT
solving, supporting low-level features and ownership semantics.

• CBMC: A bounded model checker for C and C++ that verifies safety and functional
correctness by translating code into SAT/SMT formulas.
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D PROMPT FORMATS

As prompt optimization was not the focus of this work, we used a simple, uniform structure for all
models to ensure fairness across different tools. Each prompt consists of a system prompt describing
the verification tool, followed by the problem description and task. System prompts used in our
experiments are included in the released dataset (see artifact).

(1) System prompt: a concise tool description and key syntax/semantics reminders.

1 You are an assistant that writes formally verified programs in <TOOL>.
2 - Use <language/syntax> with pre/postconditions, assertions, and loop invariants as required.
3 - The solution must compile and pass the <TOOL> verifier with a 60s timeout.
4 - Do not use unsupported features: <list>.
5 - Return a single <file-type>, with all annotations needed for verification.

(2) User prompt: the natural-language problem overview and the specific task.

1 # Description
2 <Problem overview in natural language; may include pseudo-code.>
3
4 # Task
5 <Explicit instruction: implement/specify/prove/refine the desired property.>

E STATISTICS OF VERIFYTHISBENCH AND VERIFYTHISBENCHXS
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Figure 6: Distributions of dataset characteristics. (Left) Word count distribution of natural language
descriptions for challenges. (Right) Line-of-code distribution of collected ground-truth solutions.

To provide empirical support for our claim regarding the range of difficulty in the dataset, we
report several descriptive statistics. The natural language descriptions (problem overview and task
statements) vary substantially in length, with an average of 467 words, ranging from 30 to 1802 words.
The distribution, shown in Figure 6 (left), indicates that most challenges fall within the 200–799
word range, with a small number extending beyond 1000 words. In terms of solution complexity,
we analyzed 48 collected ground-truth implementations, which range from as short as 28 lines to
648 lines, with an average of 189.44 lines and a median of 124 lines per solution. As illustrated in
Figure 6 (right), the majority of these solutions are under 300 lines, with a few extending beyond 500
lines.

Beyond length, the diversity of task types also reflects difficulty variation: 15 out of 41 challenges
involve relatively simple data structures such as binary trees and one-dimensional arrays, whereas the
remaining challenges address more complex structures, including linked lists, graphs, queues, and
specialized task-specific data types. Additionally, 11 out of 41 challenges explicitly require memory
safety proofs, further illustrating the technical depth of the dataset.

Natural language descriptions in Verina (Ye et al., 2025) have a median length of 110 and max length
of 296 words, with accompanying code and specifications of up to 100 lines. Clever (Thakur et al.,
2025) reports proof lengths ranging from 10 to 225 lines. In contrast, our benchmark spans a much
broader range of difficulty.
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F EXPLORATION OF TEST-BASED SPECIFICATION VERIFICATION

Inspired by parallel work (Ye et al., 2025), we further explore a test-based proxy to evaluate specifi-
cation alignment. We manually construct desired input-output pairs of a problem, and verify them
against the specifications generated by the models. We check if the inputs imply the described
pre-conditions, and if the outputs satisfy the post-conditions. Our setup supports open-ended, com-
plex verification problems, without restrictions on how the function signatures or data structures
are defined. As a preliminary experiment, we evaluated on all passed or failed samples of Dafny
specifications generated from the VerifyThisBench end-to-end tasks using test cases, on the
following two benchmark problems:

1. Finding the maximum in an array, and
2. Finding the maximum in a tree.

For the array version, 87.5% of the generated specifications passed the test cases (as a reference, the
model’s self-assessment on coherence: 93%). For the tree version, only 10% passed, mainly due to
syntax errors, helper function verifiability, and other issues (reference on the model’s self-assessment
on coherence: 87%).

These results differ from our manual evaluations and the model’s self-assessments. Model’s assess-
ment focuses on intent alignment, whereas testing requires functional correctness. This illustrates the
complementary nature of different evaluation methods.

G VERIFYTHISBENCHXS DATA SOURCE

Table 7 lists the sources of solutions used to construct VerifyThisBenchXS. It includes the year
of publication, the name of the verification challenge, the verification tool used, and the authors or
contributors of each solution. We include canonical community solutions where available; in addition
to the list, we contribute new Verus solutions (see Section 3.4).

Table 7: Solution used to generate VerifyThisBenchXS.
Year Challenge Name Tool Authors

2024 The Rope Data Structure Why3 Jean-Christophe Filliâtre
2024 Smart Array Copy by Shuffled Subsegments Why3 Jean-Christophe Filliâtre
2023 Binary Decision Diagrams Why3 Martin Clochard and Yannick Moy
2021 Lexicographic Permutations Why3 Jean-Christophe Filliâtre and Andrei Paskevich
2021 Lexicographic Permutations VerCors Marieke Huisman and Sebastiaan Joosten
2021 DLL to BST Why3 Jean-Christophe Filliâtre and Andrei Paskevich
2021 Shearsort Why3 Jean-Christophe Filliâtre and Andrei Paskevich
2019 Monotonic Segments and GHC sort Frama-C Virgile Prevosto and Virgile Robles
2019 Monotonic Segments and GHC sort Dafny Sample answer from report
2019 Cartesian Trees Frama-C Virgile Prevosto and Virgile Robles
2019 Sparse Matrix Multiplication Frama-C Virgile Prevosto and Virgile Robles
2018 Array Based Queuing Lock Why3 Raphael Rieu
2018 Gap buffer Why3 Raphael Rieu
2018 Colored tiles Why3 Raphael Rieu
2017 Pair Insertion Sort Frama-C Lionel Blatter and Jean-Christophe Léchenet
2017 Pair Insertion Sort Dafny Jon Mediero Iturrioz
2017 Pair Insertion Sort VerCors Marieke Huisman, Wytse Oortwijn
2017 Maximum-sum Array(one-dimension) Frama-C Lionel Blatter and Jean-Christophe Léchenet
2017 Odd-even Transposition Sort Frama-C Lionel Blatter and Jean-Christophe Léchenet
2017 Tree Buffer Frama-C Lionel Blatter and Jean-Christophe Léchenet
2017 Tree Buffer VerCors Marieke Huisman, Wytse Oortwijn
2016 Matrix Multiplication VeriFast Bart Jacobs
2016 Matrix Multiplication Dafny Luca Weibel and Christiaan Dirkx
2016 Matrix Multiplication Why3 Martin Clochard and Léon Gondelman and Mário Pereira
2016 Binary Tree Traversal VeriFast Bart Jacobs
2016 Binary Tree Traversal Why3 Martin Clochard and Léon Gondelman and Mário Pereira
2016 Static Tree Barrier VeriFast Bart Jacobs
2015 RELAXED PREFIX Why3 Jean-Christophe Filliâtre and Guillaume Melquiond
2015 PARALLEL GCD Why3 Jean-Christophe Filliâtre and Guillaume Melquiond
2015 DANCING LINKS Why3 Jean-Christophe Filliâtre and Guillaume Melquiond
2012 Longest Common Prefix VeriFast Bart Jacobs and Jan Smans
2012 Prefix-Sum VeriFast Bart Jacobs and Jan Smans
2012 Tree Del VeriFast Bart Jacobs and Jan Smans
2011 Finding the Maximum in an Array Dafny Julian Tschannen and Nadia Polikarpova
2011 Finding the Maximum in a Tree Dafny Julian Tschannen and Nadia Polikarpova
2011 Finding Two Duplets in an Array Dafny Julian Tschannen and Nadia Polikarpova
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H EXAMPLE CHALLENGE AND SOLUTION

1 // # Description
2 // This challenge is an instance of Kaldewaij’s Search by Elimination, where an element with a

given property is located by eliminating elements that do not have that property. The
challenge was selected as it involves a relatively simple but interesting invariant,
expressing that the maximal element is in the remaining search space rather than
maintaining the maximal element found so far. A pseudo-code implementation is as follows:

3 // int max(int[] a) {
4 // int x = 0;
5 // int y = a.length-1;
6 // while (x != y) {
7 // if (a[x] <= a[y]) x++;
8 // else y--;
9 // }

10 // return x;
11 // }
12 // # Task
13 // Please implement and verify that the index returned by the method max() given points to an

element maximal in the array
14 pub fn max(a: &[int]) -> (result: usize)
15 requires
16 a.len() > 0,
17 ensures ({
18 result < a.len(),
19 forall|i: int| 0 <= i && i < a.len() ==> a[result as int] >= a[i],
20 }),
21 {
22 let mut x: usize = 0;
23 let mut y: usize = a.len() - 1;
24 ...
25 while x != y
26 invariant
27 ...
28 x as int <= max_idx && max_idx <= y as int,
29 forall|i: int| 0 <= i && i < a.len() ==> a[max_idx] >= a[i],
30 decreases y - x
31 {
32 if a[x] <= a[y] {
34 proof {
35 ...
36 if max_idx == x as int {
37 assert(a[x] == a[y]);
38 max_idx = y as int;
39 }
40 ...
41 assert(x as int + 1 <= max_idx && max_idx <= y as int);
42 }
43 x += 1;
44 } else {
45 proof {
46 ...
47 }
48 y -= 1;
49 }
50 }
51 ...
52 return x;
53 }

Figure 7: An example challenge stated in natural language highlighted in green and its potential
solution in Verus with code implementation in grey, spec in yellow and proof in orange and
invariants (a special kind of proof) in pink. This challenge is from 2011 and the solution is
generated by Claude-3.7-Sonnet.

I DECLARATION OF LLM USAGE

This research evaluates LLM’s performance on formal verification tasks. As for the paper preparation,
LLM is ONLY used to polish the writing.
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