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ABSTRACT

Recent works on fairness in machine learning have focused on quantifying and
eliminating bias against protected subgroups, and extended these results to more
complex subgroups beyond simple discrete classes, known as “rich subgroups.”
Orthogonally, recent works in model interpretability develop local feature impor-
tance methods that, given a classifier h and test point x, attribute influence for the
prediction h(x) to the individual features of x. This raises a natural question: Do
local feature importance methods attribute different feature importance values on
average in protected subgroups versus the whole population, and can we detect
these disparities efficiently? In this paper, we formally introduce the notion of
feature importance disparity (FID) in the context of rich subgroups, which could
be used as a potential indicator of bias in the model or data generation process. We
design an oracle-efficient algorithm to identify large FID subgroups and conduct
a thorough empirical analysis auditing for these subgroups across 4 datasets and
4 common feature importance methods of broad interest to the machine learning
community. Our algorithm finds (feature, subgroup) pairs that: (i) have subgroup
feature importance that is often an order of magnitude different than the impor-
tance on the whole dataset (ii) generalize out of sample, and (iii) yield interesting
discussions about potential bias inherent in these common datasets.

1 INTRODUCTION

Machine learning is rapidly becoming a more important yet more opaque part of our lives and decision
making – with increasingly high stakes use cases such as recidivism analysis Angwin et al. (2016),
loan granting and terms Dastile et al. (2020) and child protective services Keddell (2019). One of the
hopes of wide-scale ML deployment has been that those algorithms might be free of our human biases
and imperfections. This hope was, unfortunately, naive. Over the last decade, an interdisciplinary
body of research has shown that machine learning algorithms can be deeply biased in both subtle and
direct ways Barocas et al. (2019), and has focused on developing countless techniques to produce
fairer models Caton & Haas (2023). One of the primary causes of model bias is bias inherent in the
training data, rather than an explicitly biased training procedure. This issue is particularly concerning
in light of modern machine learning, where an initial "foundation model", like GPT-3 Brown et al.
(2020) or CLIP Radford et al. (2021), is trained on a large corpus of text or image data and released
publicly, which an algorithm designer then fine tunes using a much smaller dataset tailored for a
specific use case. Social bias present in the foundation model’s training data then have the potential to
propagate into the myriad use cases built on top of it Swinger et al. (2019); Liang et al. (2021). While
the threat posed by these foundation models is new, the recognition that bias in the training data could
propagate into unfair decisions made by a classifier is not; in a 2015 in a New York Times interview
Miller (2015), Cynthia Dwork, widely regarded as pioneer in the field of algorithmic bias, describes
the problem as such: Suppose we have a minority group in which bright students are steered toward
studying math, and suppose that in the majority group bright students are steered instead toward
finance. An easy way to find good students is to look for students studying finance, and if the minority
is small, this simple classification scheme could find most of the bright students. But not only is it
unfair to the bright students in the minority group, it is also low utility.

Unpacking this example further, the feature is-finance-major is predictive in finding bright
students in the population at large, but not in the minority group. Meanwhile, the feature
is-math-major is highly predictive in the minority group, but not at all in the majority group.
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While it is clear in this simple example that the differing impact of these features causes the down-
stream classifier to become biased, understanding how to attribute credit for a given prediction
ŷ = θ(xtest) across all features in xtest is a difficult task in practical machine learning settings.
Approaches that have garnered substantial attention include local model agnostic methods like LIME
Ribeiro et al. (2016), SHAP Lundberg & Lee (2017), model-specific saliency maps Simonyan et al.
(2013), and example-based counterfactual explanations Molnar (2022).

As we later discuss in Section 5, disparities in feature importance do not necessarily imply that a
subgroup has fairness disparity as measured by conventional metrics like equalized odds or calibration,
although we show in Subsection 4.3 that this is empirically often the case. Nor does finding a
subgroup with high feature disparity come with a pre-defined “fix”– the disparity could be caused
by many factors including (i) true underlying differences between subgroups, or (ii) differences in
measurement of the features or outcome variables across subgroups. Since the specific “fixes” are
highly context dependent, our method should be viewed as a tool for generating hypotheses about
potential sources of bias, which can then be addressed by other means. For example, in Figure 4 we
find that the feature arrested-but-with-no-charges is highly important when predicting
two-year-recidivism on the population as a whole, but carries almost no importance on a
subgroup which is largely defined by Native-American males. This could motivate further research
into if this subgroup is policed in a different way than the population as a whole. Alternatively, a
technical solution may be to train a separate model for this subgroup.

While this information is clearly useful to motivate further investigations into bias, in realistic settings
finding these feature subgroup disparities is not easy: it is known that while a classifier may look fair
when comparing a given fairness metric across a handful of sensitive subgroups, when the notion of
a sensitive subgroup is generalized to encompass combinations and interactions between sensitive
features (known as rich subgroups Kearns et al. (2019)), large disparities can emerge. Even for simple
definitions of rich subgroup such as conjunctions of binary features, the number of subgroups is
exponential in the number of sensitive attributes. In real settings with many (possibly interrelated)
sensitive features, auditing for feature importance disparities across all rich subgroups is a daunting
task. These new methods raise an obvious question in light of the prior discussion, although one
that to the best of our knowledge has not been thoroughly studied: When applied to classifiers
and datasets where bias is a concern, do these feature importance notions uncover substantial
differences in feature importance across protected groups, and when our protected groups
correspond to rich subgroups can they be efficiently detected?

Figure 1: A toy example: On the Student dataset, the average SHAP explanatory values are sub-
stantially different for the feature Absences on the rich subgroup g∗ circled in the figure, which is
defined as a function of the sensitive features Daily Alcohol Consumption and Health.

1.1 RESULTS

Our most important contribution is formalizing the notion of feature importance disparity (FID)
in the context of feature importance notions developed in recent years, and with respect to rich
subgroups (Definition 1). We categorize a feature importance notion as separable or not, based on
whether it can be expressed as a sum over points in the subgroup (Definition 2) and define a variant of
FID, the average feature importance disparity (AVG-SEPFID, Definition 3). Our main theoretical
contribution is Theorem 1 in Section 3, which says informally that although the problem of finding
the maximal FID subgroup is NP-hard in the worst case (Appendix E), given access to an oracle for
cost-sensitive classification with respect to the rich subgroup class G, (Definition 4), Algorithm 1
efficiently learns the subgroup with maximal FID for any separable feature importance notion.
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Algorithm 1 is inspired by prior work Kearns et al. (2018); Agarwal et al. (2018); Hebert-Johnson
et al. (2018) that takes a constrained optimization and solves the equivalent problem of computing
the Nash equilibrium of a two-player, zero-sum game given by the Lagrangian. In Algorithm 1, we
compute the equilibrium of the game by having both the min and max players implement no-regret
strategies – which we show can be done efficiently given access to a CSC oracle for G. This oracle is
implemented via simple regression heuristic (Algorithm 2 in Appendix D), which our experimental
results show works well in practice. We also show that a heuristic optimization approach works for
finding high FID subgroups for a linear regression model (detailed in Appendix F).

In Section 4, we conduct a thorough empirical evaluation of our methods, auditing for large FID
subgroups on the Student Cortez & Silva (2008), COMPAS Angwin et al. (2016), Bank Moro et al.
(2014), and Folktables Ding et al. datasets, using LIME, SHAP, saliency maps, and linear regression
coefficient as feature importance notions. Our experiments establish that:

• Across all (dataset, importance notion) pairs, we can find subgroups defined as functions of
sensitive features that have large FID with respect to a given feature (Table 1, Figures 2, 3).

• Inspecting the coefficients defining the subgroups, we find interesting examples where a
subgroup, defined by a few sensitive features like race and gender, has a large FID with
respect to a given feature, highlighting potential bias in the data (Figures 4,5).

• Our FID’s generalize out of sample and our method for controlling subgroup size is effective.
(Figures 7, 8)

We also compared the maximal FID found for a rich subgroup to the FID found when we restrict
our subgroup class to subgroups defined by a single sensitive attribute (marginal subgroups). In about
half of the cases, the rich subgroup achieves a higher FID out of sample, justifying the use of rich
subgroups (Appendix I). Taken together, our theoretical and empirical results highlight our methods
as an important addition to the toolkit for detecting bias in tabular datasets with sensitive features.

1.2 RELATED WORK

There is substantial work investigating bias in the context of machine learning models and their
training data Barocas et al. (2019); Caton & Haas (2023). We are motivated at a high level by existing
work on dataset bias Kamiran & Calders (2012); Tommasi et al. (2017); Li & Vasconcelos (2019),
however, to the best of our knowledge, this is the first work investigating the disparity in feature
importance values in the context of rich subgroups as a fairness diagnostic. For more related work,
see Appendix A.

Anomalous Subgroup Discovery. In terms of approach, two closely related works are Dai et al.
(2022) and Balagopalan et al. (2022) which link fairness concerns on sensitive subgroups with model
explanation quality, as measured by properties like stability and fidelity. Our work differs in that we
are focused on the magnitude of explanation disparities themselves rather than their “quality,” and
that we extend our results to the rich subgroup setting. Our algorithm for searching an exponentially
large subgroup space is a novel and necessary addition to work in this space. Another area of research
looks to prove that a chosen score function satisfies the linear time subset scanning property Neill
(2012) which can then be leveraged to search the subgroup space for classifier bias Zhang & Neill
(2016); Boxer et al. (2023) in linear time. While it is hard to say with absolute certainty that this
approach would not be useful it is not immediately apparent how we would force a subset scanning
method to optimize over rich subgroups.

Rich Subgroups and Multicalibration. At a technical level, the most closely related papers are
Kearns et al. (2018); Hebert-Johnson et al. (2018) which introduce the notion of the rich subgroup
class G over sensitive features in the context of learning classifiers that are with respect to equalized
odds or calibration. Our Algorithm 1 fits into the paradigm of “oracle-efficient" algorithms for solving
constrained optimization problems introduced in Agarwal et al. (2018) and developed in the context
of rich subgroups in Kearns et al. (2018; 2019); Hebert-Johnson et al. (2018). There has been much
recent interest in learning multicalibrated predictors because of connections to uncertainty estimation
and omnipredictors Hu et al. (2023); Gopalan et al. (2022); Jung et al. (2021). None of these works
consider feature importance disparities.
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Feature Importance Notions. For the field of interpretable or explainable machine learning, we
refer to Molnar (2022) for a survey of methods. The most relevant works are methods that can be
used to investigate the importance of a feature fj in a given subset of the dataset. Local explanation
methods assign a feature importance for every point (x, y) and define a notion of importance in a
subgroup by summing or average over the points in the subgroup as we do in Definitions 2, 3.

2 PRELIMINARIES

Let Xn represent our dataset, consisting of n individuals defined by the tuple ((x, x′), y) where
x ∈ Xsense is the vector of protected features, x′ ∈ Xsafe is the vector of unprotected features, and
y ∈ Y denotes the label. With X = (x, x′) ∈ X = Xsense × Xsafe ⊂ Rd denoting a joint feature,
the data points (X, y) are drawn i.i.d. from a distribution R. Let h : X → Y denote a classifier or
regressor that predicts y from X . We define a rich subgroup class G = {gα}α∈Ω as a collection of
functions g : Xsens → [0, 1], where g(x′) denotes the membership of point X = (x, x′) in group g.
Note that this is the same subgroup definition as in Kearns et al. (2018), but without the constraint
that g(x′) ∈ {0, 1}, which supports varying degrees of group membership. E.g. a biracial person may
be .5 a member of one racial group and .5 a member of another. Let fj , j ∈ [d] denote the jth feature
in X ⊂ Rd. Then for a classifier h and subgroup g ∈ G, let F be a feature importance notion where
F (fj , g, h) denote the importance h attributes to feature j in the subgroup g, and F (fj , X

n, h) be
the importance h attributes to fj on the entire dataset. We will provide more specific instantiations of
F shortly, but we state our definition of FID in the greatest possible generality below.

Definition 1. (Feature Importance Disparity). Given a classifier h, a subgroup defined by g ∈ G,
and a feature fj ∈ [d], then given a feature subgroup importance notion F (·), the feature importance
disparity relative to g is defined as:

FID(fj , g, h) = EX∼R|F (fj , g, h)− F (fj , X
n, h)|

We will suppress h and write FID(j, g) unless it is necessary to clarify what classifier we are
describing. Now, given h and Xn, our goal is to find the feature subgroup pair (j∗, g∗) ∈ [d] × G
that maximizes FID(j, g), or (j∗, g∗) = argmaxg∈G,j∈[d]FID(j, g).

We now get more concrete about our feature importance notion F (·). First, we define the class of
separable feature importance notions:

Definition 2. (Locally Separable). A feature importance notion F (·) is locally separable if it can be
decomposed as a point wise sum of local model explanation values F ′:

F (fj , X
n, h) =

∑
X∈Xn

F ′(fj , X, h)

It follows that for separable notions, F (fj , g, h) =
∑

X∈Xn g(X)F ′(fj , X, h). Given a local model
explanation F ′, we can define a more specific form of FID, the average feature importance disparity
(AVG-SEPFID), which compares the average feature importance within a subgroup to the average
importance on the dataset.

Definition 3. (Average Case Locally Separable FID). For a g ∈ G, let |g| =
∑

X∈Xn

g(X). Given a

local model explanation F ′(·), we define the corresponding:

AVG-SEPFID(fj , g, h) = EXn∼Rn | 1
|g|

∑
X∈Xn

g(X)F ′(fj , X, h)− 1

n

∑
X∈Xn

F ′(fj , X, h)|

Note that AVG-SEPFID is not equivalent to a separable FID, since we divide by |g|, impacting every
term in the summation. In Section 3, we show that we can optimize for AVG-SEPFID by optimizing
a version of the FID problem with size constraints, which we can do efficiently via Algorithm 1.

This notion of separability is crucial to understanding the remainder of the paper. In Section 3, we
show that for any separable FID, Algorithm 1 is an (oracle) efficient way to compute the largest
FID subgroup of a specified size in polynomial time. By “oracle efficient,” we follow Agarwal et al.
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(2018); Kearns et al. (2018) where we mean access to an optimization oracle that can solve (possibly
NP-hard) problems. While this sounds like a strong assumption, in practice we can take advantage of
modern optimization algorithms that can solve hard non-convex optimization problems (e.g. training
neural networks). This framework has led to the development of many practical algorithms with a
strong theoretical grounding Agarwal et al. (2018); Kearns et al. (2018; 2019); Hebert-Johnson et al.
(2018), and as shown in Section 4 works well in practice here as well. The type of oracle we need is
called a Cost Sensitive Classification (CSC) oracle, which we define in Appendix D.

3 OPTIMIZING FOR AVG-SEPFID

In this section, we show how to (oracle) efficiently compute the rich subgroup that maximizes the
AVG-SEPFID. Rather than optimize AVG-SEPFID directly, our Algorithm 1 solves an optimization
problem that maximizes the FID subject to a group size constraint:

max
g∈G

|F (fj , g, h)− F (fj , X
n, h)|

s.t. ΦL(g) ≡ αL − 1

n

∑
X∈Xn

g(X) ≤ 0, ΦU (g) ≡
1

n

∑
X∈Xn

g(X)− αU ≤ 0,
(1)

where ΦL and ΦU are "size violation" functions given a subgroup function g. We denote the optimal
solution to Equation 1 by g∗[αL,αU ]. We focus on optimizing the constrained FID since the following
primitive also allows us to efficiently optimize AVG-SEPFID:

1. Discretize [0, 1] into intervals ( i−1
n , i

n ]
n
i=1. Given feature fj , compute g∗

( i−1
n , i

n ]
for i = 1...n.

2. Outputting gk∗ , where k∗ = argmaxk
k
n |F (fj , gk, h)| approximately maximizes the

AVG-SEPFID given an appropriately large number of intervals n.

Our proof for this is available in Appendix C. We now state our main theorem, which shows that we
can solve the constrained FID problem in Equation 1 with polynomially many calls to CSCG .

Algorithm 1 Iterative Constrained Optimization

1: Input: Dataset Xn, |Xn| = n, hypothesis h, feature of interest fj , separable feature importance
function F , size constraints αL and αU , size violation indicators ΦL and ΦU , size penalty bound
B, CSC oracle for G, CSCG(c

0, c1), accuracy ν.
2: Initialize:
3: Feature importance vector C = (F (fj , Xi, h))

n
i=1

4: Gradient weight parameter θ1 = (0, 0)
5: Learning rate η = ν

2n2B
6: for t = 1, 2, ... do
7: λt,0 = B

exp(θt,0)
1+exp(θt,1)

, λt,1 = B
exp(θt,1)

1+exp(θt,0)
▷ Exponentiated Gradient weights

8: c1t = (Ci − λt,0 + λt,1)
n
i=1

9: gt = CSCG(0, c
1
t ) ▷ Subgroup with maximal disparity computed via CSC oracle

10: p̂tG = 1
t

∑t
t′=1 gt′ , λ

′
t = (BΦL(p̂

t
G), BΦU (p̂

t
G)), L = L(p̂tG , λ

′
t)

11: p̂tλ = 1
t

∑t
t′=1(λt′,0, λt′,1), g′t = CSCG(0, (Ci − p̂tλ0

+ p̂tλ1
)ni=1), L = L(g′t, p̂

t
λ)

12: vt = max
(
|L(p̂tG , p̂tλ)− L|, |L− L(p̂tG , p̂

t
λ)|

)
▷ Check termination condition

13: if vt ≤ v then
14: Return p̂tG , p̂

t
λ

15: end if
16: Set θt+1 = θt + η(αL − |gt|, |gt| − αU ) ▷ Exponentiated Gradient update
17: end for

Theorem 1. Let F be a separable FID notion, fix a classifier h, subgroup class G, and oracle CSCG .
Then choosing accuracy constant ν and bound constant B and fixing a feature of interest fj , we will
run Algorithm 1 twice; once with FID given by F , and once with FID given by −F . Let p̂TG be the
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distribution returned after T = O( 4n
2B2

ν2 ) iterations by Algorithm 1 that achieves the larger value of
E[FID(j, g)]. Then:

FID(j, g∗j )− Eg∼p̂T
G
[FID(j, g)] ≤ ν

|ΦL(g)|, |ΦU (g)| ≤
1 + 2ν

B

(2)

We defer the proof of Theorem 1 to Appendix B. In summary, rather than optimizing over g ∈ G, we
optimize over distributions ∆(G). This allows us to cast the optimization problem in Equation 1 as a
linear program so we can form the Lagrangian L, which is the sum of the feature importance values
and the size constraint functions weighted by the dual variables λ, and apply strong duality. We can
then cast the constrained optimization as computing the Nash equilibrium of a two-player zero-sum
game, and apply the classical result of Freund & Schapire (1996) which says that if both players
implement no-regret strategies, then we converge to the Nash equilibrium at a rate given by the
average regret of both players converging to zero. Algorithm 1 implements the no-regret algorithm
exponentiated gradient descent Kivinen & Warmuth (1997) for the max player, who optimizes λ,
and best-response via a CSC solve for the min player, who aims to maximize subgroup disparity to
optimize the rich subgroup distribution.

We note that rather than computing the group g that maximizes FID(j, g) subject to the size constraint,
our algorithm outputs a distribution over groups p̂TG that satisfies this process on average over the
groups. In theory, this seems like a drawback for interpretability. However, in practice we simply
take the groups gt found at each round and output the ones that are in the appropriate size range,
and have largest FID values. The results in Section 4 validate that this heuristic choice is able to
find groups that are both feasible and have large FID values. This method also generalizes out of
sample showing that the FID is not artificially inflated by multiple testing (Appendix J). Moreover,
our method provides a menu of potential groups (gt)Tt=1 that can be quickly evaluated for large FID,
which can be a useful feature to find interesting biases not present in the maximal subgroup.

4 EXPERIMENTS

Here we report the results of our extensive empirical investigation, showing that across 16 different
dataset/FID-notion pairings, our methods return interesting subgroups defined as a function of
sensitive features that exhibit orders of magnitude AVG-SEPFID values that are valid out of sample.
Specifically we show the following:

• Our approach works in finding subgroups defined by sensitive characteristics with high
AVG-SEPFID across all datasets and FID notions studied (Figure 2).

• Examining the distribution of AVG-SEPFID values across the maximal subgroup for each
feature, we see that they are large for a few features but tail off for the majority of features
(Figure 3).

• These (subgroup, feature) pairs raise interesting questions about feature importance dispari-
ties in common datasets used in the fairness literature (Figure 4 and Appendix H).

• The discovered subgroups express disparities in fairness metrics and conversely, rich sub-
groups with large fairness disparities have high AVG-SEPFID features (Tables 2,3).

We also found that in half of the settings studied, AVG-SEPFID over the rich subgroup class is
higher than over the marginal subgroup class, with some dataset method pairs (such as (Student,
SHAP)) witnessing very large gaps (Appendix I). Algorithm 1 solves the constrained FID problem
consistently to produce appropriately sized subgroups with sizes and AVG-SEPFID values that
generalize to the test set across all separable FID notions studied (Appendix J) and that are consistent
across choices of hypothesis class of h (Appendix K). Our algorithms converged in a reasonable time
to a (locally) optimal subgroup g that maximizes the constrained FID (Appendix M, N).

4.1 EXPERIMENTAL DETAILS

Datasets: We used four popular datasets for the experiments: StudentCortez & Silva (2008), COM-
PAS Angwin et al. (2016), Bank Moro et al. (2014), and Folktables Ding et al.. For each test, we used
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COMPAS twice, once predicting two-year recidivism and once predicting decile risk score (labeled
COMPAS R and COMPAS D respectively in the results). For each dataset, we specified "sensitive"
features which are features generally covered by equal protection or privacy laws (e.g. race, gender,
age, health data). Appendix G.3 contains more details.

Computing the AVG-SEPFID: We study 3 separable notions of FID based on local model ex-
planations Local-Interpretable, Model-Agnostic (LIME) Ribeiro et al. (2016), Shapley Additive
Explanations (SHAP) Lundberg & Lee (2017), and the vanilla gradient approach we label GRAD
Simonyan et al. (2013). For every method and dataset, we optimize the constrained FID over α
ranges (αL, αU ) = { [.01,.05], [.05,.1], [.1,.15], [.15,.2], [.2,.25] }. These small ranges allowed us to
reasonably compare the FID values, reported in Table 1. Additionally, these ranges span subgroup
sizes that may be of particular interest in fairness research and dataset auditing work. All values of
AVG-SEPFID reported in the results are out of sample; i.e. the AVG-SEPFID values are computed
on a test set that was not used to optimize the subgroups. Datasets were split into 80− 20 train-test
split except for Student which was split 50 − 50 due to its small size. Across all datasets, when
the FID was LIME or SHAP, we set h to be a random forest, when it was GRAD we used logistic
regression as it requires a classifier whose outputs are differentiable in the inputs. The exact choice
of classifier does not have any notable impact on the outcomes as discussed in Appendix K. Due to
computation constraints, GRAD was only tested on the COMPAS R dataset. We defer the details in
how we implemented the importance notions and Algorithm 1 to Appendix G.

Linear Feature Importance Disparity: In addition to the 3 separable notions of FID, we also
studied an approach for a non-separable notion of importance. Linear regression (labeled LR in
results) is a popular model that is inherently interpretable; the coefficients of a weighted least squares
(WLS) solution represent the importance of each feature. We can thus define another variant of
FID, the linear feature importance disparity (LIN-FID), as the difference in the WLS coefficient of
feature fj on subgroup g and on the dataset Xn. As LIN-FID is differentiable with respect to g,
we are able to find a locally optimal g with high LIN-FID using a non-convex optimizer; we used
ADAM. For details and proofs, see Appendix F.

4.2 EXPERIMENTAL RESULTS

Table 1 summarizes the results of the experiments, which are visualized in Figure 2 on a log-ratio
scale for better cross-notion comparison. Across each dataset and importance notion, our methods
were able to find subgroups with high FID, often differing by orders of magnitude. For example, on
Folktables with LIME as the importance notion, there is a subgroup on which age is on average 225
times more important than it is for the whole population. Table 1 also provides the defining features,
listed as the sensitive features which have the largest coefficients in g.

Figure 2: Summary of the highest FIDs found for each (dataset, method). This is displayed as∣∣log10(R)
∣∣ where R is the ratio of average importance per data point in g∗ to the average importance

on X for separable notions, or the ratio of coefficients for LIN-FID. This scale allows comparison
across different importance notions. The feature associated with each g∗ is written above the bar.

A natural follow up question that arises from this experiment is what does the distribution of FIDs
look like for a given dataset? Figure 3 shows a distribution of the 10 features on the Bank dataset
with the highest FID values. As we can see, there are a few features where large FID subgroups
can be found, but it tails off significantly. This pattern is replicated across all datasets and feature
importance notions. This is a positive result for practical uses, as an analyst or domain expert can
focus on a handful of features that perform drastically differently when auditing a dataset for fairness
concerns.
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Table 1: Summary of the subgroup with highest AVG-SEPFID for each experiment along with the
corresponding feature, subgroup size, and defining features. Experiments were run across multiple
(αL, αU ) ranges with the highest AVG-SEPFID found being displayed. µ(F ) is the average feature
importance value on the specified group.

Dataset Notion Feature fj µ(F (fj , X)) µ(F (fj , g)) |g| Defining Features

Student LIME Failures −.006 −.011 .01 Alcohol Use, Urban Home
SHAP Absences −.15 −2.1 .02 Parent Status, Urban Home
LR Father WFH 21.7 −4.0 .03 Alcohol Use, Health

COMPAS R LIME Age .0009 −.14 .05 Native-American
SHAP Age .012 .41 .04 Asian-American
LR Native American .5 1.17 .04 Asian/Hispanic-American
GRAD Arrest, No Charge .07 .16 .05 Asian/Native-American

COMPAS D LIME Age −.0003 −.06 .02 Native/Black-American
SHAP Age .06 2.35 .07 Black/Asian-American
LR Caucasian 6.7 10.7 .04 Native-American

Bank LIME # of Employees −.003 .03 .03 Marital Status
SHAP Euribor Rate −.004 .016 .03 Marital Status
LR Illiterate −.07 −.0045 .01 Age, Marital Status

Folktables LIME Age −.0007 −.11 .21 Marital Status
SHAP Education .023 .15 .03 Asian-American
LR Self-Employed −.26 −.06 .02 White-American

Figure 3: Distribution of AVG-SEPFID on the top features from the BANK dataset using LIME. We
see a sharp drop off in AVG-SEPFID. This pattern is replicated in all datasets and notions.

In Figure 4, we highlight a (feature, subgroup, method) pair on the COMPAS R dataset represen-
tative of the kinds of bias this work could expose. In our classification model explained using
GRAD, the feature arrested-but-with-no-charges is highly important when predicting
two-year-recidivism on X . However, it carries almost no importance on g∗ which is largely
defined by Native-American males. In every dataset and feature importance notion, we found similar
examples exposing some form of potential bias, see Appendix H for more examples. These examples,
in conjunction with the results reported in Table 1, highlight the usefulness of our method in finding
subgroups where a concerned analyst or domain expert could dig deeper to determine how biases
might be manifesting themselves in the data and how to correct for them.

4.3 FAIRNESS METRICS

While large AVG-SEPFID values with respect to a given feature and importance notion do not imply
disparities in common fairness metrics, which are not typically defined in terms of a specific reference
feature, it is natural to ask if these notions are correlated: do subgroups with large AVG-SEPFID
have large disparities in fairness metrics, and do subgroups that have large disparities in fairness
metrics have particularly large AVG-SEPFID values for some feature?

We examine the first question in Table 2. We find that these high AVG-SEPFID subgroups tend to
have significant disparities in these traditional fairness metrics. Although the metrics are not always
worse on g, this reinforces the intuition that subgroups with high AVG-SEPFID require greater
scrutiny. In Table 3 we study the reverse question, where we used the GerryFair code of Kearns
et al. (2018) to find rich subgroups that maximally violate FPR disparity, and then compute the
AVG-SEPFID on those subgroups. We find that they also have features with high AVG-SEPFID,
albeit not as large as those found by Algorithm 1, which explicitly optimizes for AVG-SEPFID.
These two results highlight the usefulness of our method in identifying potentially high risk subgroups.
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Figure 4: Exploring a key subgroup/feature pair for COMPAS R using GRAD. The first graph
compares F (fj , X) and F (fj , g

∗). The second graph shows the 5 largest coefficients of g∗.

Table 2: Observing fairness metrics of high AVG-SEPFID subgroups. COMPAS D and Student were
excluded since they use non-binary y, making classification metrics less comparable. We measured
the three fairness types outlined by Barocas et al. (2019): P (Ŷ = 1), true/false positive rates, and
expected calibration error. Each <metric>∆ corresponds to the metric on g minus the metric on X .

Dataset Notion F Defining Features of g Ŷ∆ TPR∆ FPR∆ ECE∆

COMPAS R LIME Age Native-American −.16 −.18 .02 .24
SHAP Age Asian-American .37 .35 .02 −.12
GRAD Arrest, No Charge Asian/Native-American −.19 −.22 .03 .24

Bank LIME # of Employees Marital Status .11 .06 .05 −.15
SHAP Euribor Rate Marital Status .11 .06 .05 −.17

Folktables LIME Age Marital Status −.15 −.11 −.04 .19
SHAP Education Asian-American .17 .16 .01 −.09

Table 3: Comparing top features and respective AVG-SEPFID of g found via our method
(AVG-SEPFIDFID) and found by Kearns et al. (2018) (AVG-SEPFIDgerry). As in Table 2, COM-
PAS D and Student were excluded.

Dataset Notion FFID AVG-SEPFIDFID Fgerry AVG-SEPFIDgerry

COMPAS R LIME Age .14 Age .04
SHAP Age .4 Age .06
GRAD Arrest, No Charge .09 Male .03

Bank LIME # of Employees .03 # of Employees .008
SHAP Euribor Rate .016 Emp Var Rate .004

Folktables LIME Age .11 Age .05
SHAP Education .13 Age .05

5 LIMITATIONS

Importantly, we eschew any broader claims that large FID necessarily implies a mathematical
conclusion about the fairness of the underlying classification model in all cases. It is known that even
the most popular and natural fairness metrics are impossible to satisfy simultaneously, and so we
would run up against the problem of determining what it means for a model to be fair Chouldechova
(2017); Kleinberg et al. (2017). By detecting anomalous subgroups with respect to feature importance,
our approach can signal to a domain expert that perhaps there are issues such as feature collection or
measurement bias. This will facilitate the next steps of testing the resulting hypotheses, and ultimately
intervening to address disparities and improve fairness outcomes. Concerns about the stability and
robustness of the most widely used feature importance notions, including the ones we study, have
been raised Dai et al. (2022); Agarwal et al. (2022a); Alvarez-Melis & Jaakkola (2018); Bansal et al.
(2020); Dimanov et al. (2020); Slack et al. (2020) and these notions are often at odds with each other,
so none can be considered definitive Krishna et al. (2022). Regardless of these limitations, these
notions are used widely in practice today, and are still useful as a diagnostic tool as we propose here
in order to uncover potentially interesting biases. Lastly, our methods, like nearly all prior works
on fairness, require tabular datasets that have defined the sensitive features apriori, a process more
difficult in text or image datasets where bias is still a concern Buolamwini & Gebru (2018); Bolukbasi
et al. (2016). Overall, the methods developed here represent a part of the algorithmic toolkit that
domain experts may use in rooting out bias.

9
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6 REPRODUCIBILITY

Specific details for the experiments such as the hyperparameters used are available in Appendix G.
The source code used for these experiments is provided in the supplementary material. Specifi-
cally, run_separable.py and run_linear.py are the scripts where the importance notion
(Appendix G.2), dataset (Appendix G.3), and other parameters are specified before running. The
experiments/ directory contains scripts used for the comparison of rich and marginal subgroups
as seen in Appendix I and for the fairness comparison experiments in Subsection 4.3.

7 ETHICAL REVIEW

There were no substantial ethical issues that came up during this research process. The datasets
used are all publicly available, de-identified, and have frequently been used in fair machine learning
research. There was no component of this research that sought to re-identify the data or use it in any
fashion other than to test our methodology.
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A ADDITIONAL RELATED WORK

Fairness in Machine Learning. Much of the work in fairness in machine learning typically concerns
the implementation of a new fairness notion in a given learning setting; either an individual fairness
notion Dwork et al. (2012); Joseph et al. (2018), one based on equalizing a statistical rate across
protected subgroups Hardt et al. (2016); Pleiss et al. (2017), or one based on an underlying causal
model Kusner et al. (2017). With a given notion of fairness in hand, approaches to learning fair
classifiers can be typically classified as “in-processing", or trying to simultaneously learn a classifier
and satisfy a fairness constraint, “post-processing" which takes a learned classifier and post-processes
it to satisfy a fairness definition Hardt et al. (2016), or most closely related to the motivation behind
this paper, pre-processing the data to remove bias. Existing work on dataset bias serve as high level
motivation for our work.

Feature Importance Notions. The local explanation methods mentioned in Section 1.2 include
model-agnostic methods like LIME or SHAP Ribeiro et al. (2016); Lundberg & Lee (2017), methods
like saliency maps Simonyan et al. (2013); Sundararajan et al. (2017); Baehrens et al. (2010) that
require h to be differentiable in x, or model-specific methods that depend on the classifier. In addition
to these explanation methods, there are also global methods that attempt to explain the entire model
behavior and so can be run on the entire subgroup. Our LIN-FID method as described in Appendix F
is a global method that relies on training an inherently interpretable model (linear regression) on the
subgroup and inspecting its coefficients. Other inherently interpretable models that could be used
to define a notion of subgroup importance include decision trees Quinlan (1986) and generalized
additive models Liu et al. (2022).

Fairness and Interpretability. Although no existing work examines the role of feature importance
notions in detecting disparities in rich subgroups, there is a small amount of existing work examining
explainability in the context of fairness. The recent Grabowicz et al. (2022) formalizes induced
discrimination as a function of the SHAP values assigned to sensitive features, and proposes a method
to learn classifiers where the protected attributes have low influence. Begley et al. (2020) applies a
similar approach, attributing a models overall unfairness to its individual features using the Shapley
value, and proposing an intervention to improve fairness. Ingram et al. (2022) examines machine
learning models to predict recidivism, and empirically shows tradeoffs between model accuracy,
fairness, and interpretability.

Additionally, Lundberg (2020) decomposes feature attribution explanations and fairness metrics into
additive components and observes the relationship between the fairness metrics and input features.
Our work does not try to decompose fairness metrics into additive components and also focuses
on non-additive feature explanations. Furthermore, our consideration of rich subgroups is a novel
addition to the space.

B PROOF OF THEOREM 1

We start by showing that for the unconstrained problem, computing the subgroup g∗j that maximizes
FID(fj , g, h) over G can be computed in two calls to CSCG when F is separable.
Lemma 1. If F is separable and CSCG is a CSC oracle for G, then for any feature fj , g∗j can be
computed with two oracle calls.

Proof. By definition g∗j = argmaxg∈GFID(j, g) = argmaxg∈G |F (fj , X
n, h) − F (fj , g, h)| =

argmaxg∈{g+,g−}FID(j, g), where g+ = argmaxg∈GF (fj , g, h), g
− = argming∈GF (fj , g, h). By

the definition of separability, we can write

F (fj , g(X
n), h) =

∑
X∈g(Xn)

F ′(fj , X, h) =

n∑
i=1

g(Xi)F
′(fj , Xi, h)

Then letting c0k = 0 and c1k = −F ′(fj , Xk, h) for k = 1, . . . n, we see that g+ =
CSCg((c

0
k, c

1
k)), g

− = CSCg((c
0
k,−c1k)). This establishes the claim.

Theorem 1: Let F be a separable notion, fix a classifier h, subgroup class G, and oracle CSCG .
Then fixing a feature of interest fj , we will run Algorithm 1 twice; once with FID given by F , and
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once with FID given by −F . Let p̂TG be the distribution returned after T = O( 4n
2B2

ν2 ) iterations by
Algorithm 1 that achieves the larger value of E[FID(j, g)]. Then:

FID(j, g∗j )− Eg∼p̂T
G
[FID(j, g)] ≤ ν

|ΦL(g)|, |ΦU (g)| ≤
1 + 2ν

B

(3)

Proof. We start by transforming our constrained optimization into optimizing a min−max objective.
The min player, referred to as the subgroup player will be solving a CSC problem over the class G
at each iteration, while the max player, called the dual player, will be adjusting the dual weights λ
on the two constraints using the exponentiated gradient algorithm Kivinen & Warmuth (1997). By
Lemma 2 Freund & Schapire (1996), we know that if each player implements a no-regret strategy,
then the error of subgroup found after T rounds is sub-optimal by at most the average cumulative
regret of both players. The regret bound for the exponentiated gradient descent ensures this occurs in
poly(n) rounds.

As in Kearns et al. (2018); Agarwal et al. (2018), we first relax Equation 1 to optimize over all
distributions over subgroups, and we enforce that our constraints hold in expectation over this
distribution. Our new optimization problem becomes:

min
pg∈∆(G)

Eg∼pg
[

n∑
i=1

g(xi)F
′(fj , xi, h)]

s.t. Eg∼pg
[ΦL(g)] ≤ 0

Eg∼pg
[ΦU (g)] ≤ 0

(4)

We note that while |G| may be infinite, the number of distinct labelings of X by elements of G is
finite; we denote the number of these by |G(X)|. Then since Equation 4 is a finite linear program in
|G(X)| variables, it satisfies strong duality, and we can write:

(p∗g, λ
∗) = argminpg∈∆(G)argmaxλ∈ΛEg∼pg [L(g, λ)] = argminpg∈∆(G)argmaxλ∈ΛL(pg, λ)

with L(g, λ) =
∑
x∈X

g(x)F (fj , x, h) + λLΦL + λUΦU , L(pg, λ) = Eg∼pg
[L(g, λ)]

As in Kearns et al. (2018) Λ = {λ ∈ R2 | ∥λ∥1 ≤ B} is chosen to make the domain compact, and
does not change the optimal parameters as long as B is sufficiently large, i.e. ∥λ∗∥1 ≤ B. In practice,
this is a hyperparameter of Algorithm 1, similar to Agarwal et al. (2018); Kearns et al. (2018). Then
we follow the development in Agarwal et al. (2018); Kearns et al. (2018) to show that we can compute
(p∗g, λ

∗) efficiently by implementing no-regret strategies for the subgroup player (pg) and the dual
player (λ).

Formally, since Eg∼pg
[L(g,Λ)] is bi-linear in pg, λ, and Λ,∆(G) are convex and compact, by Sion’s

minimax theorem Kindler (2005):

min
pg∈∆(G)

max
λ∈Λ

L(pg, λ) = max
λ∈Λ

min
pg∈∆(G)

L(pg, λ) = OPT (5)

Then by Theorem 4.5 in Kearns et al. (2018), we know that if (p∗g, λ
∗) is a ν-approximate min-max

solution to Equation 5 in the sense that

if: L(p∗g, λ
∗) ≤ min

p∈∆(G)
L(p, λ∗) + ν, L(pg, λ) ≥ max

λ∈Λ
L(p∗, λ),

then: F (fj , p
∗
g, h) ≤ OPT + 2ν, |ΦL(g)|, |ΦU (g)| ≤

1 + 2ν

B

(6)

So in order to compute an approximately optimal subgroup distribution p∗g, it suffices to compute
an approximate min-max solution of Equation 5. In order to do that we rely on the classic result of

17



Under review as a conference paper at ICLR 2024

Freund & Schapire (1996) that states that if the subgroup player best responds, and if the dual player
achieves low regret, then as the average regret converges to zero, so does the sub-optimality of the
average strategies found so far.

Lemma 2 (Freund & Schapire (1996)). Let pλ1 , . . . p
λ
T be a sequence of distributions over Λ, played by

the dual player, and let g1, . . . gT be the subgroup players best responses against these distributions
respectively. Let λ̂T = 1

T

∑T
t=1 p

λ
t , p̂g = 1

T

∑T
t=1 gt. Then if

T∑
t=1

Eλ∼pλ
t
[L(gt, λ)]−min

λ∈Λ

T∑
t=1

[L(gt, λ)] ≤ νT,

Then (λ̂T , p̂g) is a ν-approximate minimax equilibrium of the game.

To establish Theorem 1, we need to show (i) that we can efficiently implement the subgroup players
best response using CSCG and (ii) we need to translate the regret bound for the dual players best
response into a statement about optimality, using Lemma 2. Establishing (i) is immediate, since at
each round t, if λt,0 = Epλ

t
[λL], λt,1 = Epλ

t
[λU ], then the best response problem is:

argminpg∈∆(G)Eg∼pg
[
∑
x∈X

g(x)F (fj , x, h) + λt,0ΦL + λt,1ΦU ]

Which can further be simplified to:

argming∈G

∑
x∈X

g(x)(F (fj , x, h)− λL + λU ) (7)

This can be computed with a single call of CSCG , as desired. To establish (ii), the no-regret algorithm
for the dual player’s distributions, we note that at each round the dual player is playing online linear
optimization over 2 dimensions. Algorithm 1 implements the exponentiated gradient algorithm
Kivinen & Warmuth (1997), which has the following guarantee proven in Theorem 1 of Agarwal et al.
(2018), which follows easily from the regret bound of exponentiated gradient Kivinen & Warmuth
(1997), and Lemma 2:

Lemma 3 (Agarwal et al. (2018)). Setting η = ν
2n2B , Algorithm 1 returns p̂Tλ that is a ν-approximate

min-max point in at most O( 4n
2B2

ν2 ) iterations.

Combining this result with Equation 5 completes the proof.

C PROOF OF AVG-SEPFID PRIMITIVE

In Section 3, we presented our approach that optimizing for FID constrained across a range of
subgroup sizes will allow us to efficiently optimize for AVG-SEPFID. We provide a more complete
proof of that claim here:

Let g∗ be the subgroup that maximizes AVG-SEPFID. Without loss of generality, g∗ =
argmaxg∈G

1
n|g|

∑
g(x)F ′(fj , X, h) (we drop the absolute value because we can also set F ′ =

−F ). Then it is necessarily true, that g∗ also solves the constrained optimization problem
argmaxg∈G

1
n

∑
g(x)F ′(fj , X, h) such that |g| = |g∗|, where we have dropped the normalizing

term 1
|g| in the objective function, and so we are maximizing the constrained FID.

Now consider an interval I = [|g∗| − α, |g∗| + α], and suppose we solve g∗I =
argmaxg∈G

1
n

∑
g(x)F ′(fj , X, h) such that g ∈ I . Then since g∗ ∈ I , we know that

1
n

∑
g∗F ′(fj , X, h) ≤ 1

n

∑
g∗I (x)F

′(fj , X, h). This implies that:
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AVG-SEPFID(g∗I ) ≥
1

|g∗I |
1

n

∑
g∗(x)F ′(fj , X, h)

= AVG-SEPFID(g∗) + (
1

|g∗I |+ α
− 1

|g∗I |
)FID(g∗)

= AVG-SEPFID(g∗)− α

|g∗|(|g∗|+ α)
· FID(g∗)

Given the above derivation, as α → 0, we have AVG-SEPFID(g∗I ) → AVG-SEPFID(g∗).

Hence we can compute a subgroup g that approximately optimizes the AVG-SEPFID if we find
an appropriately small interval I aroudn |g∗|. Since the discretization in Section 3 covers the unit
interval, we are guaranteed for sufficiently large n to find such an interval.

D COST SENSITIVE CLASSIFIER, CSCG

Definition 4. (Cost Sensitive Classification) A Cost Sensitive Classification (CSC) problem for a
hypothesis class G is given by a set of n tuples {(Xi, c

0
i , c

1
i )}ni=1, where c0i and c1i are the costs of

assigning labels 0 and 1 to Xi respectively. A CSC oracle finds the classifier ĝ ∈ G that minimizes
the total cost across all points:

ĝ = argmin
g∈G

∑
i

(
g(Xi)c

1
i + (1− g(Xi))c

0
i

)
(8)

Algorithm 2 CSCG

Input: Dataset X ⊂ Rdsens × Rdsafe , costs (c0, c1) ∈ Rn

Let Xsens consist of the sensitive attributes x of each (x, x′) ∈ X .
Train linear regressor r0 : Rdsens → R on dataset (Xsens, c

0) ▷ learn to predict the cost c0
Train linear regressor r1 : Rdsens → R on dataset (Xsens, c

1) ▷ learn to predict the cost c1
Define g((x, x′)) := 1{(r0 − r1)(x) > 0} ▷ predict 0 if the estimated c0 < c1
Return g

E NP-COMPLETENESS

We will show below that the fully general version of this problem (allowing any poly-time F ) is NP
complete. First, we will define a decision variant of the problem:

δX,F,h,A = max
g∈G,fj

(|F (fj , g, h)− F (fj , X, h)|) ≥ A

Note that a solution to the original problem trivially solves the decision variant. First, we will show
the decision variant is in NP, then we will show it is NP hard via reduction to the max-cut problem.

Lemma 4. The decision version of this problem is in NP.

Proof. Our witness will be the subset g and feature fj such that

(|F (fj , g, h)− F (fj , X, h)|) ≥ A

Given these 2, evaluation of the absolute value is polytime given that F is polytime, so the solution
can be verified in polytime.

Lemma 5. The decision version of this problem is NP hard.
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Proof. We will define our variables to reduce our problem to maxcut(Q, k). Given a graph defined
with V, E as the vertex and edge sets of Q (with edges defined as pairs of vertices), we will define
our F , X , G, A, and h as follows:

X = V

h = constant classifier, maps every value to 1
G = P(V ) i.e. all possible subsets of vertices

F (fj , g, h) = |x ∈ E : x[0] ∈ g, x[1] ∈ gc|
–i.e. F (j, g, h) returns the number of
edges cut by a particular subset, ignoring
its first and third argument.
(this is trivially computable in polynomial
time by iterating over the set of edges).

A = k

Note that F (fj , X, h) = 0 by definition, and that F ≥ 0. Therefore, |F (fj , g, h)− F (fj , X, h)| =
F (fj , g, h), and we see that (|F (fj , g, h) − F (fj , X, h)|) ≥ A if and only if g is a subset on Q
that cuts at least A = k edges. Therefore an algorithm solving the decision variant of the feature
importance problem also solves maxcut.

F LINEAR FEATURE IMPORTANCE DISPARITY

The non-separable FID notion considered in this paper corresponds to training a model that is
inherently interpretable on only the data in the subgroup g, and comparing the influence of feature
j to the influence when trained on the dataset as a whole. Since all of the points in the subgroup
can interact to produce the interpretable model, this notions typically are not separable. Below we
formalize this in the case of linear regression, which is the non-separable notion we investigate in the
experiments.
Definition 5. (Linear Feature Importance Disparity). Given a subgroup g, let θg =
infθ∈Rd E(X,y)∼R[g(X)(θ′X − y)2], and θR = infθ∈Rd E(X,y)∼R[(θ′X − y)2]. Then if ej is the
jth basis vector in Rd, we define the linear feature importance disparity (LIN-FID) by

LIN-FID(j, g) = |(θg − θR) · ej |

LIN-FID(j, g) is defined as the difference between the coefficient for feature j when training the
model on the subgroup g, versus training the model on points from R. Expanding Definition 5 using
the standard weighted least squares estimator (WLS), the feature importance for a given feature fj
and subgroup g(X) is:

Flin(j, g) =
(
(Xg(X)XT )−1(XT g(X)Y )

)
· ej , (9)

Where g(X) is a diagonal matrix of the output of the subgroup function. The coefficients of the linear
regression model on the dataset X can be computed using the results from ordinary least squares
(OLS): (XXT )−1(XTY ) · ej .

We compute argmaxg∈GLIN-FID = argmaxg∈G|Flin(j,X
n)−Flin(j, g)| by finding the minimum

and maximum values of Flin(j, g) and choosing the one with the larger difference. For the experi-
ments in Section 4, we use logistic regression as the hypothesis class for g because it is non-linear
enough to capture complex relationships in the data, but maintains interpretability in the form of
its coefficients, and importantly because Equation 9 is then differentiable in the parameters θ of
g(X) = σ(X · θ), σ(x) = 1

1+e−x . Since Equation 9 is differentiable in θ, we can use non-convex
optimizers like SGD or ADAM to maximize Equation 9 over θ.

While this is an appealing notion due to its simplicity, it is not relevant unless the matrix Xg(X)XT

is of full rank. We ensure this first by lower bounding the size of g via a size penalty term Psize =
max(αL − |g(Xtrain)|, 0) + max(|g(Xtrain)| − αU , 0), which allows us to provide α constraints
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in the same manner as in the separable approach. We also add a small l2 regularization term ϵI to
XT g(X)X . This forces the matrix to be invertible, avoiding issues with extremely small subgroups.
Incorporating these regularization terms, Equation 9 becomes:

Flin(j, g) = λs ·
(
(Xσ(X · θTL)XT + ϵI)−1(XTσ(X · θTL)Y ) · ej

)
+ λc · Psize (10)

We note that LIN-FID is a similar notion to that of LIME Ribeiro et al. (2016), but LIME estimates
a local effect around each point which is then summed to get the effect in the subgroup, and so it is
separable. It is also the case that Flin is non-convex as shown below:
Lemma 6. Flin as defined in Equation 9 is non-convex.

Proof. We will prove this by contradiction. Assume Flin is convex, which means the Hessian is
positive semi-definite everywhere. First we will fix (Xg(X)XT ))−1 to be the identity matrix, which
we can do without loss of generality by scaling g by a constant. This scaling will not affect the
convexity of Flin.

Now, we have the simpler form of Flin = (XT g(X)Y ) · ej . We then can compute the values of the
Hessian:

∂F 2

∂2g
= (XT g′′(X)Y ) · ej

Consider the case where XT is a 2 × 2 matrix with rows 1, 0 and 0,−1 and Y is a vector of ones.
If g weights the second column (i.e. feature) greater than the first, then the output Hessian will be
positive semi-definite. But if g weights the first column greater than the first, then it will be negative
semi-definite. Since the Hessian is not positive semi-definite everywhere, Flin must be non-convex
over the space of g.

This means the stationary point we converge to via gradient descent may only be locally optimal. In
Section 4, we optimize Equation 10 using the ADAM optimizer Kingma & Ba (2015). Additional
details about implementation and parameter selection are in Appendix G. Despite only locally optimal
guarantees, we were still able to find (feature, subgroup) pairs with high LIN-FID for all datasets.

G EXPERIMENTAL DETAILS

G.1 ALGORITHMIC DETAILS

Separable Case. In order to implement Algorithm 1 over a range of [αL, αU ] values, we need
to specify our dual norm B, learning rate η, number of iterations used T , rich subgroup class G,
and the associated oracle CSCG . We note that for each feature fj , Algorithm 1 is run twice; one
corresponding to maximizing FID(fj , g, h) and the other minimizing it. Note that in both cases
our problem is a minimization, but when maximizing we simply negate all of the point wise feature
importance values F (fj , xi, h) → −F (fj , xi, h). In all experiments our subgroup class G consists
of linear threshold functions over the sensitive features: G = {θ ∈ Rdsens : θ((x, x′)) = 1{θ′x > 0}.
We implement CSCG as in Agarwal et al. (2018); Kearns et al. (2018) via linear regression, see
Algorithm 2 in Appendix D. To ensure the dual player’s response is strong enough to enforce desired
size constraints, we empirically found that setting the hyperparameter B = 104 · µ(fj) worked well
on all datasets, where µ(fj) is the average absolute importance value for feature j over X . We set
the learning rate for exponentiated gradient descent to η = 10−5. Empirical testing showed that η ·B
should be on the order of µ(fj) or smaller to ensure proper convergence. We found that setting the
error tolerance hyperparameter ν = .05 · µ(fj) · n · αL worked well in ensuring good results with
decent convergence time across all datasets and values of α. For all datasets and methods we ran
for at most T = 5000 iterations, which we observe empirically was large enough for FID values
to stabilize and for 1

T

∑T
t=1 |gt| ∈ [αL, αU ], with the method typically converging in T = 3000

iterations or less. See Appendix M for a sample of convergence plots.

Non-Separable Case. For the non-separable approach, datasets were once again split into train and
test sets. For Student, it was split 50-50, while COMPAS, Bank, and Folktables were split 80-20
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train/test. The 50-50 split for Student was chosen so that a linear regression model would be properly
fit on a small g(Xtest). The parameter vector θ for a logistic regression classifier was randomly
initialized with a PyTorch random seed of 0 for reproducability. We used an ADAM Kingma & Ba
(2015) optimizer with a learning rate of .05 as our heuristic solver for the loss function.

To enforce subgroup size constraints, λsPsize must be on a significantly larger order than λcFlin(j, g).
Empirical testing found that values of λs = 105 and λc = 10−1 returned appropriate subgroup sizes
and also ensured smooth convergence. The optimizer ran until it converged upon a minimized
linear regression coefficient, subject to the size constraints. Experimentally, this took at most 1000
iterations, see Appendix N for a sample of convergence plots. After solving twice for the minimum
and maximum Flin(j, g) values and our subgroup function g is chosen, we fit the linear regression on
both Xtest and g(Xtest) to get the final FID.

G.2 FID NOTIONS

LIME: A random forest model h was trained on dataset Xn. Then each data point along with the
corresponding probability outputs from the classifier were input into the LIME Tabular Explainer
Python module. This returned the corresponding LIME explanation values.

SHAP: This was done with the same method as LIME, except using the SHAP Explainer Python
module.

Vanilla Gradient: Labeled as GRAD in charts, the vanilla gradient importance notion was computed
using the Gradient method from the OpenXAI library Agarwal et al. (2022b). This notion only works
on differentiable classifiers so in this case, h is a logistic regression classifier. We found there was no
substantial difference between the choice of random forest or logistic regression for h when tested on
other importance notions (see Section J). Due to constraints on computation time, this method was
only tested on the COMPAS dataset (using Two Year Recidivism as the target variable).

Linear Regression: For the linear regression notion, the subgroup g was chosen to be in the logistic
regression hypothesis class. For a given subgroup g(X), the weighted least squares (WLS) solution
is found whose linear coefficients θg then define the feature importance value ej · θg .

For details on the consistency of these importance notions, see Appendix O.

G.3 DATASETS

These four datasets were selected on the basis of three criterion: (i) they all use features which could
be considered sensitive to make predictions about individuals in a context where bias in a significant
concern (ii) they are heavily used datasets in research on interpretability and fairness, and as such
issues of bias in the datasets should be of importance to the community, and (iii) they trace out a
range of number of datapoints and number of features and sensitive features, which we summarise in
Table 4. For each dataset, we specified features that were "sensitive." That is, when searching for
subgroups with high FID, we only considered rich subgroups defined by features generally covered
by equal protection or privacy laws (e.g. race, gender, age, health data).

Student: This dataset aims to predict student performance in a Portugese grade school using
demographic and familial data. For the purposes of this experiment, the target variable was math
grades at the end of the academic year. Student was by far the smallest of the four datasets with
395 data points. The sensitive features in Student are gender, parental status, address
(urban or rural), daily alcohol consumption, weekly alcohol consumption, and
health. Age typically would be considered sensitive but since in the context of school, age is
primarily an indicator of class year, this was not included as a sensitive feature. The categorical
features address, Mother’s Job, Father’s Job, and Legal Guardian were one hot
encoded.

COMPAS: This dataset uses a pre-trial defendant’s personal background and past criminal record to
predict risk of committing new crimes. To improve generalizability, we removed any criminal charge
features that appeared fewer than 10 times. Binary counting features (e.g. 25-45 yrs old or 5+
misdemeanors) were dropped in favor of using the continuous feature equivalents. Additionally,
the categorical variable Race was one-hot encoded. This brought the total number of features to 95.
The sensitive features in COMPAS are age, gender, and race (Caucasian, African-American,
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Asian, Hispanic, Native American, and Other). For COMPAS, we ran all methodologies twice, once
using the binary variable, Two Year Recidivism, as the target variable and once using the
continuous variable Decile Score. Two Year Recidivism is what the model is intended
to predict and is labeled as COMPAS R in the results. Meanwhile, Decile Score is what the
COMPAS system uses in practice to make recommendations to judges and is labeled as COMPAS D
in the results.

Bank: This dataset looks at whether a potential client signed up for a bank account after being
contacted by marketing personnel. The sensitive features in Bank are age and marital status
(married, single, or divorced). The age feature in Bank is a binary variable representing whether the
individual is above the age of 25.

Folktables: This dataset is derived from US Census Data. Folktables covers a variety of tasks,
but we used the ACSIncome task, which predicts whether an individual makes more than $50k per
year. The ACSIncome task is meant to mirror the popular Adult dataset, but with modifications to
address sampling issues. For this paper, we used data from the state of Michigan in 2018. To reduce
sparseness of the dataset, the Place of Birth feature was dropped and the Occupation
features were consolidated into categories of work as specified in the official Census dictionary
Bureau (2020), (e.g. people who work for the US Army, Air Force, Navy, etc. were all consolidated
into Occupation=Military). The sensitive features in Folktables are age, sex, marital
status (married, widowed, divorced, separated, never married/under 15 yrs old), and race
(Caucasian, African-American, Asian, Native Hawaiian, Native American singular tribe, Native
American general, Other, and 2+ races).

Table 4: Summary of Datasets

Dataset Data Points # of Features # of Sensitive Features

Student 395 32 6
COMPAS 6172 95 8

Bank 30488 57 4
Folktables Income 50008 52 16
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H MORE DISCUSSION OF HIGH FID SUBGROUPS

(a) Student: Predicting grade outcomes (b) COMPAS: Predicting 2-year recidivism

(c) COMPAS: Predicting decile risk score (d) Bank: Predicting whether bank deposit is made

(e) Folktables: Predicting income >$50k

Figure 5: Exploration of key subgroup/feature pairs found for each dataset. The first graph shows the
change in feature importance from whole dataset to subgroup. The second graph shows the main
coefficients that define the subgroup.

In Figure 5, we highlight selections of an interesting (feature, subgroup, method) pair for each
dataset. Figure 5a shows that on the Student dataset the feature absences which is of near zero
importance on the dataset as a whole, is very negatively correlated with student performance on a
subgroup whose top 2 features indicate whether a student’s parents are together, and if they live
in an rural neighborhood. Figure 5b shows that on the COMPAS dataset with method GRAD,
the feature arrested-but-with-no-charges is typically highly important when predicting
two-year-recidivism. However, it carries significantly less importance on a subgroup that is
largely defined as Native American males. When predicting the decile risk score on COMPAS, LIME
indicates that age is not important on the dataset as a whole; however, for non-Native American,
female minorities, older age can be used to explain a lower Decile Score. On the Bank dataset
using LIN-FID, we see that a linear regression trained on points from a subgroup defined by older,
single individuals, puts more importance on job=housemaidwhen predicting likelihood in signing
up for an account. Finally on Folktables, we see that LIN-FID assigns much lower weight to the
job=military feature among a subgroup that is mainly white and divorced people than in the
overall dataset when predicting income. These interesting examples, in conjunction with the results
reported in Table 1, highlight the usefulness of our method in finding subgroups where a concerned
analyst/domain expert could dig deeper to determine how biases might be manifesting themselves in
the data and if/how to correct for them.

I COMPARISON OF FID VALUES ON RICH VS. MARGINAL SUBGROUPS

To better justify the use of rich subgroups, we performed the same analysis but only searching over
the marginal subgroup space. For each dataset and importance notion pair, we established the finite
list of marginal subgroups defined by a single sensitive characteristic and computed the feature
importance values on each of these subgroups. In Figure 6, we compare the maximal AVG-SEPFID
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rich subgroups shown in Figure 2 to the maximal AVG-SEPFID marginal subgroup for the same
feature. In about half of the cases, the AVG-SEPFID of the marginal subgroup was similar to
the rich subgroup. In the other cases, expanding our subgroup classes to include rich subgroups
defined by linear functions of the sensitive attributes enabled us to find a subgroup that had a higher
AVG-SEPFID. For example, in Figure 6b, we can see that on the COMPAS R dataset using GRAD
as the importance notion, Arrested, No Charges had a rich subgroup with AVG-SEPFID
that was 4 times less than on the full dataset. However, we were unable to find any subgroup in the
marginal space where the importance of the feature was nearly as different. In some cases in Figure
6, the marginal subgroup performs slightly better than the rich subgroup. This happens when using
rich subgroups does not offer any substantial advantage over marginal subgroups, and the empirical
error tolerance in Algorithm 1 stopped the convergence early.

(a) Student (b) COMPAS R

(c) COMPAS D (d) Bank (e) Folktables

Figure 6: Comparison of the maximal FID rich subgroups from Figure 2 to the maximal FID
marginal subgroup on the same feature. This is displayed as |log10(R)| where R is the ratio of
average importance per data point for separable notions and the ratio of coefficients for the linear
coefficient notion. The feature associated with the subgroups is written above each bar.

J STATISTICAL VALIDITY OF RESULTS: GENERALIZATION OF FID AND |g|

When confirming the validity of our findings, there are two potential concerns: (1) Are the subgroup
sizes found in-sample approximately the same on the test set and (2) do the FID’s found on the
training set generalize out of sample? Taken together, (1) and (2) are sufficient to guarantee our
maximal AVG-SEPFID values generalize out of sample.

In Figure 7, we can see that when we take the maximal subgroup found for each feature fj , g∗j ,
and compute it’s size |g∗j | on the test set, for both the separable and non-separable methods it
almost always fell within the specified [αL, αU ] range; the average difference in |g∗j (Xtrain)| and
|g∗j (Xtest)| was less than .005 on all notions of feature importance and all datasets except for Student,
which was closer to .025 due to its smaller size. A few rare subgroups were significantly outside the
desired α range, which was typically due to the degenerate case of the feature importance values all
being 0 for the feature in question. Additional plots for all (dataset, notion) pairs are in Appendix L.

In Figure 8, we compare AVG-SEPFID(fj , g∗j , Xtrain) to AVG-SEPFID(fj , g∗j , Xtest), or
LIN-FID in the case of the linear regression notion, to see how FID generalizes. The separa-
ble notions all generalized very well, producing very similar AVG-SEPFID values for in and out
of sample tests. The non-separable method still generalized, although not nearly as robustly, with
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(a) (b) (c) (d)

Figure 7: Generalizability of |g| on the Folktables dataset. (a) Size outputs from Algorithm 1 for
all features and separable notions and (b) from optimizing Equation 10 for LIN-FID show that our
size constraints hold in-sample. (c) Plots the corresponding values of |g∗j (Xtrain)| vs |g∗j (Xtest)| for
separable notions and (d) for LIN-FID, showing that the subgroup size generalizes out of sample.

(a) LIME (b) SHAP (c) GRAD (d) Linear Regression

Figure 8: Out of sample generalization of the methods. Each dot represents a feature, plotting FID on
Xtest vs on Xtrain. All are computed on the Folktables dataset except (c) is computed on COMPAS
R. The diagonal line represents perfect generalization and the Pearson correlation coefficient is
displayed in figure. The non-separable approach suffers from the instability of the WLS method.

outlier values occurring. This was due to ill-conditioned design matrices for small subgroups leading
to instability in fitting the least squares estimator. In Appendix O, we investigate the robustness of
the feature importance notions, evaluated on the entire dataset. We find that the coefficients of linear
regression are not as stable, indicating the lack of generalization in Figure 8 could be due to the
feature importance notion itself lacking robustness, rather than an over-fit selection of g∗j .

K CHOICE OF HYPOTHESIS CLASS

One ablation study we explored was the choice of classification model h. While the main experiments
used a random forest model, we also explored using a logistic regression model. The logistic
regression model was implemented with the default sklearn hyperparameters. We found that the
results are roughly consistent with each other no matter the choice of h. In Table 5 and Table 6, we see
that the features with the highest AVG-SEPFID, their subgroup sizes, and the AVG-SEPFID values
are consistent between the choice of hypothesis class. We then looked further into the features that
were used to define these subgroups. In Figure 9, we see that the subgroups with high AVG-SEPFID
for the feature Age were both defined by young, non-Asians.

Similarly consistent results were found across all feature importance notions and datasets. As a result,
all of the results presented in the main section of the paper used random forest as the hypothesis class.

L SUBGROUP SIZES OUTCOMES

In Figure 10 we chart the subgroup sizes, |g(Xtest)|, outputted by the algorithms across all dataset
and importance notion combinations. As a whole, the final subgroup sizes were generally within the
specified α range. Occasionally, there were subgroups which were significantly outside the expected
range. Usually this was due to most of the importance values, F (fj , X, h), being zero for a given
feature.
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h = Random Forest h = Logistic Regression

Feature Size AVG-SEPFID Feature Size AVG-SEPFID
Age .05− .1 .144 Age .05− .1 .21
Priors Count .01− .05 .089 Priors count .01− .05 .092
Juv Other Count .01− .05 .055 Juv Other Count .01− .05 .055
Other Features - < .025 Other Features - < .025

Table 5: Comparing results between using random forest and logistic regression as the hypothesis
class for classifier h using LIME as the importance notion on the COMPAS R dataset. Here we
display the features with the highest AVG-SEPFID, the subgroup size |g|, and the AVG-SEPFID.
We can see that the choice of hypothesis class h does not substantially affect the output. We used
random forest for all of our main experiments.

h = Random Forest h = Logistic Regression

Feature Size AVG-SEPFID Feature Size AVG-SEPFID
Age .01− .05 .4 Age .01− .05 .21
Priors Count .01− .05 .11 Priors count .01− .05 .14
Other Features - < .05 Other Features - < .05

Table 6: Same as Table 5 except using SHAP as the importance notion. With SHAP, there were fewer
features with significant AVG-SEPFID before dropping off but in both cases, the choice of h did not
significantly affect the outcome.

(a) h = Random Forest, fj∗ = Age (b) h = Logistic Regression, fj∗ = Age

Figure 9: Comparing the choice of hypothesis class of h. Here we show the defining coefficients for
the highest AVG-SEPFID subgroup found on the COMPAS R dataset using LIME as the feature
importance notion. For the feature Age, we find that young and non-Asian were the two most defining
coefficients for g∗ no matter which choice of h.
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In Figure 11 we compare |g∗j (Xtrain)| and |g∗j (Xtest)|, outputted by the algorithms across all dataset
and importance notion combinations. As we can see, the subgroup sizes were very consistent between
the train and test set meaning |g| generalized very well. The average difference was only somewhat
large on the Student dataset, due to the fact that it is a smaller dataset.

Figure 10: Final subgroup sizes of g(Xtest) compared with α range. These almost always fall within
the correct size range. Student has the largest errors, mostly due to the fact that the dataset itself is
small.
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(a) Student, LIME (b) Student, SHAP (c) Student, LR (d) COMPAS R, LIME

(e) COMPAS R, SHAP (f) COMPAS R, LR (g) COMPAS R, GRAD (h) COMPAS D, LIME

(i) COMPAS D, SHAP (j) COMPAS D, LR (k) Bank, LIME (l) Bank, SHAP

(m) Bank, LR (n) Folk, LIME (o) Folk, SHAP (p) Folk, LR

Figure 11: Comparing |g∗j (Xtrain)| and |g∗j (Xtest)|. We can see that the size of the subgroup was
consistent between the train and test set.

M ALGORITHM 1 OPTIMIZATION CONVERGENCE

Here are additional graphs showing examples of the convergence of Algorithm 1. Data was tracked
every 10 iterations, recording the Lagrangian values (to compute the error vt = max(|L(p̂tG , p̂tλ)−
L|, |L−L(p̂tG , p̂

t
λ)|)), the subgroup size, and AVG-SEPFID value, graphed respectively in Figure 12.

We can see AVG-SEPFID value moving upward, except when the subgroup size is outside the α
range, and the Lagrangian error converging upon the set error bound v before terminating.

While Theorem 1 states that convergence time may grow quadratically, in practice we found that
computation time was not a significant concern. The time for convergence varied slightly based on
dataset but for the most part, convergence for a given feature was achieved in a handful of iterations
that took a few seconds to compute. Features which took several thousand iterations could take
around 30 minutes to compute on larger datasets.
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Figure 12: Plots detailing the convergence of Algorithm 1. The top plot shows the error convergence,
i.e. the max difference in Lagrangian values between our solution and the min/max-players’ solution.
The other two plots display the subgroup size and AVG-SEPFID of the solution. Convergence almost
always happened in fewer than 5000 iterations, allaying concerns about theoretical run time.
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N NON-SEPARABLE OPTIMIZATION CONVERGENCE

Here are additional graphs showing the convergence in the non-separable approach. Using the loss
function that rewards minimizing the linear regression coefficient (or maximizing it) and having a
size within the alpha constraints, we typically reach convergence after a few hundred iterations. In
Figure 13, we can see in the respective upper graphs that the subgroup size converges to the specified
α range and stays there. Meanwhile, in the lower graph, we see the LIN-FID attempt to maximize
but oscillates as the appropriate size is found.

Convergence using this method was almost always achieved in under 1000 iterations. Running this
for all features took around 2 hours to compute on the largest datasets. The optimization was run
using GPU computing on NVIDIA Tesla V100s.

Figure 13: Plots of subgroup size and linear regression coefficient of g over the training iterations of
the Adam optimizer. For each dataset, the feature with the highest LIN-FID was displayed.
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O IMPORTANCE NOTION CONSISTENCY

To see how consistent importance notion methods were, we plotted the values of F (fj , Xtest, h)
against F (fj , Xtrain, h) with each point representing a feature fj of the COMPAS dataset. The closer
these points track the diagonal line, the more consistent a method is in providing the importance values.
As we can see in Figure 14, LIME and GRAD are extremely consistent. Linear regression is less
consistent, due to instability in fitting the least squares estimator on ill-conditioned design matrices.
SHAP is also inconsistent in its feature importance attribution, however the AVG-SEPFID still
generalized well as seen in Figure 8. This could mean that while SHAP is inconsistent from dataset to
dataset, it is consistent relative to itself. i.e. if F (j,Xtrain) > F (j,Xtest) then F (j, g(Xtrain)) >
F (f,Xtest) meaning the AVG-SEPFID value would remain the same.

These inconsistencies seem to be inherent in some of these explainability methods as noted in other
research Krishna et al. (2022); Dai et al. (2022); Agarwal et al. (2022a); Alvarez-Melis & Jaakkola
(2018); Bansal et al. (2020). Exploring these generalization properties would be an exciting future
direction for this work.

Figure 14: Consistencies of importance notions. Each point represents a feature, the x-value
is F (j,Xtest), and y-value is F (j,Xtrain). The closer the points are to the diagonal, the more
consistent the notion is.
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