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Abstract

Advanced large language models (LLMs) frequently reflect in reasoning chain-
of-thoughts (CoTs), where they self-verify the correctness of current solutions
and explore alternatives. However, given recent findings that LLMs detect limited
errors in CoTs, how reflection contributes to empirical improvements remains
unclear. To analyze this issue, in this paper, we present a minimalistic reason-
ing framework to support basic self-verifying reflection for small transformers
without natural language, which ensures analytic clarity and reduces the cost of
comprehensive experiments. Theoretically, we prove that self-verifying reflection
guarantees improvements if verification errors are properly bounded. Experimen-
tally, we show that tiny transformers, with only a few million parameters, benefit
from self-verification in both training and reflective execution, reaching remarkable
LLM-level performance in integer multiplication and Sudoku. Similar to LLM
results, we find that reinforcement learning (RL) improves in-distribution perfor-
mance and incentivizes frequent reflection for tiny transformers, yet RL mainly
optimizes shallow statistical patterns without faithfully reducing verification errors.
In conclusion, integrating generative transformers with discriminative verification
inherently facilitates CoT reasoning, regardless of scaling and natural language.

1 Introduction

Numerous studies have explored the ability of large language models (LLMs) to reason through a
chain of thought (CoT), an intermediate sequence leading to the final answer. While simple prompts
can elicit CoT reasoning [13], subsequent works have further enhanced CoT quality through reflective
thinking [10] and the use of verifiers [4]. Recently, reinforcement learning (RL) [33] has achieved
notable success in advanced reasoning models, such as OpenAI-o1 [20] and Deepseek-R1 [5], which
show frequent reflective behaviors that self-verify the correctness of current solutions and explore
alternatives, integrating generative processes with discriminative inference. However, researchers also
report that the ability of these LLMs to detect errors is rather limited, and a large portion of reflection
fails to bring correct solutions [11]. Given the weak verification ability, the experimental benefits of
reflection and the emergence of high reflection frequency in RL require further explanation.

To address this challenge, we seek to analyze two main questions in this paper: 1) what role self-
verifying reflection plays in training and execution of reasoning models, and 2) how reflective
reasoning evolves in RL with verifiable outcome rewards [15]. However, the complexity of natural
language and the prohibitive training cost of LLMs make it difficult to draw clear conclusions from
theoretical abstraction and comprehensive experiments across settings. Inspired by Zeyuan et al.
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[2], we observe that task-specific reasoning and self-verifying reflection do not necessitate complex
language. This allows us to investigate reflective reasoning through tiny transformer models [36],
which provide efficient tools to understand self-verifying reflection through massive experiments.

To enable tiny transformers to produce long reflective CoTs and ensure analytic simplicity, we
introduce a minimalistic reasoning framework, which supports essential reasoning behaviors that
are operable without natural language. In our study, the model self-verifies the correctness of each
thought step; then, it may resample incorrect steps or trace back to previous steps. Based on this
framework, we theoretically prove that self-verifying reflection improves reasoning accuracy if
verification errors are properly bounded, which does not necessitate a strong verifier. Additionally, a
trace-back mechanism that allows revisiting previous solutions conditionally improves performance
if the problem requires a sufficiently large number of steps.

Our experiments evaluate 1M, 4M, and 16M transformers in solving integer multiplication [7] and
Sudoku puzzles [3], which have simple definitions (thus, operable by transformers without language)
yet still challenging for even LLM solvers. To maintain relevance to broader LLM research, the tiny
transformers are trained from scratch through a pipeline similar to that of training LLM reasoners.
Our main findings are listed as follows: 1) Learning to self-verify greatly facilitates the learning of
forward reasoning. 2) Reflection improves reasoning accuracy if true correct steps are not excessively
verified as incorrect. 3) Resembling the results of DeepSeek-R1 [5], RL can incentivize reflection
if the reasoner can effectively explore potential solutions. 4) However, RL fine-tuning increases
performance mainly statistically, with limited improvements in generalizable problem-solving skills.

Overall, this paper contributes to the fundamental understanding of reflection in reasoning models by
clarifying its effectiveness and synergy with RL. Our findings based on minimal reasoners imply a
general benefit of reflection for more advanced models, which operate on a super-set of our simplified
reasoning behaviors. In addition, our implementation also provides insights into the development of
computationally efficient reasoning models.

2 Related works

CoT reasoning Pretrained LLMs emerge the ability to produce CoTs from simple prompts [13,
38], which can be explained via the local dependencies [25] and probabilistic distribution [35] of
natural-language reasoning. Many recent studies develop models targeted at reasoning, e.g., scaling
test-time inference with external verifiers [4, 17, 18, 32] and distilling large general models to smaller
specialized models [34, 9]. In this paper, we train tiny transformers from scratch to not only generate
CoTs but also self-verify, i.e., detect errors in their own thoughts without external models.

RL fine-tuning for CoT reasoning RL [33] recently emerges as a key method for CoT reasoning
[31, 40]. It optimizes the transformer model by favoring CoTs that yield high cumulated rewards,
where PPO [29] and its variant GRPO [31] are two representative approaches. Central to RL fine-
tuning are reward models that guide policy optimization: the 1) outcome reward models (ORM)
assessing final answers, and the 2) process reward models (PRM) [17] evaluating intermediate
reasoning steps. Recent advances in RL with verifiable rewards (RLVR) [5, 41] demonstrate that
simple ORM based solely on answer correctness can induce sophisticated reasoning behaviors.

Reflection in LLM reasoning LLM reflection provides feedback to the generated solutions [19]
and may accordingly refine the solutions [10]. Research shows that supervised learning from verbal
reflection improves performance, even though the reflective feedback is omitted during execution
[42]. Compared to the generative verbal reflection, self-verification uses discriminative labels to
indicate the correctness of reasoning steps, which supports reflective execution and is operable
without linguistic knowledge. Recently, RL is widely used to develop strong reflective abilities [14,
27, 20]. In particular, DeepSeek-R1 [5] shows that RLVR elicits frequent reflection, and such a result
is reproduced in smaller LLMs [24]. In this paper, we further investigate how reflection evolves
during RLVR by examining the change of verification errors.

Understanding LLMs through small transformers Small transformers are helpful tools to
understand LLMs, for their architectural consistency with LLMs and low development cost to support
massive experiments. For example, transformers smaller than 1B provide insights into how data
mixture and data diversity influence LLM training [39, 2]. They also contribute to foundational
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Figure 1: The illustration of MTP, where the transformer model π reasons the answer A of a query Q
through T − 1 intermediate steps.
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Figure 2: Example reasoning steps for multiplication and Sudoku, where the core planning is
presented in the reasoning step Rt+1.

understanding of CoT reasoning, such as length generalization [12], internalization of thoughts [6],
and how CoTs inherently extend the problem-solving ability [8, 16]. In this paper, we further use tiny
transformers to better understand reflection in CoT reasoning.

3 Reflective reasoning for transformers

In this section, we develop transformers to perform simple reflective reasoning in long CoTs. Focusing
on analytic clarity and broader implications, the design of our framework follows the minimalistic
principle, providing only essential reasoning behavior operable without linguistic knowledge. More
advanced reasoning frameworks optimized for small-scale models are certainly our next move in
future work. In the following, we first introduce the basic formulation of CoT reasoning; then,
based on this formulation, we introduce our simple reasoning framework for self-verifying reflection;
afterwards, we describe how transformers are trained to reason through this framework.

3.1 Reasoning formulation

CoT Reasoning as a Markov decision process A general form of CoT reasoning is given as a
tuple (Q, {R}, A), where Q is the input query, {R} = (R1, . . . , RT−1) is the sequence of T − 1
intermediate steps, and A is the final answer. Following Wang [37], we formulate the CoT reasoning
as a Markov thought process (MTP). As shown in Figure 1, an MTP follows that [37]:

Rt+1 ∼ π(· | St), St+1 = T (St, Rt+1), (1)

where St is the t-th reasoning state, π is the planning policy (the transformer model), and T is the
(usually deterministic) transition function. The initial state S0 := Q is given by the input query.
In each reasoning step Rt+1, the policy π plans the next reasoning action that determines the state
transition, which is then executed by T to obtain the next state. The process terminates when the step
presents the answer, i.e., A = RT . For clarity, a table of notations is presented in Appendix A.

An MTP is implemented by specifying the state representations and transition function T . Since we
use tiny transformers that are weak in inferring long contexts, we suggest reducing the length of state
representations, so that each state St carries only necessary information for subsequent reasoning.
Here, we present two examples to better illustrate how MTPs are designed for tiny transformers.
Example 1 (An MTP for integer multiplication). As shown in Figure 2(a), to reason the product of
two integers x, y ≥ 0, each state is an expression St := [xt × yt + zt] mathematically equal to x× y,
initialized as S0 = [x×y+0]. On each step, π plans yt+1 by eliminate a non-zero digit in yt to 0, and
it then computes zt+1 = zt + xt(yt − yt+1). Consequently, T updates St+1 as [xt+1 × yt+1 + zt+1]
with xt+1 = xt. Similarly, π may also eliminate non-zero digits in xt in a symmetric manner. Finally,
π yields A = zt as the answer if either xt or yt becomes 0.
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Figure 3: Reflective reasoning based on MTP. “✓” and “×” are self-verification labels for positive
and negative steps, respectively. The steps that are instantly verified as negative are highlighted in
red. In RTBS, the dashed-line arrows back-propagate the negative labels, causing parental steps to be
recursively rejected (orange). The green shows the steps that successfully lead to the answer.

Example 2 (An MTP for Sudoku [3]). As shown in Figure 2(b), each Sudoku state is a 9× 9 game
board. On each step, the model π fills some blank cells to produce a new board, which is exactly the
next state. The answer A is a board with no blank cells.

3.2 The framework of self-verifying reflection

Conceptually, reflection provides feedback for the proposed steps and may alter the subsequent
reasoning accordingly. Reflection takes flexible forms in natural language (e.g., justifications and
comprehensive evaluations), making it extremely costly to analyze. In this work, we propose to equip
transformers with the simplest discriminative form of reflection, where the model self-verifies the
correctness of each step and is allowed to retry those incorrect attempts. We currently do not consider
the high-level revisory behavior that maps incorrect steps to correct ones, as we find learning such a
mapping is challenging for tiny models and leads to no significant gain in practice. Specifically, we
analyze two basic variants of reflective reasoning in this paper: the reflective MTP and the reflective
trace-back search, as described below (see pseudo-code in Appendix D.1).

Reflective MTP (RMTP) Given any MTP with a policy π and transition T , we use a verifier V to
produce a verification sequence after each reasoning step, denoted as Vt ∼ V(·|Rt). Such Vt includes
verification label(s): The positive “✓” and negative “×" signifying correct and incorrect reasoning of
Rt, respectively. Given the verified step R̃t+1 := (Rt+1, Vt+1) that contains verification, we define
T̃ as the reflective transition function that rejects incorrect steps:

St+1 = T̃ (St, R̃t+1) = T̃ (St, (Rt+1, Vt+1)) :=

{
St, “×” ∈ Vt+1;

T (St, Rt+1), otherwise.
(2)

In other words, if V detects any error (i.e. “×") in Rt+1, the state remains unchanged so that π
may re-sample another attempt. Focusing on self-verification, we use a single model called the
self-verifying policy π̃ := {π,V} to serve simultaneously as the planning policy π and the verifier
V . By operating tokens, π̃ outputs the verified step R̃t for each input state St. In this way, T̃ and π̃
constitute a new MTP called the RMTP, with illustration in Figure 3(a).

Reflective trace-back search (RTBS) Though RMTP allows instant rejections of incorrect steps,
sometimes the quality of a step can be better determined by actually trying it. For example, a Sudoku
solver occasionally makes tentative guesses and traces back if the subsequent reasoning fails. Inspired
by o1-journey [26], a trace-back search allowing the reasoner to revisit previous states may be applied
to explore solution paths in an MTP. We implement simple RTBS by simulating the depth-first search
in the trajectory space. Let m denote the RTBS width, i.e., the maximal number of attempts on each
step. As illustrated in Figure 3(b), if m proposed steps are rejected on a state St, the negative label
“×” will be propagated back to recursively reject the previous step Rt. As a result, the state traces
back to the closest ancestral state that has remaining attempt opportunities.

3.3 Training

As shown in Figure 4, we train the tiny transformers from scratch through consistent techniques of
LLM counterparts, such as pretraining, supervised fine-tuning (SFT), and RL fine-tuning. First, we
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Figure 4: The training workflow for transformers to perform CoT reasoning.

use conventional pipelines to train a baseline model π with only the planning ability in MTPs. During
(I) pretraining, these CoT examples are treated as a textual corpus, where sequences are randomly
drawn to minimize cross-entropy loss of next-token prediction. Then, in (II) non-reflective SFT, the
model learns to map each state St to the corresponding step Rt+1 by imitating examples.

Next, we employ (III) reflective SFT to integrate the planning policy π with the knowledge of
self-verification. To produce ground-truth verification labels, we use π to sample non-reflective CoTs,
in which the sampled steps are then labeled by an expert verifier (e.g., a rule-based process reward
model). Reflective SFT learns to predict these labels from the states and the proposed steps, i.e.,
(St, Rt+1) → Vt+1. To prevent disastrous forgetting, we also mix the same CoT examples as in
non-reflective SFT. This converts π to a self-verifying policy π̃ that can self-verify reasoning steps.

Thus far, we have obtained the planning policy π and the self-verifying policy π̃, which can be
further strengthened through (IV) RL fine-tuning. As illustrated in Figure 4, RL fine-tuning involves
iteratively executing π (π̃) to collect experience CoTs through an MTP (RMTP), evaluating these
CoTs with a reward model, and updating the policy to favor higher-reward solutions. Following the
RLVR paradigm [15], we use binary outcome rewards (i.e., 1 for correct answers and 0 otherwise)
computed by a rule-based answer checker ORM(Q,A). When training the self-verifying policy
π̃, the RMTP treats verification Vt as a part of the augmented step R̃t, simulating R1-like training
[5] where reflection and solution planning are jointly optimized. We mainly use GRPO [31] as the
algorithms to optimize policies. Details of RL fine-tuning are elaborated in Appendix B.

4 Theoretical results

This section establishes theoretical conditions under which self-verifying reflection (RMTP or RTBS
in Section 3.2) enhances reasoning accuracy (the probability of deriving correct answers). The general
relationship between the verification ability and reasoning accuracy (discussed in Appendix C.1)
for any MTP is intractable as the states and transitions can be arbitrarily specified. Therefore, to
derive interpretable insights, we discuss a simplified prototype of reasoning that epitomizes the
representative principle of CoTs — to incrementally express complex relations by chaining the local
relation in each step [25]. Specifically, Given query Q as the initial state, we view a CoT as the
step-by-step process that reduces the complexity within states:

• We define Sn as the set of states with a complexity scale of n. For simplicity, we assume that
each step, if not rejected by reflection, reduces the complexity scale by 1. Therefore, the scale n
is the number of effective steps required to derive an answer.

• An answer A is a state with a scale of 0, i.e. A ∈ S0. Given an input query Q, the answers S0 are
divided into positive (correct) answers S+0 and negative (wrong) answers S−0 .

• States Sn (n > 0) are divided into 1) positive states S+n that potentially lead to correct answers
and 2) negative states S−n leading to only incorrect answers through forward transitions.

Consider a self-verifying policy π̃ = {π,V} to solve this simplified task. We describe its fundamental
abilities using the following probabilities (whose meanings will be explained afterwards):
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µ := pR∼π(T (S,R) ∈ S+n−1 | S ∈ S+n ) (3)

e+ := pR,V∼π̃(T (S,R) ∈ S−n−1, “×” /∈ V | S ∈ S+n ), (4)

e− := pR,V∼π̃(T (S,R) ∈ S+n−1, “×” ∈ V | S ∈ S+n ), (5)

f := pR,V∼π̃(“×” ∈ V | S ∈ S−n ). (6)

To elaborate, µ measures the planning ability, defined as the probability that π plans a step that leads
to a positive next state, given that the current state is positive. For verification abilities, we measure
the rates of two types of errors: e+ (false positive rate) is the probability of accepting a step that leads
to a negative state, and e− (false negative rate) is the probability of rejecting a step that leads to a
positive state. Additionally, f is the probability of rejecting any step on negative states, providing the
chance of tracing back to previous states. Given these factors, Figure 5 illustrates the state transitions
in non-reflective (vanilla MTP) and reflective (RMTB and RTBS) reasoning.

For input problems with scale n, we use ρ(n), ρ̃(n), and ρ̃m(n) to respectively denote the reasoning
accuracy using no reflection, RMTP, and RTBS (with width m). Obviously, we have ρ(n) = µn.
In contrast, the mathematical forms of ρ̃(n) and ρ̃m(n) are more complicated and therefore left to
Appendix C.2. Our main result provides simple conditions for the above factors (µ, e−, e+, f) to
ensure an improved accuracy when reasoning through an RMTP or RTBS.

Theorem 1. In the above simplified problem, consider a self-verifying policy π̃ where µ, e−, and e+
are non-trivial (i.e. neither 0 nor 1). Let α := µe−+(1−µ)(1−e+) denote the rejection probability
on positive states. Given an infinite computation budget, for n > 0 we have:

• ρ̃(n) ≥ ρ(n) if and only if e− + e+ ≤ 1, where equalities hold simultaneously; furthermore,
reducing either e− or e+ strictly increases ρ̃(n).

• ρ̃m(n) > ρ̃(n) for a sufficiently large n if and only if f > α and m > 1
1−α ; furthermore, such a

gap of ρ̃m(n) over ρ̃(n) increases strictly with f .

Does reflection require a strong verifier? Theorem 1 shows that RMTP improves performance over
vanilla MTP if the verification errors e+ and e− are properly bounded, which does not necessitate a
strong verifier. In our simplified setting, this only requires the verifier V to be better than random
guessing (which ensures e− + e+ = 1). This also indicates a trivial guarantee of RTBS, as an
infinitely large width (m→ +∞) substantially converts RTBS to RMTB.

When does trace-back search facilitate reflection? Theorem 1 provides the conditions for RTBS
to outperform RMTP for a sufficiently large n: 1) The width m is large enough to ensure effective
exploration. 2) f > α indicates that negative states are inherently discriminated from positive ones,
leading to a higher rejection probability on negative states than on positive states (see Figure 5(b)). In
other words, provided f > α, RTBS is ensured to be more effective on complicated queries using a
finite m. However, this also implies a risk of over-thought on simple queries that have a small n.

The derivation and additional details of Theorem 1 are provided in Appendix C.3. In addition, we
also derive how many steps it costs to find a correct solution in RMTP. The following Proposition 1
(see proof in Appendix C.4) shows that a higher e− causes more steps to be necessarily rejected and
increases the solution cost. In contrast, although a higher e+ reduces accuracy, it forces successful
solutions to rely less on reflection, leading to fewer expected steps. Therefore, a high false negative
rate e− is worse than a high e+ given the limited computational budget in practice.
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Proposition 1 (RMTP Reasoning Length). For a simplified reasoning problem with scale n, the
expected number of steps T̄ for π̃ to find a correct answer is T̄ = n

(1−µ)e++µ(1−e−) . Especially, a
correct answer will never be found if the denominator is 0.

Appendix C.5 further extends our analysis to more realistic reasoning, where rejected attempts lead
to a posterior drop of µ (or rise of e−), indicating that the model may not well generalize the current
state. In this case, the bound of e− to ensure improvements becomes stricter than that in Theorem 1.

5 Experiments

We conduct comprehensive experiments to examine the reasoning performance of tiny transformers
under various settings. We trained simple causal-attention transformers [36] (implemented by LitGPT
[1]) with 1M, 4M, and 16M parameters, through the pipelines described in Section 3.3. Details of
training data, model architectures, tokenization, and hyperparameters are included in Appendix D. The
source code is available at https://github.com/zwyu-ai/self-verifying-reflection-reasoning.

We test tiny transformers in two reasoning tasks: The integer multiplication task (Mult for short)
computes the product of two integers x and y; the Sudoku task fills numbers into blank positions
of a 9 × 9 matrix, such that each row, column, or 3 × 3 block is a permutation of {1, . . . , 9}. For
both tasks, we divide queries into 3 levels of difficulties: The in-distribution (ID) Easy, ID Hard,
and out-of-distribution (OOD) Hard. The models are trained on ID-Easy and ID-Hard problems,
while tested additionally on OOD-Hard cases. We define the difficulty of a Mult query by the number
d of digits of the greater multiplicand, and that of a Sudoku puzzle is determined by the number b
of blanks to be filled. Specifically, we have 1 ≤ d ≤ 5 or 9 ≤ b < 36 for ID Easy, 6 ≤ d ≤ 8 or
36 ≤ b < 54 for ID Hard, and 9 ≤ d ≤ 10 or 54 ≤ b < 63 for OOD Hard.

Our full results are presented in Appendix E. Shown in Appendix E.1, these seemingly simple
tasks pose challenges even for some well-known LLMs. Remarkably, through simple self-verifying
reflection, our best 4M Sudoku model is as good as OpenAI o3-mini [21], and our best 16M Mult
model outperforms DeepSeek-R1 [5] in ID difficulties.

5.1 Results of supervised fine-tuning

First, we conduct (I) pretraining, (II) non-reflective SFT, and (III) reflective SFT as described in
Section 3.3. In reflective SFT, we consider learning two types of self-verification: 1) The binary
verification includes a single binary label indicating the overall correctness of a planned step; 2) the
detailed verification includes a series of binary labels checking the correctness of each meaningful
element in the step. The implementation of verification labels is elaborated in Appendix D.2.3. We
present our full SFT results in Appendix E.2, which includes training 30 models and executing 54
tests. In the following, we discuss our main findings through visualizing representative results.

Does learning self-verification facilitate learning the planning policy? We compare our models
under the non-reflective execution, where self-verification is not actively used in test time. As shown
in Figure 6, reflective SFT with binary verification brings remarkable improvements for 1M and 4M
in ID-Easy and ID-Hard Mult problems, greatly reducing the gap among model sizes. Although
detailed verification does not benefit as much as binary verification in ID problems, it significantly
benefits the 16M model in solving OOD-Hard problems. Therefore, learning to self-verify benefits
the learning of forward planning, increasing performance even if test-time reflection is not enabled.
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Figure 7: Performance of reflective execution methods across different model sizes, including the
accuracy (top) and the self-verification errors (bottom).

Since reflective SFT mixes the same CoT examples as used in non-reflective SFT, an explanation for
this phenomenon is that learning to self-verify serves as a regularizer to the planning policy. This
substantially improves the quality of hidden embeddings in transformers, which facilitates the learning
of CoT examples. Binary verification is inherently a harder target to learn, which produces stronger
regularizing effects than detailed verification. However, the complexity (length) of the verification
should match the capacity of the model; otherwise, it could severely compromise the benefits of
learning self-verification. For instance, learning binary verification and detailed verification fails to
improve the 16M model and the 1M model, respectively.

When do reflective executions improve reasoning accuracy? Figure 7 evaluates the non-reflective,
RMTP, and RTBS executions for models in solving ID-Hard problems. Apart from the accuracy,
the rates of verification error (i.e., the false positive rate e+ and false negative rate e− defined
in Section 4) are measured using an oracle verifier. In these results, RMTP reasoning raises the
performance over non-reflective reasoning except for the 1M models (which fail in ID-hard Sudoku).
Smaller error rates (especially e−) generally lead to higher improvements, whereas a high e− in
binary verification severely compromises the performance of the 1M Mult Model. Overall, reflection
improves reasoning if the chance of rejecting correct steps (e−) is sufficiently small.

In what task is the trace-back search helpful? As seen in Figure 7, though RTBS shows no
advantage against RMTP in Mult, it outperforms RMTP in Sudoku, especially the 4M model with
detailed verification. This aligns with Theory 1 — The state of Sudoku (the 9×9 matrix) is required to
comply with explicit verifiable rules, making incorrect states easily discriminated from correct states.
However, errors in Mult states can only be checked by recalculating all historical steps. Therefore, we
are more likely to have f > α in Sudoku, which grants a higher chance of solving harder problems.
This suggests that RTBS can be more helpful than RMTP if incorrect states in the task carry verifiable
errors, which validates our theoretical results.

5.2 Results of reinforcement learning

As introduced in Section 3.3, we further apply GRPO to fine-tune the models after SFT. Especially,
GRPO based on RMTP allows solution planning and verification to be jointly optimized for self-
verifying policies. The full GRPO results are presented in Appendix E.3, and the main findings
are presented below. Overall, RL does enable most models to better solve ID problems, yet such
improvements arise from a superficial shift in the distribution of known reasoning skills.

How does RL improve reasoning accuracy? Figure 8 presents the performance of 4M and 16M
models in Mult after GRPO, where the differences from SFT results are visualized. GRPO effectively
enhances accuracy in solving ID-Hard problems, yet the change in OOD performance is marginal.
Therefore, RL can optimize ID performance, while failing to generalize to OOD cases.

Does RL truly enhance verification? From the change of verification errors in Figure 8, we find that
the false negative rate e− decreases along with an increase in the false positive rate e+. This suggests
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that models learn an optimistic bias, which avoids rejecting correct steps through a high false positive
rate that bypasses verification. In other words, instead of truly improving the verifier (where e− and
e+ both decrease), RL mainly induces an error-type trade-off, shifting from false negatives (e+) to
false positives (e−).

To explain this, we note that a high e− raises the computational cost (Proposition 1) and thus causes
a significant performance loss under the limited budget of RL sampling, making reducing e− more
rewarding than maintaining a low e+. Meanwhile, shifting the error type is easy to learn, achievable
by adjusting only a few parameters in the output layer of the transformer.

Inspired by DeepSeek-R1 [5], we additionally examine how RL influences the frequency of reflective
behavior. To simulate the natural distribution of human reasoning, we train models to perform
optional detailed verification by adding examples of empty verification (in the same amount as
the full verification) into reflective SFT. This allows the policy to optionally omit self-verification,
usually with a higher probability than producing full verification, since empty verification is easier to
learn. Consequently, we can measure the reflection frequency by counting the proportion of steps that
include non-empty verification. Since models can implicitly omit binary verification by producing
false positive labels, we do not explicitly examine the optional binary verification.

When does RL incentivize frequent reflection? Figure 9 shows reflection frequency in Mult before
and after GRPO, comparing exploratory (1.25) and exploitative (1) temperatures when sampling
experience CoTs. With a temperature 1.25, GRPO elicits frequent reflection, especially on hard
queries. However, reflection frequency remains low if using temperature 1. Additional results for
other model sizes and Sudoku appear in Appendix E.3.3. In conclusion, RL can adapt reflection
frequency to align with the exploratory ability of the planning policy π, encouraging more reflection
if the policy can potentially explore rewards. This helps explain why RL promotes frequent reflection
in LLMs [5], as the flexibility of language naturally fosters exploratory reasoning.

6 Conclusion and Discussion

In this paper, we provide a foundational analysis of self-verifying reflection in multi-step CoTs
using small transformers. Through minimalistic prototypes of reflective reasoning (the RMTP and
RTBS), we demonstrate that self-verification benefits both training and execution. Compared to
natural-language reasoning based on LLMs, the proposed minimalistic framework performs effective
reasoning and reflection using limited computational resources. We also show that RL fine-tuning
can enhance the performance in solving in-distribution problems and incentivize reflective thinking
for exploratory reasoners. However, the improvements from RL rely on shallow patterns and lack
generalizable new skills. Overall, we suggest that self-verifying reflection is inherently beneficial for
CoT reasoning, yet its synergy with RL fine-tuning is limited in superficial statistics.
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Figure 9: The hot-maps of reflection frequencies of the 4M transformer in multiplication before and
after GRPO using temperatures 1 and 1.25, tested with RMTP execution. The i-th row and j-th
column shows the frequency (%) for problems x× y where x has j digits and y has i digits.

Limitations and future work Although the current training pipeline enables tiny transformers to
reason properly through reflective CoTs, the generalization ability is still low and not improved in
RL. Therefore, future work will extend reflection frameworks and explore novel training approaches.
Observing the positive effect of learning self-verification, a closer connection between generative
and discriminative reasoning may be the key to addressing this challenge. Additionally, how our
findings transfer from small transformers to natural-language LLMs needs to be further examined.
However, the diversity of natural language and high computational cost pose significant challenges to
comprehensive evaluation, and our proposed framework does not sufficiently exploit the emergent
linguistic ability of LLMs. To this end, we expect to investigate a more flexible self-verification
framework with an efficient evaluator of natural-language reflection in future work.
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A Notations

The notations used in the main paper are summarized in Table 1. Notations only appear in the
appendix are not included.

Table 1: Notations in the main paper.

Symbol Meaning
Q The query of CoT reasoning
{R} The sequence of intermediate reasoning steps
Rt The t-th intermediate step in CoT reasoning
A The answer of CoT reasoning.
T The number of steps (including the final answer) in an CoT
π The planning policy in MTP reasoning
st The t-th state in CoT reasoning
T The transition function in an MTP

“✓” The special token as the positive label of verification.
“×” The special token as the negative label of verification
Vt The verification sequence for the proposed step Rt.
V The verifier such that Vt+1 ∼ V(·|St, Rt+1)
R̃t The verified reasoning step, i.e. (Rt, Vt)
T̃ The reflective transition function in an RMTP
π̃ The self-verifying policy, i.e. {π,V}
m The RTBS width, i.e. maximal number of attempts on each state
µ The probability of proposing a correct step on positive states
e− The probability of instantly rejecting a correct step on positive states
e+ The probability of accepting an incorrect step on positive states
f The probability of instantly rejecting any step on negative states
α The shorthand of µe− + (1− µ)(1− e+)
ρ(n) The accuracy of non-reflective MTP reasoning
ρ̃(n) The accuracy of RMTP reasoning for queries with scale n
ρ̃m(n) The accuracy of RTBS reasoning with width m for queries with scale n

B Details of reinforcement learning

This section introduces PPO and GRPO algorithms used in RL fine-tuning. We introduce PPO and
GRPO under the context of MTP, which is described in Section 3.1. This also applies to RMTP
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reasoning in Section 3.2, as RMTP is a special MTP given the self-verifying policy π̃ and the reflective
transition function T̃ .

For any sequence X of tokens, we additionally define the following notations: X [i] denotes the i-th
token, X [<i] (X [≤i]) denotes the former i− 1 (i) tokens, and |X| denotes the length (i.e., the number
of tokens).

Both PPO and GRPO iteratively update the reasoning policy through online experience. Let πθ
to denote a reasoning policy parameterized by θ. On each iteration, PPO and GRPO use a similar
process to update θ:

1. Randomly draw queries from the task or taring set, and apply the old policy πθold to sample
experience CoTs.

2. Use reward models to assign rewards to the experience CoTs. Let ORM and PRM
be the outcome reward model and process reward model, respectively. For each CoT
(Q,R1, . . . , RT−1, A), we obtain outcome rewards ro = ORM(Q,A) and the process rewards
rt = PRM(St, Rt+1) for t = 0, 1, . . . , T − 1 (where RT = A). In our case, we only use the
outcome reward model and thus all process rewards are 0.

3. Then, θ is updated by maximizing an objective function based on the experience CoTs with
above rewards. Especially, PPO additionally needs to update an value approximator.

B.1 Proximal policy optimization

PPO [29] is a classic RL algorithm widely used in various applications. It includes a value model v
to approximate the value function, namely the expected cumulated rewards:

v(St, R
[<i]
t ) = Eπ

(
ro +

T∑
k=t

rk

)
(7)

Let qt,i(θ) =
πθ

(
R

[i]
t

∣∣∣St,R
[<i]
t

)
πθold

(
R

[i]
t

∣∣∣St,R
[<i]
t

) be the relative likelihood of the i-th token in the t-th step, and πref

be the reference model (e.g., the policy before RL-tuning). Then, the PPO algorithm maximizes

JPPO(θ) =EQ∼P (Q),{R}∼πθold

1∑T
t=1 |Rt|

T∑
t=1

|Rt|∑
i=1{

min
[
qt,i(θ)Ât,i, clip (qt,i(θ), 1− ε, 1 + ε) Ât,i

]
− βDKL [πθ∥πref ]

}
. (8)

Here, Ât,i is the advantage of the i-th token in step t, computed using the value model v. For
example, Ât,i = v(St, R

[<i]
t , R

[i]
t )− v(St, R

[<i]
t ) is a simple way to estimate advantage. In practice,

advantages can be estimated using the general advantage estimation (GAE) [28].

The value model v is implemented using the same architecture as the reasoner except for the
output layer, which is replaced by a linear function that outputs a scalar value. The value model is
initialized using the same parameters as the reasoner, apart from the output layer. Assuming that v is
parameterized by ω, we learn v by minimizing the temporal-difference error:

Jv(ω) = EQ∼P (Q),R∼πθold

T∑
t=1

|Rt|∑
i=1

(
vω(St, R

[<i]
t )− vωold

(St+1)
)2
. (9)

Although PPO proves effective in training LLMs [23], we deprecate using it in training tiny trans-
formers due to the difficulty of learning the value function. Since the value model v is also a tiny
transformer, its weakness in model capacity severely compromise the precision of value approxima-
tion, leading to unreliable advantage estimation.

B.2 Group-reward policy optimization

PPO requires learning an additional value model, which can be expensive and unstable. Alternatively,
GRPO [31] directly computes the advantages using the relative rewards from a group of G solutions.
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For each query Q, it samples a group of G solutions:
{Rg} = (Rg,1, . . . , Rg,Tg−1, Ag) ∼ πθold , for g = 1, . . . , G. (10)

In this group, each solution {Rg} contains Tg steps, where the answer Ag is considered as the final
step Rg,Tg . Using the reward models, we obtain process rewards rp := {(rg,1, . . . , rg,Tg )}Gg=1 and
outcome rewards ro := {rg,o}Gg=1. Then, GPRO computes the normalized rewards, given by:

r̃g,t =
rg,t −mean rp

std rp
, r̃g,o =

rg,o −mean ro
std ro

(11)

Afterwards, the advantage of step t in the g-th solution of the group is Âg,t = r̃g,o +
∑Tg

k=t r̃g,t′ . Let

qg,t,i(θ) =
πθ

(
R

[i]
g,t

∣∣∣Sg,t,R
[<i]
g,t

)
πθold

(
R

[i]
g,t

∣∣∣Sg,t,R
[<i]
g,t

) be the relative likelihood of the i-th token in the t-th step from the

g-th solution. Then, the GRPO objective is to maximize the following:

JGRPO(θ) =EQ∼P (Q),{Rg}∼πold

1

G

G∑
g=1

1∑Tg

t=1 |τ (t)|

Tg∑
t=1

|Rg,t|∑
i=1{

min
[
qg,t,i(θ)Âg,t, clip (qg,t,i(θ), 1− ε, 1 + ε) Âg,t

]
− βDKL [πθ∥πref ]

}
(12)

B.3 Technical Implementation

We made two technical modifications that make RL more suitable in our case, described in the
following.

First, in RMTP, we mask off the advantage of rejected steps, while the advantage of self-verification
labels is reserved. This prevents the algorithm from increasing the likelihood of rejected steps,
allowing the planning policy π to be properly optimized. In practice, we find this modification
facilitates the training of models that perform mandatory detailed verification. Otherwise, RL could
make the reasoner excessively rely on reflection, leading to CoTs that are unnecessarily long.

Second, we employ an early-truncating strategy when sampling trajectories in training. If the
model has already made a clear error at some step (detected using an oracle process reward model),
we truncate the trajectory as it is impossible to find a correct answer. This avoids unnecessarily
punishing later steps due to previous deviations, as some later steps may be locally correct in their
own context. Empirically, we find this modification reduces the training time required to reach the
same performance, while the difference in final performance is marginal.

C Theory

C.1 A general formulation of reasoning performance

Let S denote the state space and A denote the answer space. We use AQ ⊆ A to denote the set
of correct answers for some input query Q. Given any thought state S, the accuracy, namely the
probability of finding a correct answer, is denoted as

ρQ(S) = p(Rt+1,Rt+2,...,A)∼π(A ∈ AQ | St = S) (13)

C.1.1 Bellman equations in RMTP

By considering the reasoning correctness as the binary outcome reward, we may use Bellman
equations [33] to provide a general formulation of the reasoning performance for arbitrary MTPs
(RMTP). For simplicity, we use S, R, and S′ to respectively denote the state, step, and next state in a
transition.

Initially, in the absence of a trace-back mechanism, the accuracy ρQ(s) can be interpreted as the value
function when considering the MTP as a goal-directed decision process. For simplicity, we denote
the transition probability drawn from the reasoning dynamics T as p(S′ | S,R). In non-reflective
reasoning, the state transition probability p(S′ | S) can be expressed as:

p(S′ |S) =
∑
R

p(S′ |S,R)π(R|S) (14)
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When using RMTP execution, assuming that ξ(S,R) := pV∼V(“×” ∈ V | S,R) represents the
probability of rejecting the step R, we have:

p(S′ |S) =
{∑

R π(R|S)(1− ξ(S,R))p(S′ |S,R), if S′ ̸= S∑
R π(R|S) ((1− ξ(S,R))p(S′ |S,R) + ξ(S,R)) , if S′ = S

(15)

Consequently, the Bellman equation follows:

ρQ(S) =


1, if S ∈ AQ

0, if S ∈ A \ AQ∑
S′ ρQ(S′)p(S′ | S), if s ∈ S \ A

(16)

C.1.2 Bellman equations in RTBS

Let m denote the number of attempts at each state, and let ϕ(S) represent the failure probability (i.e.,
the probability of tracing back after m rejected steps) at state S. The probability of needing to retry a
proposed step due to instant rejection or recursive rejection is given by:

ϵ(S) =
∑
R

π(R|S)

(
ξ(S,R) +

∑
S′

(1− ξ(S,R))p(S′ |S,R)ϕ(S′)

)
(17)

The failure probability is then given by ϕ(S) = ϵm(S). When there are k attempts remaining at the
current state S, we denote the accuracy as ρx(S, k), given by:

ρQ(S, k) =

{
ϵ(S)ρx(S, k − 1) +

∑
R π(R|S)(1− ξ(S,R))

∑
S′ p(S′ |S,R)ρQ(S

′), k > 0

0, k = 0
(18)

It follows that ρx(S) = ρx(S,m). This leads to a recursive formulation that ultimately results in the
following equations for each s ∈ S:

ϵ(S) =
∑
R

π(R|S)

(
ξ(S,R) +

∑
S′

(1− ξ(S,R))p(S′ |S,R)ϵm(S′)

)
, (19)

ρx(S) =
1− ϵm(S)

1− ϵ(S)
∑
S′

ρQ(S
′)π(R|S)(1− ξ(S,R))p(S′ |S,R). (20)

C.2 Accuracy derivation in the simplified reasoning task

In the following, we derive the accuracy of reflective reasoning with and without the trace-back
search, given the simplified reasoning task in Section 4. For each proposed step on a correct state, we
define several probabilities to simplify notations: α := µe− + (1 − µ)(1 − e+) is the probability
of being instantly rejected; β = µ(1 − e−) is the probability of being correct and accepted;
γ = (1− µ)e+ is the probability of being incorrect but accepted. Note that β here no longer refers
to the KL-divergence factor in Appendix B.
Proposition 2. The RTMP accuracy ρ̃(n) for problems with a scale of n is

ρ̃(n) =

(
β

1− α

)n

(21)

Letm be the width of RTBS. Let δm(n) and ϵm(n) be the probability of a proposed step being rejected
(either instantly or recursively) on a correct state and incorrect state of scale n, respectively. We have
σm(0) = ϵm(0) = 0 and the following recursive equations for n > 0:

δm(n) = α+ β(δm(n− 1))m + γ(ϵm(n− 1))m (22)

ϵm(n) = f + (1− f) (ϵm(n− 1))
m (23)

Then, the RTBS accuracy ρ̃m(n) for problems with a scale of n is given by

ρ̃m(n) =

n∏
t=1

σm(t), where σm(t) = β

m−1∑
i=0

(δm(t))i =
1− (δm(t))m

1− δm(t)
β. (24)

In addition, δm(n), ϵm(n) and σm(n) all motonously increase and converge in relation to n.
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Proof. We first consider reasoning through RTBS. Let ϕm(n) and ψm(n) denote the probabilities of
failure (reaching the maximum number of attempts) in correct and incorrect states, respectively. Let
ρ̃i|m(n) indicate the accuracy after the i attempts at the current sub-problem of scale n. Therefore,
we have ρ̃m(n) = ρ̃0|m(n) and ρ̃m|m(n) = 0.

At a correct state, we have the following possible cases:

• A correct step is proposed and instantly accepted with probability β = µ(1 − e−). In
this case, the next state has a scale of n − 1, which is correctly solved with probability
ρ0|m(n− 1) and fails (i.e., is recursively rejected) with probability ϕm(n− 1).

• A correct step is proposed and instantly rejected with probability µe−.

• An incorrect step is proposed and instantly accepted with probability γ = (1 − µ)e+. In
this scenario, the next state has a scale of n− 1, which fails with probability ψm(n− 1).

• An incorrect step is proposed and instantly rejected with probability β = (1− µ)(1− e+).

Thus, we have a probability of α = µe− + (1 − µ)(1 − e+) to instantly reject the step, and a
probability of βϕm(n − 1) + γψm(n − 1) to recursively reject the step. Therefore, the overall
probability of rejecting an attempt on correct states is:

δm(n) = α+ βϕm(n− 1) + γψm(n− 1). (25)
Since failure occurs after m rejections, we have:

ϕm(n) = (δm(n))
m (26)

At an incorrect state, we have a probability f to instantly reject a step. Otherwise, we accept the step,
and the next state fails with probability ψm(n− 1). Therefore, the overall probability of rejecting an
attempt for incorrect states is:

ϵm(n) = f + (1− f)ψm(n− 1). (27)
Similarly, we obtain:

ψm(n) = (ϵm(n))
m (28)

By substituting Equations (26) and (28) into Equations (25) and (27), we obtain Equations (22) and
(23). If an attempt is rejected (either instantly or recursively), we initiate another attempt which
solves the problem with a probability of ρi+1|m(n). Therefore, we have the recursive form of the
accuracy, given by:

ρ̃i|m(n) = βρ̃0|m(n− 1) + δ(n,m)ρ̃i+1|m(n) (29)
Thus, we can expand ρ̃m(n) as:

ρ̃m(n) = ρ̃0|m(n)

= βρ̃m(n− 1) + δm(n)ρ̃1|m(n)

· · ·
= (β + δm(n)β + δ2m(n)β + · · ·+ δmm(n)β)ρ̃m(n− 1) (30)
= σm(n)ρ̃m(n− 1) (31)

Note that n = 0 indicates that the state is exactly the outcome, which means ρ̃m(0) = 1. Then,
Equation (24) is evident given the recursive form in Equation (31).

For reflective reasoning without trace-back, we can simply replace δm(n) with α in σm(n), as only
instant rejections are allowed. We then set m→∞, leading to Equation (21).

Monotonicity We first prove the monotonic increase of ϵm(n). Equation (23) gives ϵm(n) =
f+(ϵm(n−1))m and ϵm(n+1) = f+(ϵm(n))m for each n > 1. Therefore, if ϵm(n) ≥ ϵm(n−1),
we have:

ϵm(n+ 1) = f + (ϵm(n))m ≥ f + (ϵm(n− 1))m = ϵm(n). (32)
Additionally, it is clear that ϵm(1) = f ≥ 0 = ϵm(0). Using mathematical induction, we conclude
that ϵm(n+ 1) > ϵm(n) for all n ≥ 0. The monotonicity of δm(n) can be proven similarly, and the
monotonicity of σm(n) is evident from that of δm(n). Since δm(n) and ϵm(n) are probabilities, they
are bounded in [0, 1] and thus converge monotonically.
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Figure 10: The accuracy curves of non-reflective MTP ρ(n), RMTP ρ̃(n), and RTBS ρ̃m(n), using
µ = 0.8, e− = 0.3, e+ = 0.2, and f = 0.8.

Illustration of accuracy curves Using the recursive formulae in Proposition 2, we are able to
implement a program to compute the reasoning accuracy in the simplified reasoning problem in
Section 4 and thereby visualize the accuracy curves of various reasoning algorithms. For example,
Figure 10 presents the reasoning curves given µ = 0.8, e− = 0.3, e+ = 0.2, and f = 0.8, which
lead to α = 0.4 < f . For this example, we may observe the following patterns: 1) An overly small
width m in RTBS leads to poor performance; and 2) by choosing m properly, ρ̃m(n) remains stable
when n→∞. These observations are formally described and proved in Appendix C.3.

Furthermore, in Figure 10 we see that a small m stabilizes the drop of ρ̃m(n) when n is large, yet it
also makes ρ̃m(n) drop sharply in the area where n is small. This indicates the potential of using an
adaptive width in RTBS, where m is set small when the current subproblem (state) requires a large
number n of steps to solve, and m increases when n is reduced by previous reasoning steps. Since
this paper currently focuses on the minimalistic reflection framework, we expect to explore such an
extension in future work.

C.3 Derivation of Theorem 1

Theorem 1 is obtained by merging the following Proposition 3 and Proposition 4, which also
provide supplementary details on the non-trivial assumptions of factors µ, e−, and e+. Additionally,
Proposition 4 also shows that there exists an ideal range of RTBS width m such that stabilizes the
drop of ρ̃m(n) when n→∞.

Proposition 3 (RMTP Validity conditions). For all n ≥ 0, we have ρ̃(n) ≥ ρ(n) ⇐⇒ e−+e+ ≤ 1.
Additionally, if µ > 0 and e− < 1, then for all n ≥ 1 we have that ρ̃(n) = ρ(n) ⇐⇒ e− + e+ = 1
and ρ̃(n) decreases strictly with either e− or e+.

Proposition 4 (RTBS Validity Condition). Assuming 0 < µ < 1, e− < 1, and e+ > 0, then

lim
n→∞

ρ̃m(n)

ρ̃(n)
> 1 ⇐⇒

(
m >

1

1− α
and f > α

)
. (33)

Furthermore, we have

• limn→∞
ρ̃m(n)

ρ̃m(n−1) = 1 if m ∈ [ 1
µ(1−e−) ,

1
1−f ].

• ρ̃m(n) increases strictly with f for all n ≥ 2.

The proof of propositions 3 and 4 is given in Appendix C.3.1 and Appendix C.3.2, which are based
on the previous derivation in Appendix C.2.

C.3.1 Proof of Proposition 3

In any case, we have ρ̃(0) = ρ(0) = 1.

If µ = 0 or e− = 1, we clearly have ρ̃(n) = ρ(n) = 0 for n ≥ 1.
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If 0 > µ and e− < 1, we can transform ρ̃(n) (given in Proposition 2) as:

ρ̃(n) =

(
1

1 + e+
1−e−

(µ−1 − 1)

)n

=

(
µ(1− e−)

µ(1− e+ − e−) + e+

)n

. (34)

This shows that ρ(n) strictly decreases with both e+ and e−, and ρ̃(n) = µn ⇐⇒ e+ + e− = 1.
Therefore, we also have ρ̃(n) > µn ⇐⇒ e+ + e− < 1.

The Proposition is proved by combining all the above cases.

C.3.2 Proof of Proposition 4

The assumptions 0 < µ < 1, e− < 1, and e+ > 0 ensure that β > 0 and γ > 0. Proposition 2
suggests the monotonous convergence of δm(n), ϵm(n), and σm(n). For simplicity, we denote
δ := limn→∞ δm(n), ϵ := limn→∞ ϵm(n), and σ := limn→∞ σm(n). From Equations (22) and
(23), we have:

δ = α+ βδm + γϵm (35)
ϵ = f + (1− f)ϵm (36)

Note that ϵ = δ = 1 gives the trivial solution of the above equations. However, there may exist
another solution (if any) such that δ < 1 or ϵ < 1 under certain circumstances. Since ϵm(0) = 0 and
δm(0) = 0, the limits ϵ and δ take the smaller solution within [0, 1]. In the following, we first discuss
when another non-trivial solution exists.
Lemma 1. For any m ≥ 1, if 0 ≤ p < m−1

m , then x = p + (1 − p)xm has a unique solution
x∗ ∈ [p, 1), which strictly increases with p. Otherwise, if m−1

m ≤ p ≤ 1, the only solution in [0, 1] is
x∗ = 1.

Proof. Define F (x) := p+ (1− p)xm − x. We find:

F ′(x) = m(1− p)xm−1 − 1.

It is observed that F ′(x) increases monotonically with x. Additionally, we have F ′(0) = −1 < 0,
F ′(1) = m(1 − p) − 1, and F (1) = 0. We only consider the scenario where p > 0, since
x = 0 ∈ [0, 1) is obviously the unique solution.

If 0 ≤ p < m−1
m , we have 1− p > 1

m . This implies F ′(1) > 0. Combining F ′(0) < 0, there exists
ξ ∈ (0, 1) such that F ′(ξ) = 0. As a result, F (x) strictly decreases in [0, ξ] and increases in [ξ, 1).
Therefore, we have F (ξ) < F (1) = 0. Since F (p) = (1− p)pm > 0, we know that there exists a
unique x∗ ∈ [p, ξ) such that F (x∗) = 0.

If m−1
m ≤ p ≤ 1, we have 1 − p ≤ 1

m and F ′(1) ≤ 0. In this case, F ′(x) < 0 in [0, 1) due to the
monotonicity of F ′(x). Thus, F (x) > F (1) = 0 for all x ∈ [0, 1). Therefore, x∗ = 1 is the only
solution within [0, 1].

Now, we prove the monotonic increase of x∗ when 0 ≤ p < m−1
m . We have:

dx∗
dp

= 1 +m(1− p)xm−1
∗

dx∗
dp
− xm∗ (37)

dx∗
dp

=
1− xm∗

1−m(1− p)xm−1
∗

=
1− xm∗
−F ′(x∗)

(38)

The previous discussion shows that with x∗ < [p, ξ) for some ξ such that F ′(ξ) = 0. Given that
F ′(x) increases monotonically, we have F ′(x∗) < 0 and thus dx∗

dp > 0.

Lemma 2. Assume p ≥ 0, q > 0, and p + q ≤ 1. Then, the equation x = p + qxm has a unique
solution x∗ ∈ [0, 1), which increases monotonically with p ∈ [0, 1− q].

Proof. Define F (x) := p + qxm − x. Since F (0) ≥ 0 and F (1) < 0, there exists a solution
x∗ ∈ [0, 1). Since F is convex, we know there is at most one other solution. Clearly, the other
solution appears in (1,+∞), since F (+∞) > 0. Therefore, F (x) = 0 must have a unique solution
x∗ in [0, 1). Additionally, x∗ must appear to the left of the minimum of F , which yields F ′(x∗) < 0.
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Using the Implicit Function Theorem, we write:

dx∗
dp

=
1

1−mqxm−1
∗

= − 1

F ′(x∗)
> 0 (39)

Thus, we conclude that x∗ increases monotonically with p.

Applying Lemmas 1 and 2 to Equation (36), we find that ϵ = 1 if and only if f ≥ m−1
m ; otherwise,

ϵ strictly increases with p. Therefore, f < m−1
m indicates that ϵ < 1, leading to (α+ γϵ) + γ < 1.

Using Lemma 2 again in Equation (35), we have f < m−1
m =⇒ δ < 1. Conversely, f ≥ m−1

m

yields ϵ = 1. and thus f, α+ γ ≥ m−1
m =⇒ δ = 1.

First, we consider the special case where δ = 1, which occurs if both f, α + γ ≥ m−1
m , namely

m ≤ min{ 1
1−f ,

1
β }. In this case, we write σ = (1 + δ + · · ·+ δm−1)β = mβ. Therefore, we have:

lim
n→∞

ρ̃(n)

ρ(n)
> 1 ⇐⇒ σ >

β

1− α

⇐⇒ mβ >
β

1− α

⇐⇒ m >
1

1− α

This leads to the validity condition that 1
1−α < m ≤ min{ 1

1−f ,
1
β }.

Next, we consider the case where δ < 1, which occurs when f < m−1
m or α+ γ < m−1

m . This leads
to β ≥ 1

m > 0, and we can write:

δm =
1

β
(δ − α− γϵm) , (40)

σ =
1− δm

1− δ
=

(1− δm)β

(1− α)− (βδm + γϵm)
. (41)

Then, we can derive:

lim
n→∞

ρ̃(n)

ρ(n)
< 1 ⇐⇒ σ >

β

1− α

⇐⇒ 1− δm

(1− α)− (βδm + γϵm)
>

1

1− α
⇐⇒ (1− δm)(1− α) > (1− α)− (βδm + γϵm)

⇐⇒ γϵm > δm(1− α− β)
⇐⇒ γϵm > γδm

⇐⇒ ϵ > δ

Since we have assumed δ < 1, we have ϵ = 1 > δ if f ≥ m−1
m ; otherwise if f = α < m−1

m , then
ϵ = δ leads to δ = ϵ being a solution of Equation (35). Additionally, from Lemmas 1 and 2, we know
that a higher α would increase (α + γϵ), which eventually raises δ above ϵ; conversely, a lower α
causes δ to drop below ϵ. To summarize, we have the following conditions when δ < 1:

1 ≥ ϵ > δ ⇐⇒
(
α+ γ <

m− 1

m
≤ f

)
or
(
α < f <

m− 1

m

)
(42)

⇐⇒
(
1

β
< m ≤ 1

1− f

)
or
(
α < f and m >

1

1− f

)
(43)
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Combining the conditions when δ = 1, we have:

lim
n→∞

ρ̃(n)

ρ(n)
> 1

⇐⇒
(

1

1− α
< m ≤ min

{
1

1− f
,
1

β

})
or
(
1

β
< m ≤ 1

1− f

)
or
(
α < f and m >

1

1− f

)
(44)

⇐⇒ m >
1

1− α
and f > α (45)

Thus far, we have obtained Equation (33). Now, we start proving the two additional statements in
Proposition 4.

First, we prove that 1
β ≤ m ≤

1
1−f ensures that σ = 1. First, if δ = 1, we have m ≤ 1

β ≤
1

1−f . In
this case, σ = mβ, and thus σ = 1 whenm = 1

β . Alternatively, if δ < 1, we havem > min{ 1β ,
1

1−f }.
We can express that:

σ =
1− δm

1− δ
β =

β − (δ − α− γϵm)

1− δ
= 1− γ 1− ϵ

(1− δ)(1− f)
(46)

Using Lemma 2, we know that δ increases with α+ γϵ, which increases with ϵ. Therefore, we have
dδ
dϵ > 0. Then, we obtain

dσ/dϵ =

m∑
i=1

iδm−1β
dδ

dϵ
> 0, (47)

σ =
1− δm

1− δ
β =

β − (δ − α− γϵm)

1− δ
=
α+ β + γ − (1− ϵm)γ − δ

1− δ

=
1− δ − γ(1− ϵ−f

1−f )

1− δ
(48)

Therefore, σ increases with ϵ and reaches its maximum value of 1 when ϵ = 1. As a re-
sult, we conclude that 1

β ≤ m ≤ 1
1−f ensures that σ = 1. Combining β = µ(1 − e−)

and σ = limn→∞ σm(n) = limn→∞
ρ̃m(n)

ρ̃m(n−1) , we have proved that limn→∞
ρ̃m(n)

ρ̃m(n−1) = 1 if
m ∈ [ 1

µ(1−e−) ,
1

1−f ].

Next, we prove the monotonicity of ρ̃m(n) with respect to f . To prove this, we first prove the
monotonicity of ϵm(t) for all t with respect to f .

Lemma 3. For n > 0, ϵm(t) as defined in Equation 23 increases strictly with f .

Proof. We regard

ϵm(0; f) ≡ 0, ϵm(t; f) = f + (1− f)
[
ϵm(t− 1; f)

]m
(49)

as a function of f on [0, 1]. When t = 1 we have

ϵm(1; f) = f + (1− f)
[
ϵm(0; f)

]m
= f, (50)

so ∂ϵm(1;f)
∂f = 1 > 0. Thus ϵm(1; f) is strictly increasing with f . Further, assume for some k ≥ 1

that

0 ≤ ϵm(k; f) < 1 and
∂ϵm(k; f)

∂f
> 0 ∀f ∈ [0, 1]. (51)

Differentiate the recursion for t = k + 1:

ϵm(k + 1; f) = f + (1− f)
[
ϵm(k; f)

]m
, (52)

∂ϵm(k + 1; f)

∂f
= 1−

[
ϵm(k; f)

]m
+ (1− f)m

[
ϵm(k; f)

]m−1 ∂ϵm(k; f)

∂f
. (53)
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By the inductive hypothesis, ϵm(k; f) < 1 implies
[
ϵm(k; f)

]m
< 1. Therefore, we have

1−
[
ϵm(k; f)

]m
> 0. (54)

Since 1 − f ≥ 0, m ≥ 1,
[
ϵm(k; f)

]m−1 ≥ 0, and ∂ϵm(k;f)
∂f > 0, the second term is also positive.

Hence
∂ϵm(k + 1; f)

∂f
> 0, (55)

showing that ϵm(k + 1; f) is strictly increasing. This completes the induction.

Given Lemma 3, we can also prove the monotonicity of δm(t) using mathematical induction: It is
easy to write that δm(2) = α+ βαm + γfm, showing that δm(2) increases strictly with f . Then, for
t > 2, assuming that δm(t− 1) increases strictly with f and using Given Lemma 3, we know that
δm(t) increases strictly with f from Equation (22).

Therefore, we have δm(1) = α and that δm(t) strictly increases with f for n ≥ 2. According to
Equation (24), from the above monotonicity of δm(t), it is obvious that σm(t) increases with respect
to f for all t. This gives the corollary that ρ̃m(n) increases with f for all n.

C.4 Derivation of RMTP reasoning cost

In this section, we derive how many steps it costs to find a correct solution in RMTP and thereby
prove Proposition 1.

Proposition 1. The probability of accepting the correct step after the i-th attempt is given by αi−1β.
Assuming a maximum number of attempts m, the number of attempts consumed at each step satisfies:

Pr(i attempts | correct) =
αi−1β

β + αβ + · · ·+ αm−1β
=

(1− α)αi−1

1− αm
(56)

Therefore, the average number of attempts required for a correct reasoning step is given by

Am =

m∑
i=1

i · (1− α)α
i

1− αm
=

1− α
1− αm

m∑
i=1

iαi−1 (57)

To simplify the summation expression
∑m

i=1 iα
i−1 (where 0 < α < 1), we can use the method of

telescoping series. Let S =
∑m

i=1 iα
i−1. We calculate αS:

αS =

m∑
i=1

iαi (58)

Thus,

S − αS =

m∑
i=1

iαi−1 −
m∑
i=1

iαi (59)

This gives us

(1− α)S = 1 + α+ α2 + · · ·+ αm−1 −mαm =
1− αm

1− α
−mαm (60)

Rearranging, we have
m∑
i=1

iαi−1 =
1− αm − (1− α)mαm

(1− α)2
(61)

Thus, the average number of attempts can be further expressed as:

Am =
1− α
1− αm

· 1− α
m − (1− α)mαm

(1− α)2
(62)

=
1− αm − (1− α)mαm

(1− α)(1− αm)
(63)

=
1

1− α
−m αm

1− αm
(64)

(65)
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Considering the limit as m→∞, it can be shown using limit properties that limm→∞m αm

1−αm = 0.
If the correct solution is obtained (i.e., correct steps are accepted at each step), the average number of
steps taken is given by

T̄ = nA∞ =
n

1− α
=

n

1− µe− − (1− µ)(1− e+)
=

n

(1− µ)e+ + µ(1− e−)
(66)

C.5 Considering posterior risks of rejected attempts

Our previous analysis is based on a coarse binary partition of states (correct and incorrect) for
each scale, which enhances clarity yet does not apply to real-world complexity. Therefore, we can
introduce stronger constraints by taking into account the posterior distribution of states in S+n after
multiple attempts. For example, if the state has produced several incorrect attempts on state S (or
rejected several correct attempts), it is more likely that the current state has not been well generalized
by the model. Consequently, the chances of making subsequent errors increase. In this case, µ is
likely to decrease with the number of attempts, while e− increases with the number of attempts. Thus,
the probability of accepting the correct action will decrease as the number of attempts increases.

Therefore, we consider the scenario where the probabilities of error increase while the correctness
rate µ drops after each attempt. We define ei+, ei−, µi, etc., to represent the probabilities related to
the i-th attempt, corresponding to the calculations of αi, βi, γi, etc. We have that βi = µi(1− ei−)
is monotonically decreasing, and γi = (1− µi)ei+ is monotonically increasing with the index i of
the attempt. In this case, the derivation is similar to that of Proposition 2. Therefore, we skip all
unnecessary details and present the results directly.

Proposition 5. Given the above posterior risks, the RTMP accuracy ρ̃(n) for problems with a scale
of n is

ρ̃(n) =

β1 + ∞∑
i=2

βi

i−1∏
j=1

αi

n

(67)

Let m be the width of RTBS. Let δi|m(n) denote the probability of a proposed step being rejected
(either instantly or recursively) at the i-th attempt on a correct state, and ϵm(n) follows the same
definition as in Proposition 2. We have δi|m(0) = ϵm(0) = 0 and the following recursive equations
for n > 0:

δi|m(n) = αi + βi

m∏
j=1

δj|m(n− 1) + γi(ϵm(n− 1))m, i = 1, · · · ,m (68)

ϵm(n) = f + (1− f) (ϵm(n− 1))
m (69)

Then, the RTBS accuracy ρ̃m(n) for problems of scale n is given by:

ρ̃m(n) =

n∏
t=1

σm(t), where σm(t) = β1 +

m∑
j=2

βj

j−1∏
i=1

δi|m(t,m)β. (70)

In addition, δi|m(n), ϵm(n), and σm(n) all monotonically increase and converge with respect to n.

The theoretical result in this new setting becomes much more challenging to derive an exact validity
condition that remains clear and understandable. However, it is still useful to derive a bound that
sufficiently guarantees the effectiveness of reflection. In the following, we show that a sufficient
condition becomes much stricter than that in Proposition 3.

Proposition 6. Assume µ1 < 1 and k = infi
βi+1

βi
is the lower bound of the decay rate of the

probability of accepting the correct step in multiple attempts. Then, a sufficient condition for
ρ̃(n) > ρ(n) is:

e1−
k(1− µ1)

+ sup
i
ei+ < 1 (71)
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Proof. Considering αi = µiei− + (1 − µi)(1−maxi ei+), let α = (1 − µ1)(1 − supi ei+) be its
lower bound. It can be seen that

β1 + α1β2 + α1α2β3 + · · ·+ βm

m−1∏
i=1

αi ≥
m∑
j=1

(αk)m−1β1 = β1
1− (αk)m

1− αk
(72)

As m→∞, the sufficient condition for reflection validity is:

β1
1− αk

> µ1 (73)

⇐⇒ 1− e1−
1− k(1− µ1)(1− supi ei+)

> 1 (74)

⇐⇒ (1− µ1)(1− sup
i
ei+) >

e−
k

(75)

⇐⇒ e1−
k
− sup

i
ei+(1− µ1) < 1 (76)

⇐⇒ e1−
k(1− µ1)

+ sup
i
ei+ < 1 (77)

D Implementation details

This section describes the details of the training datasets, model architectures, and hyper-parameters
used in experiments. Our implementation derives the models architectures, pretraining, and SFT
from LitGPT [1] (version 0.4.12) under Apache License 2.0.

D.1 Algorithmic descriptions of reflective reasoning

Algorithms 1 and 2 presents the pseudo-code of reasoning execution through RMTP and RTBS,
respectively. In practice, we introduce a reflection budget M to avoid infinite iteration. If reflective
reasoning fails to find a solution withinM steps, the algorithm retrogrades to non-reflective reasoning.

To implement RTBS, we maintain a stack to store the reversed list of parental states, allowing them
to be restored if needed. Different from our theoretical analysis, our practical implementation does
not limit the number of attempts on the input query Q (as long as the total budget M is not used up)
as Q has no parent (i.e. the stack is empty).

D.2 Example CoT data

We implement predefined programs to generate examples of CoTs and self-verification. Figure 11
presents the example reasoning steps (correct) for non-reflective training and the example detailed
verification for reflective training. In our practical implementations, the reasoning steps include
additional tokens, such as preprocessing and formatting, to assist planning and transition. To simplify
transition function T , the example steps also include exactly how the states are supposed to be
updated, which removes the task-specific prior in T .

D.2.1 Multiplication CoT

Each state is an expression xt×yt+rt, where xt and yt are the remaining values of two multiplicands,
and rt is the cumulative result. For an input query x× y, the expert reasoner assigns x1 = x, y1 = y,
and r1 = 0.

For each step, the reasoner plans a number u ∈ {1, . . . , 9} to eliminate in xt (or yt). Specifically, it
computes δ = u× yt or (δ = u× xt). Next, it finds the digits in xt (or yt) that are equal to u and set
them to 0 in xt+1 (or yt+1). For each digit set to 0, the reasoner cumulates δ × 10i to rt, where i is
the position of the digit (starting from 0 for the unit digit). An example of a reasoning step is shown
in Figure 11(a). Such steps are repeated until either xT or yT becomes 0, then the answer is rT .
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Algorithm 1 Reflective reasoning through RMTP
Require: the query Q, the augmented policy π̃ = {π,V}, transition function T , and reflective

reasoning budget M
1: t← 0, St ← Q
2: repeat
3: Infer Rt+1 ∼ π(· | St)
4: Reject← False
5: if t ≤M then
6: Infer Vt+1 ∼ V(· | St, Rt+1)
7: Reject← True if “×” ∈ Vt+1

8: if Reject = True then
9: St+1 ← St

10: else
11: St+1 ← T (St, Rt+1)
12: if Rt+1 is the answer then
13: T ← t+ 1, A ← Rt+1

14: else
15: t← t+ 1
16: until The answer A is produced
17: return A

Algorithm 2 Reflective trace-back search
Require: the query Q, the augmented policy π̃ = {π,V}, transition function T , search width m,

and reflective reasoning budget M
1: t← 0, St ← Q
2: i← 0 {The index of attempts}
3: Initialize an empty stack L
4: repeat
5: Infer Rt+1 ∼ π(· | St)
6: i← i+ 1
7: Reject← False
8: if t ≤M then
9: Infer Vt+1 ∼ V(· | St, Rt+1)

10: Reject← True if “×” ∈ Vt+1

11: if Reject = True then
12: if i < m then
13: St+1 ← St

14: else
15: {Find a parent state that has remaining number of attempts.}
16: repeat
17: Pop (sk, j) from L
18: St+1 ← sk, i← j
19: until i < m or L is empty
20: else
21: Push (St+1, i) into L
22: St+1 ← T (St, Rt+1), i← 0
23: if Rt+1 is the answer then
24: T ← t+ 1, A ← Rt+1

25: else
26: t← t+ 1
27: until the answer A is produced
28: return A
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<state>
1 4 5 * 8 6 0 9 3

+ 1 0 1 5 0 0
</state>

<action>
left * 8:
- 4 0
- 3 2 + 4 = 3 6
- 8 + 3 = 1 1
- 1
cumulate 1 1 6 0 0 0 0 0:
- 0 + 0 = 0
- 0 + 0 = 0
- 5 + 0 = 5
- 1 + 0 = 1
- 0 + 0 = 0
- 1 + 6 = 7
- 1
- 1
get 1 1 7 0 1 5 0 0.
</action>

<state>
1 4 5 * 6 0 9 3
+ 1 1 7 0 1 5 0 0
</state>

<reflect>
<action>

:  - - - -
cumulate :
- - - - - - - - 
</action>
<state>

 * + 
</reflect>

state 𝑆𝑡 planning update

step 𝑅𝑡+1

verification 𝑉𝑡+1
(detailed) Context window

(a) Mult

<state>
3 5 7 8 2 0 4 1 9
0 0 1 7 9 0 0 0 6
8 6 9 1 5 4 0 7 2
0 8 2 4 1 7 5 0 0
5 1 3 9 6 8 7 2 4
9 7 4 0 0 5 1 0 8
2 3 0 5 4 1 9 8 0
0 4 5 6 8 0 2 3 1
1 9 8 3 7 2 0 4 5
</state>

rows 12345789 1679 12456789 
124578 123456789 145789 
1234589 1234568 12345789
cols 123589 13456789 12345789 
13456789 12456789 124578 
124579 123478 1245689
blocks 1356789 1245789 124679 
12345789 1456789 124578 
1234589 12345678 1234589
reduce

<state>
3 5 7 8 2 6 4 1 9
4 2 1 7 9 3 0 5 6
8 6 9 1 5 4 3 7 2
6 8 2 4 1 7 5 0 3
5 1 3 9 6 8 7 2 4
9 7 4 2 3 5 1 6 8
2 3 6 5 4 1 9 8 7
7 4 5 6 8 9 2 3 1
1 9 8 3 7 2 6 4 5
</state>

<reflect>
        
         
         
         
         
         
         
         
         

 </reflect>

state 𝑆𝑡 preprocessing planning & update

step 𝑅𝑡+1

verification 𝑉𝑡+1
(detailed) Context window

(b) Sudoku

Figure 11: Example reasoning steps with detailed verfication for integer multiplication and Sudoku.

D.2.2 Sudoku CoT

Each state is a 9× 9 matrix representing the partial solution, where blank numbers are represented by
0. On each step, the reasoner preprocesses the state by listing the determined numbers of each row,
columns, and blocks. Given these information, the model reduces the blank positions that has only
one valid candidate. If no blank can be reduced, the model randomly guess a blank position that has
the fewest candidates. Such process continues until there exist no blanks (i.e., zeros) in the matrix.

An example of a reasoning step is shown in the right of Figure 11(b). The planned updates (i.e.,
which positions are filled with which numbers) is intrinsically included in a new puzzle, which is
directly taken as the next state by the transition function T .

D.2.3 Verification of reasoning steps

Binary Verification The Binary verification labels are generated using a rule-based checker of each
reasoning step. In Multiplication, it simply checks whether the next state xt+1× yt+1 + rt+1 is equal
to the current state xt × yt + rt. In Sudoku, it checks whether existing numbers in the old matrix are
modified and whether the new matrix has duplicated numbers in any row, column, and block.

Detailed Verification In Multiplication, we output a label for each elemental computation —
addition or unit-pair product — is computed correctly. In Sudoku, we output a label for each position
in the new matrix, signifying whether the number violates the rule of Sudoku (i.e. conflicts with other
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numbers in the same row, column, or block) or is inconsistent with the previous matrix. These labels
are organized using a consistent format as the CoT data. Examples of detailed reflection for correct
steps is in Figure 11(b). If the step contains errors, we replace the corresponding “✓” with “×”.

D.3 Model architectures and tokenization

Table 2: The model architectures of models for the transitional implementation.

Task Mult Sudoku
Model size 1M 4M 16M 1M 4M 16M
Vocabulary size 128
Embedding size 128 256 512 128 256 512
Number of layers 5
Number of attention Heads 4 8 8 4 8 8

Our models architectures uses multi-head causal attention with LayerNorm [36] with implementation
provided by LitGPT [1]. Table 2 specifies the architecture settings of transformer models with 1M,
4M, 16M parameters.

Tokenizers We employ the byte-pair encoding algorithm [30] to train tokenizers on reasoning CoT
examples for tiny transformers. Special tokens for reflection and reasoning structure (e.g., identifiers
for the beginning and ending positions of states and reasoning steps) are manually added to the
vocabulary. Since the vocabulary size is small (128 in our experiments), the learned vocabulary is
limited to elemental characters and the high-frequency words for formatting.

D.4 Hyperparameters

Table 3 presents the hyper-parameters used in training and testing the tiny-transformer models. In the
following sections, we describe how these parameters are involved in our implementation.

Non-reflective training The pretraining and SFT utilize a datasetNCoT of CoT examples generated
by an expert reasoning program. Pretraining treats these CoT examples as plain text and minimizes
the cross-entropy loss for next-token prediction, using the batch size Bpre and the learning rate ηpre.
The pretraining process terminates after predicting a total of Npre_tok tokens. The non-reflective
SFT uses the same dataset as that used in pretraining. It maximizes the likelihood of predicting
example outputs (reasoning steps) from prompts (reasoning states), using the batch size BSFT and
the learning rate ηSFT . The total number of non-reflective SFT epochs is ESFT .

Reflective SFT To perform non-reflective SFT, we use the model after non-reflective training to
sample trajectories for each input query in the training set. The reflective sampling involves two
decoding temperatures: the lower solving temperature τrefl:s is used to walk through the solution
path, while a higher proposing temperature τrefl:p is used to generate diverse steps, which are fed
into the reflective dataset. Then, the verification examples, which include binary or detailed labels,
are generated by an expert verifier program. The reflective SFT includes ERSFT epochs, using the
same batch size and learning rate as the non-reflective SFT.

Reinforcement learning We use online RL algorithms as described in Appendix B, including PPO
and GRPO. These algorithms include an experience replay buffer to store NPPO:buf and NGRPO:buf

example trajectories, respectively. After every ERL:int epochs trained on the buffer, the buffer
is updated by sampling new trajectories, using the temperature τRL:π for planning steps and the
temperature τRL:π̃ for reflective feedback. According to Equations 8 and 12, the hyper-parameters
in both the PPO and GRPO objectives include the clipping factor ε and the KL-Divergence factor
β. Additionally, GRPO defines G as the number of trajectories in a group. We run RL algorithms
for ERL epochs, using the learning rate ηRL. PPO involves EPPO:warmup warm-up epochs at the
beginning of training, during which only the value model is optimized.

28



Table 3: The main hyper-parameters used in this work.

Task Mult Sudoku
Model size 1M 4M 16M 1M 4M 16M
Training CoT examples: NCoT 32K 36K
Total pretraining tokens: Npre_tok 1B
Pretraining batch size: Bpre 128
Pretraining learning rate: ηpre 0.001→ 0.00006
SFT batch size: BSFT 128
SFT learning rate: ηSFT 0.001→ 0.00006
Non-reflective SFT epochs: ESFT 5
Reflective sampling temperature: Solving τrefl:s 0.75
Reflective sampling temperature: Proposing τrefl:p 1 1.25 1.5 1 1.25 1.5
Reflective SFT epochs: ERSFT 3
PPO replay buffer size: NPPO:buf 512
GRPO replay buffer size: NGRPO:buf 1024
RL sampling interval: ERL:int 4
RL sampling temperature: Planning τRL:π 1.25 1 1.25 1.25
RL sampling temperature: Feedback τRL:πf

1
RL clipping factor: ε 0.1
RL KL-divergence factor: β 0.1
GRPO group size: G 8
RL total epochs: ERL 512
RL learning rate: ηRL 0.00005→ 0.00001
PPO warm-up epochs: EPPO:warmup 64
Testing first-attempt temperature: τπ:first 0 1
Testing revision temperature: τπ:rev 1
Testing verification temperature: τπf

0
Testing non-reflective steps T : 32
Testing reflective steps T̃ : 64
RTBS width: m 4

Testing During testing, we execute the reasoner using three decoding temperatures: τπ:first for
the first planning attempt, τπ:rev for the revised planning attempt after being rejected, and τπf

for
self-verification. We use low temperatures to improve accuracy for more deterministic decisions, such
as self-verifying feedback and the first attempt in Mult. We use higher temperatures for exploratory
decisions, such as planning in Sudoku and revised attempts in Mult. We set the non-reflective
reasoning budget to T steps and the reflective reasoning budget to T̃ steps. If the reflective budget is
exhausted, the reasoner reverts to non-reflective reasoning. We set the search width of RTBS to m.

D.5 Computational resources

Since our models are very small, it is entirely feasible to reproduce all our results on any PC (even
laptops) that has a standard NVIDIA GPU. Using our hyper-parameters, the maximum GPU memory
used for training the 1M, 4M, and 16M models is approximately 4GB, 12GB, and 16GB, respectively,
which can be easily reduced by using smaller batch sizes. To run multiple experiments simultaneously,
we utilize cloud servers with a total of 5 GPUs (one NVIDIA RTX-3090 GPU and four NVIDIA A10
GPUs).

For each model size and task, a complete pipeline (non-reflective training, reflective training, and
RL) takes about two days on a single GPU. This includes 1-2 hours for non-reflective training, 8-12
hours for data collection for reflective training, 1-2 hours for reflective SFT, 6-12 hours for RL, and
6-12 hours for testing.
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Table 4: The accuracy (%) of GRT-4o, DeepSeek-R1, and OpenAI o3-mini in integer multiplication
and Sudoku, compared with the best performance of our 1M (1M*), 4M (4M*), and 16M (16M*)
transformers. The “OOD-Hard” for LLMs only refers to the same difficulty as used in testing our
tiny transformers, as OOD-Hard questions may have been seen in the training of LLMs.

Model GPT-4o o3-mini DeepSeek-R1 1M* 4M* 16M*

Mult
ID-Easy 73.2 100 96.8 96.2 98.7 99.7
ID-Hard 32.6 97.2 77.0 52.7 77.0 81.1
OOD-Hard 18.6 96.4 61.4 3.7 5.8 9.4

Sudoku
ID-Easy 40.7 99.6 90.4 33.9 97.2 99.8
ID-Hard 2.8 52.8 4.4 0.4 58.1 72.2
OOD-Hard 0.0 0.0 0.0 0.0 6.9 14.4

E Supplementary results of experiments

In this section, we present supplementary results from our experiments: 1) we assess the reasoning
accuracy of various large language models on integer multiplication and Sudoku tasks; 2) we report
the accuracy outcomes of models after implementing different supervised fine-tuning strategies; 3)
we provide full results of reasoning accuracy after GRPO; 4) we additionally provide the results of
PPO, which is weaker than GRPO in reflective reasoning.

E.1 Evaluation of LLMs

In this section, we provide the reasoning accuracy of LLMs on Mult and Sudoku, including GPT-4o
[22], OpenAI o3-mini [21], and DeepSeek-R1 [5]. Since GPT-4o is not a CoT-specialized model,
we use the magic prompt “let’s think step-by-step” [13] to elicit CoT reasoning. For o3-mini and
DeepSeek-R1, we only prompt with the natural description of the queries. As shown in Table 4,
among these LLMs, OpenAI o3-mini produces the highest accuracy in both tasks.

To illustrate how well tiny transformers can do in these tasks, we also present the best performance
(results selected from Tables 5 and 7) of our 1M, 4M, and 16M models for each difficulty level,
respectively, showing a performance close to or even better than some of the LLM reasoners. For
example, according to our GRPO results (see Table 7), our best 4M Sudoku reasoner performs (RTBS
through optional detailed verification) equally well to OpenAI o3-mini, and our best 16M Mult
reasoner (through binary verification) outperforms DeepSeek-R1 in ID difficulties. Note that this
paper mainly focuses on fundamental analysis and does not intend to compete with the general-
purpose LLM reasoners, which can certainly gain better accuracy if specially trained on our tasks.
Such a comparison is inherently unfair due to the massive gap in resource costs and data scale. The
purpose of these results is to show how challenging these tasks can be, providing a conceptual notion
of how well a tiny model can perform.

E.2 Results of supervised fine tuning

Table 5 includes our complete results of reasoning accuracy after non-reflective and reflective SFT.
As discussed in Section 3.1, our implementation uses Reduced states that maintain only useful
information for tiny transformers. To justify this, we also test the vanilla Complete implementation,
where each state St = (Qt, R1 . . . , Rt−1) includes the full history of past reasoning steps. As a
baseline, the Direct thought without intermediate steps is also presented.

Reducing the redundancy of states in long CoTs benefits tiny transformers. The left three
columns in Table 5 compare the above thought implementations for non-reflective models. We see
that both direct and complete thoughts fail to provide an acceptable performance even in ID-Easy
difficulty. This proves the importance of avoiding long-context inference by reducing redundancy
in representing states. Considering the huge performance gap, we exclude the complete and direct
implementations from our main discussion.

Estimated errors of self-verification For RMTP and RTBS executions, we employ the oracle
verifiers to maintain test-time statistics of the average e− and e+ (see definition in Section 4) of
reasoning states. The results are shown in Table 6, where we also present the difference in how much
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Table 5: The reasoning accuracy (%) for 1M, 4M, and 16M transformers after SFT.

Thought Implementation Direct Complete Reduced
Verification Type None None None Binary Detailed
Reflective Execution None None None None RMTP RTBS None RMTP RTBS

1M

Mult
ID Easy 21.8 10.6 23.6 95.8 94.5 93.4 22.0 33.4 24.2
ID Hard 3.0 1.4 2.0 52.7 44.6 35.5 2.2 4.8 2.8
OOD Hard 1.4 0.3 1.0 3.7 2.2 1.2 1.0 0.8 0.4

Sudoku
ID Easy 2.8 0 1.4 33.0 32.4 2.4 17.4 18.7 19.4
ID Hard 0 0 0 0.3 0.1 0 0.1 0 0
OOD Hard 0 0 0 0 0 0 0 0 0

4M

Mult
ID Easy 15.6 17.2 92.0 97.7 97.6 97.3 94.5 93.8 93.3
ID Hard 1.7 1.9 37.3 56.9 62.2 53.0 43.4 47.6 42.4
OOD Hard 1.2 1.0 2.2 2.9 1.8 1.1 3.7 3.3 2.7

Sudoku
ID Easy 13.0 3.9 52.2 92.1 96.8 96.0 54.4 81.9 88.5
ID Hard 0.1 0 3.3 40.9 46.3 53.3 5.2 16.9 45.7
OOD Hard 0 0 0 0.4 4.0 6.7 0.0 1.1 2.0

16M

Mult
ID Easy 15.1 59.2 99.2 98.8 98.9 98.8 99.2 99.5 98.5
ID Hard 1.6 9.6 65.9 65.2 76.7 74.9 65.9 76.4 73.5
OOD Hard 1.2 1.0 2.5 1.1 1.3 1.3 9.2 9.4 7.2

Sudoku
ID Easy 35.8 15.9 95.7 97.1 97.9 92.5 93.0 99.0 99.7
ID Hard 0.4 0 48.8 50.1 53.1 54.8 46.9 57.9 70.7
OOD Hard 0 0 0.4 0.9 4.4 6.0 0.7 8.2 14.4

reflective reasoning raises the performance over non-reflective reasoning. We only count the errors in
the first attempts on reasoning states to avoid positive bias, as the reasoner may be trapped in some
state and repeat the same error for many steps.

Table 6: The percentage (%) of test-time verification errors (i.e., e− and e+) after reflective SFT.
Additionally, we compute ∆ as the difference of how much reflective reasoning raises the performance
over non-reflective reasoning, i.e. RMTP (RTBS) accuracy minus non-reflective accuracy.

Verification Type Binary Detailed
Reflective Execution RMTP RTBS RMTP RTBS
Measurement e+ e− ∆ e+ e− ∆ e+ e− ∆ e+ e− ∆

1M

Mult
ID Easy 19.3 4.4 −1.3 14.9 4.9 −2.4 10.2 18.3 +11.4 24.4 19.4 +2.2
ID Hard 3.8 37.6 −8.1 3.6 33.0 −17.2 0.9 6.9 +2.6 14.5 7.4 +0.6
OOD Hard 16.4 32.9 −1.5 6.0 22.5 −2.5 13.6 2.2 −0.2 13.2 2.4 −0.6

Sudoku
ID Easy 9.9 35.2 −0.6 31.1 43.9 −30.6 87.1 0.1 +1.3 85.1 0.1 +2
ID Hard 21.1 31.0 −0.2 33.1 28.6 −0.3 82.8 0 −0.1 79.4 0 −0.1
OOD Hard 60.3 7.5 0 60.2 13.4 0 87.9 0 0 84.5 0 0

4M

Mult
ID Easy 25.1 5.9 −0.1 58.1 8.9 −0.4 30.4 3.7 −0.7 28.7 7.5 −1.2
ID Hard 2.4 23.6 +5.3 26.0 30.8 −3.9 3.3 25.1 +4.2 10.0 29.3 −1.0
OOD Hard 7.5 42.9 −1.1 18.0 61.7 −1.8 5.9 28.1 −0.4 10.9 28.2 −1.0

Sudoku
ID Easy 39.5 9.5 +4.7 40.4 11.5 +3.9 23.8 0.1 +27.5 46.7 0.3 +34.1
ID Hard 41.3 1.9 +5.4 56.0 6.7 +12.4 17.3 0.2 +11.7 22.1 0.3 +40.5
OOD Hard 78.5 0.8 +3.6 70.6 0.6 +6.3 31.5 0.1 +1.1 35.9 0.1 +2

16M

Mult
ID Easy 11.3 8.6 +0.1 6.1 9.4 +0.0 15.7 2.1 +0.3 3.8 2.9 −0.7
ID Hard 1.4 13.9 +11.5 1.8 16.9 +9.7 2.5 7.0 +10.5 4.4 7.2 +7.6
OOD Hard 1.3 86.4 +0.2 1.5 88.2 +0.2 8.5 18.3 +0.2 11.7 19.7 −2

Sudoku
ID Easy 40.1 3.3 +0.8 10.1 4.7 −4.6 6.6 1.7 +6 9.1 6.4 +6.7
ID Hard 50.5 4.3 +3 37.2 9.4 +4.7 15.4 0.1 +11.0 10.6 0.6 +23.8
OOD Hard 75.2 4.2 +3.5 65.0 3.1 +5.1 28.3 0.1 +7.5 24.8 0.0 +13.7

Our full results provide more evidence for the findings discussed in Section 5.1:
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• Learning to self-verify enhances non-reflective execution for 9 out of 12 models (2 verification
types, 3 model sizes, and 2 tasks), such that accuracy does not decrease in any difficulty and
increases in at least one difficulty.

• RMTP improves performance over non-reflective execution for all 4M and 16M models. However,
RMTP based on binary verification fails to benefit the 1M models, which suffer from a high e−.

• 4M and 16M Sudoku models greatly benefit from RTBS, especially using detailed verification.

E.3 Results of GRPO

The complete results of models after GRPO are given in Table 7. To have a convenient comparison,
Table 8 presents the difference of accuracy across Table 5 and Table 7, showing that the difference of
accuracy is caused by GRPO.

Table 7: The accuracy (%) of the 1M, 4M, and 16M transformers after GRPO.

Verification Type None Binary Detailed Optional Detailed
Reflective Execution None None RMTP RTBS None RMTP RTBS None RMTP RTBS

1M

Mult
ID Easy 52.6 96.2 95.9 95.7 53.0 49.5 45.1 48.6 47.7 48.8
ID Hard 11.6 50.0 44.0 42.0 11.4 9.7 8.1 12.2 12.7 12.6
OOD Hard 1.1 2.5 1.9 1.6 1.0 0.9 0.4 1.2 1.3 1.2

Sudoku
ID Easy 1.3 33.9 29.2 4.5 17.6 20.7 18.7 23.0 23.0 22.6
ID Hard 0 0.4 0 0.2 0 0.1 0 0.1 0.1 0
OOD Hard 0 0 0 0 0 0 0 0 0 0

4M

Mult
ID Easy 98.0 98.6 98.7 98.8 98.2 98.0 98.4 98.2 98.4 98.6
ID Hard 65.6 73.6 77.0 76.7 63.0 64.3 63.2 63.9 66.8 66.1
OOD Hard 2.3 2.7 2.7 2.3 5.8 5.3 5.3 3.3 3.2 3.3

Sudoku
ID Easy 58.7 93.8 97.2 96.7 57.8 85.3 92.2 77.0 94 98.2
ID Hard 3.2 43.9 53.8 58.1 5.6 24.7 47.7 21.4 37.7 61.3
OOD Hard 0 0.4 4.9 6.9 0 0.4 2.0 0 1.8 4.2

16M

Mult
ID Easy 99.8 99.2 99.2 99.1 99.7 99.6 99.4 99.2 99.4 99.3
ID Hard 77.2 75.2 81.1 79.6 76.3 77.8 77.6 75.9 78.4 77.7
OOD Hard 1.8 1.3 1.8 1.8 8.4 8.2 7.4 6.0 5.5 5.6

Sudoku
ID Easy 96.3 97.6 98.8 94.6 93.3 98.8 99.8 88.7 97.6 99.0
ID Hard 51.3 51.7 58.0 62.3 46.7 60.4 72.2 42.2 57.3 70.9
OOD Hard 0.7 0.7 6.0 7.8 0.2 6.7 12.0 0.2 6.7 11.1

Reflection usually extends the limit of RL. For reflective models, GRPO samples experience CoTs
through RMTP, where self-verification V and the forward policy π are jointly optimized in the
form of a self-verifying policy π̃. By comparing the RMTP results (columns 3, 6, and 9) with the
non-reflective model (the first column) in Table 7, we find that GRPO usually converges to higher
accuracy solving ID-Hard problems in RMTP. This shows that having reflection in long CoTs extends
the limit of RL, compared to only exploiting a planning policy.

Interestingly, optional detailed verification generally demonstrates higher performance after GRPO
than mandatory verification. A probable explanation is that a mandatory verification may cause the
reasoner to overly rely on reflection, which stagnates the learning of the planning policy.

Overall, our full results provide more evidence to better support our findings discussed in Section 5.2:

• RL enhances 24 out of 42 ID-Hard results in Table 8 by no less than 3% (measured in absolute
difference). However, only 8 out of 42 OOD-Hard results are improved by no less than 1%.

• In table 9, an increase of e+ is observed in 20 out of 25 cases where e− decreases by more than
5% (measured in absolute difference).

E.3.1 The verification errors after GRPO

Furthermore, we also present the estimated errors of verification after GRPO in Table 9, in order
to investigate how self-verification evolves during RL. Our main observation is that if a model has

32



Table 8: The difference of accuracy (%) of the 1M, 4M, and 16M transformers after GRPO. Positive
values mean that GRPO raises the accuracy of the models above SFT.

Reflective Training None Binary Detailed
Reflective Execution None None RMTP RTBS None RMTP RTBS

1M

Mult
ID Easy +29.0 +0.4 +1.4 +2.3 +31.0 +16.1 +20.9
ID Hard +9.6 −2.7 −0.6 +6.5 +9.2 +4.9 +5.3
OOD Hard +0.1 −1.2 −0.3 +0.4 0.0 +0.1 0.0

Sudoku
ID Easy −0.1 +0.9 −3.2 +2.1 +0.2 +2.0 −0.7
ID Hard 0.0 +0.1 −0.1 +0.2 −0.1 +0.1 0.0
OOD Hard 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4M

Mult
ID Easy +6.0 +0.9 +1.1 +1.5 +3.7 +4.2 +5.1
ID Hard +28.3 +16.7 +14.8 +23.7 +19.6 +16.7 +20.8
OOD Hard 0.1 −0.2 +0.9 +1.2 +2.1 +2.0 +2.6

Sudoku
ID Easy +6.5 +1.7 +0.4 +0.7 +3.4 +3.4 +3.7
ID Hard −0.1 +3.0 +7.5 +4.8 +0.4 +7.8 +2.0
OOD Hard 0.0 +0.4 +4.9 +6.9 0 −0.7 0

16M

Mult
ID Easy +0.6 +0.4 +0.3 +0.3 +0.5 +0.1 +0.9
ID Hard +11.3 +10.0 +4.4 +4.7 +10.4 +1.4 +4.1
OOD Hard −0.7 +0.2 +0.5 +0.5 −0.8 −1.2 +0.2

Sudoku
ID Easy +0.6 +0.5 +0.9 +2.1 +0.3 −0.2 +0.1
ID Hard +2.5 +1.6 +4.9 +7.5 −0.2 +2.5 +1.5
OOD Hard +0.3 −0.2 +1.6 +1.8 −0.5 −1.5 −2.4

a high e− before GPRO, then GRPO tends to reduce e− and also increases e+. This change in
verification errors is a rather superficial (lazy) way to obtain improvements. If the model faithfully
improves verification through RL, both types of errors should simultaneously decrease — such a case
occurs only in the ID-Easy difficulty or when e− is already low after SFT. This highlights a potential
retrograde of self-verification ability after RL.

Table 9: The percentage (%) of test-time verification errors (i.e., e− and e+) after GRPO. The arrows
“↑” (increase) and “↓” (decrease) present the change compared to the results in SFT (Table 6).

Verification Type Binary Detailed
Reflective Execution RMTP RTBS RMTP RTBS
Error Type e+ e− e+ e− e+ e− e+ e−

1M

Mult
ID Easy 6.8↓12.5 3.3↓1.1 5.0↓9.9 3.5↓1.4 12.4↑22.6 17.2↓1.1 3.5↑27.9 17.6↓1.8
ID Hard 16.5↑20.3 17.6↓20.0 7.0↑10.6 13.7↓19.3 54.6↑55.5 4.6↓2.3 42.1↑56.6 5.7↓1.7
OOD Hard 41.2↑57.6 1.6↓31.3 40.2↑46.2 1.5↑24.0 53.9↑67.5 16.4↑18.6 57.3↑70.5 19.1↑21.5

Sudoku
ID Easy 1.2↑11.1 1.7↓36.9 13.1↓18.0 4.0↑47.9 0.1↑87.2 0.0↓0.0 0.0↑87.1 0.4↑0.5
ID Hard 2.9↑24.0 0.9↓30.1 5.5↓27.6 0.4↑29.0 0.1↓83.7 0.0↓0.0 0.1↓80.3 0.0↓0.0
OOD Hard 3.1↑63.4 0.8↑8.3 4.5↓55.7 0.9↑14.3 0.5↑88.4 0.0↓0.0 0.6↑85.1 0.0↓0.0

4M

Mult
ID Easy 2.5↓22.6 4.8↓1.1 30.2↓27.9 7.1↓1.8 21.1↓9.3 3.0↓0.7 5.0↓23.7 6.8↓0.7
ID Hard 53.1↑55.5 21.8↓1.8 30.6↑56.6 28.5↓2.3 20.9↑24.2 20.1↓5.0 22.0↑32.0 24.8↓4.5
OOD Hard 60.0↑67.5 24.3↓18.6 52.5↑70.5 40.2↓21.5 55.7↑61.6 20.9↓7.2 53.4↑64.3 22.9↓5.3

Sudoku
ID Easy 7.9↓31.6 3.2↓6.3 2.8↑43.2 7.7↓3.8 11.5↓12.3 1.3↑1.4 27.1↓19.6 1.9↑2.2
ID Hard 28.7↑70.0 0.5↓1.4 2.2↑58.2 4.7↓2.0 4.5↓12.8 1.6↑1.8 9.2↓12.9 0.1↓0.2
OOD Hard 6.9↑85.4 0.7↓0.1 11.0↑81.6 0.2↓0.4 2.1↓29.4 0↓0.1 5.9↓30.0 0.1↑0.2

16M

Mult
ID Easy 4.2↓7.1 7.2↓1.4 0.4↓5.7 7.8↓1.6 8.1↓7.6 1.9↓0.2 7.8↑11.6 2.7↓0.2
ID Hard 7.9↑9.3 12.8↓1.1 6.7↑8.5 15.6↓1.3 22.7↑25.2 3.9↓3.1 18.6↑23.0 4.3↓2.9
OOD Hard 79.0↑80.3 47.1↓39.3 89.2↑90.7 46.4↓41.8 46.0↑54.5 12.5↓5.8 46.4↑58.1 14.7↓5.0

Sudoku
ID Easy 24.5↑64.6 6.2↑9.5 25.6↑35.7 8.5↑13.2 2.1↑8.7 0.6↓1.1 3.3↓5.8 5.4↓1.0
ID Hard 25.3↑75.8 0.0↓4.3 16.4↑53.6 2.0↓7.4 0.5↑15.9 0.0↓0.1 2.4↑13.0 0.4↑1.0
OOD Hard 7.9↑83.1 3.5↓0.7 12.7↑77.7 2.1↓1.0 7.8↑36.1 0.0↓0.1 6.8↑31.6 0.1↑0.1
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E.3.2 The planning correctness rate after GRPO

Table 10: The planning correctness rate (µ) before and after GRPO. Each result is reported by
µSFT → µGRPO.

Task Verification Type Model Size ID Easy ID Hard OOD Hard

Mult

Detailed
1M 70.2→ 81.7 54.4→ 59.5 42.9→ 41.9
4M 98.3→ 99.5 68.4→ 79.1 35.0→ 38.0

16M 99.7→ 99.9 80.0→ 85.9 47.9→ 43.4

Binary
1M 98.8→ 99.1 81.2→ 80.3 42.7→ 38.6
4M 99.3→ 99.7 77.6→ 89.9 57.1→ 48.1

16M 99.4→ 99.8 79.6→ 85.1 75.2→ 44.8

Sudoku

Detailed
1M 34.1→ 33.0 13.2→ 12.4 9.0→ 8.6
4M 85.0→ 86.8 65.2→ 72.0 70.1→ 70.3

16M 98.6→ 98.1 92.5→ 94.0 84.9→ 83.9

Binary
1M 59.1→ 60.3 36.6→ 36.1 19.5→ 19.9
4M 97.3→ 97.8 80.2→ 81.4 74.5→ 70.9

16M 99.0→ 99.2 88.5→ 85.1 68.4→ 64.6

We also report how GRPO influences the step-wise planning ability, measured by µ (defined in
Section 4), across various tasks, verification types, and model sizes. Shown in Table 10, GRPO
increases the planning correctness rate µ in most ID cases, except for the Sudoku models with binary
verification. This indicates that the proposed steps are more likely to be correct and further reduces
the overall penalties of false positive verification, making an optimistic verification bias (a high e+
in exchange for a low e−) even more rewarding. In particular, the planning ability shows almost no
improvement in OOD problems.

E.3.3 Reflection frequency of optional detailed verification

To show how GRPO adapts the reflection frequency for optional detailed verification, Figure 12 shows
the reflection frequency of 1M and 16M transformers before and after GRPO, and the reflection
frequency of the 4M model is previously shown in Section 5.2. Similarly, Figure 13 shows the
reflection frequency for 1M, 4M, and 16M models in Sudoku.

According to results in Table 5, reflective execution does not improve performance for the 1M model,
implying its weakness in exploring correct solutions. Therefore, GRPO does not much incentivize
reflection for the 1M model. Contrarily, it greatly encourages reflection for 4M and 16M models,
for they explore more effectively than the 1M model. These results align with the discussion in
Section 5.2 that RL adapts the reflection frequency based on how well the proposing policy can
explore higher rewards.

E.4 Reflection frequency under controlled verification error rates

To investigate how verification error rates (e− and e+) influence the reflection frequency in GRPO, we
ran a controlled experiment in which the error rates were fixed by intervening with expert verifications.
After each time the transformer generated a non-empty verification, we replaced the verification
sequence with the expert verification, where randomized noise is injected to achieve the prescribed
false-negative rate e− and false-positive rate e+.

We used the 4M Mult model and ran GRPO (sampling temperature = 1.25) for 25 epochs in the
in-distribution setting. We measured the fraction of steps at which the model invoked non-empty
reflection (“reflection frequency”) after 25 epochs. Especially, we are interested in how reflection
frequency changes, given a low e− = 0.1 or a high e− = 0.4. In both cases, we set e+ = 0.1. The
results are as follows:

• Using a low e− = 0.1, the reflection frequency increases to 59.8% after 25 GRPO epochs.

• Using a high e− = 0.4, the reflection frequency drops to 0.0% after 25 GRPO epochs. That is,
the model learns to completely disuse reflection.

Discussion. When the verifier rejects many correct steps (high e−), the model learns to avoid
invoking reflection, driving the observed reflection frequency to nearly 0%. Conversely, when e− is
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Figure 12: The hot-maps of reflection frequency (%) of 1M and 16M multiplication models before
and after GRPO, which uses a sampling temperature of 1.25. All models are tested using RMTP
execution.

low (with the same e+), reflection becomes beneficial and the model increases reflection usage (here
to 60%). Intuitively, reducing excessive false negatives shortens CoT lengths and makes reflection
more rewarding; when e− is large, the model can trade off reflection for a no-reflection policy (which
corresponds to the extreme e− = 0, e+ = 1), thereby avoiding costly rejections. This experiment
demonstrates that the model learns to reduce e− by strategically bypassing verification.

E.5 Results of PPO

As discussed in Appendix B.1, we prefer GRPO over PPO for tiny transformers, as the value model
in PPO increases computational cost and introduces additional approximation bias in computing
advantages.

Table 11 presents the reasoning accuracy after PPO, and Table 12 gives the difference compared to
the SFT results in Table 5. Our results show that PPO is much weaker than GRPO. Although PPO
effectively improves the non-reflective models, the performance of reflective reasoning deteriorates
after PPO. To explain this, self-verification in reasoning steps causes a higher complexity of the value
function, which may obfuscate tiny transformers. Overall, we suggest that GRPO is a more suitable
algorithm to optimize reflective reasoning for tiny transformers.
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Figure 13: The histograms of reflection frequency of 1M, 4M, and 16M Sudoku models before
and after GRPO, which uses a sampling temperature of 1.25. All models are tested using RMTP
execution.

36



Table 11: The accuracy (%) of the 1M, 4M, and 16M transformers after PPO.

Verification Type None Binary Detailed Optional Detailed
Reflective Execution None None RMTP RTBS None RMTP RTBS None RMTP RTBS

1M

Mult
ID Easy 39.6 96.5 94.1 90.6 28.3 30.1 27.2 37.9 49.0 44.4
ID Hard 7.8 49.6 43.7 32.2 2.4 3.1 2.4 5.9 9.6 7.3
OOD Hard 1.1 2.6 1.8 1.2 0.7 0.8 0.7 1.0 1.0 0.8

Sudoku
ID Easy 1.7 36.1 33.7 5.6 17.3 20.6 20.1 23.8 21.9 20.1
ID Hard 0 0.4 1.0 0 0 0.1 0 0 0 0
OOD Hard 0 0 0 0 0 0 0 0 0 0

4M

Mult
ID Easy 97.7 95.5 98.6 93.8 96.6 95.7 94.9 97.2 96.9 94.6
ID Hard 63.0 52.8 68.6 54.7 54.0 54.6 45.5 58.7 61.7 56.8
OOD Hard 2.2 3.1 2.9 1.6 5.3 3.9 2.2 4.4 3.3 3.7

Sudoku
ID Easy 56.4 88.4 97.3 97.6 49.3 82.1 80.6 76.2 94.1 97.3
ID Hard 0 28.6 47.4 47.7 0 15.1 35.9 15.2 35.3 55.6
OOD Hard 0 0.2 1.6 3.3 3.1 0.4 0.9 0 1.1 2.7

16M

Mult
ID Easy 99.3 99.0 99.0 98.2 98.5 98.7 97.8 99.0 99.5 99.2
ID Hard 64.8 62.9 75.7 71.9 63.2 68.6 65.6 65.1 77.1 74.6
OOD Hard 1.9 1.0 1.2 1.1 9.1 8.1 7.5 5.4 5.6 5.4

Sudoku
ID Easy 96.5 91.8 97.3 96.7 87.6 98.1 98.9 94.5 96.7 97.1
ID Hard 49.0 41.0 51.4 52.7 34.7 55.7 66.3 47.8 53.8 53.0
OOD Hard 0.6 0 2.4 4.0 0 1.1 2.0 0 3.8 2.9

Table 12: The difference of accuracy (%) of the 1M, 4M, and 16M transformers after PPO. Positive
values mean that PPO raises the accuracy of the models above SFT.

Reflective Training None Binary Detailed
Reflective Execution None None RMTP RTBS None RMTP RTBS

1M

Mult
ID Easy +16.0 +0.7 −0.4 −2.8 +6.3 −3.3 +3.0
ID Hard +5.8 −3.1 −0.9 −3.3 +0.2 −1.7 −0.4
OOD Hard +0.1 −1.1 −0.4 +0.0 −0.3 +0.0 +0.3

Sudoku
ID Easy +0.3 +3.1 +1.3 +3.2 −0.1 +1.9 +0.7
ID Hard +0.0 +0.1 +0.9 +0.0 −0.1 +0.1 +0.0
OOD Hard +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0

4M

Mult
ID Easy +5.7 −2.2 +1.0 −3.5 +2.1 +1.9 +1.6
ID Hard +25.7 −4.1 +6.4 +1.7 +10.6 +7.0 +3.1
OOD Hard +0.0 +0.2 +1.1 +0.5 +1.6 +0.6 −0.5

Sudoku
ID Easy +4.2 −3.7 +0.5 +1.6 −5.1 +0.2 −7.9
ID Hard −3.3 −12.3 +1.1 −5.6 −5.2 −1.8 −9.8
OOD Hard +0.0 +0.2 +1.6 +3.3 +2.7 −3.6 −5.8

16M

Mult
ID Easy +0.1 +0.2 +0.1 −0.6 −0.7 −0.8 −0.7
ID Hard −1.1 −2.3 −1.0 −3.0 −2.7 −7.8 −7.9
OOD Hard −0.6 −0.1 −0.1 −0.2 −0.1 −1.3 +0.3

Sudoku
ID Easy +0.8 −5.3 −0.6 +4.2 −5.4 −0.9 −0.8
ID Hard +0.2 −9.1 −1.7 −2.1 −12.2 −2.2 −4.4
OOD Hard +0.2 −0.9 −2.0 −2.0 −0.7 −7.1 −12.4
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our title, abstract, and introduction clearly state our main claim that trans-
formers can benefit from self-verifying reflection. Our theoretical and experimental results
support this claim.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention limitations in the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The main paper describes the assumptions of our theoretical results. The proof
is provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in the appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include necessary information to reproduce our results in the appendix,
such as hyper-parameters, model architecture, data examples, and detailed implementation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

39



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Full code is in the supplementary materials. No data is provided as it is
generated by the code. “README.md” introduces the commands to perform the complete
pipeline and reproduce our results. We will open-source our code once it is formally
accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Most relevant hyper-parameters and experiment details are in the appendix.
Full settings are clearly defined in our code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It is too expensive to run multiple instances of our experiments, which include
training 78 models under various settings (sizes, tasks, verification types, etc). Each model
is tested using at most 3 different executions. Given our limited resources, it would take
several months to compute error bars. Since our paper focuses on analysis instead of best
performance or accurate evaluation, it is acceptable not to include error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We roughly describe the computational resource used in the appendix. Since
our models are very small, this paper can be easily reproduced by a single NVIDIA GPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: As far as we may perceive, this research does not involve human subjects or
negative societal impacts.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: This paper focuses on the fundamental analysis of reasoning instead and is
tied to no practical applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Assets used in this paper are cited in the paper. The appendix mentions the
version of the asset and the license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release assets besides our code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Although this research is related to LLM reasoning, we focus on tiny trans-
formers. The appendix includes the evaluation of LLMs, yet these results do not impact our
core methodology and originality.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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