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ABSTRACT

We study associated learning (AL), an alternative methodology to end-to-end
backpropagation (BP). We introduce the workflow to convert a neural network
into an AL-form network such that AL can be used to learn parameters for various
types of neural networks. We compare AL and BP on some of the most success-
ful neural networks: convolutional neural networks, recurrent neural networks,
and Transformers. Experimental results show that AL consistently outperforms
BP on open datasets. We discuss possible reasons for AL’s success, its limita-
tions, and AL’s newly discovered properties. Our implementation is available at
https://github.com/Hibb-bb/AL.

1 INTRODUCTION

Backpropagation (BP) is the keystone of modern deep learning. Although BP is the standard way
to learn network parameters, it is far from ideal. Some of the most discussed issues of BP are
optimization difficulties (e.g., vanishing gradients and exploding gradients (Hochreiter et al., 2001))
and training performance (e.g., backward locking (Jaderberg et al., 2017)).

It appears that custom network structures may be needed for different types of learning tasks. Among
the various forms, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
Transformer networks (along with their extensions, e.g., LSTM (Hochreiter & Schmidhuber, 1997)
and VGG (Simonyan & Zisserman, 2015)) are particularly useful. These networks have been suc-
cessfully applied in fields as varied as computer vision, natural language processing, signal process-
ing, and others (Goodfellow et al., 2016; Deng & Yu, 2014).

This paper studies a new learning approach—associated learning (AL)—an alternative to end-to-
end backpropagation learning. AL decomposes BP’s global end-to-end training strategy into several
small local optimization targets such that each layer has an isolated gradient flow. However, since
most layers in AL do not interact with the final loss directly, we would expect AL-training models
to be less accurate than BP. Surprisingly, the original AL paper compares AL and BP using the
CNN network (and its extensions, e.g., VGG) and shows impressive results based on image clas-
sification datasets (MNIST, CIFAR-10, and CIFAR-100) (Kao & Chen, 2021). We continue this
line of study in two ways. First, we discover more interesting properties of AL. Second, we show
how to apply AL on different network structures, including VGG (Simonyan & Zisserman, 2015),
LSTM (Hochreiter & Schmidhuber, 1997), and Transformer (Vaswani et al., 2017). Eventually, we
compare the networks learned via AL and via BP on various tasks (image classification, sentiment
analysis, and topic classification) based on public datasets (CIFAR-10, CIFAR-100, IMDB movie
reviews, AG’s News, Stanford Sentiment Treebank (SST), and DBpedia). We find that AL consis-
tently outperforms BP in most datasets. Additionally, AL requires fewer epochs than BP when using
early stopping but still yields excellent accuracy. These results suggest that AL is a strong alternative
to BP, as AL is effective for various tasks and various network structures.

The rest of the paper is organized as follows. In Section 2, we introduce associated learning and its
properties. Section 3 presents the experiments, including a comparison of the model accuracies and
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convergence speed of AL and BP on VGG, LSTM, and Transformer, a generalization test of AL and
BP, and an ablation study. Section 4 reviews previous work on backpropagation alternatives and the
network structures that may look similar to AL. Finally, we conclude our contribution in Section 5.

2 ASSOCIATED LEARNING

2.1 AN OVERVIEW OF AL: AL FORM, TRAINING, AND INFERENCE

Figure 1: A classification neural network with 3 hidden layers.
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Figure 2: A 3-layer neural network in the AL form required for AL learning. Red arrows: the
inference path; green arrows: the objective function; blue arrows: gradient flow; orange arrows:
appended functions not in BP; black arrows: preserved functions in BP. We stop the gradient flow
from an AL layer i to its previous layer i− 1 to ensure each layer is trained in isolation.

To apply AL, we must transform the network into a different structure, which we call AL form below.
Instead of learning a function to map a feature vector x to a target y, the AL form performs metric
learning by searching for functions to transform x and y into latent representations such that the
distance between these two latent representations is close.

Algorithm 1 shows the procedure to convert a neural work into an AL form. We use Figure 1 (a
neural network with 3 hidden layers) as an example to show the process. We can regard functions
f1, f2, f3 as the encoders to convert the input feature vector into a latent representation and clf as
a classifier to transform the latent representation into a target. When converting this network to its
AL form (referring to Figure 2), we only keep the encoders fi-s and extend the model architecture
by adding a bridge function bi and an autoencoder for each layer i. Let si−1 and ti−1 be the inputs
of layer i (assuming s0 := x and t0 := y), functions fi and gi convert si−1 and ti−1 into latent
representations si and ti. The function fi can be any type of forwarding block, such as a convolu-
tion layer, an LSTM layer, or a residual block in ResNet. Each bridge function bi projects si (the
latent representation of x at layer i) to be close to ti (the latent representation of y at layer i), i.e.,
bi(fi(si−1)) ≈ gi(ti−1). Meanwhile, gi not only extracts the latent representation of y, but also
serves as the encoder for an autoencoder such that hi(gi(ti−1)) ≈ ti−1 (hi is the decoder). For all
the AL-form networks in our experiments, each of the functions gi and hi is constructed by a linear
transform followed by a non-linear activation function (e.g., tanh), and bi is a linear transformation
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of the input vector or input matrix. We discuss the number of neurons for the input, output, and
hidden layers of the autoencoders in Section 6.9.

To summarize, we minimize the following objective for each layer i during training:

Li
AL = Li

A + Li
AE =

∥∥bi(fi(si−1))− gi(ti−1)
∥∥2 +∥∥hi(gi(ti−1))− ti−1

∥∥2 , (3)

where Li
A denotes the associated loss of layer i, and Li

AE indicates the autoencoder loss of layer i.

Algorithm 2 gives the training algorithm for AL. Since each layer has its objective function (Equa-
tion 3), we can parallelly update the parameters of different layers using a pipeline to increase the
training throughput (details in Section 2.2.3).

For inference, if an AL network has L layers, an input x goes through f1, . . . , fL to generate x’s
latent representation (sL), which is transformed to y’s latent representation (tL) via bL. Next, tL
is converted to y via hL, . . . , h1. The autoencoders’ encoding functions gi-s are not used during
inference. Take Figure 2 as an example, the inference path is (f1 −→ f2 −→ f3 −→ b3 −→ h3 −→ h2 −→
h1). Although it could be unintuitive to concatenate two unconnected transformation functions as
an inference path (i.e., hi+1 followed by hi, i = 1, 2, 3), it is valid because hi+1(ti+1) = t′i ≈ ti.

Algorithm 1 Converting a neural network to its AL form
Input a neural network N = (f1, f2, ...fL), target y ∈ R1, feature vector x ∈ Rm

Output an AL network A

1: s0 ← x; t0 ← y
2: for i = 1 to L do
3: si = fi(si−1)
4: insert a function gi, where ti = gi(ti−1)
5: insert a function bi, where s′i = bi(si) ▷ adding bridge function
6: insert a function hi, where t′i−1 = hi(ti) ▷ adding a decoder for an autoencoder
7: Li

AL = MSE(s′i, ti) +MSE(ti−1, t
′
i−1) ▷ associated loss and autoencoder loss

8: return A = (a1, . . . , aL), ai = {fi, bi, gi, hi}Li=1

Algorithm 2 Training an AL network
Input an AL network A = (a1, . . . , aL), ai = {fi, bi, gi, hi}Li=1, training features and targets

(X,Y )
Output a fine-tuned AL network A

1: repeat
2: Sample x, y from X,Y .
3: s0 ← x; t0 ← y
4: for i = 1 to L do
5: si ← fi(si−1)
6: ti ← gi(ti−1)
7: s′i ← bi(si)
8: t′i−1 ← hi(ti)

9: Li
A ←MSE(s′i, ti) ▷ associated loss

10: Li
AE ←MSE(ti−1, t

′
i−1) ▷ autoencoder loss

11: Update the parameter of fi, bi, gi according to∇LA

12: Update the parameter of gi, hi according to∇LAE

13: until converges

2.1.1 APPLYING AL TO DIFFERENT NEURAL NETWORK STRUCTURES

This section introduces details on converting some of the most successful neural network structures
into their corresponding AL forms. We discuss vanilla CNN and VGG (used as the representative
models for CNN-based models), LSTM (used as the representative model for RNN-based models),
and Transformer. We also discuss how to integrate word embeddings into an AL-form network.
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CNN The AL form of an CNN architecture (here, vanilla CNN and VGG) uses fi-s to convert an
input image x into latent representations by convolutions, just like a regular CNN or a VGG does.
The associated loss at layer i is defined as the distance between bi(si) (transforming the flattened
feature map at layer i into ti’s shape) and ti (the latent representation of y).

RNN The AL form of an RNN architecture (here, LSTM and Bi-LSTM) uses the internal state
to iteratively process each element in the input sequence x and generates the new internal state,
just like a regular RNN does. After reading the entire input sequence x, we define si the latent
representation of x at layer i by the final internal state. Consequently, the associated loss is defined
as the distance between bi(si) (transforming the final internal state at layer i into ti’s shape) and ti
(the latent representation of y). Details are shown in Section 6.2.

Transformer The AL form of a Transformer encodes the input sequence x into a list of vec-
tors, as a regular Transformer does. We define si (the latent representation of x) by computing
the mean-pooling on the encoded vectors. The associated loss is defined as the distance between
bi(si) (transforming the mean-pooling output into ti’s shape) and ti (the latent representations of y).
Details are shown in Section 6.2.

Word Embedding Word embeddings are frequently used as the input of LSTM or Transformer
for NLP tasks. We use mean-pooling to aggregate all token’s word embeddings as si.

2.2 PROPERTIES OF AL

This section presents three properties of AL that do not exist in BP: forward shortcuts, dynamic
layer accumulation, and pipelines.

2.2.1 FORWARD SHORTCUTS

Forward shortcuts enable faster inference. However, we can also leverage “shortcut paths” for faster
inference. As shown in Algorithm 3, given an integer ℓ (1 ≤ ℓ ≤ L), the bridge function bℓ can serve
as a shortcut to transform sℓ to s′ℓ, which should be close to tℓ when the network is well trained. As
a result, we can skip fj , bj , and hj for all j > ℓ to reduce the length of the inference function. In
other words, we have multiple inference functions based on a single model. When inference time is

critical, we can select a shorter inference path, e.g., x
f1−→ s1

b1−→ t1
h1−→ y. On the other hand, if

inference time is unimportant, we can dynamically adjust the model complexity by modifying the
number of AL layers used at the inference phase to reduce overfitting or underfitting.

2.2.2 DYNAMIC LAYER ACCUMULATION

An AL-form network allows the dynamic creation of new layers during training. Specifically, we
initially create an AL-form network with k AL layers and train the network based on the strategy
introduced in Section 2.1. If the model still underfits, we simply add the (k + 1)-th AL layer on top
of the first k AL layers. We may choose to fix the parameters in the first k AL layers and train only
the parameters in the (k+1)-th AL layer. In contrast, when using a standard neural network, adding
layers dynamically is more complicated.

2.2.3 PIPELINE

In an AL-form network, the network parameters in different AL layers can be trained simultaneously
via pipelines because each AL layer i has a local objective function. In contrast, it is difficult to
simultaneously update the parameters of different layers for a standard BP-based neural network.

Given n training instances in a standard neural network with L hidden layers, if we apply BP for
training, the time complexity is O(nL) because each instance must complete the entire forward
(L+1 transformations) and backward (L+1 transformations) process. Thus, for such an architecture,
the time complexity increases linearly with the total number of layers L. However, since each AL
layer has its local objective, each layer can update its parameters without waiting for the gradient
from preceding layers. As a result, for an AL-form network with L AL layers, using L computation
units can make the parameter update process fully pipelined, as explained below.
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We denote task j
i as the task of computing both forward and backward propagation for an AL layer i

based on the j-th instance. If an AL layer i finishes task1
i at time step t, at the next time step t+ 1,

AL layers i can continue performing task2
i since all parameters in this layer are updated based on

task1
i . Meanwhile, AL layer i + 1 performs task1

i+1. Consequently, training based on the first
instance requires O(L), and each of the following n − 1 instances requires extra O(1) time units.
The time complexity of one training epoch eventually reduces to O(n+ L).

3 EXPERIMENTS

To evaluate how AL works on different network architectures, we conducted experiments on image
classification with vanilla CNN and VGG and on sentiment and topic classification with LSTM and
Transformer (using pre-trained word embeddings as input). In addition, we conducted a case study
on AL’s generalization ability, evaluated by fitting AL models and BP models on different portions
of noisy labels. Finally, we discuss possible reasons for AL’s success based on ablation studies. We
report more detailed settings in the Appendix.

3.1 DATASETS

We used four datasets (IMDB Review, AG’s News corpus, DBpedia Ontology, and the Stanford Sen-
timent Treebank) to compare AL and BP on LSTM and Transformer, and two datasets (CIFAR-10
and Fashion-MNIST) to compare AL and BP on CNN and VGG. Dataset details are in Appendix 6.4

3.2 TEXT CLASSIFICATION (LSTM AND TRANSFORMER)

We compared BP and AL on LSTM and Transformer based on the text classification task.

For LSTM, we used a 2-layer bidirectional LSTM with pre-trained GloVe word embeddings (Pen-
nington et al., 2014) as input. For Transformer, we used a 2-layer Transformer encoder, again with
pre-trained GloVe word embeddings. During training, we recorded the accuracies of the validation
set for every epoch and saved that model with the best performance on the validation set for testing.
For each model, we repeated the process five times and reported the average accuracy and standard
deviation. For a fair comparison, we forced the AL parameter counts to not exceed those of the
compared standard neural network by reducing AL’s hidden dimension size.

Table 1: Accuracy (mean ± standard deviation) of neural networks and corresponding AL versions
on text classification datasets. Tran denotes Transformer, <X>-AL-full denotes full path inference on
AL-form network <X>, and <X>-AL-SCi denotes shortcut inference through bridge function bi+1.
EMB-AL-SC indicates inference through the shortcut in the embedding layer, i.e., after computing
mean-pooling on the word embeddings, the output is passed to a bridge function.

Method IMDB AGNews SST DBpedia
LSTM 86.25 ± 0.63 90.32 ± 0.23 82.23 ± 0.93 97.34 ± 0.11
LSTM-AL-full 86.41 ± 0.61 91.53 ± 0.20 81.33 ± 0.31 98.30 ± 0.01
LSTM-AL-SC1 86.16 ± 0.22 91.42 ± 0.17 80.83 ± 0.42 98.21 ± 0.06
EMB-AL-SC 87.80 ± 0.13 91.03 ± 0.28 80.57 ± 0.81 96.95 ± 0.03
Tran 83.45 ± .033 90.71 ± 0.28 76.48 ± 0.55 97.37 ± 0.06
Tran-AL-full 85.65 ± 0.77 91.17 ± 0.43 81.16 ± 0.11 97.55 ± 0.06
Tran-AL-SC1 86.25 ± 1.34 91.49 ± 0.09 80.58 ± 0.67 96.53 ± 0.29
EMB-AL-SC 86.98 ± 0.72 91.43 ± 0.11 80.12 ± 0.57 97.14 ± 0.11

We report the accuracies of LSTM and Transformer trained via BP and AL in Table 1. We also report
the accuracies based on the predictions using shorter inference paths in the same Table. Although
AL is trained by isolated gradient flows, AL-form LSTMs outperform their standard BP-trained
counterparts on most datasets. Transformer-AL also outperforms Transformer on every dataset.
Also, we observe that standard Transformer easily overfits smaller datasets like SST and IMDB,
resulting in poor test accuracies, but Transformer-AL does not seem to have this weakness.

In Table 2 and Table 3, we report the epoch that yielded the best results. We discover that LSTM-
AL converges much faster than BP, suggesting that training time will be improved if applying early
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Table 2: Accuracy (mean± standard deviation) and epoch (mean ± standard deviation) to reach the
best accuracy using different RNN models and their AL versions on IMDB and AGNews.

Method IMDB AGNews
Epoch Accuracy Epoch Accuracy

LSTM 15.4 ± 2.60 86.25 ± 0.63 25.4 ± 13.42 90.32 ± 0.23
LSTM-AL 4 ± 1.22 86.41 ± 0.61 2.4 ± 0.89 91.53 ± 0.20
Tran 35 ± 6.63 83.45 ± 0.33 3.75 ± 0.96 90.71 ± 0.28
Tran-AL 4.4 ± 0.55 85.65 ± 0.77 20.25 ± 12.39 91.17 ± 0.43

Table 3: Accuracy (mean± standard deviation) and epoch (mean ± standard deviation) to reach the
best accuracy using different RNN models and their AL versions on SST and DBPedia.

Method SST DBpedia
Epoch Accuracy Epoch Accuracy

LSTM 16 ± 2.65 82.33 ± 0.93 31.8 ± 5.26 97.34 ± 0.11
LSTM-AL 2.25 ± 1.89 81.33 ± 0.31 14.6 ± 2.97 98.30 ± 0.01
Tran 6 ± 2.1 76.48 ± 0.55 6.75 ± 1.71 97.37 ± 0.06
Tran-AL 9.67 ± 0.58 81.16 ± 0.11 13.75 ± 2.22 97.55 ± 0.06

stopping. For the Transformer-AL, although the best validation and test accuracy come at roughly
the 20th epoch on AGNews, Transformer-AL reaches high validation and test accuracy within the
first 5 epochs. Since we report only the epoch that reaches the best validation and test accuracies,
the required epochs look large. Particularly, Transformer-AL achieved 99% of the best validation
set accuracy before the 5th epoch. More details can be found in Appendix 6.7.

3.3 IMAGE CLASSIFICATION (VANILLA CNN AND VGG)

We also reproduced the experiments in Kao & Chen (2021) to determine whether AL-form CNNs
also converge faster. In image classification, we report performance on the CIFAR-10 and Fashion-
MNIST benchmarks. We selected FashionMNIST instead of MNIST because MNIST is likely too
simple to show the power of different models: CIFAR-10 is more challenging than FashionMNIST
since it contains three channels, whereas FashionMNIST is limited to grayscale images. Table 4
shows the results: all AL models converge faster than BP. Figure 6 in Appendix 6.6 shows the re-
lationship between epochs and test accuracies on CNN and CNN-AL. Also, AL models perform
slightly better in terms of accuracy, consistent with the results demonstrated in Kao & Chen (2021).

Table 4: Accuracy (mean± standard deviation) and epoch (mean ± standard deviation) to reach the
best accuracy using different CNN models and their AL versions.

CIFAR-10 Fashion MNIST
Epoch Accuracy Epoch Accuracy

CNN 36.8 ± 4.60 82.64 ± 0.61 58.4 ± 9.32 91.57 ± 0.11
CNN-AL 33.6 ± 4.97 85.16 ± 0.11 11.6 ± 1.67 92.07 ± 0.18
VGG 47.2 ± 7.82 92.14 ± 0.17 32 ± 4.34 94.18 ± 0.04
VGG-AL 35.6 ± 2.19 92.48 ± 0.15 25 ± 3.83 93.80 ± 0.08

3.4 GENERALIZATION

To assess the generalizability of a model, a common approach is to empirically compare the errors
on the training data and test data. Garg et al. (2021) show another way to evaluate generalizability:
a model is prone to overfitting if it closely fits a dataset with random labels. We use both methods
to show that an AL-trained model may be more general than that trained by BP.

We took θ proportion of data, in which we changed the labels randomly. We used different propor-
tions to train models. We report both the training and test accuracies on clean test data.

Table 5 shows the results. First, as shown in the last column (for a label noise rate of θ = 0), the
training accuracy of the CNN is larger than that of the CNN-AL, but CNN-AL outperforms CNN
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Figure 3: Training accuracy when θ = 1.0 (left) and test accuracies when θ equals 0.2 (middle) and
0.6 (right) with different epochs.

in terms of test accuracy. Second, with θ > 0, the vanilla CNN network with BP training fits the
randomly labeled training data much better than the AL-form CNN. However, if we evaluate model
accuracies based on the clean test data, the AL-form CNN performs better. Taken together, the
above empirical evidence suggests that the new model may generalize better (Garg et al., 2021). The
relationship between accuracy and training epochs (for θ = 1.0, 0.2, and 0.6) is given in Figure 3.

Table 5: Accuracies of different label noise rates.
θ 1.0 0.8 0.6 0.4 0.3 0.2 0.1 0.0

Training CNN 68.75 64.84 82.03 93.75 89.84 96.88 96.09 97.48
CNN-AL 8.59 41.41 50.00 65.63 74.22 78.13 85.94 96.26

Testing CNN 9.96 23.25 39.23 56.30 63.60 71.18 77.04 82.64
CNN-AL 10.00 38.23 64.74 76.77 78.70 82.19 83.40 85.16

3.5 WHAT MAKES AL WORK – AN ABLATION STUDY

We empirically validates that AL generates great models, converges fast, and generalizes well. Be-
low we report ablation studies using AG’s news dataset to understand why AL performs excellently.

First, we ensure the gradient flow in each AL layer does not influence the gradients in other layers via
the gradient stopping mechanism.1 However, to optimize the objective function (Equation 3), either
allowing or blocking the gradient flow between AL layers is acceptable. We sought to determine
whether allowing gradient flow between AL layers improves model accuracy (although such a design
may make pipelining infeasible). Hence, we disabled all the gradient stops (allowing gradients to
flow through different AL layers). The results are denoted as “LSTM-AL w/o grad. stops” in
Table 6: accuracy is nearly unchanged. Therefore, given enough computing nodes, applying a
pipelined AL increases training throughput without sacrificing model accuracy.

Second, to test the effect of associated loss, we disabled the gradient stops and removed the asso-
ciated loss (except the last AL layer) from the model. The second row of Table 6 shows the result:
although the accuracy is similar to that with associated loss, far more epochs are needed to converge.
So, the bridge functions likely facilitate model training by gradually bringing s′i and ti closer.

With the third experiment, we sought to investigate the effect of the autoencoder components in the
AL model. To do this, we passed the output of a normal Bi-LSTM to a bridge function, whose
output t1 was fed to the bottleneck layer of an autoencoder, which decodes t1 back to the target y.
Compared with the original Bi-LSTM classifier, the new design results in higher accuracy, as seen
in the third (LSTM + AE*1) in Table 6. This suggests that replacing the standard classifier with a
decoder of an AE and training it with AL objectives could produce a better model. Additionally, we
experimented with removing all autoencoders and using bi as the classifier to predict y for each AL
layer (similar to the early exit technique in Teerapittayanon et al. (2016)). We use “LSTM-AL w/o
AE (SC-1)” and “LSTM-AL w/o AE (full)” in Table 6 to denote “early exit at the first layer” and
“using bL the last bridge as the classifier”, respectively. The results show that using autoencoders

1This is supported by Tensor.detach() in PyTorch and tf.stop_gradient() in TensorFlow.
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gives a better predicting model. We suspect that each autoencoder perhaps performs some kind of
feature extraction and regularization. Particularly, although it is easy to transform one-hot encoded y
to t1 to decrease associated loss and transform t1 to t′0 to decrease the autoencoder loss, the network
still needs to learn more challenging tasks: converting ti to ti+1 and ti+1 to t′i for i > 1 to reduce
the associated loss and autoencoder loss of layer i. Consequently, adding autoencoders may prevent
overfitting for the components beyond layer 1.

Finally, for LSTM-AL, the inference path goes through 4 transformation functions (b3 −→ h3 −→
h2 −→ h1) after the LSTM module. To ensure a fair comparison, we also tested a network with a
3-layer MLP classifier after the standard LSTM model. The result is denoted as LSTM + MLP*3
in Table 6. As shown, replacing the MLP from one layer to three layers does not produce a better
model, i.e., the number of layers is not why LSTM-AL is a better model.

Table 6: Ablation studies on AG’s News dataset to study why AL works.

Method Accuracy Convergence epochs
LSTM-AL w/o grad. stops 91.39 ± 0.24 2.2 ± 0.45
LSTM-AL w/o Li

A (i = 1, . . . , L− 1) and w/o grad. stops 91.48 ± 0.15 23.8 ± 6.83
LSTM + AE*1 90.75 ± 0.13 27.5 ± 7.57
LSTM w/o AE (SC-1) 89.30 ± 0.88 7.75 ± 7.51
LSTM w/o AE (full) 89.39 ± 0.99 7.75 ± 7.51
LSTM + MLP*3 90.15 ± 0.15 37.6 ± 2.89
LSTM 90.32 ± 0.23 25.4 ± 13.42
LSTM-AL 91.53 ± 0.20 2.4 ± 0.89

4 RELATED WORK

4.1 BACKPROPAGATION ALTERNATIVES

Backpropagation is fundamental in deep learning. However, backpropagation suffers from opti-
mization and performance issues. Related work usually concerns methodologies that better imitate
the signal transmission process of biological neural networks, since biological neural networks are
highly efficient in analyzing visual, audio, textual, and other signals (Lee et al., 2015; Kao & Chen,
2021; Nøkland, 2016; Ororbia et al., 2018; Ororbia & Mali, 2019). Alternatives to end-to-end back-
propagation can be categorized into three types: proxy objective, target propagation, and synthetic
gradients (Duan & Principe, 2021). Below we introduce each kind and the representative works.

The first type—proxy objective—uses a local objective function for one layer i to learn θi, the
parameters for the current layer i. The model then fixes θi, adds one more layer i+ 1 with another
objective function, and learns θi+1, the parameters for the new layer. Consequently, proxy objective
decouples the end-to-end backpropagation since the parameters in each layer are trained via a local
objective function (Nøkland & Eidnes, 2019; Belilovsky et al., 2019; 2020; Löwe et al., 2019).

The second type—target propagation—approximates gi, the inverse of the downstream layers for
every layer i. To update θi, the parameters of layer i, the model backpropagates the target (not
gradient) through function gi. Consequently, target propagation handles the situation where the
relationship between the parameters and the cost is highly non-linear (e.g., discrete), which is oth-
erwise difficult to solve using backpropagation (Lee et al., 2015; Meulemans et al., 2020).

The third type is synthetic gradients, which learns a function to approximate the gradient for each
layer and utilizes the approximated gradients as the true gradients to update the parameters. This
method thus decouples the layer-wise parameters (Jaderberg et al., 2017; Czarnecki et al., 2017;
Lansdell et al., 2019).

Associated learning is different from these methods in several ways. First, both proxy gradient and
target propagation propagate the signal (loss or target) from the output layer directly to each layer.
Biologically, this could be implausible because when in deep networks, hidden layers near the inputs
are unlikely to receive direct signals from the output layer that are far away. Associated learning, on
the other hand, does not require each component to receive signals directly from the output layer.
Additionally, although proxy gradient allows each layer to have a local objective, most models of

8



Published as a conference paper at ICLR 2022

this type still learn the parameters in a layer-wise fashion, so it may still be challenging to learn the
parameters using a pipeline. One exception is Greedy InfoMax (GIM) (Löwe et al., 2019), which
does not require a direct signal from the output layer. However, GIM uses contrastive loss as the loss
function, so GIM can mainly be applied to self-supervised learning tasks. As a result, for supervised
learning tasks, AL is likely a more natural choice than GIM. As for synthetic gradients, empirical ex-
periments show that gradients are difficult to predict, so model training based on synthetic gradients
usually yields much worse accuracies than those for models trained via backpropagation.

4.2 NEURAL NETWORKS WITH STRUCTURES SIMILAR TO AL

The structure of an AL-form model may look similar to a ResNet, as the bridge functions in AL
appear analogous to the residual connections in ResNet. Therefore, some may argue that AL’s
superiority is the result of its resemblance to ResNet. However, the residual connections in ResNet
are implemented to mitigate accuracy saturation (He et al., 2016), and all the parameters are adjusted
to fit a global objective function, whereas the bridge functions in AL are implemented to modularize
the network such that the gradient flow in one AL layer does not pass to other layers. Therefore,
the bridge functions and the residual connections are only structurally similar; their purposes and
functionalities are entirely different.

An AL-form network may also appear similar to contrastive learning (CL). Particularly, CL trans-
forms a pair of images i and j (along with their augmented images i′ and j′) into vectors with
large distances between (1) images i and j and (2) augmented images i′ and j′, with small dis-
tances between (1) an image i and its augmented image i′ and (2) an image j and its augmented
image j′. This process is related to AL because both models convert inputs to vectors and compare
the distance between the transformed vectors. Following this line, we are interested in studying
the relationship between AL and CL in two ways. First, we could apply AL to CL such that CL
is trained more effectively. Second, we could extend the AL model such that the inputs include
a pair of samples x1 and x2 with different labels and design an objective function that maximizes
the distance between the vectors transformed from x1 and x2 (since their labels are different) and
simultaneously minimizes the current AL loss function (Equation 3).

An AL network is also structurally similar to the models in (Lin et al., 2014; Yeh et al., 2017), which
also transform x into a latent space and convert it to y via an autoencoder. However, the design
motivations are very different from AL. The two works attempt to efficiently represent a multi-label
target y by a low-dimensional latent representation c, so learning a function to convert x to c may be
easier. The motivation of AL is to design isolated loss functions so that the new design has favorable
properties that BP does not have, such as short gradient flows, forward shortcuts, dynamic layer
accumulation, and layer-wise pipeline learning. Isolated objectives are not implemented in (Lin
et al., 2014; Yeh et al., 2017).

Ladder network is another structurally similar network (Rasmus et al., 2015), which adds skip con-
nections between each encoder to its corresponding decoder. While the ladder network may look
similar to AL structurally, at least two manifest differences exist. First, the residual between y and
ŷ in the ladder network is propagated through all layers to update the parameters on the inference
path, but in AL, each layer has a local objective function, and most layers do not receive signals
from the output layer. Second, the skip connection in the ladder network connects an encoder layer
to a decoder layer. In contrast, the bridge function in AL connects a hidden representation of x to
the bottleneck layer of an autoencoder to create the local loss.

5 CONCLUSION

This paper studies associated learning, an alternative methodology to end-to-end backpropagation.
Since backpropagation is the cornerstone of today’s deep learning but still suffers from optimization
and training performance issues, it is appropriate to study alternatives to backpropagation. We dis-
cussed the unique properties of AL that BP does not have. AL provides multiple inference paths; it
allows dynamic layer accumulation during training; it supports pipeline training, and, perhaps most
importantly, its prediction power is comparable to and frequently better than backpropagation on
many of the most successful neural network structures. Ablation studies disclose why AL may work
and demonstrate AL’s effectiveness and architecture flexibility in training and testing.
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6 APPENDIX

6.1 AL INFERENCE ALGORITHM

Algorithm 3 shows the inference algorithm for AL networks. It supports forward shortcuts by going
through only ℓ of the L AL layers.

From Algorithm 3, it is clear that the functions gi-s are not used in inference, and only one bridge
function out of the L bi-s are used in inference. Therefore, the number of parameters of inference is
smaller than the number of training parameters.

Algorithm 3 Using AL form network for inference
Input AL network A = (a1, a2, ...aL), ai = {fi, bi, gi, hi}Li=1, input data x, inference length

ℓ, 1 ≤ ℓ ≤ L
Output predicted label

1: s← x
2: for i = 1 to ℓ do
3: s← fi(s)

4: t← bℓ(s)
5: t′ ← t ▷ Same as Figure 2
6: for i = ℓ to 1 do
7: t′ ← hi(t

′)

8: return t′

6.2 CNN, RNN, AND TRANSFORMER IN THEIR AL FORMS

Here we extend 2.1.1 for further explanation. In AL, the process in bridge layers did not influence
the actual forward path in AL. Therefore, the process in 2.1.1 is only used to calculate associated
loss and will not effect the original representation shape. Figure 4 and Figure 5 show that when we
take the last hidden state in the sequence input to calculate associated loss, the original sequence
representation remains the same when propagate to the next layer.
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Figure 4: A closer look on how AL works on RNN.

6.3 IMPLEMENTATION ENVIRONMENT DETAILS

For LSTM and Transformer, we used the PyTorch package (Paszke et al., 2019). For CNN, we
used the Tensorflow Abadi et al. (2015) package to build the AL models (vanilla CNN and a vi-
sual geometry group (VGG) network). We trained the models with GeForce 3090 GPUs on Ubuntu
Linux 20.04. Since current hardware development does not support actual pipeline training, we sim-
ulated pipeline training by blocking gradient flows between AL layers with Tensor.detach()
in PyTorch and with tf.stop_gradient() in TensorFlow.
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Figure 5: A closer look on how AL works on Transformer.

6.4 DATASET STATISTICS

The IMDB Review dataset (Maas et al., 2011) is a binary sentiment classification dataset contain-
ing 25k training data and 25k test data. AG’s News corpus dataset (Zhang et al., 2015) includes
four news topics: world, sports, business, and sci/tech. It has 120k training data and 7.6k test data.
The DBpedia Ontology classification dataset (Zhang et al., 2016) was constructed by picking 14
non-overlapping topic classes from DBpedia 2014, containing 560k training samples and 70k test
samples. The Stanford Sentiment Treebank (SST2) dataset (Socher et al., 2013) is a binary senti-
ment classification dataset from GLUE (Wang et al., 2018). The dataset contains 67k training sam-
ples, 872 validation samples, and 1.8k test samples. The CIFAR-10 dataset contains color images
from 10 classes; 50k are training samples, and 10k are test samples. Finally, the Fashion-MNIST
dataset (Xiao et al., 2017) is a grayscale image classification dataset with 10 classes. It consists of
60k training samples and 10k test samples.

6.5 TEXT CLASSIFICATION

During training, the most frequent 30k words in the training corpus were included in the word em-
bedding. We replaced the remaining words with the [UNK] token. We trained all text classification
experiments with 50 epochs. We used the Adam optimizer.

6.5.1 BI-LSTM

For Bi-LSTM, we applied gradient clipping with the value 5. For the standard version of Bi-LSTM,
we experimented with learning rates of 0.0005 and 0.0001 and reported that with better accuracy.
We also adjusted the learning rate for AL, but the learning rate has little influence on the accuracy
and the convergence speed. We used a batch size of 64 for all Bi-LSTM experiments. For IMDB and
DBpedia, we set the max sequence length to 500. For AG’s News and SST, we set the max sequence
length to the longest sequence length; the exact length settings were applied to the Transformer
experiments. The objective of the standard Bi-LSTM was a cross-entropy loss. Details are given in
Table 7.

Table 7: Bi-LSTM settings.
emb dim lstm1 dim lstm2 dim g dim h dim lr

LSTM 300 350 350 – – 0.0001
LSTM-AL 300 300 300 128 128 0.0001
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6.5.2 TRANSFORMER

For the standard Transformer model, we used negative log-likelihood as the objective with multi-
head attention (6 heads). We set the batch size to 128 because the standard Transformer converges
only with a large batch size in our experiment. Table 8 gives the details.

Table 8: Transformer settings.
emb dim layer1 dim layer2 dim head g dim h dim lr

Tran 300 512 512 6 – – 0.00025
Tran-AL 300 256 256 6 128 128 0.00025

6.6 IMAGE CLASSIFICATION

We normalized the image pixels for both FashionMNIST and CIFAR-10 datasets as a preprocessing
step. Since CIFAR-10 is more challenging, we also performed data augmentation on this dataset
by resizing, random cropping, random flipping, and adjusting the brightness of the images. We set
the batch size to 128. We set the initial learning rate to 0.0001 and applied scheduled decay until
converging. We used Adam as the optimizer and cross-entropy loss for the standard version.

Vanilla CNN Model We implemented the vanilla CNN by modifying the previous code. The
CNN contains 13 hidden layers and an output layer. The first 8 hidden layers are convolution layers;
the last is flattened to a fully connected layer with 1280 neurons. The subsequent layers consist of 4
feedforward layers, followed by an output layer with 10 classes. We set the initial learning rate to
0.0001 and applied scheduled decay.
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Figure 6: Testing accuracy vs. epochs for CNN and CNN-AL on CIFAR-10 and FashionMNIST.

6.7 TRANSFORMER-AL CONVERGENCE SPEED

Training an LSTM, a CNN, or a VGG based on AL requires much fewer epochs when compared
with training them by BP; this trend is less clear when training a Transformer-AL model. However,
we found that after training the Transformer-AL for roughly 5 epochs, the validation set accuracy
(90.95) can already achieve 99% of the best validation set accuracy (91.31), and the test accuracy
(90.98) is very close to the best test accuracy (91.17, i.e., training Transformer-AL for 20 epochs for
AG News). So, we could reduce the number of epochs by sacrificing slight accuracy. Transformer-
AL on DBpedia has a similar trend: when training Transformer-AL on DBpedia for 5 epochs, its
validation set accuracy achieves 96.0902, which is very close to the best validation set accuracy
(96.6134). This result shows that Transformer-AL is efficient on convergence when training on
DBpedia and AGnews.
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6.8 ASSOCIATED LOSS VS. LAYER DEPTH

This section shows that, under the AL network structure, the latent representations in the lower layer
appear to help generate the latent representations in an upper layer.

We experimented with the AL layer number i vs. the associated loss ∥si − ti∥22 using different
datasets on different network structures. The following tables show that the associated loss at an
upper layer (i.e., the layers closer to the output) is smaller than at a lower layer (i.e., the layers closer
to the input). Consequently, the shortcuts are likely doing some kind of curriculum learning.

Layer Associated Loss on DBPedia Associated Loss on AGNews
Embedding layer 5.6061× 10−5 1.4802× 10−4

LSTM-1 3.7440× 10−5 5.3281× 10−5

LSTM-2 1.7786× 10−7 4.8651× 10−6

Table 9: Layer depth vs. associated loss on LSTM-AL

Layer Associated Loss on DBPedia Associated Loss on AGNews
Embedding layer 5.8318× 10−5 3.3179× 10−4

Layer-1 3.0053× 10−6 1.2561× 10−4

Layer-2 7.4727× 10−8 1.3976× 10−5

Table 10: Layer depth vs. associated loss on Transformer-AL

6.9 THE DESIGN OF THE OVERCOMPLETE AUTOENCODERS IN AL

An autoencoder’s hidden layer usually consists of fewer neurons than the input and output layers.
However, we use an overcomplete autoencoder (i.e., the hidden layer has more neurons than the
input/output layers) (Vincent et al., 2010) in AL. An overcomplete autoencoder can reach zero re-
construction loss (i.e., the autoencoder loss in Equation 3) by copying the neurons from the input
layer to the output layer. However, in AL, gi (the encoding function of the autoencoder at layer i)
needs to minimize both Li

AE the autoencoder loss and Li
A the associated loss. As a result, Li

A can
be regarded as a regularization term when minimizing Li

AE .

Additionally, we hypothesize that mapping the one-hot encoded y to a high dimensional vector can
accelerate the convergence speed. According to Graf et al. (2021), the cross-entropy loss and su-
pervised contrastive loss attain their minimum if and only if the features of each class collapse to
the vertices of an origin-centered regular K − 1 simplex, where K is the number of classes. In
AL, since the autoencoder in layer-1 simply maps y to a high dimensional space and back (i.e.,
letting h1(g1(y)) ≈ y), it is nearly guaranteed to reach minimum loss. Therefore, we can consider
g1(y) as an ideal prototype for AL to fit in, such that, b1(f1(x)) ≈ g1(y). Therefore, the associ-
ated loss directly optimizes for a K − 1 regular simplex in the representation space, which is the
best configuration to minimize the supervised contrastive learning loss (Khosla et al., 2020). Such
an autoencoder setup probably helps AL find the best configuration in the early stage of training.
This may explain why AL converges so fast. Besides, an overparameterized model may accelerate
optimization (Arora et al., 2018; Chen & Chen, 2020). Empirical studies in Section 3.5 support our
claim: using overcomplete autoencoders to replace classifiers performs better.
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6.10 PYTORCH PSEUDOCODE

Here we provide a PyTorch pseudocode of a 5-layer AL network.

import torch
import torch.nn as nn

class MLP(nn.Module):
def __init__(self, d1, d2):

super().__init__()
self.f = nn.Sequential(

nn.Linear(d1,d2),
nn.Sigmoid())

def forward(self, x):
return self.f(x)

class AL(nn.Module):
def __init__(self, class_num):

super().__init__()
# we choose 10 as hidden dimension size for simplicity.
self.f = nn.ModuleList([MLP(10, 10) for i in range(5)])
self.g = nn.ModuleList([MLP(10, 10) for i in range(5)])
self.b = nn.ModuleList([MLP(10, 10) for i in range(5)])
self.h = nn.ModuleList([MLP(10, 10) for i in range(5)])
self.g[0], self.h[0] = MLP(class_num, 10), MLP(10, class_num)

self.mse, self.ce = nn.MSELoss(), nn.CrossEntropyLoss()
self.c = class_num

def forward(self, x, y):

loss = 0.0
s_i, t_i = x, nn.functional.one_hot(y, num_classes=self.c).float()
# convert y into one-hot vector for linear input
for i in range(5):

last_t_i, s_i = t_i, self.f[i](s_i) # encode input
t_i, s_i_prime = self.b[i](s_i), self.g[i](t_i) # bridge + encode target
t_i_prime = self.h[i](t_i) # decode target

if i == 0:
loss += self.mse(t_i.detach(), s_i_prime) + self.ce(last_t_i, t_i_prime)

else:
loss += self.mse(t_i.detach(), s_i_prime) +
self.mse(last_t_i, t_i_prime)

s_i, t_i = s_i.detach(), t_i.detach() # cut gradient

return loss

def inference(self, x):
for layer in self.f:

x = layer(x)
y = self.b[-1](x)
for layer in reversed(self.h):

y = layer(y)
return y

model = AL(class_num=5)
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x, y = torch.rand(30, 10, dtype=torch.float), torch.randint(high=4, size=(30, ))
loss, pred = model(x, y), model.inference(x)
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