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Abstract

Style transfer methods put a premium on two objectives: (1) completeness which encour-
ages the encoding of a complete set of style patterns; (2) coherence which discourages the
production of spurious artifacts not found in input styles. While existing methods pursue
the two objectives either partially or implicitly, we present the Completeness and Coherence
Network (CCNet) which jointly learns completeness and coherence components and rejects
their incompatibility, both in an explicit manner. Specifically, we develop an attention
mechanism integrated with bi-directional softmax operations for explicit imposition of the
two objectives and for their collaborative modelling. We also propose CCLoss as a quanti-
tative measure for evaluating the quality of a stylized image in terms of completeness and
coherence. Through an empirical evaluation, we demonstrate that compared with existing
methods, our method strikes a better tradeoff between computation costs, generalization
ability and stylization quality.
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1 Introduction

Regarding neural style transfer problems (Jing et al., 2020b), Gatys et al. (2016) has demonstrated that a
pretrained VGG network (Simonyan & Zisserman, 2015) can produce features that entail content structures
and style patterns in their correlation. But the optimization-based method (Gatys et al., 2016) is prohibitively
slow and its range of application is fairly limited. Since then a great number of efforts (Johnson et al., 2016;
Chen et al., 2017; Sanakoyeu et al., 2018; Gu et al., 2018; Chen et al., 2021; Deng et al., 2022) have been
dedicated to striking the balance between speed, generalization capability and stylization quality. To achieve
fast and arbitrary style transfer, Statistics-based methods adjust the holistic statistics of a content image
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Figure 1: (a) Given a content-style image pair, the full coherence learning of input styles produces concrete
but incomplete patterns while the full completeness learning presents rich textures with white distorted
artifacts. (b) Instead, CCNet can capture notable holistic styles comprehensively and fine-grained details
faithfully by jointly capturing completeness and coherence.

in accordance to that of a style image (Huang & Belongie, 2017; Li et al., 2017; Sheng et al., 2018; Zhang
et al., 2019; Li et al., 2019; Wu et al., 2020). These methods can capture a diverse set of styles (indicating
completeness) but often fail to synthesize style characteristics faithfully, as they often introduce unexpected
or distorted patterns. Patch-based methods on the other hand swaps local feature patches (Chen & Schmidt,
2016; Park & Lee, 2019). Although these methods do not suffer much from pattern distortions, and excel at
synthesizing fine-grained style details (indicating coherence), they often cannot synthesize a complete set of
input styles, and they repeat undesirable style patterns such that blurred contents are produced.

The aforementioned two lines of work dedicates to either completeness or coherence. Others have sought to
achieve both objectives at once: Gu et al. (2018); Sheng et al. (2018); Park & Lee (2019); Wu et al. (2021);
Liu et al. (2021); Deng et al. (2022); Zhang et al. (2022) have already attempted to unify statistics-based and
patch-based methods. Yet their solutions are either partial or indirect: without an explicit, direct formulation
of coherence or completeness, fully exploiting the two transfer priors is impossible. Seeing the shortcomings
of our predecessors, we formally define completeness and coherence in the context of style transfer: for an
input style feature Fs and initial stylized result Fcs, completeness requires as many patches in Fs as possible
to be preserved in Fcs; coherence requires all patches in Fcs to be from Fs (Eq. 1). In fact, our formulation
of the two transfer priors resonate with symmetric Chamfer matching (Simakov et al., 2008; Fan et al., 2017;
Yang et al., 2018). Our explicit definition allows us to 1) explicitly impose completeness and coherence as
stylization objectives that lead to unbiased results; 2) parse the relation between completeness and coherence
features for compatibility learning; 3) identify the optimal trade-off between the two objectives by tuning
their relative weights. To this end, we introduce a patch-based similarity measure (Simakov et al., 2008) to
both forward propagation during inference and back propagation during training.

Hence we devise the Completeness and Coherence Network (CCNet), a dual-branch style transfer framework
with feature diffusion networks inside to leverage our formulation of completeness and coherence. The
gist of the CCNet is the Non-local Diffusive Attention Module, which further stylizes Fcs by completeness
and coherence while preserving its spatial structures: based on the semantic correlation between Fcs and
Fs (Sheng et al., 2018), we update each patch in Fcs by its closest patch in Fs for coherence modeling.
Similarly, we propagate each patch in Fs to its closest patch in Fcs for completeness modeling. This joint
analysis paradigm aims to learn the interrelation of these objectives, as we assume that compatibility between
completeness and coherence feature leads to better stylization.

Turning to our implementation—lying at the heart of the Non-local Diffusive Attention Module is a bi-
directional softmax operator (Fig. 5): each direction of the operator is situated in one branch, for CCNet
to learn one of the two objectives at low computational cost, before the two branches collaborate for joint
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Figure 2: We show that both CCNet (for feed-forward inference) and CCLoss (for backward training)
are effective by comparing them with SANet and perceptual loss. Compared with perceptual loss, CCLoss
significantly reduces distorted patterns in the background and halation around edges (check the patches
joined by the red curve). Compared with SANet, CCNet renders a more diverse set of styles, as we can see
from the color variation in the sky (check the patches joined by the blue curve). Neither CCNet (for forward
propagation) nor CCLoss (for back-propagation) can lead to satisfactory performance on its own. Check the
appendix for more results.

analysis. Finally, a learnable decoder reconstructs a stylized image from learned features. Inspired by prior
work in which symmetric Chamfer matching was used to formulate losses (Simakov et al., 2008; Fan et al.,
2017; Yang et al., 2018), we propose the completeness and coherence loss (CCLoss) as a patch-based similarity
measure to train our network. Unlike the holistic perceptual loss (PLoss) (Johnson et al., 2016), CCLoss
allows us to explicitly balance between completeness and coherence. Its patch-wise nature also helps with
representing detailed style patterns (Fig. 1). We also apply the identity loss (Park & Lee, 2019) to speed up
training and to maintain content structure without compromising style richness.

To the best of our knowledge, we are the first to explicitly capture completeness and coherence and analyze
them altogether in a patch-based manner. Our contributions are as follow:

• We explicitly introduce completeness and coherence to style transfer, and we present a novel framework
(CCNet) and a loss function (CCLoss) to fully exploit the two objectives via joint analysis.

• We design an improved softmax operator (Fig. 5) for fast completeness and coherence modeling, and we
investigate the impacts of our architectural design choices via a comprehensive ablation study.

• We demonstrate that CCNet is better at capturing diverse and coherent style patterns than existing
methods, and that it achieves better stylization quality without incurring heavey computation burdens.

2 Related Work

Style transfer. Here we only review the most relevant methods for neural arbitrary style transfer, and we
refer readers to Jing et al. (2020b) for a comprehensive survey.

Gatys et al. (2016) is a pioneer work that achieved impressive stylization results. Nevertheless it was
built upon a time-consuming optimization method; moreover, it attends only to completeness, but does not
address style pattern distortions at all (Li & Wand, 2016a; Chen & Schmidt, 2016; Sheng et al., 2018).
Since then, Chen & Schmidt (2016) realized fast arbitrary style transfer with a patch-swap operation for
intermediate learned features, but the method cannot parse the complete set of style information. Several
later approaches (Huang & Belongie, 2017; Li et al., 2017; Sheng et al., 2018; Song et al., 2019; Li et al.,
2019; Jing et al., 2020a) propose to replace the statistics of content images with those of style images. Taking
advantage of the strong representation power of second-order statistics, they (Li et al., 2017; Song et al.,
2019) are able to render a rich set of style elements, hence achieving completeness. But these methods often
produce spurious artifacts and distort both spatial layouts and style patterns in their renderings, thus being
incoherent with respect to their inputs. SANet (Park & Lee, 2019) can produce the most coherent results
w.r.t. input styles, since it directly combines content features with their closest patches from style features.
But it often biases too much towards contents because the matched style patches strictly follow local content
structures. Therefore it often fails to render a complete representation of input styles.
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Figure 3: (a) Architecture of the entire style transfer pipeline. A VGG-based encoder transforms content
image Ic and source image Is to F i

c and F i
s for i ∈ {4, 5} respectively. Each feature map is then fused by

a CCNet module. The output from each CCNet is then summed up and passed to a trainable decoder to
produce images Ics. (b) Architecture of a CCNet module. Content feature Fc and source feature Fs are
passed to diffusive attention modules (Fig. 4) to model completeness and coherence. Then F̃coh and F̃com

are passed to Joint-Analysis Attention Module to compute skip connections for better compatibility between
F̃coh and F̃com. Finally, the stylization feature Fcs is produced via an element-wise multiplication.

While the aforementioned work can achieve either completeness or coherence but not both, later work (Gu
et al., 2018; Sheng et al., 2018; Liu et al., 2021; Deng et al., 2022) aim to model both completeness and
coherence, but only indirectly without individually formulating completeness and coherence features. Specif-
ically, Gu et al. (2018) proposes a feature reshuffle module to boost style richness by reducing the chances
to search similar style patches. Sheng et al. (2018) matches normalized feature maps before adjusting their
statistics to mitigate conflicts between content structures and target styles. Liu et al. (2021) boosts its
ability to synthesize details by adaptively performing attentive normalization on a per-point basis. Other
similar state-of-the-art methods include internal-external contrastive learning (Chen et al., 2021), parametric
style composition (Wu et al., 2021), adversarial learning (Xu et al., 2021), vision transformer (Deng et al.,
2022) and domain enhancement based style projector (Zhang et al., 2022).

For arbitrary stylization, our approach follows the local patch alignment paradigm, which is closely related
to patch-based methods (Li & Wand, 2016b; Chen & Schmidt, 2016; Sheng et al., 2018). But unlike these
methods, we align images by explicitly imposing the completeness and coherence of input styles and jointly
analyzing them. This transfer strategy can simultaneously preserve the richness and fine-grained details
of style patterns better than prior. While other methods have yet to achieve this, the CCLoss allows us
to balance completeness and coherence by adjusting their relative weights. As an ablated form of CCNet,
SANet (Park & Lee, 2019) only takes coherence into account; see Fig. 2 and Sec. 3.2 for detailed discussions.

Symmetric Chamfer matching. Chamfer matching (Barrow et al., 1977) has a multitude of applications
in computer vision and graphics (Borgefors, 1988; Thayananthan et al., 2003; Ma et al., 2010; Wu et al.,
2019). Simakov et al. (2008) first introduced symmetric Chamfer matching to the field of visual summary
by explicitly defining completeness and coherence. In the context of deep learning, several work (Fan et al.,
2017; Achlioptas et al., 2018; Yang et al., 2018) have applied similar ideas to reconstruct 3D point clouds.
Since then, symmetric Chamfer distance has been extensively adapted to measure the synthesized quality
of 3D shapes. But to the best of our knowledge, we are the first to realize style transfer with explicit
and full completeness and coherence modeling. Unlike existing methods, we perform completeness and
coherence modeling in both feed-forward style inference and backward network training to maximize their
representation potentials. Moreover, we aim to jointly analyze these two objectives at inference. We present
an evaluation of these design components in Fig. 2, Fig. 8 and in the ablation study in Sec. 4.

3 Method

Fig. 3 illustrates the overall architecture of our style transfer pipeline. Our discussion follows a bottom-up
approach: we start off with detailing the gist of our CCNet—the Non-local Diffusive Attention Module in Sec.
3.1. The module leverages affinity matrix (Jiang et al., 2018; Wang et al., 2018; Zhu et al., 2019) which allows
the output style feature to encapsulate richer style patterns and more fine-grained details. Then in Sec. 3.2
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Figure 4: The Non-local Diffusive Attention Module as a fundamental building block of the CCNet in Fig. 3
(b). Given Fc with shape (B,Hc,Wc, C) and Fs with shape (B,Hs,Ws, C) as input content & style features,
we use a diffusion network to produce completeness (coherence) feature F̃com (F̃coh).

Figure 5: Here we detail the five steps to compute F̃com from Fig. 4: 1) First, we divide content feature
Fc and source feature Fs into 9 patches. 2) Then we compute a 9× 9 affinity matrix A to measure affinity
between content patches from Fc and style patches from Fs. 3) Next, we apply the softmax function along
each column of A to produce the completeness matrix Acom. Each of its element Ai,j

com tells how much
style information from the j-th style patch should propagate to the i-th content patch. 4) So for each style
patch, we can identify its “nearest content patch” with the largest value maxi A

i,j
com (see the blue cells) to

ensure every style patch can be included in the stylized content feature, hence enriching stylized patterns.
5) Finally, for completeness transfer, we diffuse each source style patch to its closest content patch through
F̃com = Acom · Fs to encourage more diverse results. Here “·” is a dot product. Similarly, we can compute
the coherence matrix (Acoh) by computing softmax along each row of A, identify the largest values (orange
cells), look up for the nearest style patch for each content patch and finally produce F̃coh. We visualize the
closest content patch (w.r.t) a style patch in teal and a closest style patch in red.

we discuss the Completeness-Coherence Network (CCNet) module with four attention modules instantiated
inside. While the Coherence (Completeness) Attention Module focuses solely on its own objective, each Joint
Analysis Attention Module processes the learned coherence and completeness feature collaboratively. In Sec.
3.3 we discuss our overall architecture, with emphasis on the CCLoss which is for balancing the effects of
completeness and coherence while preserving details. Finally we discuss implementation details in Sec. 3.4.
For more discussions on our model design, please refer to the appendix.

3.1 The Non-local Diffusive Attention Module

Inspired by Fan et al. (2017); Simakov et al. (2008), we assume a stylized feature Fcs is visually coherent
and complete to style feature Fs if as many as possible patches of Fcs are preserved in Fs, and vice versa.
Namely, for each stylized content patch in Fcs, we search for its most similar patch in Fs and evaluate their
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distance, and vice-versa:

d(Fcs, Fs) =
∑

P ⊂Fcs

min
Q⊂Fs

D(P,Q) +
∑

Q⊂Fs

min
P ⊂Fcs

D(Q,P ), (1)

where P and Q denote patches in Fcs and Fs respectively. The first term in Eq. 1 measures deviation from
coherence; the second term measures deviation from completeness. Neither completeness nor coherence on
its own is enough to produce a good style transfer.

We use Fc to denote initial stylized feature, and we use it alongside Fs to compute final stylized feature
Fcs. Similar to Simakov et al. (2008), we propagate Fs to Fc in patches to optimize the similarity in Eq. 1.
Specifically, for each patch Q ⊂ Fs, we find its closest patch P ⊂ Fc and apply the patch Q to update P such
that all style patches in Fs are incorporated into Fcs, leading to more diverse stylized results. Looking at the
other way round: for each patch Ṗ ⊂ Fc, we find the closest patch Q̇ ⊂ Fs and apply the patch Q̇ to update
Ṗ for coherence, leading to more adaptive results. We then implement this symmetric nearest neighbor
search with a softmax operation along each axis of an affinity matrix (check Fig. 5 for details). This feature
update procedure encourages us to employ the non-local diffusion architecture (Jiang et al., 2018; Wang
et al., 2018) in Fig. 4 to achieve this motivation. We also create instances of the non-local diffusive module
to jointly analyze completeness and coherence for compatibility learning. Although overlapping patches with
larger sizes are better at capturing coarse scales and modeling relationships within a local region, we set the
patch size to 1 in order to balance visual performance and computation cost.

3.2 The Completeness and Coherence Network (CCNet)

CCNet (Fig. 3) computes the stylized feature Fcs by spatially rearranging Fs with Fc. To do this, we create
multiple instances of the Non-local Diffusive Attention Module: Coherence and Completeness Attention for
modelling completeness and coherence, followed by two Joint Analysis Attention modules.

Following Sheng et al. (2018); Park & Lee (2019), we first normalize Fc and Fs to remove their style informa-
tion so that the later style diffusion can be realized based on the content structures of input images, yielding
F̄c and F̄s. Turning out attention to the Completeness (Coherence) Attention Module: Let softmaxi(·) be a
softmax operation along the ith axis and the starting index of axes be 0. Following our discussion in Sec. 3.1,
we compute features for coherence and completeness as2:

F̃coh = softmax2(ψcoh
u (F̄c) · ψcoh

g (F̄s)T ) · ψcoh
h (Fs), (2)

F̃com = softmax1(ψcom
u (F̄c) · ψcom

g (F̄s)T ) · ψcom
h (Fs). (3)

Here {ψcoh
h , ψcoh

u , ψcoh
g , ψcom

h , ψcom
u , ψcom

g } and “·” represent learnable convolutions and dot-product similarity
individually; see Fig. 5 for more details.

Next, we feed F̃coh and F̃com into the Joint Analysis Attention Module (Fig. 3 (b)). We instantiate Joint
Analysis Attention for two reasons: 1) We aim to improve pixel-level compatibility between F̃coh and F̃com;
2) We aim to combine the information at different positions of an image to capture the long-range dependen-
cies between pixels. To these ends, we feed F̃coh and F̃com to another shared diffusion block which allows us
to rearrange feature vectors of F̃coh (F̃com) to fit F̃com (F̃coh) well; see the appendix for more details. Thus
we compute two residual features as:

F̂coh = softmax2(ψu(F̃com) · ψg(F̃coh)T ) · ψh(F̃coh), (4)
F̂com = softmax2(ψu(F̃coh) · ψg(F̃com)T ) · ψh(F̃com), (5)

where {ψh, ψu, ψg} denotes learnable convolution parameters and “·” denotes dot-product similarity. Then
we update F̃coh and F̃com as F̈coh = F̃coh + F̂coh, F̈com = F̃com + F̂com. And we fuse F̈coh and F̈com together
as Fcs = F̈coh⊙ F̈com to further facilitate their compatibility in a channel-wise manner, where ⊙ indicates an
element-wise multiplication. Finally, we merge Fc into Fcs to better preserve the input content structures
as Fcsc = Fcs + Fc.

2Both ψcoh
u (F̄c) ·ψcoh

g (F̄s)T and ψcom
u (F̄c) ·ψcom

g (F̄s)T measure the affinities between F̄c and F̄s whose shape is [batch size,
resolution of Fc, resolution of Fs]; check details in the appendix.
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Discussion on SANet. Both our CCNet and SANet use the non-local network (Wang et al., 2018) as a
fundamental building block, since both of our networks measure feature correlations and then diffuse target
style features to content features. But our approach differs from that of SANet in the follow aspects:

• As mentioned in Sec. 2, our motivation differs from SANet’s. Unlike SANet which matches semantically
nearest style features onto content features, we take complete styles into account. Our approach allows
us to address coherence and completeness more comprehensively than existing patch-based and statistics-
based methods, as shown in Fig. 2 and 6.

• As far as model architecture, we can think of SANet as an ablated form of CCNet: if we keep the Coherence
Attention Module only, and strip away the Completeness Attention Module as well as the Joint Module
then we have SANet. In Fig. 2 and 8, we show that CCNet with minor architectural changes from SANet
yields remarkable visual improvement.

• SANet is trained with perceptual loss (Johnson et al., 2016), which generates style distortions and in-
troduces blurry halation around the edges in Fig. 2. Our CCLoss yields much neater contours and less
distorted style patterns via coherence modeling and patch-wise computation.

3.3 Style Transfer Pipeline with CCNets

Aside from putting in the CCNet modules, in our style transfer pipeline we retain the most of SANet’s
architecture, so that when benchmarking for completeness and coherence we can attribute any performance
improvement directly to CCNet: see Fig. 2 and Fig. 6. In Fig. 3 (a), our entire pipeline consists of three
parts: one VGG-based encoder (denoted as E), a symmetric decoder and two CCNet modules. The VGG-
based encoder takes a content image Ic and a style image Is as inputs, and produces content feature map
F i

c and style feature map F i
s , where i stands for the map being produced by the relu_i layer of the encoder.

We instantiate two CCNet modules in our framework to capture the style patterns at multiple scales with
modest computational cost. Each CCNet takes the content and style feature map from a single layer (relu_4
or relu_5) as inputs and synthesizes the stylized features as:

F 4
csc = CCNet(F 4

c , F
4
s ), F 5

csc = CCNet(F 5
c , F

5
s ). (6)

Then F 4
csc and F 5

csc are fused as:
Fm

csc = F 4
csc + u(F 5

csc), (7)

where the u(·) stands for upsampling. Finally, a trained decoder maps Fm
csc back to a stylized image Ics

which possesses the content structures from Ic and the style patterns from Is.

Loss function. Our loss function for jointly training the two CCNets and the decoder consists of two parts:

Ltotal = Lid + Lcc. (8)

Lid is the identity loss (Park & Lee, 2019) which speeds up training and maintains the content structure
without losing richness of styles. Following Park & Lee (2019), we define the identity loss as Lid =
λ1

idL
1
id + λ2

idL
2
id, and both L1

id and L2
id are computed as:

L1
id = ||Icc − Ic||2 + ||Iss − Is||2, (9)

L2
id =

L∑
i=1
||Ei(Icc)− Ei(Ic)||2 + ||Ei(Iss)− Ei(Is)||2, (10)

where Icc (or Iss) denotes reconstruction results from stylizing two identical content images (or style images)
and Ei(·) indicates the features outputted by the layer relu_i of the VGG encoder.

Lcc is the Completeness and Coherence Loss (CCLoss), which we use to facilitate the fine style patterns and
control relative effects of completeness and coherence. Following Eq. 1 we set patch size to 1 and employ the
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cosine distance as our affinity measure. Then we have Lcc = λcom
cc Lcom

cc + λcoh
cc Lcoh

cc as:

Lcoh
cc =

∑
p5∈E5(Ics)

min
q5∈E5(Is)

D(p5, q5) +
∑

p4∈E4(Ics)

min
q4∈E4(Is)

D(p4, q4), (11)

Lcom
cc =

∑
q5∈E5(Is)

min
p5∈E5(Ics)

D(q5, p5) +
∑

q4∈E4(Is)

min
p4∈E4(Ics)

D(q4, p4), (12)

where {pi, qi}, i ∈ {4, 5} are achieved via the encoder Ei(·) for transfer results and input style images
individually. The distance between pi and qi is:

D(pi, qi) = 1− ⟨pi, qi⟩
∥pi∥ · ∥qi∥

. (13)

Here we only calculate the CCLoss for feature maps produced by the relu_4 and relu_5 layer of the encoder,
corresponding to the input to each CCNet.

3.4 Implementation Details

We use 80, 000 images from MS-COCO (Lin et al., 2014) and 80, 000 images from WikiArt (Nichol, 2016)
as the content and style dataset respectively for training. We initialize the encoder with a pre-trained VGG
network (Simonyan & Zisserman, 2015) and freeze it during training. As far as the decoder, we take the
same setting from Huang & Belongie (2017). We also apply the Adam optimizer (Kingma & Ba, 2015) with
batch size set to four image pairs, and learning rate set to 1e-4 for 200K iterations. During training, first
we resize the smaller dimension of each image to 512 but keep the initial ratio. Then we randomly crop a
region of size 256× 256. But in testing an input image can be of any size. Throughout our experiments, we
set λ1

id, λ2
id, λcom

cc and λcoh
cc respectively to 50, 1, 300 and 5.

4 Experimental Results

First we compare our approach with several state-of-the-art methods qualitatively and quantitatively. Note
that all of our results on the baselines are obtained from publicly available, pre-trained models under their
default settings. Then we show results from our ablation study in which we investigate the impact of several
design decisions. At last, we showcase two runtime applications of our method to demonstrate the flexibility
of our model. In the appendix we show a more lightweight version of the Non-local Diffusive Attention
Module, and we provide more details on our experiments. We will release our source code upon publication.

Qualitative comparison. We present qualitative results from our method and the baselines in Fig. 6
and Fig. 7. While evaluating artistic style transfer is still an open problem within the vision community
(Li et al., 2017; Zhang et al., 2022), we focus on matters the community deems to be the most pressing:
style distortions (Sheng et al., 2018), clear outlines of prominent objects (Zhang et al., 2019), full style
modeling (Li et al., 2017) and reduction of repetitive patterns (Park & Lee, 2019).

In Fig. 6, Gatys et al. (2016) achieves arbitrary style transfer with a slow optimization method and often
generates unstable results with distorted spatial layouts and style decoration (e.g. 1st and 4th row). While
AdaAttn (Liu et al., 2021) can preserve content structures well, it fails to capture some prominent colors (e.g.
the conspicuous oranges in 4th row) and target textures (e.g. the block-wise patterns with black outlines
in the 2nd row) in most samples. It only adjusts colors for some but not all regions and produces spurious
blob-like artifacts in the background (e.g. the 1st and 3rd row). WCT (Li et al., 2017) enhances its style
representation ability by matching the covariance matrices of style features. However, it cannot produce
fine-grained styles (e.g. the plume-like textures in 3rd row and block-wise appearances in the 5th row) and
often blurs the content structures with distorted patterns (e.g. the 2nd row). AvatarNet (Sheng et al., 2018)
introduces a feature decorator to facilitate the adaptive style patterns, but still blurs the fine ingredients
(e.g. the plume-like textures in the 3rd row and brush strokes in the 4th and 6th row). It can not keep
semantic structures (e.g. the 2nd and 4th row) as well and its background is overlaid with unseen colors (e.g.
the 3rd row). For SANet (Park & Lee, 2019), its style feature alignment biases towards content structures
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Figure 6: Comparison with prior methods. As mentioned in Sec. 4, we compare our method with the prior
ones on how well we tackle the challenges that the style transfer community deems to be critical: style
distortions (Sheng et al., 2018), blurry object outlines (Zhang et al., 2019; Park & Lee, 2019), repetitive
patterns (Zhang et al., 2019) and lack of style richness (Li et al., 2017). Our method is better at reflecting
full style elements (e.g. color distribution in the sky of 4th row), introducing faithful textures (e.g. plume-
like textures in 3rd row), generating neat contours (e.g. 1st, 2nd, 3rd and 4th rows) and reducing distorted
patterns in background (e.g. 1st and 3rd rows). Looking into visual details, we see CCNet preserves richer
fine-grained textures (e.g. the block-wise appearances with different colors in 5th row and the brushstroke-
wise patterns in last row). Neither SANet nor AdaAttn can perceive fine-grained textures (5th row); they
also repeat the eye pattern over the entire image (as red arrows shown in last row) which is not desirable.
SANet also introduces blurry edges with halation and generates unseen clutters in background in the 5th

row. Also, AvatarNet and WCT misrepresent the input block-wise and brushstroke-wise style details and
Gatys et al. (2016) fails to capture the holistic color distribution. More detailed evaluation is included in
the appendix; zoom in for better visualizations.

too much. Therefore it cannot always parse a complete set of style patterns (e.g. colors in the sky of 4th
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MCCNetIESTArtFlow OursStyTr2Content StyleCAST

Figure 7: Comparisons with more state-of-the-art methods in terms of representing details. As discussed in
Fig. 6, again our method outperforms the prior at preserving holistic color distributions and variations (1st

row), as well as at synthesizing brushstrokes (1st row) and block-wise textures (2nd row).

row) and often repeats undesirable patterns in smooth regions (e.g. distorted artifacts in the background of
the 3rd and 5th row). Moreover, SANet tends to blur out edges (e.g. the 4th and 5th row). Looking closely
at the details in the last row, we see both SANet and AdaAttn copies the eye over the entire content image
(highlighted by the red arrows).

In parallel, in Fig. 7, ArtFlow (An et al., 2021) and CAST (Zhang et al., 2022) consistently produce unnatural
artifacts over smooth background while IEST (Chen et al., 2021) and StyTr2 (Deng et al., 2022) are weak in
discerning significant textures (e.g. the colorful brushstrokes on 1st row and blob-wise patterns on 2nd row).
All methods including MCCNet (Deng et al., 2021) present unseen halations.

Our method generalizes well to a multitude of styles, from holistic color distribution (e.g. skies with diverse
colors in the 4th row) to local brush strokes (e.g. the last row) and detailed textures (e.g. block-wise patterns
in the 2nd and 5th row). Therefore we have demonstrated that our method can catch more style ingredients
while faithfully preserving details from target styles. Meanwhile, the CCLoss allows us to significantly reduce
various artifacts (e.g. the 3rd row) and render sharp contours in all cases. We can reach the same conclusion
in Fig. 7 for ArtFlow, IEST, MCCNet, StyTr2 and CAST.

Quantitative comparison. Following Li et al. (2017); Song et al. (2019); Deng et al. (2022), we assess
our method against baselines quantitatively with the perceptual style loss. We randomly pick 20 content
images and 30 style images from our test set to synthesize 600 stylized images, and list losses in the first row
of Tab. 1. We see 1) CCNet can already achieve a decent style loss even if optimized with the CCLoss only;
2) when trained with both CCLoss and style loss, CCNet yields a remarkably lower style loss than other
methods: Ls = 0.4634, Lcom = 0.3087 and Lcoh = 0.3058. These results confirm that explicitly modelling
completeness and coherence allows CCNet to capture style patterns more efficiently than the baselines.

Also, following (Chen et al., 2021; Zhang et al., 2022) we use the Deception score to measure the closeness
between synthesized images and images created by human artists. Specifically, we take the 30 style images
as reference, then for each method compute the percentage of stylized outcomes mistaken as human-created.
We collect 3,000 responses from 30 participants and use the average votes as the measurement. We also
compute the CCLosses defined in Eq. 11 and Eq. 12 to quantitatively assess coherence and completeness.
We see CCNet achieves the lowest scores on the three metrics, comprehensively demonstrating its superior
performance over its predecessors.

In the 4th row of Tab. 1, we report the average running time of each method over 100 test images. Gatys
et al. (2016) is the slowest due to its slow optimization regime. SANet achieves the fastest speed due to
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Content StyleMcoh Mcom Mjoint Mfull

Figure 8: Ablation study on completeness and coherence modeling as well as joint analysis. Mfull denotes
the unablated CCNet. Mjoint refers to the CCNet with Joint Analysis Attention Modules removed; Mcoh

refers to the CCNet with the Completeness Attention Module removed; Mcom refers to the CCNet with the
Coherence Attention Module removed.

Content Style1:1 1:100 1:200

Figure 9: Results obtained by gradually biasing stylization towards coherence. A larger coherence-over-
completeness ratio allows the model to capture style patterns (e.g. the dominated textures in the sky and
wall) more completely, but would lead to more distorted patterns (e.g. the undesirable gray in the sky and
blurry textures on the wall).

its simplicity; WCT and AvatarNet take more running time since they both require the SVD operation.
CCNet’s running time is fairly competitive when compared with the baselines, and in fact comparable to
that of SANet (Park & Lee, 2019).

We then conduct a user study to assess the visual appeal of images rendered by all methods. First, we
randomly select 25 content images and 30 style images from the test dataset, and create their complete
combination to synthesize 750 stylized images for each method. For each participant, 10 stylized images of
CCNet and one of the other methods are displayed side-by-side in a random order. Thus, each participant
needs to make 90 votes for 9 baseline methods and we receive 3150 response in total. During user study,
the participants were asked to choose the image that learns the most characteristics from the style image.
Specifically, the participants were told that the preservation of significant style patterns was the primary
evaluation point. Additionally, the assessment time is longer than 30 seconds for each question so that each
participant can make careful decision. We list their preference scores in the last row of Tab. 1. The Fig. 20
further illustrates the age and gender distributions of the 35 participants. It can be seen that, the ages and
genders of the participants spread uniformly, which clearly indicates the validity and unbiasedness of our
experimental settings.

Ablation study. To investigate the impact of completeness and coherence modelling to the performance
of our method, we first remove the Joint Analysis Attention Modules from our pipeline, so the network
would not seek for the best compatibility between completeness and coherence. From Fig. 8 we see the
ablated model (Mjoint) distorts textual details and produces a weird black pattern in the sky. Further, we
remove the Completeness (Coherence) Attention Module to prevent our pipeline from explicitly imposing the
completeness (or coherence) property. We see the model with only the Coherence Attention Module (Mcoh)
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Table 1: Following prior work, we assess the methods quantitatively with the perceptual style loss, stylization
speed, deception score and user preference. We also use CCLoss to evaluate the completeness (Lcom) and
coherence (Lcoh) of rendered images. We measure stylization speed by running time and report them in
seconds. The preferences represent the percentage of votes that deems a baseline’s result is inferior to ours.

Loss Gatys AdaAttn WCT Avatar SANet ArtFlow IEST MCC StyTr2 Ours
Style(Ls) ↓ 0.5751 1.1561 0.5620 1.1019 0.6215 1.0967 2.0925 1.0710 0.7334 1.0911

Lcom ↓ 0.3263 0.3393 0.3293 0.3194 0.3204 0.3478 0.3530 0.3356 0.3366 0.2979
Lcoh ↓ 0.3332 0.3255 0.3397 0.3150 0.3222 0.3501 0.3376 0.3315 0.3306 0.2795

Speed ↓ 56.81 0.1083 0.4952 0.6772 0.0716 0.6139 0.0914 0.0758 0.7453 0.0908
Deception score 0.36 0.30 0.39 0.40 0.44 0.27 0.29 0.24 0.30 0.54

Preference 0.814 0.740 0.780 0.749 0.657 0.786 0.723 0.791 0.700 -

cannot render the diverse set of styles from the original style images (e.g. colors in mountainous areas).
While the model with the Completeness Attention Module only (Mcom) retains more salient patterns, it
introduces spurious artifacts in the sky. Hence we can confirm completeness and coherence modelling as well
as the joint analysis are all essential to the feed-forward process.

We also demonstrate the crucial role of completeness and coherence modelling in training in Fig. 2. CCNet on
its own cannot produce visual satisfactory results— see the result produced by CCNet trained on perceptual
loss. But our objective function (CCLoss) improves the result notably— patterns become less distorted and
edges got sharpened up. We then evaluate the effect of each term in CCLoss by gradually increasing the
ratio of coherence weight over completeness weight (λcoh

cc : λcom
cc ). Fig. 9 shows that raising the ratio leads to

full style modeling but introduces more distorted patterns. So we conclude that CCLoss allows us to easily
strike the balance between completeness and coherence by explicitly tuning the weights.

Runtime applications. We demonstrate the flexibility of CCNet by showcasing two runtime applications
with a trained stylization model: 1) Adjusting the degree of stylization at runtime (Fig. 10). We can strike a
balance by interpolating between two feature maps, Fcsc and Fccc as: Fcsc ← αFcsc +(1−α)Fccc,∀α ∈ [0, 1].
Fccc represents the output feature given two identical content images as inputs. The network either replicates
the content image if we set α = 0, or produces a fully stylized image Ics if we set α = 1. We show that
changing α from 0.2 to 1 leads to a smooth transition. 2) Segmented stylization of an image (Fig. 11). Inspired
by WCT (Li et al., 2017), we apply k masks M = {M1,M2, · · · ,Mk} to indicate the spatial correspondence
between k image regions and desired styles {I1, I2, · · · , Ik}. Then we extract a specific content region, as
Îi

c = Mi ⊙ Ic, where ⊙ denotes a simple mask-out operation. Next, we achieve the specified stylized image
Îi

cs by feeding Îi
c and Ii

s into CCNet as Îi
cs = CCNet(Îi

c, I
i
s)⊙Mi. The final spatially-controlled stylization

Ics is produced by combining all {Î1
cs, Î

2
cs, · · · , Îk

cs} as Ics =
∑

i Î
i
cs.

5 Conclusion, Limitations, and Societal Impact

We make the first attempt to explicitly define completeness and coherence for style transfer in a patch-based
manner. We propose the Completeness and Coherence Network (CCNet) as well as the CCLoss to explicitly
impose the two objectives and model their inter-dependency. CCLoss allows us to strike a balance between
the two objectives and to generate vivid stylization details. Experimental results show that compared with
prior work, our method renders a richer set of styles while preserving fine-grained details.

Figure 10: We can explicitly balance between content and style by tuning α.
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Figure 11: An example of spatially-controlled stylization via mask-out operations.

Limitations. One limitation of this work is that our CCNet is patch-based, thus is relatively weaker than
statistics-based alternatives in capturing and augmenting information at different scales. Another limitation
is that the complexity of the computed affinity matrices is O(n2), making CCNet limited to a pair of
2048× 1024 images on a TitanX GPU with 12GB memory. But these limitations can be addressed in future
work. One can potentially draw inspiration from AvatarNet (Sheng et al., 2018) or simply merge features with
different patch sizes for multi-scale communication. Other interesting directions include approximating the
affinity matrices (Zhu et al., 2019) and extending our main idea to other related fields, like image translations
and texture synthesis.

Societal impact. Our work can lead to more efficient image editing pipelines. While such algorithms can
empower artists to author more creative contents, they could be used maliciously, e.g. for creating fake
portraits on social media. Nonetheless, recent work such as Wang et al. (2020) has demonstrated great
potential in detecting fake images produced by powerful generators (Karras et al., 2019; 2020), therefore can
ameliorate the concern to some extent.
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A Appendix: Overview

In Sec. B, first of all we showcase more experimental results to demonstrate that modelling completeness
and coherence allows our method to effectively render fine details. Then we present more results from our
ablation study on the impact of joint analysis, completeness and coherence modeling, patch size as well as
multi-scale embedding. Next, in Sec. C we detail the implementation of our Non-local Diffusive Attention
Module (Wang et al., 2018), and we present a lightweight version of this module in Sec. D. Next, in Sec. E
we present additional qualitative results on SANet (Park & Lee, 2019) to compare with CCNet in terms of
synthesis quality and design paradigms. From Sec. F to Sec. H, we use a stylization matrix and samples
of stylized high-resolution images to demonstrate that our method generalizes well. We also include a
discussion on the applicability of various contents in Sec. H. Note that the MS-COCO (Lin et al., 2014) and
WikiArt (Nichol, 2016) dataset in our experiments are public and under a Creative Commons Attribution
4.0 License, which permits us to distribute, remix, tweak, and build upon them.

B More Experimental Results

In this section, we present more evaluation results about completeness and coherence tradeoffs. We also show
more results from our ablation study experiments to verify the joint analysis paradigm, the completeness
and coherence modeling, as well as multi-scale embedding.
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Content StylePatch = 1 Patch = 3

Figure 12: Ablation study on the impact of patch size.

Comparison with previous methods on synthesizing details. In order to demonstrate our capability
in generating detailed style patterns, we attach close-up views of figures from the main text: in Fig. 13, we
show that the CCNet outperforms prior methods on reducing repetitive patterns, lowering distorted clutters
(e.g. 1st row) and rendering clear contours (e.g. 3rd row). The CCNet also excels at synthesizing detailed
textures (e.g. the patterns in 2rd row) and improving style diversity (e.g. the brush strokes in the sky of 1st

and 2rd rows).

Trading off between completeness and coherence. Our CCLoss plays a pivotal role in improving
the synthesis of details and trading off between completeness and coherence. We can explicitly balance
between completeness and coherence by adjusting the ratio between the coherence and completeness term
(λcoh

cc : λcom
cc ) in CCLoss: from left to right in Fig. 14 ((a) - (f)) are the stylized images generated by six

ablated models obtained by gradually increasing the ratio. As the ratio becomes larger, the rendered output
manifests more complex style patterns (e.g. the rich color distribution in the mountainous region). But a
larger ratio also introduces incoherence: see the light gray clutter in the sky of the 1st row.

The effects of patch size. Fig. 12 illustrates the influences of patch size on stylization. As mentioned
in Sec. 3.1, a larger patch size allows us to more effectively capture coarse-scale structures and model local
information, so that we can preserve clearer contours: see the edges within the box containing the mountain
and the grassland. Moreover, a model with larger patches can produce more adaptive style details, such as
the fine-grained textures in the enlarged region. However, increasing patch size leads to significantly higher
computational cost. We set patch size to 1 for our experiments so that we can achieve satisfactory rendering
performance while incurring only moderate computational cost.

Quantitative results from our ablation study. Aside from the qualitative results in Sec. 4, we show
quantitative results on our ablated models in Tab. 2. We see that the computed ablation scores back our
claims from the main text. These results further validate the effectiveness of completeness and coherence
learning, our proposed joint analysis paradigm and CCLoss.

Joint analysis. We use a lightweight version of the Non-local Diffusive Attention Module (Fig. 16) to show
that our joint analysis paradigm with non-local blocks is indeed effective. Similar to the canonical structure
in Fig. 16 (a), we feed F̃coh and F̃com into two 1 × 1 convolutional layers respectively. Then we fuse the
completeness and the coherence feature via element-wise multiplication. The fused feature is then further
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Figure 13: More comparison with existing methods on synthesizing details.

Table 2: Following Tab. 1, we include more quantitative results as a part of our ablation study. We randomly
select ten content images from MS-COCO (Lin et al., 2014) and ten style images from WikiArt (Nichol, 2016)
to produce 100 stylized images and averaged their metrics. Here M̂ refers to the SANet framework (Fig. 2)
which contains only the Coherence Attention Module of the CCNet. We use M̂CCLoss and M̂ploss to refer
respectively to the model trained with CCLoss and the perceptual loss. We use each of {M1:1,M1:100,M1:200}
to represent the CCNet trained by setting completeness and coherence ratio (λcoh

cc :λcom
cc ) to 1 : 1, 1 : 100

and 1 : 200 respectively. We carry the notation {Mcoh,Mcom,Mjoint} over here from Fig. 8 to demonstrate
quantitatively the effectiveness of each attention module in CCNet. Note that M̂CCLoss equals to Mcoh here.

Loss Mcoh Mcom Mjoint M1:1 M1:100 M1:200 M̂ploss Mploss M̂CCLoss Mfull

Style(Ls) 192.52 164.29 179.01 604.32 170.12 168.99 180.36 162.78 192.52 169.58
Lcom 29.36 28.74 28.76 30.67 27.82 27.65 29.03 27.59 29.36 27.93
Lcoh 27.01 27.99 27.87 26.86 27.25 27.97 27.74 28.21 27.01 27.19

processed by a sigmoid operator, becoming an element-wise weight that weighs how much information of
F̃com should be used to compute the residual feature F̂com. Finally, F̂com is also applied to update F̃com as
in the default joint analysis. The element-wise multiplication allows the model to select compatible features
between completeness and coherence, so we can employ better-matched data to coherence to update the
information from completeness, making F̃com to be more consistent with F̃coh. By feeding the F̃coh and F̃com

into the shared non-local block in the opposite direction, we also can enforce F̃coh to be more similar to F̃com

as shown in Eq. 4 of the main text.
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Content Style（a） （b） （c） （d） （e） （f）

Figure 14: Ablation study for the completeness and coherence term (λcoh
cc and λcom

cc ).

Content Style Full modelw/o Non-local 

Figure 15: Ablation study for joint analysis.

In Fig. 15, we see the ablated model fails to preserve the texture consistency within a smooth region (e.g.
black artifacts within the tower region) due to the lack of long-range dependency modeling. In contrast, the
full model is better at presenting the large-scale patterns and reducing repeated artifacts in the background.
Note that in addition to element-wise multiplication, we also attempted other fusion operations, such as
element-wise addition or computing dot product, but achieved only subtle visual differences on the ablated
models.
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Modelling completeness and coherence. In Fig. 18, we showcase more results from our ablation study
on the effectiveness of completeness and coherence as well as on the joint analysis between them. The model
with only Coherence Attention preserves the content structures well and yields faithful style details, but
without completeness modelling it fails to distinguish the overall style distributions. The model with only
Completeness Attention can introduce more complex style variations to the results, but often generates unseen
light black colors in the background regions (e.g. the sky). The model without joint analysis distorts the style
patterns, because the model fails to filter out completeness and coherence features that are incompatible.
Compared with the ablated models, our full model is better at parsing the complete style components with
vivid details.

Figure 16: (a) The architecture of our Non-local Diffusive Attention Module. (b) The architecture of an
ablated version of (a) which jointly analyzes completeness and coherence but only locally. By replacing the
matrix multiplication and softmax operation with an element-wise multiplication (denoted as ⊙) and a sig-
moid operation respectively, we ensure the model only considers the completeness and coherence information
on a pair of corresponding pixels, thus impossible to capture long-range dependencies within an entire image.
Please refer to paragraph Joint analysis in Sec. B and Sec. C for details.

Figure 17: (a) Architecture of the lightweight Non-local Diffusive Attention Module. (b) Architecture of our
CCUnit which captures completeness and coherence at once. Please refer to Sec. C for details.

Multi-scale embedding. Prior work has used mutli-scale modelling extensively to improve stylization
performance by enriching local and global patterns (Sheng et al., 2018; Park & Lee, 2019). Here we would
like to determine if our multi-scale approach is effective. So we remove the branch for relu_4 and relu_5
respectively. As shown in Fig. 19, while relu_4 can produce features that entail local color distribution and
preserve spatial layouts, it fails to synthesize the circular pattern. But relu_5 is able to render the circular
patterns because of its larger receptive field. But relu_5’s content structures are severely distorted and
details in the patterns are blurred out. By integrating these two scales into our model, we can capture richer
salient style patterns and maintain the content structures simultaneously, yielding better stylization results.

Stability for quantitative metrics. In order to measure the data stability of computed metrics, we
report the error bars in Fig. 21 for the Ls, Lcom, Lcoh and preference scores used in Tab. 1. For Ls, Lcom
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Content Stylew/o coherencew/o completeness Oursw/o joint analysis

Figure 18: Ablation study on modelling completeness and coherence.

and Lcoh, the mean and standard deviation in each bar are computed based on the images produced by
a specific method. For example, we compute the mean and standard deviation of the 600 stylized images’
Lcom for Gatys et al. and report the result in the first column of Fig. 21 (a). We also list the 90% confidence
intervals in Tab. 3-4 to directly indicate the representative level of results. As for the preference score,
however, each baseline’s standard deviation is computed over the votes from each participant (Fig. 21 (d))
and votes corresponding to each method (Fig. 21 (e)). It is seen that, the produced scores are quite stable,
showing the strong representation capability of the selected image set.

Content Style Relu_5 Relu_4 Combined Result

Figure 19: Ablation study on multi-scale embedding.

(a) (b)

Figure 20: In the user study, the gender (a) and age (b) of the participants distribute uniformly, showing
the unbiasedness of the conducted evaluation. See the user study part in Sec. 4 for more detailed discussion.

Lastly, in Fig. 22 we show stylization results with more inputs on the following baselines: ArtFlow (An et al.,
2021), IEST (Chen et al., 2021), MCCNet (Deng et al., 2021), StyTR2 (Deng et al., 2022), CAST (Zhang
et al., 2022). Still our method outperforms the rest at capturing the complete style without leaving spurious
artifacts, further proving our empirical advantages.
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(a) Lcom (b) Lcoh (c) Style (Ls) (d) User Study (method) (e) User Study (participant)

Figure 21: The error bars for Lcom, Lcoh, Ls and preference scores used in Tab. 1. Note that (d) presents
the average votes computed for each method while (e) presents each participant’s vote percentages which
prefer our results.

Table 3: Confidence intervals for Ls, Lcom and Lcoh to show the quantitative result stability (part 1).

Loss Gatys AdaAttn WCT Avatar SANet Ours
Style(Ls) ↓ 0.5751 ± 0.0365 1.1561 ± 0.0748 0.5620 ± 0.0214 1.1019 ± 0.0479 0.6215 ± 0.0377 1.0911 ± 0.0258

Lcom ↓ 0.3263 ± 0.0015 0.3393 ± 0.0015 0.3293 ± 0.0017 0.3194 ± 0.0015 0.3204 ± 0.0016 0.2979 ± 0.0016
Lcoh ↓ 0.3332 ± 0.0014 0.3255 ± 0.0017 0.3397 ± 0.0017 0.3150 ± 0.0015 0.3222 ± 0.0016 0.2795 ± 0.0017

Table 4: Confidence intervals for Ls, Lcom and Lcoh to show the quantitative result stability (part 2).
Loss ArtFlow IEST MCC StyTr2 Ours

Style(Ls) ↓ 1.0967 ± 0.0657 2.0925 ± 0.1481 1.0710 ± 0.0597 0.7334 ± 0.0608 1.0911 ± 0.0258
Lcom ↓ 0.3478 ± 0.0014 0.3530 ± 0.0017 0.3356 ± 0.0017 0.3366 ± 0.0018 0.2979 ± 0.0016
Lcoh ↓ 0.3501 ± 0.0013 0.3376 ± 0.0019 0.3315 ± 0.0017 0.3306 ± 0.0017 0.2795 ± 0.0017

C More Discussion on the Non-local Diffusive Attention Module

As we have mentioned many times, the primary goal of our method is achieving completeness and coherence.
To this end, we introduce a bi-directional patch-based similarity measure to quantify the visual relation-
ships between one stylized result and an input style image. As mentioned in the main text, the similarity
optimization procedures inspire us to update the content features by diffusing style information with two
different affinity kernels. Specifically, we implement this motivation with the non-local blocks (Wang et al.,
2018), as shown in Fig. 16 (a). And we set the patch size to 1 here.

For the diffusion modules in Fig. 16 (a), we take content feature Fc and style feature Fs as inputs whose
shapes are B ×Hc ×Wc ×C and B ×Hs ×Ws ×C respectively. Here B, H, W and C indicate batch size,
height, width and channel dimension individually. We first feed the normalized content feature F̄c and style
feature F̄s into the Attention blocks, followed with two different 1 × 1 convolutions. Then we compute the
similarities between the normalized F̄c at one pixel and the normalized F̄s at another pixel to make a content
semantics-based style diffusion (Sheng et al., 2018). And the closest neighbor search for each pixel in F̄c and
F̄s can be approximated by a softmax performed in different axes. After the reshape operation, the shape
of the similarity matrix is B ×HcWc ×HsWs. Specifically, let each row of the similarity matrix represent
relationships between one pixel in F̄c and all the pixels in F̄s. Correspondingly, each column indicates the
affinities between one pixel in F̄s and all the pixels in F̄c; refer to Fig. 5 in the main text for details. When we
search the closest feature vector in F̄s for each feature vector of F̄c, we should perform the softmax operation
for the similarity matrix along each row. In the opposite direction, we should perform the softmax along each
column to search the closest feature vector in F̄c for each feature vector of F̄s. Finally, the stylized feature is
realized by multiplying the similarity matrices with the input style feature Fs. Note that the affinity matrix
for completeness Acom shares the same size with the affinity matrix for coherence Acoh.

We can jointly analyze F̃coh and F̃com to improve their pixel-level compatibility in the same way. Specifically,
we compute a residual feature F̂coh as a weighted sum of feature vectors in F̃coh by simultaneously considering
each feature vector of F̃com and feature vectors at all positions of F̃coh. Then F̂coh is similar to F̃com at each of
their positions. In other words, we rearrange feature vectors of F̃coh (F̃com) to fit F̃com (F̃coh) together well;
see Eq. 4 - 5 of the main text for details. Then the refined feature F̈coh = F̃coh + F̂coh (F̈com = F̃com + F̂com)
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Figure 22: Comparisons with the baselines using the same input images as Fig. 6.

will be more similar/compatible to F̃com (F̃coh) than F̃coh (F̃com). To verify this joint analysis scheme, we
conduct another ablation study experiment; check out the paragraph on joint analysis in Sec. B for more
information. Hence with the non-local block, it is effective for our network to model the completeness and
coherence and capture the long-range dependency between pixels.

D Simplified Non-local Diffusive Attention Module

In order to further demonstrate the design flexibility of our completeness and coherence concepts, we derive
a lightweight version of the Non-local Diffusive Attention Module from its canonical counterpart (Fig 16 (a)).
As shown in Fig. 17 (a), we simplify by unifying the two attention layers for completeness and coherence
modeling and one attention layer for joint analysis into one simple block. Compared to the heavyweight
architecture, the simplified one has its softmax layer replaced with a learnable CCUnit to output the affinity
matrix for further feature diffusion. Fig. 17 (b) shows the architecture of the CCUnit which captures
completeness and coherence at once. Taking Fc, Fs and Acs as inputs, CCUnit feeds Fc and Fs into two
1×1 conv layers respectively and compute the corresponding self-similarity matrices (denoted as ⊗ in purple).
Then CCUnit applies softmax along each axis to compute the relative correlations between one pixel and
all the pixels in Fc (or Fs) and output Acc and Ass. Specifically, the red arrow and green arrow indicate
the 1th and 2th axes correspondingly. Still we apply softmax along one axis to learn completeness and along
another to learn coherence. The leared features are Acom and Acoh. We further multiply Acc with Acom

and Acoh with Ass (denoted as ⊗ in gray) so that we can explicitly model the long-range dependencies
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in input content-style image pairs and better preserve the content structures and coarse style patterns in
inputs. Note that the matrix multiplication between Acc and Acom (Acoh and Ass) implicitly corresponds
to the functionality of the joint analysis attention layer in main text. It is because joint analysis stage of
CCNet aims to implicitly recover the repetitive information in content images for completeness modeling and
enrich the style diversity in style images for coherence modeling. Finally we add the two output matrices
and obtain the affinity matrix to diffuse style features.

Note that the output affinity matrix of the simplified CCNet can be used to further reduce the computation
cost by incorporating it into the multi-scale procedure. Specifically, the output affinity matrix from coarser
scale enables the adaptation of style features at finer scales. Despite these extra bonus, they are beyond our
focus to verify the effectiveness of completeness and coherence.

Fig. 23 illustrates stylization results produced by the simple version of CCNet to further evaluate the effec-
tiveness of completeness and coherence modeling. All input images can be found the main text. One can
see that, our simplified CCNet can maintain clear contours of the prominent objects (e.g. outlines of all
the buildings) and introduce faithful style details (e.g. brush strokes in 1st row and the block-wise textures
in 2nd and 3rd rows) concurrently. It consistently matches the advantages presented in our full model. In
contrast, SANet highly biases towards content structures during aligning style features so that it repeats
undesired patterns in smooth regions (e.g. gray distorted artifacts in the background of 1st and 3rd rows).
It often introduces some unwanted halation around edges as well (e.g. 1st, 2nd and 3rd rows) and sometimes
suffers from incapability to capture dominanted style patterns (e.g. lack of block-wise textures in the temple
region of 3rd row).

E Comparing with SANet on Synthesizing Details

As for style transfer, we make first efforts to associate bi-directional Chamfer matching with non-local
blocks (Wang et al., 2018). Compared to other patch-based methods, this perspective introduces some
unique advantages to our method. Specifically, the completeness and coherence modeling enables us to (a)
explicitly capture these two constraints, (b) minimize artifacts in results, (c) reduce chances to repeat similar
patterns in smooth regions, (d) control the effects of completeness and coherence in stylizations, (e) measure
the stylization ability via a newly developed metric. Actually, the Style-Attention Network (SANet) (Park
& Lee, 2019) can be regarded as an ablated version of our framework, by only keeping the coherence branch
but removing the joint analysis module and completeness branch; see more discussions in Sec. 3.2 of the
main text. In Fig. 24, we exhibit additional close-up views to further compare the synthesized details of
SANet.

As mentioned, SANet does not impose the completeness and is strictly biased to the content features during
stylization, which prevents it from considering the interactions between various style elements. Thus it might
distort the local textures in smooth regions (e.g. in the sky and surface of the sea) and the detailed variation
(e.g. the roof on the top left corner does not preserve the texture arrangements). It also copies repeated
patterns to results (e.g. the eyes spread over the whole image). Without explicit constraints on stylization
results, the style patterns in background are prone to be distorted (e.g. the black clutters in the sky).

In contrast, our model can better capture the notable colors and dominated textures (e.g. cyan and blue
textures on the roof and in the sky). Generally speaking, the explicit completeness and coherence modeling
enables us to seamlessly reassemble the style elements and work for different kinds of styles, from global
hue to local strokes and detailed texture variations. Additionally, the completeness modeling may also help
reduce the chances to repeat similar patterns to different regions; hence eyes in the style image only appear
once in our results. The necessary content components are well perceived in the stylized images as well (e.g.
the outlines of house and mountains).

F Style Interpolation Results

We can convexly combine the style patterns from multiple images {Ik
s }K

k=1 with weight {wk}K
k=1 that

ΣK
k=1wk = 1 such that the stylized feature are Fcsc = ΣK

k=1wkF
k
csc. Note that, the superscript k indi-
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StyleOurs(Simple)Content SANet Ours(Full Model)

Figure 23: Comparison between the simplified CCNet, the full CCNet and SANet. We show the input
content and style images on the two sides. The simplified CCNet can produce clear contours of prominent
objects (e.g. outlines of all the buildings) and yield faithful style details (e.g. brush strokes in 1st row and the
block-wise textures in 2nd and 3rd rows), demonstrating the same advantages possessed by our full model.
SANet on the other hand biases highly towards content structures while aligning style features, so much so
that it repeats spurious patterns in smooth regions (e.g. gray distorted artifacts in the sky of 1st and 3rd

rows). It often introduces halation around edges as well (e.g. 1st, 2nd and 3rd rows) and sometimes fail to
capture dominant style patterns (e.g. lack of the block-wise textures in the temple region of 3rd row).

cates one style image here, but not the feature from relu_i layer. Finally, the interpolated feature maps are
fed into a trained decoder to reconstruct the stylized images, as shown in Fig. 25.

G High-resolution Stylization

Here we present an example of high-resolution stylization to demonstrate the applicability to images of large
spatial resolutions. As we can see in Fig. 26, the result displays concrete multi-scale style patterns, from
the color distributions to faithful style details. Moreover, the texture consistency within different smooth
regions (e.g. the sky in the background) is also kept well, clearly displaying the effectiveness of our method
for large images. Note that, the usability to large images can be further advanced via the more economical
computation strategies for similarity kernels, such as the asymmetric non-local networks (Zhu et al., 2019).

H More Discussion

Additionally, one may argue that the patch-based diffusion strategy may constrain the application of our
method to input pairs both having similar content structures. But as shown in Fig. 6, the proposed method
can generalize to pairs of very different contents by propagating the style information based on the similarities
of content structures. It can be realized by performing the normalization before feeding the content feature
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SANet OursContentStyle SANet OursContent

Figure 24: The close-ups for detailed comparisons between SANet and our method.

Fc and style feature Fs into the Completeness and Coherence Attention layers, which shares the same spirit
with AvatarNet (Sheng et al., 2018) and SANet (Park & Lee, 2019). During the joint analysis process of
the CCNet, the long-range dependency modeling also helps to improve the applicability for different content
structures as shown in Fig. 15. Therefore due to the patch-based alignment nature, the proposed method
still can present its advantages over the methods based on holistic statistic matching, even when the input
image pair differ a lot from each other (Sheng et al., 2018; Park & Lee, 2019).
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Figure 25: Style interpolation using four different styles.
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Figure 26: An example of high-resolution stylization. The resolutions of both the content and the style
image are 1024× 1024.
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