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Online Control with Adversarial Disturbance for
Continuous-time Linear Systems

Anonymous Authors1

Abstract

We study online control for continuous-time linear
systems with finite sampling rates, where the ob-
jective is to design an online procedure that learns
under non-stochastic noise and performs compara-
bly to a fixed optimal linear controller. We present
a novel two-level online algorithm, by integrating
a higher-level learning strategy and a lower-level
feedback control strategy. This method offers a
practical and robust solution for online control,
which achieves sublinear regret. Our work pro-
vides one of the first nonasymptotic results for
controlling continuous-time linear systems a with
finite number of interactions with the system.

1. Introduction
A major challenge in robotics is to deploy simulated con-
trollers into real-world. This process, known as sim-to-
real transfer, can be difficult due to misspecified dynamics,
unanticipated real-world perturbations, and non-stationary
environments. Various strategies have been proposed to
address these issues, including domain randomization, meta-
learning, and domain adaptation (Höfer et al., 2021; Chen
et al., 2022; Hu et al., 2022).

In this work, we provide an analysis of the sim-to-real trans-
fer problem from an online control perspective. Online
control focuses on iteratively updating the controller after
deployment (i.e., online) based on collected trajectories.
Significant progress has been made in this field by apply-
ing insights from online learning to linear control problems
(Abbasi-Yadkori & Szepesvári, 2011; Abbasi-Yadkori et al.,
2014; Cohen et al., 2018; Hazan et al., 2020; Chen & Hazan,
2021; Basei et al., 2022; Andrew et al., 2013; Goel & Wier-
man, 2019).

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
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Following this line of work, we approach the sim-to-real
transfer issue for continuous-time linear systems as a non-
stochastic control problem, as explored in previous works
(Hazan et al., 2020; Chen & Hazan, 2021; Basei et al., 2022).
These studies provide regret bounds for an online controller
that lacks prior knowledge of system perturbations. How-
ever, a gap remains as no previous analysis has specifically
investigated continuous-time systems, but real world sys-
tems often evolve continuously in time.

Existing literature on online continuous control is limited
(Vrabie et al., 2009; Jiang & Jiang, 2012; Duncan et al.,
1992; Rizvi & Lin, 2018). Most continuous control research
emphasizes the development of model-free algorithms, such
as policy iteration, under the assumption of noise absence.
Recently, (Basei et al., 2022) examined online continuous-
time linear quadratic control in the presence of standard
Brownian noise that may not always hold true in real-world
applications. This leads us to the crucial question:

Is it possible to design an online non-stochastic control
algorithm in a continuous-time setting that achieves

sublinear regret?

Our work addresses this question by proposing a two-level
online controller. The higher-level controller symbolizes
the policy learning process and updates the policy at a low
frequency to minimize regret. Conversely, the lower-level
controller delivers high-frequency feedback control input to
reduce discretization error.

Our proposed algorithm results in regret bounds for
continuous-time linear control in the face of non-stochastic
disturbances. More importantly, our analyses suggest that
online learning algorithms, with potentially nontrivial adap-
tations, could also benefit continuous-time control problems.
We believe this direction holds promising potential for fur-
ther exploration.

2. Related Works
The control theory of linear dynamical systems under the
disturbance has been thoroughly examined in various con-
texts, such as the linear quadratic stochastic control (Athans,
1971), robust control (Stengel, 1994; Khalil et al., 1996),
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system identification (Goodwin et al., 1981; Kumar, 1983;
Campi & Kumar, 1998; Ljung, 1998). However, most of
these problems are investigated in non-robust settings, with
robust control being the sole exception where adversarial
perturbations in the dynamic are permitted. In this scenario,
the controller solves for the optimal linear controller in the
presence of worst-case noise. Nonetheless, the algorithms
designed in this context can be overly conservative as they
optimize over the worst-case noise, a scenario that is rare in
real-world applications. We will elaborate on the difference
between robust control and online non-stochastic control in
Section 3.

Online control There has been a recent surge of inter-
est in online control, as demonstrated by studies such as
(Abbasi-Yadkori & Szepesvári, 2011; Abbasi-Yadkori et al.,
2014; Cohen et al., 2018). In online control, the player
interacts with the environment and updates the policy in
each round aiming to achieve sublinear regret. In scenarios
with stochastic Gaussian noise, (Cohen et al., 2018) has
provided the first efficient algorithm with an O(

√
T ) regret

bound. However, in real-world applications, the assumption
of Gaussian distribution is often unfulfilled.

(Agarwal et al., 2019) pioneered research on non-stochastic
online control, where the noises can be adversarial. Under
general convex cost, they introduced the Disturbance-Action
Policy Class. Using an online convex optimization (OCO)
algorithm with memory, they achieved an O(

√
T ) regret

bound. Subsequent studies extended this approach to other
scenarios, such as quadratic cost (Basei et al., 2022), partial
observations (Simchowitz et al., 2020; Simchowitz, 2020)
or unknown dynamical systems (Hazan et al., 2020; Chen &
Hazan, 2021), yielding varying theoretical guarantees like
online competitive ratio (Goel et al., 2022; Shi et al., 2020).

Online Continuous Control Compared to online con-
trol, there has been relatively little research on model-based
continuous-time control. Most continuous control literature
has focused on developing model-free algorithms such as
policy iteration (e.g. (Vrabie et al., 2009; Jiang & Jiang,
2012; Rizvi & Lin, 2018)), typically assume zero-noise.
This is because analyzing the system when transition dy-
namics are represented by differential equations, rather than
recurrence formulas, poses a significant challenge.

Recently, (Basei et al., 2022) studied online continuous-
time linear quadratic control with standard Brownian noise
and unknown system dynamics. They proposed an algo-
rithm based on the least-square method, which estimates the
system’s coefficients and solves the corresponding Riccati
equation. However, it should be noted that standard Brown-
ian noise can be quite stringent and may fail in real-world
applications.

3. Problem Setting
In this paper, we consider the online non-stochastic control
for continuous-time linear systems. Therefore, we provide
a brief overview below and define our notations.

3.1. Continuous-time Linear Systems

The Linear Dynamical System can be considered a specific
case of a continuous Markov decision process with linear
transition dynamics. The state transitions are governed by
the following equation:

ẋt = Axt +But + wt ,

where xt is the state at time t, ut is the action taken by the
controller at time t, and wt represents the disturbance at
time t. We assume access to ẋt at each time step, which is
dependent on the state, action, and disturbance at time t. We
do not make any strong assumptions about the distribution
of wt, and we also assume that the distribution of wt is
unknown to the learner beforehand. This implies that the
disturbance sequence wt can be selected adversarially.

When the action ut is applied to the state xt, a cost ct(xt, ut)
is incurred. Here, we assume that the cost function ct is
convex. However, this cost is not known in advance and
is only revealed after the action ut is implemented at time
t. In the system described above, an online policy π is
defined as a function that maps known states to actions, i.e.,
ut = π({xξ|ξ ∈ [0, t]}). Our goal, then, is to design an
algorithm that determines such an online policy to minimize
the cumulative cost incurred. Specifically, for any algorithm
A, the cost incurred over a time horizon T is:

JT (A) =

∫ T

0

ct(xt, ut)dt .

In scenarios where the policy is linear (i.e., a linear con-
troller) π(K), such that ut = −Kxt, we use J(K) to de-
note the cost of a policy from a certain class K ∈ K.

3.2. Difference between Robust and Online
Non-stochastic Control

While both robust and online non-stochastic control models
incorporate adversarial noise, it’s crucial to understand that
their objectives differ significantly.

The objective function for robust control, as seen in (Stengel,
1994; Khalil et al., 1996), is defined as:

min
u1

max
w1:T

min
u2

. . .min
ut

max
wT

JT (A) ,

Meanwhile, the objective function for online non-stochastic
control, as discussed in (Agarwal et al., 2019), is:

min
A

max
w1:T

(JT (A)− min
K∈K

JT (K)) .
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Note that the robust control approach seeks to directly mini-
mize the cost function, while online non-stochastic control
targets the minimization of regret, which is the discrepancy
between the actual cost and the cost associated with a base-
line policy. Additionally, in robust control, the noise at
each step can depend on the preceding policy, whereas in
online non-stochastic control, all the noise is predetermined
(though unknown to the player).

3.3. Assumptions

Throughout this paper, we operate under the following as-
sumptions, starting with the initial condition x0 = 0. We
denote ∥ · ∥ as the L2 norm of the vector and matrix. Firstly,
we make assumptions concerning the system dynamics and
noise:

Assumption 3.1. The matrices that govern the dynamics
are bounded, meaning ∥A∥ ≤ κA and ∥B∥ ≤ κB , where
κA and κB are constants. Moreover, the perturbation and its
derivative are both continuous and bounded: ∥wt∥ , ∥ẇt∥ ≤
W , with W being a constant.

These assumptions ensure that we can bound the states and
actions, as well as their first and second-order derivatives.
Next, we make assumptions regarding the cost function:

Assumption 3.2. The costs ct(x, u) are convex. Addition-
ally, if there exists a constant D such that ∥x∥, ∥u∥ ≤ D,
then |ct(x, u)| ≤ βD2, ∥∇xct(x, u)∥ , ∥∇uct(x, u)∥ ≤
GD.

This assumption implies that if the differences between
states and actions are small, then the error in their cost will
also be relatively small. Finally, we describe our baseline
policy class:

Definition 3.3. A linear policy K is (κ, γ)-strongly stable if,
for any h > 0 that is sufficiently small, there exist matrices
Lh, P such that I + h(A − BK) = PLhP

−1, with the
following two conditions:

1. The norm of Lh is strictly smaller than unity and de-
pendent on h, i.e., ∥Lh∥ ≤ 1− hγ.

2. The controller and transforming matrices are bounded,
i.e., ∥K∥ ≤ κ and ∥P∥,

∥∥P−1
∥∥ ≤ κ.

This definition ensures the system can be stabilized by a
linear controller K.

3.4. Regret Formulation

To evaluate the designed algorithm, we use regret, which
is defined as the cumulative difference between the cost
incurred by the policy of our algorithm and the cost incurred
by the best policy in hindsight. Let K denotes the class of

strongly stable linear policy, i.e. K = {K : K is (κ, γ)-
strongly stable}. Then, for an algorithm A, the regret is
defined as follows.

Regret(A) = JT (A)− min
K∈K

JT (K) .

4. Algorithm Design
In this section, we outline the design of our algorithm and
discuss the technical challenges encountered in deriving our
main theorem.

• First, we discretize the total time period T into smaller
intervals of length h. We use the information at each
point xh, x2h, . . . and uh, u2h, . . . to approximate the
actual cost of each time interval, leveraging the conti-
nuity assumption. This process does introduce some
discretization errors.

• Next, we employ the Disturbance-Action policy (DAC)
(Agarwal et al., 2019). This policy selects the action
based on the current time step and the estimations
of disturbances from several past steps. This policy
can approximate the optimal linear policy in hindsight
when we choose suitable parameters. However, the
optimal policy K∗ is unknown, so we cannot directly
acquire the optimal choice. To overcome this, we em-
ploy the OCO with memory framework (Anava et al.,
2015) to iteratively adjust the DAC policy parameter
Mt to approximate the optimal solution M∗.

• After that, we introduce the concept of the ideal state
yt and ideal action vt that approximate the actual state
xt and action ut. Note that both the state and policy de-
pend on all DAC policy parameters M1,M2, . . . ,Mt.
Yet, the OCO with memory framework only considers
the previous H steps. Therefore, we need to consider
ideal state and action. yt and vt represent the state
the system would reached if it had followed the DAC
policy {Mt−H , . . . ,Mt} at all time steps from t−H
to t, under the assumption that the state xt−H was 0.

From all the analysis above, we can decompose the regret
as four parts: the discretization error, the approximation
error of the DAC policy compared to the optimal policy,
the regret of the OCO with memory, and the approximation
error between the ideal cost and the actual cost.

4.1. New Challenges in Online Continuous Control

In transitioning online control to continuous systems, we
cannot directly apply the methods from (Agarwal et al.,
2019) to our work. We must overcome several challenges:
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Challenge 1. Unbounded States In a discrete-time sys-
tem, it is straightforward to demonstrate that the state se-
quence xt is bounded using the DAC policy. This can be
easily shown by applying the dynamics inequality ∥xt+1∥ ≤
a∥xt∥+b (where a < 1) and the induction method presented
in (Agarwal et al., 2019). However, for a continuous-time
system, a different approach is necessary because we only
have the differential equation instead of the state recurrence
formula.

One naive approach is to use the Taylor expansion of each
state to derive the recurrence formula of the state. However,
this argument requires the prerequisite knowledge that the
states within this neighborhood are bounded by the dynam-
ics, leading to circular reasoning.

To overcome this challenge, we employ Gronwall’s in-
equality to bound the first and second-order derivatives in
the neighborhood of the current state. We then use these
bounded properties, in conjunction with an estimation of pre-
vious noise, to bound the distance to the next state. Through
an iterative application of this method, we can argue that all
states and actions are bounded.

Figure 1. Bounding the states and their derivatives separately. We
prove the bounded derivative of the current state based on the
information of the previous state and then use the information of
derivative to bound the next state. We inductively show that this is
true for all states.

Challenge 2. The Ideal Cost Approximation and Dis-
cretization Error Trade-off We propose a new definition
of a strongly stable policy for continuous-time systems, as
the definition used for discrete systems is not immediately
applicable. In Definition 3.3, we describe a strongly stable
policy K that is dependent on a discretization parameter
h. It is crucial to understand that the selection of h influ-
ences the convergence rate of the ideal cost approximation
error, as measured by |ct(xt, ut)− ct(yt, vt)|, resulting in
a rate of O(T (1 − hγ)H). On the one hand, choosing an
overly small value for h may lead to a slow convergence
rate. On the other hand, an excessively large h may cause
the discretization error to become unmanageable, being of
the order O(hT ). Hence, the design of an appropriate dis-
cretization parameter presents a significant challenge.

Challenge 3. The Curse of Dimensionality Caused
by Discretization In discrete-time systems, where the
number of states is predetermined, the parameters for
the DAC policy and the OCO memory buffer can be se-
lected with relative ease (Agarwal et al., 2019). How-
ever, in continuous-time systems, the number of states can
be inversely proportional to the discretization parameter
h, which also determines the size of the OCO memory
buffer. Thus, if we set the OCO memory buffer size as
H = O(log(T )/h) to attain a sublinear ideal cost approxi-
mation error |ct(xt, ut)−ct(yt, vt)|, the associated regret of
OCO with memory will be O(

√
T/h2.5). This regret could

become excessively large if h is small enough to allow for
minimal discretization error.

4.2. Main Algorithm

In the subsequent discussion, we use shorthand notation to
denote the cost, state, control, and disturbance variables cih,
xih, uih, and wih as ci, xi, ui, and wi, respectively.

We now introduce our algorithm, which is built upon a two-
level controller update approach. Our algorithm employs
two controllers, working in concert to enhance the perfor-
mance of the policy. The higher-level controller implements
the OCO with memory to sporadically update the policy,
while the lower-level controller offers high-frequency con-
trol input to minimize discretization error.

Our lower-level controller utilizes the DAC policy. To for-
mally define the DAC policy for continuous systems, we
start by dividing the interval into multiple sub-intervals.
This division ensures that the current state is influenced only
by all disturbance that occur within each time interval, rather
than exclusively at the moment of disturbance. Following
this property, we introduce our definition of the DAC policy
in the continuous system:

Definition 4.1. The Disturbance-Action Policy Class(DAC)
is defined as:

ut = −Kxt +

l∑
i=1

M i
t ŵt−i ,

where K is a fixed strongly stable policy, l is a parame-
ter that signifies the dimension of the policy class, Mt =
{M1

t , . . . ,M
l
t} is the weighting parameter of the distur-

bance at step t, and ŵt is the estimated disturbance:

ŵt =
xt+1 − xt − h(Axt +But)

h
. (1)

We note that this estimation of disturbance is readily imple-
mentable as it only requires information from the previous
state. Furthermore, it counteracts the second-order residue
term of the Taylor expansion of xt, which greatly simplifies
the analysis of state evolution.
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Our higher-level controller adopts the OCO with memory
framework. A technical challenge lies in balancing the
approximation error and OCO regret. To achieve a low
approximation error, we desire the policy update interval
H to be inversely proportional to the sampling distance h.
However, this relationship lead to large OCO regret. To mit-
igate this issue, we introduce a new parameter m = Θ( 1h ),
representing the lookahead window. We update the param-
eter Mt only once every m iteration, further reducing the
OCO regret without negatively impacting the approximation
error:

Mt+1 =

{
ΠM (Mt − η∇gt(M)) if t mod m == 0 ,

Mt otherwise .

For notational convenience and to avoid redundancy, we
denote M̃[t/m] = Mt. We can then define the ideal state
and action. Due to the properties of the OCO with memory
structure, we need to consider only the previous Hm states
and actions, rather than all states. As a result, we introduce
the definition of the ideal state and action. During the in-
terval t ∈ [im, (i+ 1)m− 1], the learning policy remains
unchanged, so we could define the ideal state and action in
the following:

Definition 4.2. The ideal state yt and action vt at time
t ∈ [im, (i+ 1)m− 1] are defined as

yt = xt(M̃i−H , ..., M̃i), vt = −Kyt +

l∑
j=1

M j
i wt−i .

where the notation indicates that we assume the state xt−H

is 0 and that we apply the DAC policy
(
M̃i−H , . . . , M̃i

)
at

all time steps from t−Hm to t.

We can also define the ideal cost in this interval:

Definition 4.3. The ideal cost function during the interval
t ∈ [im, (i+ 1)m− 1] is defined as follows:

fi

(
M̃i−H , . . . , M̃i

)
=

(i+1)m−1∑
t=im

ct

(
yt

(
M̃i−H , . . . , M̃i

)
, vt

(
M̃i−H , . . . , M̃i

))
.

With all the concepts presented above, we are now prepared
to introduce our algorithm:

Algorithm 1 Continuous two-level online control algorithm
Input: step size η, sample distance h, policy update
parameters H,m, parameters κ, γ, T .
Define sample numbers n = ⌈T/h⌉, OCO policy update
times p = ⌈n/m⌉.
Define DAC policy update class M ={
M̃ =

{
M̃ [1] . . . M̃ [Hm]

}
:
∥∥∥M̃ [i]

∥∥∥ ≤ 2κ3(1− γ)i−1
}

.
Initialize M0 ∈ M arbitrarily.
for k = 0, . . . , p− 1 do

for s = 0, . . . ,m− 1 do
Denote the discretization time t = km+ s.
Use the action ut = −Kxt + h

∑Hm
i=1 M̃ i

kŵt−i dur-
ing the time period [th, (t+ 1)h].
Observe the new state xt+1 at time (t + 1)h and
record ŵt according to Equation (1).

end for
Update OCO policy M̃k+1 =

ΠM

(
M̃k − η∇gt(M̃k)

)
.

end for

5. Main Result
In this section, we present the primary theorem of online
continuous control regret analysis:

Theorem 5.1. Under Assumption 3.1, 3.2, a step size of
η = Θ(

√
m
Th ), and a DAC policy update frequency m =

Θ( 1h ), Algorithm 1 attains a regret bound of

JT (A)− min
K∈K

JT (K) ≤ O(n(1− hγ)
H
h ) +O(

√
nh) +O(Th) .

With the sampling distance h = Θ( 1√
T
), and the OCO

policy update parameter H = Θ(log(T )), Algorithm 1
achieves a regret bound of

JT (A)− min
K∈K

JT (K) ≤ O
(√

T log (T )
)
.

Theorem 5.1 demonstrates a regret that matches the regret
of a discrete system (Agarwal et al., 2019). Despite the anal-
ysis of a continuous system differing from that of a discrete
system, we can balance discretization error, approximation
error, and OCO with memory regret by selecting an appro-
priate update frequency for the policy. Here, O(·) and Θ(·)
are abbreviations for the polynomial factors of universal
constants in the assumption.

While we defer the detailed proof to the appendix, we out-
line the key ideas and highlight them below.

Proof Sketch We denote x∗
t , u∗

t = K∗x∗
t as the opti-

mal state and action following the policy specified by K∗

respectively, where K∗ = argmaxK∈K JT (K). We use
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the shorthand cih, xih, uih, and wih for ci, xi, ui, and wi,
respectively.

Initially, we need to prove Lemma 6.1, confirm that the state
xt and action ut are bounded by some constant D when
using either the DAC policy or the optimal policy.

We then discretize and decompose the regret as follows:

JT (A)− min
K∈K

JT (K)

=

∫ T

0

ct(xt, ut)dt−
∫ T

0

ct(x
∗
t , u

∗
t )dt

=

n−1∑
i=0

∫ (i+1)h

ih

ct(xt, ut)dt−
n−1∑
i=0

∫ (i+1)h

ih

ct(x
∗
t , u

∗
t )dt

= h

(
n−1∑
i=0

ci(xi, ui)−
n−1∑
i=0

ci(x
∗
i , u

∗
i )

)
+R0 ,

where R0 represents the discretization error:

R0 =

n−1∑
i=0

∫ (i+1)h

ih

(ct(xt, ut)− ct(x
∗
t , u

∗
t ))dt

−h

n−1∑
i=0

(ci(xi, ui)− ci(x
∗
i , u

∗
i )) .

By the discussion in section 4, the first term can be further
decomposed as

n−1∑
i=0

ci(xi, ui)−
n−1∑
i=0

ci(x
∗
i , u

∗
i ) = R1 +R2 +R3 ,

where

R1 =

p−1∑
i=0

(i+1)m−1∑
j=im

ci(xi, ui)− fi(M̃i−H , . . . , M̃i)

 ,

R2 =

p−1∑
i=0

fi

(
M̃i−H , . . . , M̃i

)
− min

M∈M

p−1∑
i=0

fi (M, . . . ,M) ,

R3 = min
M∈M

p−1∑
i=0

fi (M, . . . ,M)−
p−1∑
i=0

(i+1)m−1∑
j=im

ci(x
∗
i , u

∗
i ) .

Thus, we have the regret decomposition as Regret(T ) =
h(R1 +R2 +R3) +R0. We then separately upper bound
each of the four terms.

The term R0 represents the error caused by discretization,
which decreases as the number of sampling points increases
and the sampling distance h decreases. This is because
more sampling points make our approximation of the con-
tinuous system more accurate. Using Lemma 6.2, we get
the following upper bound: R0 ≤ O(hT ).

The term R1 represents the difference between the actual
cost and the approximate cost. For a fixed h, this error
decreases as the number of sample points looked ahead
m increases, while it increases as the sampling distance h
decreases. This is because the closer adjacent points are, the
slower the convergence after approximation. By Lemma 6.3
we can bound it as R1 ≤ O(n(1− hγ)Hm).

The term R2 is incurred due to the regret of the OCO with
memory algorithm. Note that this term is determined by
learning rate η and the policy update frequency m. Choosing
suitable parameters and using Lemma 6.4, we can obtain
the following upper bound: R2 ≤ O(

√
n/h).

The term R3 represents the difference between the ideal
optimal cost and the actual optimal cost. Since the accu-
racy of the DAC policy approximation of the optimal policy
depends on its degree of freedom l, a higher degree of free-
dom leads to a more accurate approximation of the optimal
policy. We use Lemma 6.5 and choose l = Hm to bound
this error: R3 ≤ O(n(1− hγ)Hm).

By summing up these four terms and taking m = Θ( 1h ), we
get:

Regret(T ) ≤ O(nh(1− hγ)
H
h ) +O(

√
nh) +O(hT ) .

Finally, we choose h = Θ
(

1√
T

)
, m = Θ

(
1
h

)
, H =

Θ(log(T )), the regret is bounded by

Regret(T ) ≤ O(
√
T log(T )) .

6. Key Lemmas
In this section, we will primarily discuss the rationale behind
the proof of our key lemmas. Due to space limitations, de-
tailed proofs of these lemmas are provided in the appendix.

Bounding the States and Actions First, we need to prove
all the states and actions are bounded.

Lemma 6.1. Under Assumption 3.1 and 3.2, choosing ar-
bitrary h in the interval [0, h0] where h0 is a constant
only depends on the parameters in the assumption, we
have for any t and policy Mi, ∥xt∥, ∥yt∥, ∥ut∥, ∥vt∥ ≤ D.
∥xt − yt∥, ∥ut − vt∥ ≤ κ2(1 + κ)(1 − hγ)Hm+1D. In
particular, taking all the Mt = 0 and K = K∗, we obtain
the actual optimal solution ∥x∗

t ∥, ∥u∗
t ∥ ≤ D.

The proof of this Lemma mainly use the Gronwall inequality
and the induction method.

Then we analyze the discretization error of the system.

Bounding the Discretization Error Analyzing a continu-
ous system can be arduous; hence, we employ discretization
with distance h to facilitate the analysis.
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Lemma 6.2. Under Assumption 3.2, Algorithm 1 attains
the following bound of R0:

R0 =

n−1∑
i=0

∫ (i+1)h

ih

(ct(xt, ut)− ct(x
∗
t , u

∗
t ))dt

− h

n−1∑
i=0

(ci(xi, ui)− ci(x
∗
i , u

∗
i )) ≤ 2GDhT .

This lemma indicates that the discretization error is directly
proportional to the sample distance h. In other words, in-
creasing the number of sampling points leads to more accu-
rate estimation of system.

Based on Lemma 6.1, we know that ∥xt∥, ∥ut∥ ≤ D. By
utilizing assumption 3.2, we can deduce that:

|ct(xt, ut)− cih(xih, uih)|
≤ max

x,u
(∥∇xct(x, u)∥+ ∥∇uct(x, u)∥)(t− ih)

≤ GD(t− ih) .

Summing up all these terms, we obtain the bound for the
discretization error.

Bounding the Difference between Ideal Cost and Actual
Cost The following lemma describes the upper bound of
the error by approximating the ideal state and action:

Lemma 6.3. Under Assumption 3.1 and 3.2, Algorithm 1
attains the following bound of R1:

R1 =

p−1∑
i=0

(i+1)m−1∑
j=im

ci(xi, ui)− fi

(
M̃i−H , . . . , M̃i

)
≤ nGD2κ2(1 + κ)(1− hγ)Hm+1 .

From this lemma, it is evident that for a fixed sample dis-
tance h, the error diminishes as the number of sample points
looked ahead m increases. However, as the sampling dis-
tance h decreases, the convergence rate of this term becomes
slower. Therefore, it is not possible to select an arbitrarily
small value for h in order to minimize the discretization
error R0.

We need to demonstrate that the discrepancy between xt

and yt, as well as ut and vt, is sufficiently small, given
assumption 3.1. This can be proven by analyzing the state
evolution under the DAC policy.

By utilizing Assumption 3.2 and Lemma 6.1, we can deduce
the following inequality:

|ct (xt, ut)− ct (yt, vt)|
≤ |ct (xt, ut)− ct (yt, ut)|+ |ct (yt, ut)− ct (yt, vt)|
≤ GD∥xt − yt∥+GD∥ut − vt∥ .

Summing over all the terms and use Lemma 6.1, we can
derive an upper bound for R1.

Next, we analyze the regret of Online Convex Optimization
(OCO) with a memory term.

Bounding the Regret of OCO with Memory To analyze
OCO with a memory term, we provide an overview of the
framework established by (Anava et al., 2015) in online
convex optimization. The framework considers a scenario
where, at each time step t, an online player selects a point
xt from a set K ⊂ Rd. At each time step, a loss function
ft : KH+1 → R is revealed, and the player incurs a loss of
ft (xt−H , . . . , xt). The objective is to minimize the policy
regret, which is defined as

PolicyRegret =

T∑
t=H

ft (xt−H , . . . , xt)−min
x∈K

T∑
t=H

ft(x, . . . , x) .

In this setup, the first term corresponds to the DAC policy
we choose, while the second term is used to approximate
the optimal strongly stable linear policy.

Lemma 6.4. Under Assumption 3.1 and 3.2, choosing m =
C
h and η = Θ( m

Th ), Algorithm 1 attains the following bound
of R2:

R2 =

p−1∑
i=0

fi(M̃i−H , . . . , M̃i)− min
M∈M

p−1∑
i=0

fi(M, . . . ,M)

≤4a

γ

√
(
GDCκ2(κ+ 1)W0κB

γ
+ C2κ3κBW0H2)

n

h
.

To analyze this term, we can transform the problem into
an online convex optimization with memory and utilize
existing results presented by (Anava et al., 2015) for it. By
applying their results, we can derive the following bound:

T∑
t=H

ft (xt−H , . . . , xt)−min
x∈K

T∑
t=H

ft(x, . . . , x)

≤ O

(
D
√
Gf (Gf + LH2)T

)
.

Taking into account the bounds on the diameter, Lipschitz
constant, and the gradient, we can ultimately derive an upper
bound for R2.

Bounding the Approximation Error of DAC Policy
Lastly, we aim to establish a bound on the approximation
error between the optimal DAC policy and the unknown
optimal linear policy.

Lemma 6.5. Under Assumption 3.1 and 3.2, Algorithm 1
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attains the following bound of R3:

R3 = min
M∈M

p−1∑
i=0

fi(M, ...,M)−
p−1∑
i=0

(i+1)m−1∑
j=im

ci(x
∗
i , u

∗
i )

≤ 3n(1− hγ)HmGDW0κ
3a(lhκB + 1) .

The intuition behind this lemma is that the evolution of states
leads to an approximation of the optimal linear policy in
hindsight, where u∗

t = −K∗xt if we choose M∗ = {M i},
where M i = (K −K∗)(I + h(A−BK∗))i. Although the
optimal policy K∗ is unknown, such an upper bound is at-
tainable because the left-hand side represents the minimum
of M ∈ M.

7. Conclusions and Future Directions
In this paper, we propose a two-level online controller to
achieve sublinear regret in online continuous-time control
of linear system with adversarial disturbances. The higher-
level controller updates the policy using the Online Convex
Optimization (OCO) with memory framework at a low fre-
quency to reduce regret, while the lower-level controller
employs the DAC policy to approximate the actual state
with an idealized setting. Through our analysis, we observe
that the regret primarily depends on the time T and the sam-
pling distance h. By selecting suitable sampling distance,
we are able to achieve sublinear regret of T .

There are several potential directions for future research in
online non-stochastic control of continuous-time systems.
Firstly, this paper focuses on solving the problem when the
dynamics are known. It would be valuable to extend this
work to address the case of unknown dynamics, where a
trade-off between system identification and regret minimiza-
tion exists. Secondly, while we assume convexity of the
cost function in this paper, it would be interesting to explore
whether assuming strong convexity can lead to even smaller
regret. Finally, it would be intriguing to shift the focus from
regret to the competitive ratio in this setup, as it presents a
different perspective on performance evaluation.
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In the appendix we define n as the smallest integer greater than or equal to T
h , and we use the shorthand cih, xih, uih, and

wih as ci, xi, ui, and wi, respectively.

A. Proof of Theorem 5.1
Theorem 5.1. Under Assumption 3.1, 3.2, a step size of η = Θ(

√
m
Th ), and a DAC policy update frequency m = Θ( 1h ),

Algorithm 1 attains a regret bound of

JT (A)− min
K∈K

JT (K) ≤ O(n(1− hγ)
H
h ) +O(

√
nh) +O(Th) .

With the sampling distance h = Θ( 1√
T
), and the OCO policy update parameter H = Θ(log(T )), Algorithm 1 achieves a

regret bound of

JT (A)− min
K∈K

JT (K) ≤ O
(√

T log (T )
)
.

Proof. We denote u∗
t = K∗x∗

t as the optimal state and action that follows the policy specified by K∗, where K∗ =
argmaxK∈K JT (K).

We then discretize and decompose the regret as follows:

JT (A)− min
K∈K

JT (K) =

∫ T

0

ct(xt, ut)dt−
∫ T

0

ct(x
∗
t , u

∗
t )dt

=

n−1∑
i=0

∫ (i+1)h

ih

ct(xt, ut)dt−
n−1∑
i=0

∫ (i+1)h

ih

ct(x
∗
t , u

∗
t )dt

= h

(
n−1∑
i=0

ci(xi, ui)−
n−1∑
i=0

ci(x
∗
i , u

∗
i )

)
+R0 ,

where R0 represents the discretization error.

We define p as the smallest integer greater than or equal to n
m , then the first term can be further decomposed as

n−1∑
i=0

ci(xi, ui)−
n−1∑
i=0

ci(x
∗
i , u

∗
i )

=

p−1∑
i=0

(i+1)m−1∑
j=im

ci(xi, ui)−
p−1∑
i=0

(i+1)m−1∑
j=im

ci(x
∗
i , u

∗
i )

=

p−1∑
i=0

(i+1)m−1∑
j=im

ci(xi, ui)−
(i+1)m−1∑

j=im

ci(yi, vi)

+

p−1∑
i=0

(i+1)m−1∑
j=im

ci(yi, vi)−
p−1∑
i=0

(i+1)m−1∑
j=im

ci(x
∗
i , u

∗
i )

=

p−1∑
i=0

(i+1)m−1∑
j=im

ci(xi, ui)− fi(M̃i−H , . . . , M̃i)

+

p−1∑
i=0

fi(M̃i−H , . . . , M̃i)

− min
M∈M

p−1∑
i=0

fi(M, . . . ,M) + min
M∈M

p−1∑
i=0

fi(M, . . . ,M)−
p−1∑
i=0

(i+1)m−1∑
j=im

ci(x
∗
i , u

∗
i ) ,

where the last equality is by the definition of the idealized cost function (Definition 4.3).
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Let us denote

R1 =

p−1∑
i=0

(i+1)m−1∑
j=im

ci(xi, ui)− fi(M̃i−H , . . . , M̃i)

 ,

R2 =

p−1∑
i=0

fi(M̃i−H , . . . , M̃i)− min
M∈M

p−1∑
i=0

fi(M, . . . ,M) ,

R3 = min
M∈M

p−1∑
i=0

fi(M, . . . ,M)−
p−1∑
i=0

(i+1)m−1∑
j=im

ci(x
∗
i , u

∗
i ) .

Then we have the regret decomposition as

Regret(T ) = h(R1 +R2 +R3) +O(hT ) .

We then separately upper bound each of the four terms.

The term R0 represents the error caused by discretization, which decreases as the number of sampling points increases and
the sampling distance h decreases. This is because more sampling points make our approximation of the continuous system
more accurate. Using Lemma 6.2, we get the following upper bound: R0 ≤ O(hT ).

The term R1 represents the difference between the actual cost and the approximate cost. For a fixed h, this error decreases
as the number of sample points looked ahead m increases, while it increases as the sampling distance h decreases. This is
because the closer adjacent points are, the slower the convergence after approximation. By Lemma 6.3 we can bound it as
R1 ≤ O(n(1− hγ)Hm).

The term R2 is incurred due to the regret of the OCO with memory algorithm. Note that this term is determined by learning
rate η and the policy update frequency m. Choosing suitable parameters and using Lemma 6.4, we can obtain the following
upper bound: R2 ≤ O(

√
n/h).

The term R3 represents the difference between the ideal optimal cost and the actual optimal cost. Since the accuracy of
the DAC policy approximation of the optimal policy depends on its degree of freedom l, a higher degree of freedom leads
to a more accurate approximation of the optimal policy. We use Lemma 6.5 and choose l = Hm to bound this error:
R3 ≤ O(n(1− hγ)Hm).

By summing up these four terms and taking m = Θ( 1h ), we get:

Regret(T ) ≤ O(nh(1− hγ)
H
h ) +O(

√
nh) +O(hT ) .

Finally, we choose h = Θ
(

1√
T

)
, m = Θ

(
1
h

)
, H = Θ(log(T )), the regret is bounded by

Regret(T ) ≤ O(
√
T log(T )) .

B. The evolution of the state
In this section we will prove that using the DAC policy, the states and actions are uniformly bounded. The difference
between ideal and actual states and the difference between ideal and actual action is very small.

We begin with expressions of the state evolution using DAC policy:
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Lemma B.1. We have the evolution of the state and action:

xt+1 = Ql+1
h xt−l + h

2l∑
i=0

Ψt,iŵt−i ,

yt+1 = h

2Hm∑
i=0

Ψt,iŵt−i ,

vt = −Kyt + h

Hm∑
j=1

M j
t ŵt−j .

where Ψt,i represent the coefficients of ŵt−i:

Ψt,i = Qi
h1i≤l + h

l∑
j=0

Qj
hBM i−j

t−j 1i−j∈[1,l] .

Proof. Define Qh = I + h(A−BK). Using the Taylor expansion of xt and denoting rt as the second-order residue term,
we have

xt+1 = xt + hẋt + h2rt = xt + h(Axt +But + wt) + h2rt .

Then we calculate the difference between wi and ŵi:

ŵt − wt =
xt+1 − xt − h(Axt +But + wt)

h
= hrt .

Using the definition of DAC policy and the difference between disturbance, we have

xt+1 = xt + h

(
Axt +B

(
−Kxt + h

l∑
i=1

M i
t ŵt−i

)
+ ŵt − hrt

)
+ h2rt

= (I + h(A−BK))xt + h

(
Bh

l∑
i=1

M i
t ŵt−i + ŵt

)

= Qhxt + h

(
Bh

l∑
i=1

M i
t ŵt−i + ŵt

)

= Q2
hxt−1 + h

(
Qh

(
Bh

l∑
i=1

M i
t−1ŵt−1−i + ŵt−1

))
+ h

(
Bh

l∑
i=1

M i
t ŵt−i + ŵt

)

= Ql+1
h xt−l + h

2l∑
i=0

Ψt,iŵt−i ,

where the last equality is by recursion and Ψt,i represent the coefficients of ŵt−i.

Then we calculate the coefficients of wt−i and get the following result:

Ψt,i = Qi
h1i≤l + h

l∑
j=0

Qj
hBM i−j

t−j 1i−j∈[1,l] .

By the ideal definition of yt+1 and vt(only consider the effect of the past Hm steps while planning, assume xt−Hm = 0),
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taking l = Hm we have

yt+1 = h

2Hm∑
i=0

Ψt,iŵt−i,

vt = −Kyt + h

Hm∑
j=1

M j
t ŵt−j .

Then we prove the norm of the transition matrix is bounded.

Lemma B.2. We have the following bound of the transition matrix:

∥Ψt,i∥ ≤ a(lhκB + 1)κ2(1− hγ)i−1 .

Proof. By the definition of strongly stable policy, we know

∥Qi
h∥ = ∥(PLhP

−1)i∥ = ∥P (Lh)
iP−1∥ ≤ ∥P∥∥Lh∥i∥P−1∥ ≤ aκ2(1− hγ)i . (2)

By the definition of Ψt,i, we have

∥Ψt,i∥ =

∥∥∥∥∥∥Qi
h1i≤l + h

l∑
j=0

Qj
hBM i−j

t−j 1i−j∈[1,l]

∥∥∥∥∥∥
≤ κ2(1− hγ)i + ah

l∑
j=1

κBκ
2(1− hγ)j(1− hγ)i−j−1

≤ κ2(1− hγ)i + alhκBκ
2(1− hγ)i−1 ≤ a(lhκB + 1)κ2(1− hγ)i−1 ,

where the first inequality is due to equation 2, assumption 3.1 and the condition of
∥∥M i

t

∥∥ ≤ a(1− hγ)i−1.

After that, we can uniformly bound the state xt and its first and second-order derivative.

Lemma B.3. For any t ∈ [0, T ], choosing arbitrary h in the interval [0, h0] where h0 is a constant only depends on the
parameters in the assumption, we have ∥xt∥ ≤ D1, ∥ẋt∥ ≤ D2, ∥ẍt∥ ≤ D3 and the estimatation of disturbance is bounded
by ∥ŵt∥ ≤ W0. Moreover, D1, D2, D3 are only depend on the parameters in the assumption.

Proof. We prove this lemma by induction. When t = 0, it is clear that x0 satisfies this condition. Suppose xt ≤ D1,
ẋt ≤ D2, ẍt ≤ D3, ŵt ≤ W0 for any t ≤ t0, where t0 = kh is the k-th discretization point. Then for t ∈ [t0, t0 + h], we
first prove that ẋt ≤ D2, ẍt ≤ D3.

By Assumption 3.1 and our definition of ut, we know that for any t ∈ [t0, t0 + h]. Thus, we have

∥ẋt∥ = ∥Axt +But + wt∥

= ∥Axt +B(−Kxt0 + h

l∑
i=1

M i
kŵk−i) + wt∥

≤ κA∥xt∥+ κBκ∥xt0∥+ h

l∑
i=1

(1− hγ)i−1W0 +W

≤ κA∥xt∥+ κBκD1 +
W0

γ
+W ,

where the first inequality is by the induction hypothesis ŵt ≤ W0 for any t ≤ t0 and M i
k ≤ (1 − hγ)i−1, the second

inequality is by the induction hypothesis xt ≤ D1 for any t ≤ t0.
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For any t ∈ [t0, t0 + h], because we choose the fixed policy ut ≡ ut0 , so we have u̇t = 0 and

∥ẍt∥ = ∥Aẋt +Bu̇t + wt∥ = ∥Aẋt + wt∥ ≤ κA∥ẋt∥+W .

By the Newton-Leibniz formula, we have for any ζ ∈ [0, h],

ẋt0+ζ − ẋt0 =

∫ ζ

0

ẍt0+ξdξ .

Then we have

∥ẋt0+ζ∥ ≤ ∥ẋt0∥+
∫ ζ

0

∥ẍt0+ξ∥dξ

≤ ∥ẋt0∥+
∫ ζ

0

(κA∥ẋt0+ξ∥+W )dξ

= ∥ẋt0∥+Wζ + κA

∫ ζ

0

∥ẋt0+ξ∥dξ .

By Gronwall inequality, we have

∥ẋt0+ζ∥ ≤ ∥ẋt0∥+Wζ +

∫ ζ

0

(∥ẋt0∥+Wξ) exp(κA(ζ − ξ))dξ .

Then we have

∥ẋt0+ζ∥ ≤ ∥ẋt0∥+Wζ +

∫ ζ

0

(∥ẋt0∥+Wζ) exp(κAζ))dξ

= (∥ẋt0∥+Wζ)(1 + ζ exp(κAζ))

≤
(
κA∥xt0∥+ κBκD1 +

W0

γ
+W +Wh

)
(1 + h exp(κAh))

≤
(
(κA + κBκ)D1 +

W0

γ
+W +Wh

)
(1 + h exp(κAh))

≤
(
(κA + κBκ)D1 +

W0

γ
+ 2W

)
(1 + exp(κA)) ,

where the first inequality is by the relation ξ ≤ ζ, the second inequality is by the relation ζ ≤ h and the bounding property
of first-order derivative, the third inequality is by the induction hypothesis and the last inequality is due to h ≤ 1.

By the relation ∥ẍt∥ ≤ κA∥ẋt∥+W , we have

∥ẍt0+ζ∥ ≤ κAD2 +W .

So we choose D3 = κAD2 +W . By the equation 1, we have

∥ŵt − wt∥ =

∥∥∥∥xt+1 − xt − h(Axt +But + wt)

h

∥∥∥∥
=

∥∥∥∥xt+1 − xt − hẋt

h

∥∥∥∥ =

∥∥∥∥∥
∫ h

0
(ẋt+ξ − ẋt)dξ

h

∥∥∥∥∥ =

∥∥∥∥∥
∫ h

0

∫ ξ

0
ẍt+ζdζdξ

h

∥∥∥∥∥
≤
∫ h

0

∫ ξ

0
∥ẍt+ζ∥dζdξ
h

≤ hD3 ,
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where in the second line we use the Newton-Leibniz formula, the inequality is by the conclusion ∥ẍt∥ ≤ D3 which we have
proved before. By Assumption 3.1, we have

∥ŵt∥ ≤ W + hD3 .

Choosing D3 = κAD2 +W , W0 = W + hD3 = W + h(κAD2 +W ), we get

∥ẋt0+ζ∥ ≤ ((κA + κBκ)D1 +
W0

γ
+ 2W )(1 + exp(κA))

≤ ((κA + κBκ)D1 +
W + h(κAD2 +W )

γ
+ 2W )(1 + exp(κA))

≤ D2

(
hκA

γ
(1 + exp(κA))

)
+

(
(κA + κBκ)D1 +

(1 + h+ 2γ)W

γ

)
(1 + exp(κA))) .

Using the notation

β1 =
hκA

γ
(1 + exp(κA)) ,

β2 =

(
(κA + κBκ)D1 +

2(1 + γ)W

γ

)
(1 + exp(κA)) .

When h < γ
2κA(1+exp(κA)) , we have β1 < 1

2 . Taking D2 = 2β2 we get

∥ẋt0+ζ∥ ≤ β1D2 + β2 ≤ D2 .

So we have proved that for any t ∈ [t0, t0 + h], ∥ẋt∥ ≤ D2, ∥ẍt∥ ≤ D3, ∥ŵt∥ ≤ W0.

Then we choose suitable D1 and prove that for any t ∈ [t0, t0 + h], ∥xt∥ ≤ D1.

Using Lemma B.1, we have

xt+1 = h

t∑
i=0

Ψt,iŵt−i .

By the induction hypothesis of bounded state and estimation noise in [0, t0] together with Lemma B.2, we have

∥xt+1∥ ≤ h

t∑
i=0

(lhκB + 1)κ2(1− hγ)i(W + hD3)

≤ (lhκB + 1)κ2(W + hD3)

γ
.

Then, by the Taylor expansion and the inequality ẋt ≤ D2 , we have for any ζ ∈ [0, h],

∥xt+1 − xt+ζ∥ = ∥
∫ h

ζ

ẋt+ξdξ∥ ≤ (h− ζ)D2 ≤ hD2 .

Therefore we have

∥xt+ζ∥ ≤ ∥xt+1∥+ hD2 ≤ (lhκB + 1)κ2(W + hD3)

γ
+ hD2

=
(lhκB + 1)κ2W (1 + h)

γ
+ hD2

(
(lhκB + 1)κ2κA

γ
+ 1

)
≤ (lκB + 1)2κ2W

γ
+ hD2

(
(lκB + 1)κ2κA

γ
+ 1

)
.
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In the last inequality we use h ≤ 1.

By the relation D2 = β2/(1− β1) and β1 ≤ 1
2 , we know that

D2 ≤ 2

(
(κA + κBκ)D1 +

2(1 + γ)W

γ

)
(1 + exp(κA)).

Using the notation

γ1 = 2h(κA + κBκ)(1 + exp(κA)) ,

γ2 =
(lκB + 1)2κ2W

γ
+ 4

(1 + γ)W

γ
(1 + exp(κA))

(
(lκB + 1)κ2κA

γ
+ 1

)
.

We have ∥xt+ζ∥ ≤ γ1D1 + γ2.

From the equation of γ1 we know that when h ≤ 1
4(κA+κBκ)(1+exp(κA)) we have γ1 ≤ 1

2 . Then we choose D1 = 2γ2, we
finally get

∥xt+ζ∥ ≤ γ1D1 + γ2 ≤ D1 .

Finally, set

h0 = min

{
1,

γ

κA(1 + exp(κA))
,

1

4(κA + κBκ)(1 + exp(κA))

}
,

By the relationship D1 = 2γ2, D2 = 2β2, D3 = κAD2 +W , W0 = W + hD3,

we can verify the induction hypothesis. Moreover, we know that D1, D2, D3 are not depend on h. Therefore we have
proved the claim.

The last step is then to bound the action and the approximation errors of states and actions.

Lemma 6.1. Under Assumption 3.1 and 3.2, choosing arbitrary h in the interval [0, h0] where h0 is a constant only depends
on the parameters in the assumption, we have for any t and policy Mi, ∥xt∥, ∥yt∥, ∥ut∥, ∥vt∥ ≤ D. ∥xt − yt∥, ∥ut − vt∥ ≤
κ2(1 + κ)(1 − hγ)Hm+1D. In particular, taking all the Mt = 0 and K = K∗, we obtain the actual optimal solution
∥x∗

t ∥, ∥u∗
t ∥ ≤ D.

Proof. By Lemma B.2, we have
∥Ψt,i∥ ≤ a(lhκB + 1)κ2(1− hγ)i−1 .

By Lemma B.3 we know that for any h in [0, h0], where

h0 = min

{
1,

γ

κA(1 + exp(κA))
,

1

4(κA + κBκ)(1 + exp(κA))

}
,

we have ∥xt∥ ≤ D1.

By Lemma B.1, Lemma B.2 and Lemma B.3, we have

∥yt+1∥ = ∥h
2Hm∑
i=0

Ψt,iŵt−i∥

≤ hW0

2Hm∑
i=0

a(lhκB + 1)κ2(1− hγ)i−1

≤ aW0(lhκB + 1)κ2

γ
= D̃1 .
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Via the definition of xt, yt, we have

∥xt − yt∥ ≤ κ2(1− hγ)Hm+1 ∥xt−Hm∥ ≤ κ2(1− hγ)Hm+1D1 .

For the actions

ut = −Kxt + h

Hm∑
i=1

M i
t ŵt−i ,

vt = −Kyt + h

Hm∑
i=1

M i
t ŵt−i ,

we can derive the bound

∥ut∥ ≤ ∥Kxt∥+ h

Hm∑
i=1

∥∥M i
t ŵt−i

∥∥ ≤ κ ∥xt∥+W0h

Hm∑
i=1

a(1− hγ)i−1 ≤ κD1 +
aW0

γ
,

∥vt∥ ≤ ∥Kyt∥+ h

Hm∑
i=1

∥∥M i
t ŵt−i

∥∥ ≤ κ ∥yt∥+W0h

Hm∑
i=1

a(1− hγ)i−1 ≤ κD̃1 +
aW0

γ
,

∥ut − vt∥ ≤ ∥K∥ ∥xt − yt∥ ≤ κ3(1− hγ)Hm+1D1 .

Taking D = max{D1, D̃1, κD1 +
W0

γ , κD̃1 +
W0

γ }, we get ∥xt∥, ∥yt∥, ∥ut∥, ∥vt∥ ≤ D.

We also have

∥xt − yt∥+ ∥ut − vt∥ ≤ κ2(1− hγ)Hm+1D1 + κ3(1− hγ)Hm+1D1 ≤ κ2(1 + κ)(1− hγ)Hm+1D .

In particular, the optimal policy can be recognized as taking the DAC policy with all the Mt equal to 0 and the fixed strongly
stable policy K = K∗. So we also have ∥x∗

t ∥, ∥u∗
t ∥ ≤ D.

Now we have finished the analysis of evolution of the states. It will be helpful to prove the key lemmas in this paper.

C. Proof of Lemma 6.2
In this section we will prove the following lemma:

Lemma 6.2. Under Assumption 3.2, Algorithm 1 attains the following bound of R0:

R0 =

n−1∑
i=0

∫ (i+1)h

ih

(ct(xt, ut)− ct(x
∗
t , u

∗
t ))dt

− h

n−1∑
i=0

(ci(xi, ui)− ci(x
∗
i , u

∗
i )) ≤ 2GDhT .

Proof. By Assumption 3.2 and Lemma B.3, we have

|ct(xt, ut)− cih(xih, uih)| ≤ max
x,u

(∥∇xct(x, u)∥+ ∥∇uct(x, u)∥)(t− ih) ≤ GD(t− ih) .
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Therefore we have

|
n−1∑
i=0

∫ (i+1)h

ih

ct(xt, ut)dt− h

n−1∑
i=0

ci(xi, ui)|

=|
n−1∑
i=0

∫ (i+1)h

ih

(ct(xt, ut)− cih(xih, uih))dt|

≤GD

n−1∑
i=0

∫ (i+1)h

ih

(t− ih)dt ≤ GDnh2 = GDhT .

A similar bound can easily be established by lemma B.3 about the optimal state and policy:

|
n−1∑
i=0

∫ (i+1)h

ih

ct(x
∗
t , u

∗
t )dt−

n−1∑
i=0

ci(x
∗
i , u

∗
i )| ≤ GDhT .

Taking sum of the two terms we get R0 ≤ 2GDhT .

D. Proof of Lemma 6.3
In this section we will prove the following lemma:

Lemma 6.3. Under Assumption 3.1 and 3.2, Algorithm 1 attains the following bound of R1:

R1 =

p−1∑
i=0

(i+1)m−1∑
j=im

ci(xi, ui)− fi

(
M̃i−H , . . . , M̃i

)
≤ nGD2κ2(1 + κ)(1− hγ)Hm+1 .

Proof. Using Lemma 6.1 and Assumption 3.2, have the approximation error between ideal cost and actual cost bounded as,

|ct (xt, ut)− ct (yt, vt)| ≤ |ct (xt, ut)− ct (yt, ut)|+ |ct (yt, ut)− ct (yt, vt)|
≤ GD∥xt − yt∥+GD∥ut − vt∥
≤ GD2κ2(1 + κ)(1− hγ)Hm+1 ,

where the first inequality is by triangle inequality, the second inequality is by Assumption 3.2, Lemma 6.1, and the third
inequality is by Lemma 6.1.

With this, we have

R1 =

p−1∑
i=0

(i+1)m−1∑
j=im

ci(xi, ui)− fi(M̃i−H , ..., M̃i)


=

p−1∑
i=0

(i+1)m−1∑
j=im

ci(xi, ui)−
(i+1)m−1∑

j=im

ci(yi, vi)


≤

p−1∑
i=0

(i+1)m−1∑
j=im

GD2κ2(1 + κ)(1− hγ)Hm+1 ≤ nGD2κ2(1 + κ)(1− hγ)Hm+1 .
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E. Proof of Lemma 6.4
Before we start the proof of Lemma 6.4, we first present an overview of the online convex optimization (OCO) with memory
framework. Consider the setting where, for every t, an online player chooses some point xt ∈ K ⊂ Rd, a loss function
ft : KH+1 7→ R is revealed, and the learner suffers a loss of ft (xt−H , . . . , xt). We assume a certain coordinate-wise
Lipschitz regularity on ft of the form such that, for any j ∈ {1, . . . ,H}, for any x1, . . . , xH , x̃j ∈ K

|ft (x1, . . . , xj , . . . , xH)− ft (x1, . . . , x̃j , . . . , xH)| ≤ L ∥xj − x̃j∥ .

In addition, we define f̃t(x) = ft(x, . . . , x), and we let

Gf = sup
t∈{1,...,T},x∈K

∥∥∥∇f̃t(x)
∥∥∥ , Df = sup

x,y∈K
∥x− y∥ .

The resulting goal is to minimize the policy regret, which is defined as

Regret =

T∑
t=H

ft (xt−H , . . . , xt)−min
x∈K

T∑
t=H

ft(x, . . . , x) .

Algorithm 2 Online Gradient Descent with Memory (OGD-M)

Input: Step size η, functions {ft}Tt=m.
Initialize x0, . . . , xH−1 ∈ K arbitrarily.
for t = H, . . . , T do

Play xt, suffer loss ft (xt−H , . . . , xt).
Set xt+1 = ΠK

(
xt − η∇f̃t(x)

)
.

end for

To minimize this regret, a commonly used algorithm is the Online Gradient descent. By running the Algorithm 2, we may
bound the policy regret by the following lemma:

Lemma E.1. Let {ft}Tt=1 be Lipschitz continuous loss functions with memory such that f̃t are convex. Then by runnning
algorithm 2 itgenerates a sequence {xt}Tt=1 such that

T∑
t=H

ft (xt−H , . . . , xt)−min
x∈K

T∑
t=H

ft(x, . . . , x) ≤
D2

f

η
+ TG2

fη + LH2ηGfT .

Furthermore, setting η =
Df√

Gf (Gf+LH2)T
implies that

PolicyRegret ≤ 2Df

√
Gf (Gf + LH2)T .

Proof. By the standard OGD analysis (Hazan, 2019), we know that

T∑
t=H

f̃t (xt)−min
x∈K

T∑
t=H

f̃t(x) ≤
D2

f

η
+ TG2η.

In addition, we know by the Lipschitz property, for any t ≥ H , we have

|ft (xt−H , . . . , xt)− ft (xt, . . . , xt)| ≤ L

H∑
j=1

∥xt − xt−j∥ ≤ L

H∑
j=1

j∑
l=1

∥xt−l+1 − xt−l∥

≤ L

H∑
j=1

j∑
l=1

η
∥∥∥∇f̃t−l (xt−l)

∥∥∥ ≤ LH2ηG,
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and so we have that ∣∣∣∣∣
T∑

t=H

ft (xt−H , . . . , xt)−
T∑

t=H

ft (xt, . . . , xt)

∣∣∣∣∣ ≤ TLH2ηG.

It follows that
T∑

t=H

ft (xt−H , . . . , xt)−min
x∈K

T∑
t=H

ft(x, . . . , x) ≤
D2

f

η
+ TG2

fη + LH2ηGfT .

In this setup, the first term corresponds to the DAC policy we make, and the second term is used to approximate the optimal
strongly stable linear policy. It is worth noting that the cost of OCO with memory depends on the update frequency H .
Therefore, we propose a two-level online controller. The higher-level controller updates the policy with accumulated
feedback at a low frequency to reduce the regret, whereas a lower-level controller provides high-frequency updates of the
DAC policy to reduce the discretization error. In the following part, we define the update distance of the DAC policy as
l = Hm, where m is the ratio of frequency between the DAC policy update and OCO memory policy update. Formally, we
update the value of Mt once every m transitions, where gt represents a loss function.

Mt+1 =

{
ΠM (Mt − η∇gt(M)) if t%m == 0

Mt otherwise .

From now on, we denote M̃t = Mtm for the convenience to remove the duplicate elements. By the definition of ideal cost,
we know that it is a well-defined definition.

By Lemma B.1 we know that

yt+1 = h

2Hm∑
i=0

Ψt,iŵt−i,

vt = −Kyt + h

Hm∑
j=1

M j
t ŵt−j ,

where

Ψt,i = Qi
h1i≤l + h

l∑
j=0

Qj
hBM i−j

t−j 1i−j∈[1,l] .

So we know that yt and yt are linear combination of Mt, therefore

fi

(
M̃i−H , . . . , M̃i

)
=

(i+1)m−1∑
t=im

ct

(
yt

(
M̃i−H , . . . , M̃i

)
, vt

(
M̃i−H , . . . , M̃i

))
.

is convex in Mt. So we can use the OCO with memory structure to solve this problem.

By Lemma B.3 we know that yt and vt are bounded by D. Then we need to calculate the diameter, Lipchitz constant, and
gradient bound of this function fi. In the following, we choose the DAC policy parameter l = Hm.

Lemma E.2. (Bounding the diameter) We have

Df = sup
Mi,Mj∈M

∥Mi −Mj∥ ≤ 2a

hγ

.

Proof. By the definition of M, taking l = Hm we know that
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sup
Mi,Mj∈M

∥Mi −Mj∥ ≤
Hm∑
k=1

∥Mk
i −Mk

j ∥

≤
Hm∑
k=1

2a(1− hγ)k−1

≤ 2a

hγ
.

Lemma E.3. (Bounding the Lipschitz Constant) Consider two policy sequences
{
M̃i−H . . . M̃i−k . . . M̃i

}
and{

M̃i−H . . . M̂i−k . . . M̃i

}
which differ in exactly one policy played at a time step t − k for k ∈ {0, . . . ,H}. Then

we have that∣∣∣fi (M̃i−H . . . M̃i−k . . . M̃i

)
− fi

(
M̃i−H . . . M̂i−k . . . M̃i

)∣∣∣ ≤ C2κ3κBW0

Hm∑
j=0

∥M̃ j
i−k − M̂ j

i−k∥ ,

where C is a constant.

Proof. By the definition we have

∥yt − ỹt∥ = ∥h
2Hm∑
i=0

h

Hm∑
j=0

Qj
hB(M i−j

t−j − M̃ i−j
t−j )1i−j∈[1,Hm]ŵt−i∥

≤ h2κ2κBW0

2Hm∑
i=0

Hm∑
j=0

∥M i−j
t−j − M̃ i−j

t−j ∥1i−j∈[1,Hm]

≤ h2κ2κBW0m

Hm∑
j=0

∥M̃ j
i−k − M̂ j

i−k∥

= hCκ2κBW0

Hm∑
j=0

∥M̃ j
i−k − M̂ j

i−k∥ .

Where the first inequality is by ∥Qj
h∥ ≤ κ2(1−hγ)j−1 ≤ κ2 and lemma B.3 of bounded estimation disturbance, the second

inequality is by the fact that Mi−k have taken m times, the last equality is by m = C
h . Furthermore, we have that

∥vt − ṽt∥ = ∥ −K (yt − ỹt) ∥ ≤ hCκ3κBW0

Hm∑
j=0

∥∥∥M̃ j
i−k − M̂ j

i−k

∥∥∥ .

Therefore using Assumption 3.2, Lemma B.3 and Lemma 6.1 we immediately get that

∣∣∣fi (M̃i−H . . . M̃i−k . . . M̃i

)
− fi

(
M̃i−H . . . M̂i−k . . . M̃i

)∣∣∣ ≤ C2κ3κBW0

Hm∑
j=0

∥M̃ j
i−k − M̂ j

i−k∥ .

Lemma E.4. (Bounding the Gradient) We have the following bound for the gradient:

∥∇Mft(M . . .M)∥F ≤ GDCκ2(κ+ 1)W0κB

γ
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Proof. Since M is a matrix, the ℓ2 norm of the gradient ∇Mft corresponds to the Frobenius norm of the ∇Mft matrix. So
it will be sufficient to derive an absolute value bound on ∇

M
[r]
p,q

ft(M, . . . ,M) for all r, p, q. To this end, we consider the
following calculation. Using lemma B.3 we get that yt(M . . .M), vt(M . . .M) ≤ D. Therefore, using Assumption 3.2 we
have that ∣∣∣∇M

[r]
p,q

ct(M . . .M)
∣∣∣ ≤ GD

(∥∥∥∥∥∂yt(M)

∂M
[r]
p,q

+
∂vt(M . . .M)

∂M
[r]
p,q

∥∥∥∥∥
)
.

We now bound the quantities on the right-hand side:∥∥∥∥∥δyt(M . . .M)

δM
[r]
p,q

∥∥∥∥∥ =

∥∥∥∥∥∥h
2Hm∑
i=0

h

Hm∑
j=1

[
∂Qj

hBM [i−j]

∂M
[r]
p,q

]
ŵt−i1i−j∈[1,H]

∥∥∥∥∥∥
≤ h2

r+Hm∑
i=r

∥∥∥∥∥
[
∂Qi−r

h BM [r]

∂M
[r]
p,q

]
wt−i

∥∥∥∥∥
≤ h2κ2W0κB

1

hγ
=

hκ2W0κB

γ
.

Similarly, ∥∥∥∥∥∂vt(M . . .M)

∂M
[r]
p,q

∥∥∥∥∥ ≤ κ

∥∥∥∥∥δyt(M . . .M)

δM
[r]
p,q

∥∥∥∥∥ ≤ κ
hκ2W0κB

γ
≤ hκ3W0κB

γ
.

Combining the above inequalities with

fi

(
M̃i−H , . . . , M̃i

)
=

(i+1)m−1∑
t=im

ct

(
yt

(
M̃i−H , . . . , M̃i

)
, vt

(
M̃i−H , . . . , M̃i

))
.

gives the bound that

∥∇Mft(M . . .M)∥F ≤ GDCκ2(κ+ 1)W0κB

γ
.

Finally we prove Lemma 6.4:
Lemma 6.4. Under Assumption 3.1 and 3.2, choosing m = C

h and η = Θ( m
Th ), Algorithm 1 attains the following bound of

R2:

R2 =

p−1∑
i=0

fi(M̃i−H , . . . , M̃i)− min
M∈M

p−1∑
i=0

fi(M, . . . ,M)

≤4a

γ

√
(
GDCκ2(κ+ 1)W0κB

γ
+ C2κ3κBW0H2)

n

h
.

Proof. By Lemma E.1 we have

R2 ≤ 2Df

√
Gf (Gf + LH2) p

By Lemma E.2, Lemma E.3, and Lemma E.4 we have

R2 ≤ 2Df

√
Gf (Gf + LH2) p

≤ 2
2a

hγ

√
GDCκ2(κ+ 1)W0κB

γ
(
GDCκ2(κ+ 1)W0κB

γ
+ C2κ3κBW0H2)

n

m

≤ 4a

γ

√
GDC2κ2(κ+ 1)W0κB

γ
(
GDCκ2(κ+ 1)W0κB

γ
+ C2κ3κBW0H2)

n

h
.
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F. Proof of Lemma 6.5
In this section, we will prove the approximation value of DAC policy and optimal policy is sufficiently small. First, we
introduce the following:

Lemma F.1. For any two (κ, γ)-strongly stable matrices K∗,K, there exists M =
(
M1, . . . ,MHm

)
where

M i = (K −K∗) (I + h(A−BK∗))
i−1

,

such that

ct(xt(M), ut(M))− ct(x
∗
t , u

∗
t ) ≤ GDW0κ

3a(lhκB + 1)(1− hγ)Hm .

Proof. Denote Qh(K) = I + h(A−BK), Qh(K
∗) = I + h(A−BK∗). By Lemma B.1 we have

x∗
t+1 = h

t∑
i=0

Qi
h(K

∗)ŵt−i .

Consider the following calculation for i ≤ Hm and M i = (K −K∗) (I + h(A−BK∗))
i−1:

Ψt,i (M, . . . ,M) = Qi
h(K) + h

i∑
j=1

Qi−j
h (K)BM j

= Qi
h(K) + h

i∑
j=1

Qi−j
h (K)B (K −K∗)Qj−1

h (K∗)

= Qi
h(K) +

i∑
j=1

Qi−j
h (K)(Qh(K

∗)−Qh(K))Qj−1
h (K∗)

= Qi
h(K

∗) ,

where the final equality follows as the sum telescopes. Therefore, we have that

xt+1(M) = h
Hm∑
i=0

Qi
h(K

∗)ŵt−i + h

t∑
i=Hm+1

Ψt,iŵt−i .

Then we obtain that

∥∥xt+1(M)− x∗
t+1

∥∥ ≤ hW0

t∑
i=Hm+1

(∥Ψt,i (M∗)∥+ ∥Qi
h(K

∗)∥) .

Using Definition 3.3 and Lemma B.1 we finally get

∥∥xt+1(M)− x∗
t+1

∥∥ ≤ hW0(

t∑
i=Hm+1

((lhκB + 1)aκ2(1− hγ)i−1) + κ2(1− hγ)i)

≤ W0(lhκB + 2)aκ2(1− hγ)Hm .
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We also have

∥u∗
t − ut (M)∥ =

∥∥∥∥∥−K∗x∗
t +Kxt (M)− h

Hm∑
i=0

M iŵt−i

∥∥∥∥∥
= ∥(K −K∗)x∗

t +K(xt(M)− x∗
t )− h

Hm∑
i=0

M iŵt−i∥

= ∥(K −K∗)h

t−1∑
i=0

Qi
h(K

∗)ŵt−i +K(xt(M)− x∗
t )− h

Hm∑
i=0

M iŵt−i∥

= ∥K(xt(M)− x∗
t )− h

t−1∑
i=Hm+1

(K −K∗)Qi−1
h (K∗)ŵt−i∥

= ∥Kh

t−1∑
i=Hm+1

(Ψt,i −Qi−1
h (K∗))ŵt−i − h

t−1∑
i=Hm+1

(K −K∗)Qi−1
h (K∗)ŵt−i∥

=

∥∥∥∥∥h
t−1∑

i=Hm+1

K∗ (Qi−1
h (K∗) + Ψt,i

)
ŵt−i

∥∥∥∥∥
≤ W0κ((1− hγ)Hm + a(lhκB + 1)κ2(1− hγ)Hm)

= W0κ(a(lhκB + 1)κ2 + 1)(1− hγ)Hm) ,

where the inequality is by Definition 3.3 and Lemma B.2.

Finally, we have

|ct (xt(M), ut(M))− ct (x
∗
t , u

∗
t )|

≤ |ct (xt(M), ut(M))− ct (x
∗
t , ut(M))|+ |ct (x∗

t , ut(M))− ct (x
∗
t , u

∗
t )|

≤GD|xt(M)− x∗
t |+GD|ut(M)− u∗

t |
≤GDW0κ

3a(lhκB + 1)(1− hγ)Hm ,

where the second inequality is by Assumption 3.2.

Then we can prove our main lemma:

Lemma 6.5. Under Assumption 3.1 and 3.2, Algorithm 1 attains the following bound of R3:

R3 = min
M∈M

p−1∑
i=0

fi(M, ...,M)−
p−1∑
i=0

(i+1)m−1∑
j=im

ci(x
∗
i , u

∗
i )

≤ 3n(1− hγ)HmGDW0κ
3a(lhκB + 1) .

Proof. By choosing

M i = (K −K∗) (I + h(A−BK∗))
i−1

.

We know that

∥M i∥ = ∥ (K −K∗) (I + h(A−BK∗))
i−1 ∥ ≤ 2κ3(1− γ)i−1 .

Therefore choose a = 2κ3 we have M = {M i} in the DAC policy update class M.
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Then we have the analysis of the regret:

R3 = min
M∈M

p−1∑
i=0

fi(M, ...,M)−
p−1∑
i=0

(i+1)m−1∑
j=im

ci(x
∗
i , u

∗
i )

≤ min
M∈M

p−1∑
i=0

(i+1)m−1∑
j=im

ci(xi(M), ui(M))−
p−1∑
i=0

(i+1)m−1∑
j=im

ci(x
∗
i , u

∗
i ) + nκ2(1 + κ)(1− hγ)Hm+1D

≤ 3n(1− hγ)HmGDW0κ
3a(lhκB + 1) ,

where the first inequality is by Lemma 6.1 and the second inequality is by Lemma F.1.


