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Abstract

In this work, we study the dormant neuron phenomenon in multi-agent reinforce-
ment learning value factorization, where the mixing network suffers from reduced
network expressivity caused by an increasing number of inactive neurons. We
demonstrate the presence of the dormant neuron phenomenon across multiple
environments and algorithms, and show that this phenomenon negatively affects
the learning process. We show that dormant neurons correlates with the exis-
tence of over-active neurons, which have large activation scores. To address the
dormant neuron issue, we propose ReBorn, a simple but effective method that
transfers the weights from over-active neurons to dormant neurons. We theoret-
ically show that this method can ensure the learned action preferences are not
forgotten after the weight-transferring procedure, which increases learning ef-
fectiveness. Our extensive experiments reveal that ReBorn achieves promising
results across various environments and improves the performance of multiple
popular value factorization approaches. The source code of ReBorn is available in
https://github.com/xmu-rl-3dv/ReBorn.

1 Introduction

In cooperative Multi-Agent Reinforcement Learning (MARL) [1], a group of agents whose value
function is approximated using deep neural networks must cooperate to achieve a common goal. Deep
neural network is the key driving force that scales MARL for complex decision-making tasks [2].
Recently, researchers have discovered the scaling laws that deep neural network models can increase
their capacity by enlarging the size of the model and the dataset. However, single-agent reinforcement
learning does not obey the scaling law and suffers from network expressivity issues [3, 4].

To alleviate the network expressivity issues in single-agent RL, researchers have proposed parameter
perturbing methods. Igl et al. [5] periodically resets some layers of the value network. ReSet [6]
resets the last few layers of the neural network while maintaining experience in the replay buffer.
ReDo [4] periodically re-initializes the input weights of some neurons and zero out the neuron’s
output weights. Albeit these methods can improve the performance of single-agent reinforcement
learning, it is unclear whether they work for MARL.
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Compared to single-agent RL, MARL is more challenging, including issues such as partial-
observability [7] and the non-stationary of other learning agents’ policies. The Centralized Training
with Decentralized Execution (CTDE) paradigm [8] is widely adopted in this context. In CTDE, it is a
common practice to use value factorization [2, 9], which factorizes a joint state-action value function
Qtot into individual agent utilities Qi. Each agent acts according to Qi, which is approximated using
a deep neural network, named the agent network. Qi are mixed through a neural network, the mixing
network, to form joint value function Qtot.

In this work, we explore the reasons behind the reduction in network expressivity issues in cooperative
MARL. Specifically, we study dormant neurons [4], which remain inactive with low activation
levels during learning. We demonstrate that the dormant neuron phenomenon, the number of
dormant neurons increases during the training process, exists in multiple popular value-based MARL
algorithms (QMIX [2], QPLEX [10], DMIX [11], and RMIX [12]) across various environments (e.g.,
SMAC [13], SMACv2 [14], predator prey [15]). We find that the proportion of dormant neurons
increases with the number of agents, and that dormant neurons mainly exist in the mixing network.
Moreover, we identify the existence of over-active neurons, whose activation score accounts for a
significant portion of the activation scores for all the neurons.

Typical network parameter perturbing approaches used in single-agent RL (such as Reset [5, 6] and
ReDo [4]) do not work efficiently in MARL. Parameter perturbing methods, which change the weights
of neurons, may lead to forgetting of learned knowledge, especially in MARL with high cooperation
demands. The cooperation knowledge should not be forgotten even after parameter perturbation.
We formulate a memorization requirement that the learned cooperative action preferences remain
unchanged after parameter perturbation as the Knowledge Invariant (KI) principle. We theoretically
show that existing approaches [5, 6, 4] cannot guarantee adherence to the KI principle. Failing to
satisfy the KI principle can lead to the violation of the Individual-Global-Max (IGM) principle, which
is widely adopted in MARL.

We propose, ReBorn, a simple but effective method that transfers the weights from over-active
neurons to dormant neurons. It periodically detects dormant and over-active neurons, and balances the
weights among them. We theoretically show that ReBorn satisfies the KI principle for various value
factorization approaches (e.g., QMIX and QPLEX), distributional value factorization approaches (i.e.,
DMIX and DDN [11]), and risk-sensitive value factorization approach (i.e., RMIX [12]). Through
extensive experiments, we demonstrate that ReBorn can improve the performance of multiple MARL
value factorization methods, and it performs better than multiple parameter perturbing methods by
effectively remembering previously learned knowledge.

2 Background

2.1 Dec-POMDPs

We consider Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) [16] in
modeling cooperative multi-agent reinforcement learning (MARL) scenarios. A Dec-POMDP can be
defined by a tuple G = ⟨S, {Ui}Ni=1, P, r, {Oi}Ni=1, {σi}Ni=1, N, γ⟩, where N is the set of agents, S
is the states set, and Ui is the action set for agent i. At time step t, each agent i chooses an action
ut
i, forming a joint action ut, leading to a state transition st+1 ∼ P (·|st,ut) and a joint reward

rt. In consideration of partial observability, each agent can only make decisions based on its local
observation oti ∼ σi(·|st) ∈ Oi. Each agent i act according to its individual policy πi(ui|τi) based on
its local action-observation history τi = (Oi×Ui)

∗, forming a joint policy π =< π1, . . . , πN >. The
joint policy π has a joint action-value function: Qπ (st,ut) = Est+1:∞,ut+1:∞ [Rt | st,ut], where
Rt =

∑∞
i=0 γ

irt+i is the discounted return, γ is the discounting factor.

2.2 Value Function Factorization

In value factorization methods [17, 2, 9, 10, 18], per-agent utilities Qi is approximated using the
agent network, and they are mixed through the mixer network to form the joint state-action value
function Qtot. For value factorization, the Individual-Global-Max (IGM) principle [9] is a critical
criterion that ensure the consistency between local and joint optimal action selections. It is defined as
follows:
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Definition 1 (IGM [9]). For a joint state-action value function Qjt : T N ×UN 7→ R, where τ ∈ T N

is a joint action-observation history and u is the joint action, if there exists individual state-action
functions [Qi : Ti × Ui 7→ R]Ni=1, such that the following conditions are satisfied

argmax
u

Qjt(τ ,u) = (argmax
u1

Q1(τ1, u1), . . . , argmax
un

QN (τN , uN )), (1)

then, we can state that [Qi]
N
i=1 satisfy IGM for Qjt under τ , or Qjt(τ ,u) is factorized by

[Qi(τi, ui)]
N
i=1.

2.3 The Dormant Neuron Phenomenon

Definition 2 (α−dormant neuron [4, 19]). Consider a fully connected layer ℓ within a neural network,
where Hℓ denotes the total number of neurons in this layer. For an input distribution D, let hℓ

i(x)
represent the activation of neuron i in layer ℓ under input x ∈ D. The normalized activation score of
neuron i is defined as follows:

sℓi =
Ex∈D|hℓ

i(x)|
1
Hℓ

∑Hℓ

k=1 Ex∈D|hℓ
k(x)|

(2)

Then a neuron i in layer ℓ can be defined as α-dormant if its score sℓi ≤ α. (i.e., 0.1)
Definition 3 (α−dormant ratio [4]). The α-dormant ratio of a neural network ϕ can be defined as
follows:

βα =
∑
ℓ∈ϕ

N ℓ
α/

∑
ℓ∈ϕ

Hℓ (3)

N ℓ
α is the count of neurons that are α-dormant in layer ℓ, Hℓ is number of neurons in layer ℓ.

The dormant neuron phenomenon refers to the steady increase in the dormant ratio of the neural
network throughout training.

3 Related Work

3.1 Value Factorization

Value factorization approaches [20] are widely adopted in MARL. These methods construct the
joint state-action value function Qtot based on individual utility Qi. VDN [17] models the joint
value function as the sum of individual utility function, while QMIX [2] models the monotonic
increasing relationship among Qtot and Qi. Qatten [18] models the relationship through using
the attention mechanism. QPLEX [10] factorizes Qtot into a value function and an advantage
function. QTRAN [9] and ResQ [21] decompose the value function into easy-to-factorized forms.
For distributional MARL, DMIX [11] factorizes value function through mean-shape decomposition.
A few work [12, 22] explore risk-sensitive value factorization. RMIX [12] models the monotonic
increasing relationship among Qtot and the CVaR measure of each agent’s distributional utility.
RiskQ [22] ensures that the collection of greedy selection of risk-sensitive individual actions is equal
to the greedy selection of risk-sensitive joint actions.

These methods focus on modeling the representation ability and functional relationships between the
joint state-action value function and individual utilities. Our work, ReBorn, is orthogonal to these
approaches, can be used to improve their overall performance by reducing dormant neurons.

3.2 RL neural network expressivity

In deep reinforcement learning, neural networks tend to lose their expressive power as training
progresses [3]. Various studies explore the loss of expressiveness from different perspectives and
propose corresponding methods to mitigate this issue.

Lyle et al. [23] show that the instability of the target can cause the network to lose expressive ability.
ReSet [6] addresses early agent experience bias by periodically resetting the last layer of the neural
network. The loss of expressive ability can also be attributed to over-fitting, a phenomenon analyzed
in depth by Kirk et al. [24] and Zhang et al. [25] within reinforcement learning.
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Figure 1: The existence of Dormant Neuron Phenomenon in Value Function Factorization Methods.
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(c) 27m_vs_30m

Figure 2: (a) The MSE Loss for fitting a simple Mixing Network increases with an increasing number of Dormant
Neurons. It indicates that dormant neurons hurt mixing network expressivity. (b) The percentage of dormant
neurons in QMIX mixing network with different target network update intervals. (c) The Normalized Activation
Score (NAS) percentage ranking for top-25 over-active neurons in the QMIX mixing network.

To enhance generalization, researchers propose network randomization [26], convolution architec-
tures [27], and soft data augmentation [28]. Researchers [29] find that the loss of plasticity is deeply
connected to changes in the curvature of the loss landscape, and plasticity injection [30] is used to
enhance the learning ability of neural networks for new data. D’Oro et al. [31] and Yang et al. [32]
propose Reset Replay to improve the sample efficiency. ReDo [4] discovers that dormant neurons
occur due to the instability of the target in reinforcement learning. DRM [19] finds that the dormant
neuron phenomenon is related to agent exploration. When the dormancy ratio is high, the agent
gradually cease exploration.

ReBorn is a parameter perturbing method for MARL. It can effectively reduce the number of dormant
and over-active neurons. Moreover, it ensures that learned action knowledge is not forgotten after
parameter perturbation.

4 The Dormant Neuron Phenomenon in MARL

Dormant neurons mainly exist in the mixing network of MARL. To verify the existence of
the dormant neuron phenomenon in MARL, we analyze the number of dormant neurons during
the training of QMIX [2] and QPLEX [10] across multiple tasks in SMAC [13]. The percentage
of dormant neurons are illustrated in Figure 1, presented separately for the agent and the mixing
networks. We discover that the dormant neuron phenomenon primarily occurs in the mixing network
of MARL. The percentage of dormant neurons the mixing network is initially high and continues
to increase, while the percentage of dormant neurons in agent networks is low. This observation is
consistent across various algorithms and environments as it is depicted in Appendix D.4. The number
of agents in the three tasks are 3, 10, and 27, respectively. As shown in Figure 1 (a) to (c), with the
increasing number of agents, the percentage of dormant neurons increases.

Dormant neurons hurt the expressive power of mixing networks. In MARL value factorization
methods, the mixing network plays a crucial role in integrating individual utilities into a joint value
function. As shown in [9, 20, 21], the expressive power of the mixing network significantly impacts
the performance of MARL value factorization methods. The expressive power of neural networks
is related to both their depth [33, 34] and width [35, 36, 37]. We study expressive power of mixing
networks from the perspective of dormant neurons, We use a mixing network with 2 Multi-layer
Perceptron (MLP) layers, and fit it to a simple value function. This network consists of 4 neurons, and
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Figure 3: Over-active neurons in QMIX mixing networks: (a) The percentage contribution of the number of
dormant neurons (depicted as Dormant), the number of over-active neurons (depicted as Overactive-Number),
the sum of NAS (depicted as Overactive-Sum) for over-active neurons over time. (b) Overlap coefficients for
Dormant/Over-active neurons between the current iteration and previous iterations. (c) Percentage of dormant
neurons that re-enter dormancy after ReDo within different time steps.

we change the number of dormant neurons from 0 to 3. As depicted in Figure 2 (a), with increasing
dormant neurons, the mean square error (MSE) loss that fits the target value increases. This indicates
that an increase in dormant neurons leads to reduced expressive power. Please refer to Appendix D.3
for details.

TD target non-stationarity exacerbates dormant neurons in MARL. The TD target in reinforce-
ment learning is non-stationary[38]. In the MARL training process, target networks for mixing
networks are typically used to stabilize TD targets. We study the impact of target non-stationarity by
varying its update interval, where a smaller interval indicates greater non-stationarity. As analyzed
in Figure 1, the dormant neuron phenomenon primarily exists in the mixing network, so we only
control the target network of the mixing network, and the comparison focuses on the dormancy ratio
in the mixing network. Experimental results for the QMIX method are presented in Figure 2 (b).
As depicted, with a smaller update interval, the ratio of dormant neurons increases, indicating that
increased non-stationarity in the target network results in a higher presence of dormant neurons in the
MARL mixing network.

The presence of over-active neurons correlate with dormant neurons. Through careful inspection
of the neurons during MARL network training, we observe an interesting phenomenon that has
not been discovered before: some neurons exhibit very large normalized activation scores (NAS)
throughout the training process. We study the percentage contribution of the average NAS of each
neuron to the total average NAS of all neurons. To this end, we examine such percentage in the
last layer (with 64 neurons) of QMIX’s mixing network in 27m_vs_30m from SMAC. Figure 2 (c)
depict the top 25 neurons which have the largest percentage. Neurons whose percentage is over 5% is
depicted in red, neurons whose percentage are too low are not plotted, while the other neurons are
plotted in green. The results show that most NAS are concentrated on a few neurons, while the NAS
of other neurons are relatively low. We refer to these neurons with large NAS as over-active neurons,
and define them as follows.
Definition 4 (over-active neuron). A neuron i is an over-active neuron if its score sℓi ≥ β (i.e., 3).

In Figure 3 (a), the percentage contribution of the numbers of dormant neurons to all neurons, and the
percentage contribution of the number of over-active neurons to all neurons, along with the percentage
contribution of the sum of NAS for over-active neurons to the sum of NAS of all neurons, are depicted
in red, blue and green, respectively. We find that, albeit there are only a few over-active neurons, their
NAS takes up a large percentage of the neural network’s NAS. This percentage increases steadily
with the training process, correlating with the increase of dormant neurons. As the percentage of
the over-active neurons’ NAS continues to increase, the percentage of NAS for the other neurons
decreases. We conjecture that the presence of over-active neurons impacts the existence of dormant
neurons.

Dormant/Over-active neurons remain dormant/over-active. To study the impact of over-active
neurons on dormant neurons, we examine the percentage of dormant/over-active neurons that remain
dormant/over-active. As depicted in Figure 3 (b), there is a significant overlap among dormant/over-
active neurons. The presence of over-active neurons appears to be a significant factor contributing to
the dormant neuron phenomenon, which has never been considered in previous studies. We use a
parameter perturbing method [4] to periodically recycle the dormant neurons. Then we depict the
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Figure 4: The procedure of ReBorn neurons. The weights of over-active neurons are distributed to M randomly
picked dormant neurons.

percentage of dormant neurons that re-enter dormancy within 0.2 Million steps and 0.6 Million steps
in Figure 3 (c). As it is depicted in the Figure, there is still a significant overlap among dormant
neurons. This indicates that parameter perturbing methods (such as Redo [4]) may not work efficiently
for MARL, as it does not consider over-active neurons. We conjecture that this may be due to the
fact that methods developed for single-agent RL may change the neural network weights regarding
agent cooperation, which lead to forgetting learned cooperative knowledge that is encoded in neural
network.

5 The ReBorn Method

In this section, we describe the Knowledge Invariant Principle, which ensures that learned action
preferences do not change after perturbing neurons. We show that methods failing to satisfy this
principle could lead to the violation of the individual-Global-Max (IGM) principle, which is important
for MARL. Then, we present the ReBorn method, which satisfies the KI principle. It balances the
weights among dormant neurons and over-active neurons for the mixing network.

5.1 Knowledge Invariant Principle

Multi-agent Reinforcement Learning suffers from the dormant neuron phenomenon and the existence
of over-active neurons which make the learning process inefficient. Researchers have proposed
several methods [4, 5, 6] that change the weights of neurons. However, these methods overlook
the complex interactions among multi-agents, and their learned knowledge may be forgotten after
perturbing neurons. We formulate the memorization requirement for learned cooperation knowledge
after neuron perturbations as the Knowledge Invariant Principle, which is defined as follows.
Definition 5 (Knowledge Invariant Principle (KI)). A joint state-action value function is represented
as Qθ, ϕ

tot (τ ,u) = fθ(Q
ϕ
1 (τ1, u1), ..., Q

ϕ
N (τN , uN )), where fθ is the mixing function that mixes Qi

into Qtot, τ is joint observation-action history, u = [u1, ...uN ] is the joint action of multi-agent,
g : R 7→ R is a function that maps weights in θ to θ̂ , g(θ) = θ̂. h : R 7→ R, h(ϕ) = ϕ̃, h map the
weights in ϕ to ϕ̃. If the following condition holds:

Qθ, ϕ
tot (τ ,u) ≥ Qθ, ϕ

tot (τ ,u
′) ⇒ Qθ̂, ϕ̃

tot (τ ,u) ≥ Qθ̂, ϕ̃
tot (τ ,u

′), ∃!k : uk ̸= u′
k (4)

then, the two functions g and h satisfy the Knowledge Invariant Principle for Qθ, ϕ
tot , where

[Qi(τi, ui)]
N
i=1 is individual agent utility function, N is the number of agents, τi and ui are the

observation-action history and action of agent i, respectively. ∃! represents the concept of unique
existence.

Given two functions g and h which satisfy the KI principle, if we use them to change the joint
state-action value function Qθ, ϕ

tot to Qθ̂, ϕ̃
tot ∃!k : uk ̸= u′

k, the learned knowledge that u is preferred
over u′ before applying g and h does not change after applying the two functions. With the KI
principle, we show the following theorem.
Theorem 1. Parameter perturbing methods that do not satisfy the Knowledge Invariant (KI) principle
cannot guarantee adherence to the Individual-Global-Max (IGM) principle.

We have theoretically shown that a parameter perturbing method that does not satisfy the KI principle
could lead to the violation of the IGM principle, which is the most important principle in MARL value
factorization methods [2, 9, 20, 10]. Furthermore, we theoretically show that two state-of-the-art RL
parameter perturbing methods, Redo [4] and ReSet [5], do not satisfy the KI principle, as detailed in
Theorem 2 and Theorem 3, respectively. These theorems and proofs are detailed in Appendix B.
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5.2 ReBorn: a Weight Sharing Method among Dormant and Over-active Neurons.

To address the issues caused by the dormant neuron phenomenon and the existence of over-active
neurons, which reduce network expressivity, we propose ReBorn, a simple but effective method that
shares the weights from over-active neurons with dormant neurons.

ReBorn uses an identity function h(θ) = θ to map the parameters of agent networks to themselves,
and uses function g(θ) to perturb the parameters θ of mixing networks. The process of g(θ) is
described as follows. For each over-active neuron x, we randomly select M dormant neurons that
belong to the same layer as x. Here, M is an random integer between 2 to 5. The selected dormant
neurons, indexed by i, will share weights with neuron x. After weight sharing, these neurons will not
be selected again. We denote win

x as the input weights for neuron x, bx as the bias of neuron x, wout
x

as the output weights. The main procedure of the ReBorn method is depicted in Figure 4.

The input weights of dormant neurons win
i are reborn as βiw

in
x , and the input weight of the over-

active neuron x becomes β0w
in
x . The output weights for neuron x and i are reborn as 1

β0
α0w

out
x

and 1
βi
αiw

out
x . The biases for the over-active and dormant neurons are set to β0bx, βibx. [βi]

M
i=0

are sampled between 0.5 and 1.5. They are used to ensure more variation among neurons. [αi]
M
i=0

is obtained through sampling M + 1 from a normal distribution, and then a Softmax operator is
performed on them to ensure

∑M
i=0 αi = 1. For dormant neurons that are not selected, we use Xavier

initialization to reset their weights.

Although ReBorn is simple, we have theoretically demonstrated that it satisfies the KI principle for
QMIX through the following theorem.

Theorem 2. ReBorn satisfies the KI principle for the QMIX [2] value factorization method.

Moreover, we have theoretically shown that ReBorn satisfies the KI principle for a value factorization
method: QPLEX in Theorem 4, a distributional value factorization method DMIX in Theorem 5, and
a risk-sensitive value factorization method RMIX in Theorem 6. Furthermore, we show that after
using ReBorn, the value functions Qtot learned by QMIX, QPLEX, DMIX, and RMIX still satisfy
the IGM principle in Corollary 1 to 4. These theorems and proofs are listed in Appendix B.

6 Empirical Evaluations

In this section, we present experimental results and discuss their implications. We begin with
a brief overview of our experimental setup in Section 6.1. Subsequently, we examine ReBorn’s
robust applicability to various MARL value factorization algorithms in Section 6.2. Furthermore,
we demonstrate that ReBorn outperforms other parameter perturbing methods that are extended to
MARL in Section 6.3. Lastly, we conduct a series of ablation studies in Section 6.4. All detailed
experimental results can be found in Appendix D.4.

6.1 Environmental Setup

Environments. In our experiments, we employ three distinct environments that challenge the
coordination and adaptability of MARL algorithms. Predator-prey simulates a grid world where
multiple predators collaborate to capture preys dispersed throughout the map. A successful capture
requires at least 2 predators to execute the capture action simultaneously, posing a great challenge
for the algorithm’s coordination ability. The StarCraft Multi-Agent Challenge (SMAC) [13] is
a popular benchmark used extensively in MARL, where multiple ally units controlled by MARL
algorithms aim to defeat enemy units controlled by the game’s built-in AI. SMACv2 [14] features
units that are randomly generated and positioned, enhancing stochasticity and significantly increasing
the complexity of the scenarios. Please refer to Appendix D.2 for detailed descriptions.

Baselines and training. ReBorn, as a parameter perturbation mechanism, is applicable to various
value factorization algorithms. We select 4 classical algorithms with different types: QMIX, QPLEX,
DMIX and RMIX. ReDo, ReSet, SR [31] and MARR [32] four common parameter perturbation
methods in deep RL, are adapted to MARL variants to serve as baselines. Detailed implementations
and parameter configurations for each algorithm are available in Appendix D.1.
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Figure 5: ReBorn can improve the performance of various value factorization algorithms: (a-b) the test win rate
for the 3s5z_vs_3s6z and the MMM2 environments, (c) the return for predator-prey small environment, (d-f) the
dormant percent for the the 3s5z_vs_3s6z, the MMM2, and the predator-prey small environment.

6.2 ReBorn can improve the performance of various value factorization algorithms

In this section, we investigate the applicability of ReBorn through validating ReBorn’s ability to
enhance performance across various value factorization algorithms (QMIX, QPLEX, RMIX) in
different experimental scenarios (3s5z_vs_3s6z, MMM2, predator-prey small). According to the
experimental results presented in Figures 5, ReBorn can improve the performance of multiple
algorithms and effectively reduce the dormant ratio of the mixing networks in diverse settings. More
detailed experimental results can be found in Appendix D.4.1 and Appendix D.4.5.

6.3 ReBorn is superior to other RL parameter perturbing methods

We explore the superiority of ReBorn by applying different parameter perturbing methods to QMIX
across various experimental scenarios (MMM2, 27m_vs_30m, predator-prey large). We added ReDo,
Reset, SR and MARR for comparison and further analyzed the dormant ratios and the over-active
sum ratios. ReDo and ReSet are common parameter perturbation methods in deep RL, while SR and
MARR are reset replay methods. All of them are adapted to MARL variants to serve as baselines.

The results depicted in Figure 6 illustrate the win rates, the dormant ratios and the over-active sum
ratios (the ratio of the sum of normalized activation scores of over-active neurons to the total sum
of scores of all neurons) across different scenarios. The results indicate that compared to ReDo and
ReSet, ReBorn can further enhance algorithm’s performance and more effectively reduce both the
dormant and over-active sum ratios of the mixing network. Please refer to Appendix D.4.4 for more
experimental results.

6.4 Ablation Study and Discussion

6.4.1 Satisfying the KI Principle is of great importance

In this section, we demonstrate the importance of adhering to the Knowledge Invariance (KI) principle.
Our analysis in Appendix B shows that applying ReBorn only to the mixing network adheres to the
KI principle, while using it on the entire network results in a violation. We compared the performance
of value factorization algorithms under the MMM2 scenario in SMAC, focusing on those that either
adhere to or violate the KI principle. As illustrated in Figure 7, maintaining KI with ReBorn enhances
the performance across all baseline algorithms, whereas violating it leads to performance drop in
QMIX and QPLEX, highlighting the great importance of satisfying the KI principle.
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Figure 6: Comparison with other Parameter Perturbing Methods: (a-c) The test win rate, the dormant percentage
and the percentage of the sum of normalized activation score (NAS) for the MMM2 environment. (d-f) The
test win rate, the dormant percentage, and the percentage of the sum of NAS for the 27m_vs_30m environment.
(g-i) The return, the dormant percentage, and the percentage of the sum of NAS for the predator-prey large
environment.
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Figure 7: Importance of satisfying the KI Principle for (a) QMIX, (b) QPLEX, and (C) RMIX. A variant of
ReBorn without satisfying the KI Principle is depicted as Reborn w/o KI.

6.4.2 ReBorn is better than other methods that satisfy the KI principle

In this section, we explore various forms of the weight perturbation function g(θ) in ReBorn based on
QMIX, while keeping the function h(θ) = θ constant. In ReBorn, g(θ) transfers weights from over-
active neurons to dormant neurons. In ReBorn (ReDo), g(θ) periodically re-initializes the weights of
dormant neurons. In ReBorn (ReSet), g(θ) periodically resets the parameters of the last layer of the
neural network. In ReBorn (Reverse ReDo), g(θ) periodically resets the input and output weights of
over-active neurons. In ReBorn (Pruning), g(θ) periodically prunes dormant neurons. To ensure the
accuracy of our conclusions, we conducte experiments across various value factorization algorithms.
The experimental results shown in Figure 8 demonstrate that compared with other methods, ReBorn
significantly enhance the performance of value factorization algorithms.
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Figure 8: Comparison with other methods that satisfy the KI principle for (a) QMIX, (b) QPLEX, and (C)
RMIX.
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Figure 9: Ablation of different hyperparameters in ReBorn. (a) the dormant threshold α. (b) the over-active
threshold β. (c) the ReBorn interval T .

6.4.3 Sensitivity analyses of hyper-parameters

The ablation study in Figure 9 illustrates the impact of different hyperparameter settings in QMIX-
ReBorn, focusing on the ablation of the dormant threshold α, the over-active threshold β, and the
ReBorn interval T . The default configuration of QMIX-ReBorn is α = 0.1, β = 3, and T = 0.2M .
We modify each hyperparameter individually, and the experimental results indicate that appropriate
hyperparameters help to better balance network activation, thereby enhancing overall performance.

7 Conclusion

In this work, we identify the dormant neuron phenomenon in Multi-Agent Reinforcement Learning
(MARL) Value Factorization. Such a phenomenon mainly exists in the mixing network, which hurts
its expressive ability. We discover the existence of over-active neurons, which correlate with dormant
neurons. Existing parameter perturbing methods do not work efficiently for the dormant neurons
in MARL, due to the ignorance of over-active neurons and the forgotten of learned knowledge.
We formulate the memorization requirement for learning agents’ cooperation knowledge as the
Knowledge Invariant (KI) principle. In this work, we propose ReBorn, which is a simple but
effective parameter perturbing method. We show that it satisfies the KI principle and can improve the
performance of multiple value factorization methods better than other parameter perturbing methods.
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Appendix

A Background

A.1 Dec-POMDPs

We consider Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) [16]
in modeling cooperative multi-agent reinforcement learning (MARL) scenarios. A Dec-POMDP
can be formally described by the tuple G = ⟨S, {Ui}Ni=1, P, r, {Oi}Ni=1, {σi}Ni=1, N, γ⟩, where N
represents the set of agents, S is a finite set of states, and Ui is the set of actions available to agent
i. At time step t, each agent i chooses an action ut

i ∈ Ui, forming a joint action ut ∈ UN =
U1 × . . . × UN . This leads to a transition to a new state st+1 ∼ P (·|st,ut) and a joint reward
rt.. In consideration of partial observability, each agent can only access an individual observation
oti ∈ Oi, which is drawn from oti ∼ σi(·|st). γ denotes the discounting factor. Each agent acts
base on individual policy πi(ui|τi), τi = (Oi × Ui)

∗ represents agent’s local action-observation
history. the global action-observation history is denoted as τ ∈ T N := τ1 × . . .× τN , on which it
conditions the joint policy π =< π1, . . . , πN >. The joint policy π has a joint action-value function:
Qπ (st,ut) = Est+1:∞,ut+1:∞ [Rt | st,ut], where Rt =

∑∞
i=0 γ

irt+i is the discounted return.

A.2 Value Function Factorization

For cooperative multi-agent reinforcement learning tasks with partial observability challenges, agents
are supposed to select actions solely based on their local observations. This presents significant
challenges to global coordination in scenarios where communication is unavailable. To efficiently
solve this problem, centralized training with decentralized execution (CTDE) was proposed as a
popular paradigm. During centralized training, access to global information is available, while
only local action-observation histories are accessible during decentralized execution phase. Value
factorization is a class of effective value-based methods under the CTDE paradigm, where agents
make decisions based on individual utility functions. The mixing network is employed during training
to fit the relationship between the joint value function and individual utility functions. Among all
value factorization methods, the Individual-Global-Max (IGM) principle proposed by [9] is a critical
criterion that must be adhered to, ensuring the consistency between local and joint optimal action
selections. The definition of the IGM principle is as follows:

Definition 6 (IGM). For a joint state-action value function Qjt : T N × UN 7→ R, where τ ∈ T N

is a joint action-observation history and u is the joint action, if there exists individual state-action
functions [Qi : Ti × Ui 7→ R]Ni=1, such that the following conditions are satisfied

argmax
u

Qjt(τ ,u) = (argmax
u1

Q1(τ1, u1), . . . , argmax
un

QN (τN , uN )), (A.1)

then, we can state that [Qi]
N
i=1 satisfy IGM for Qjt under τ , or Qjt(τ ,u) is factorized by

[Qi(τi, ui)]
N
i=1.

In recent years, ensuring the adherence to the IGM principle, a series of value factorization methods
have been proposed. VDN imposes additive constraints on the mixing network, and QMIX enhances
VDN’s representation ability by imposing monotonicity constraints. These constraints are sufficient
conditions for IGM, limiting the representational ability of the joint value function. QTRAN
transforms the IGM principle into a linear constraint and proposes an easily factorizable form.
Qatten uses the attention mechanism to model each agent’s impact on the global situation. QPLEX
decomposes the state-action value function into a state value part and an advantage value part. ResQ
converts the joint value function into the sum of a main function and a residual function, deriving
optimal policy through masking.
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B Principle and Theorem

Theorem 1. After the ReBorn process, the learned value function of the QMIX [2] value factorization
method still satisfy the KI principle.

Qθ, ϕ
tot (τ ,u) = fθ(Q

ϕ
1 (τ1, u1), ..., Q

ϕ
N (τN , uN )) + Vθ(τ)

∂f

∂Qϕ
i

≥ 0 (B.2)

h(w) = w, ∀w ∈ ϕ h is an identity function (B.3)

g(w) =



βiw
in
x input weights of dormant neurons win

i

β0w
in
x input weights of over-active neurons win

x
1
βi
αiw

out
x output weights of dormant neurons wout

i
1
β0
α0w

out
x output weights of over-active neurons wout

x

β0bx bias of over-active neurons bx
βibx bias of dormant neurons bi
Xavier(w) weights of non-select dormant neurons
w otherwise

(B.4)

where Qθ, ϕ
tot (τ ,u) = fθ(Q

ϕ
1 (τ1, u1), ..., Q

ϕ
N (τN , uN )) is the joint state-action value funtion, fθ is

the value factorization function of QMIX. In Reborn, g maps the parameters θ of the mixing network
and the parameters ϕ of the agent network to θ̂.

Proof. Through the use of non-negative activation function (e.g. absolute) and hypernet [39], QMIX
can ensure the following property.

∂fθ

∂Qϕ
i

≥ 0 ∀θ monotonicity property (B.5)

It indicates that if Qϕ
i increase, then the value of f increases.

Qθ, ϕ
tot (τ ,u) ≥ Qθ, ϕ

tot (τ ,u
′), ∃!k : uk ̸= u′

k (B.6)

Qθ, ϕ
tot (τ , [u1, ..., uN ]) ≥ Qθ, ϕ

tot (τ , [u
′
1, ..., u

′
N ]) expand u (B.7)

fθ(Q
ϕ
1 (τ1, u1), ..., Q

ϕ
N (τN , uN )) + Vθ(τ) ≥ fθ(Q

ϕ
1 (τ1, u

′
1), ..., Q

ϕ
N (τN , u′

N )) + Vθ(τ) (B.8)

fθ(Q
ϕ
1 (τ1, u1), ..., Q

ϕ
N (τN , uN )) ≥ fθ(Q

ϕ
1 (τ1, u

′
1), ..., Q

ϕ
N (τN , u′

N )) (B.9)

Qϕ
k(τk, uk) ≥ Qϕ

k(τk, u
′
k) , ∃!k : uk ̸= u′

kbecause of (B.5)
(B.10)

fθ̂(Q
ϕ
1 (τ1, u1), ..., Q

ϕ
N (τN , uN )) ≥ fθ̂(Q

ϕ
1 (τ1, u

′
1), ..., Q

ϕ
N (τN , u′

N )) (B.11)

fθ̂(Q
ϕ
1 (τ1, u1), ..., Q

ϕ
N (τN , uN )) + Vθ̂(τ) ≥ fθ̂(Q

ϕ
1 (τ1, u

′
1), ..., Q

ϕ
N (τN , u′

N )) + Vθ̂(τ) (B.12)

Qθ̂, ϕ
tot (τ ,u) ≥ Qθ̂, ϕ

tot (τ ,u
′) (B.13)

(B.9) to (B.10) is because ui = u′
i, ∀i ̸= i , and uk ̸= u′

k and the monotonicy conditions. (B.10) to
(B.11) is due to the monotonicy condition, because ui = u′

i, ∀i ̸= i , and uk ̸= u′
k. Thus, we show

that after the ReBorn process, the learned action preference of QMIX does not change.

Corollary 1. After the ReBorn Process, the value function of QMIX remain satisfies the IGM
principle.

Proof. To prove this Corollary is equal to prove that the maximal action remain the same after the
ReBorn method. It is shows that the ReBorn method satisfy the KI principle for QMIX, thus the
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following condition is satisfy.

Qθ, ϕ
tot (τ ,u) ≥ Qθ, ϕ

tot (τ ,u
′) → Qθ̂, ϕ

tot (τ ,u) ≥ Qθ̂, ϕ
tot (τ ,u

′) , ∃!k : uk ̸= u′
k (B.14)

Qθ, ϕ
tot (τ , ū) ≥ Qθ, ϕ

tot (τ ,u
′) ū = argmax

u
Qθ, ϕ

tot (τ ,u), ∀u′ (B.15)

ū = [ū1, ..., ūN ] ūi = argmax
ui

Qϕ
i (τi, ui) IGM Principle (B.16)

Qθ, ϕ
tot (τ , ū) ≥ Qθ, ϕ

tot (τ ,u
′) → Qθ̂, ϕ

tot (τ , ū) ≥ Qθ̂, ϕ
tot (τ ,u

′) ∀u′ KI Principle (B.17)

Qθ̂, ϕ
tot (τ , ū) ≥ Qθ̂, ϕ

tot (τ ,u
′), ∀u′ (B.18)

ū = argmax
u

Qθ̂, ϕ
tot (τ ,u) = argmax

u
Qθ, ϕ

tot (τ ,u) (B.19)

(B.19) shows that the IGM principle is still preserve after applying ReBorn on the joint state-action
value Qtot of QMIX.

Theorem 2. ReDo [4] with function g and h does not guarantee satisfying the KI principle for the
QMIX [2] value factorization method which is defined as follows.

Qθ, ϕ
tot (τ ,u) = fθ(Q

ϕ
1 (τ1, u1), ..., Q

ϕ
N (τN , uN )) + Vθ(τ)

∂f

∂Qϕ
i

≥ 0 (B.20)

g(w) =


0 w ∈ θod output weights of dormant neurons
Xavier(w) w ∈ θid input weights of dormant neurons
w otherwise

(B.21)

h(w) =


0 w ∈ ϕo

d output weights of dormant neurons
Xavier(w) w ∈ ϕi

d input weights of dormant neurons
w otherwise

(B.22)

where fθ is the value factorization function of QMIX, g map the parameters θ of the mixing network
to θ̂, h map the parameters ϕ of the agent network to ϕ̃, Xavier(w) indicates the Xavier initialization
function, θod, θid are the output/input weights of dormant neurons in θ, respectively, ϕo

d/ϕi
d are the

output/input weights of dormant neurons in ϕ, respectively.

Proof. We prove this theorem by providing an example that ReDo does not satisfy the KI principle.
We assume that the mixing network, parameterized by θ is a three layer neural work. As it is depicted
in Figure 1, the input layer neurons are used for joint state-action history τ . It also takes actions u
as input. There are in total four joint actions represent as u1 = [0, 0],u2 = [0, 1],u3 = [1, 0],u4 =
[1, 1]. There are two agents, each has two actions represent as 0 and 1, respectively. The action of the
first/second agent is fed into the second/third neuron of the input layer. The weights of each neurons
are marked on the edges and we assume bias b = 0. According to the definition 2 and the weights,
the blue neuron is a dormant neuron. Assuming τ = 1, we can obtain the relationship of Q(τ ,u)
corresponding to each action:

Q(τ,u3) > Q(τ,u4) > Q(τ,u1) > Q(τ,u2) (B.23)

For the dormant neuron (colored), ReDo B.22 reinitialized the input weights of the neuron using
Xavier initialization, the output weights of the neurons are set to zero. The weights after ReDo are as
depicted in the right part of Figure 1, and we assume that the bias for each neuron is zero. We can
obtain the relationship of Q

′
(τ ,u) corresponding to each joint action:

Q(τ,u4) > Q(τ,u3) > Q(τ,u2) > Q(τ,u1) (B.24)

Since the original optimal action u3 in B.23 is different from the one u4 in B.24 after Redo, we can
draw a conclusion that ReDo does not satisfy the KI principle.
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Figure 1: An example to show that ReDo does not satisfy KI principle.

Theorem 3. ReSet [6] with function g and h does not guarantee satisfying the KI principle for the
QMIX [2] value factorization method which is defined as follows.

Qθ, ϕ
tot (τ ,u) = fθ(Q

ϕ
1 (τ1, u1), ..., Q

ϕ
N (τN , uN )) + Vθ(τ)

∂f

∂Qϕ
i

≥ 0 (B.25)

g(w) =

{
Xavier(w) w ∈ θ w ∈ weights of the last layer of neural network
w w ∈ other layers

(B.26)

h(w) =

{
Xavier(w) w ∈ ϕ w ∈ weights of the last layer of neural network
w w ∈ other layers

(B.27)

where fθ is the value factorization function of QMIX, g map the parameters θ of the mixing network
to θ̂, h map the parameters ϕ of the agent network to ϕ̃, Xavier(w) indicates the Xavier initialization
function.

Proof. We prove this theorem by providing an example that ReSet does not satisfy the KI principle.
Consider a three-layer mixing network parameterized by θ, which takes joint action-observation
history, represented as τ , and actions u as input, shown in Figure 2. There are in total four actions
represent as u1 = [0, 0],u2 = [0, 1],u3 = [1, 0],u4 = [1, 1]. There are two agents, each has
two actions represent as 0 and 1, respectively. The action of the first/second agent is fed into the
second/third neuron of the input layer. The weights of each neurons are marked on the edges and we
assume bias b = 0. Assuming τ = 1, we can obtain the relationship of Q(τ ,u) corresponding to
each action:

Q(τ,u3) > Q(τ,u4) > Q(τ,u1) > Q(τ,u2) (B.28)

The weights of the last layer are reinitialized using Xavier initialization according to B.27. The
weights after ReDo are as depicted in the right part of Figure 2. We can obtain the relationship of
Q

′
(τ ,u) corresponding to each joint action:

Q(τ,u4) = Q(τ,u3) > Q(τ,u2) = Q(τ,u1) (B.29)

Since the original optimal action u3 in B.28 is different from the optimal action u4 in B.29 after
Reset, we can draw a conclusion that Reset does not satisfy the KI principle.
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Figure 2: An example to show that Reset does not satisfy KI principle.

Theorem 4. ReBorn with functions g and h satisfies the KI principle for the QPLEX [10] value
factorization method.

Qθ, ϕ
tot (τ ,u) = V θ, ϕ

tot (τ ) +Aθ, ϕ
tot (τ ,u) (B.30)

Aθ, ϕ
tot (τ ,u) = fθ(A

ϕ
1 (τ1, u1), ..., A

ϕ
N (τN , uN ))

∂f

∂Aϕ
i

≥ 0 (B.31)

Qϕ
i (τi,ui) = Aϕ

i (τi, ui) + V ϕ
i (τi) V ϕ

i (τi) = max
ui

Qϕ
i (τi, ui) (B.32)

V θ ϕ
tot (τ ) = max

u
Qθ,ϕ

tot (τ ,u) (B.33)

g(w) =



βiw
in
x input weights of dormant neurons win

i

β0w
in
x input weights of over-active neurons win

x
1
βi
αiw

out
x output weights of dormant neurons wout

i
1
β0
α0w

out
x output weights of over-active neurons wout

x

β0bx bias of over-active neurons bx
βibx bias of dormant neurons bi
Xavier(w) weights of non-select dormant neurons
w otherwise

(B.34)

h(w) = w, ∀w ∈ ϕ h is an identity function (B.35)

where fθ is the value factorization function of QMIX. In Reborn, g map the parameters θ of the
mixing network to θ̂.

Proof. QPLEX uses non-negative weighted attention network to implement fθ which satisfies the
following property.

∂fθ

∂Aϕ
i

≥ 0 ∀i, ∀θ, ∀ϕ monotonicity property (B.36)
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Qθ, ϕ
tot (τ ,u) ≥ Qθ, ϕ

tot (τ ,u
′) ∃!k : uk ̸= u′

k (B.37)

V θ, ϕ
tot (τ ) +Aθ, ϕ

tot (τ ,u) ≥ V θ, ϕ
tot (τ ) +Aθ, ϕ

tot (τ ,u
′) (B.38)

V θ, ϕ
tot (τ ) +Aθ, ϕ

tot (τ , [u1, ..., uN ]) ≥ V θ, ϕ
tot (τ ) + +Aθ, ϕ

tot (τ , [u
′
1, ..., u

′
N ]) (B.39)

V θ, ϕ
tot (τ ) + fθ(A

ϕ
1 (τ1, u1), ..., A

ϕ
N (τN , uN )) ≥ V θ, ϕ

tot (τ ) + fθ(A
ϕ
1 (τ1, u

′
1), ..., A

ϕ
N (τN , u′

N ))
(B.40)

fθ(A
ϕ
1 (τ1, u1), ..., A

ϕ
N (τN , uN )) ≥ fθ(A

ϕ
1 (τ1, u

′
1), ..., A

ϕ
N (τN , u′

N )) (B.41)

Aϕ
k(τk, uk)) ≥ Aϕ

k(τk, u
′
k)) (B.42)

fθ̂(A
ϕ
1 (τ1, u1), ..., A

ϕ
N (τN , uN )) ≥ fθ̂(A

ϕ
1 (τ1, u

′
1), ..., A

ϕ
N (τN , u′

N )) (B.43)

V θ̂, ϕ
tot (τ ) + fθ̂(Q

ϕ
1 (τ1, u1), ..., Q

ϕ
N (τN , uN )) ≥ V θ̂, ϕ

tot (τ ) + fθ̂(Q
ϕ
1 (τ1, u

′
1), ..., Q

ϕ
N (τN , u′

N ))
(B.44)

Qθ̂, ϕ
tot (τ ,u) ≥ Qθ̂, ϕ

tot (τ ,u
′) (B.45)

(B.41) to (B.42) is because ui = u′
i, ∀i ̸= k , and uk ̸= u′

k and the monotonicy conditions. (B.42)
to (B.43) is due to the monotonicy condition, because ui = u′

i ∀i ̸= i , and uk ̸= u′
k. Thus, we show

that after the ReBorn process, the learned action preference of QPLEX does not change.

Corollary 2. After the ReBorn Process, the value function of QPLEX remain satisfies the IGM
principle.

Proof. The proof is the same as the proof for showing after the ReBorn process, QMIX satisfies the
IGM principle. It is omitted for brevity.

Theorem 5. ReBorn with functions g and h satisfies the KI principle for the DMIX [10] value
factorization method. DMIX is a distribution MARL algorithm which models the distributional return
Ztot of multi-agent system.

Zθ, ϕ
tot (τ ,u) = Zθ, ϕ

mean(τ ,u) + Zθ, ϕ
shape(τ ,u) (B.46)

Qθ, ϕ
tot (τ ,u) = Zθ, ϕ

mean(τ ,u) = fθ(Q
ϕ
1 (τ1, u1), ..., Q

ϕ
N (τN , uN )) + Vθ(τ)

∂f

∂Qϕ
i

≥ 0 (B.47)

Qϕ
i (τi,ui) = E[Zϕ

i (τi, ui)] expectation over possible outcome of Zi (B.48)

Zθ ϕ
shape(τi,ui) =

N∑
i=1

(Zϕ
i (τi,ui)−Qϕ

i (τi,ui)) (B.49)

h(w) = w, ∀w ∈ ϕ h is an identity function (B.50)

g(w) =



βiαiw
in
x input weights of dormant neurons win

i

β0α0w
in
x input weights of over-active neurons win

x
1
βi
wout

x output weights of dormant neurons wout
i

1
β0
wout

x output weights of over-active neurons wout
x

β0bx bias of over-active neurons bx
βibx bias of dormant neurons bi
Xavier(w) weights of non-select dormant neurons
w otherwise

(B.51)

In Reborn, g map the parameters θ of the mixing network to θ̂.

18



Proof.

Qθ, ϕ
tot (τ ,u) ≥ Qθ, ϕ

tot (τ ,u
′) ∃!k : uk ̸= u′

k (B.52)

Qθ, ϕ
tot (τ , [u1, ..., uN ]) ≥ Qθ, ϕ

tot (τ , [u
′
1, ..., u

′
N ]) expand u (B.53)

fθ(Q
ϕ
1 (τ1, u1), ..., Q

ϕ
N (τN , uN )) + Vθ(τ) ≥ fθ(Q

ϕ
1 (τ1, u

′
1), ..., Q

ϕ
N (τN , u′

N )) + Vθ(τ) (B.54)

fθ(Q
ϕ
1 (τ1, u1), ..., Q

ϕ
N (τN , uN )) ≥ fθ(Q

ϕ
1 (τ1, u

′
1), ..., Q

ϕ
N (τN , u′

N )) (B.55)

Qϕ
k(τk, uk)) ≥ Qϕ

k(τk, u
′
k)) ∃!k : uk ̸= u′

k (B.56)

fθ̂(Q
ϕ
1 (τ1, u1), ..., Q

ϕ
N (τN , uN )) ≥ fθ̂(Q

ϕ
1 (τ1, u

′
1), ..., Q

ϕ
N (τN , u′

N )) (B.57)

fθ̂(Q
ϕ
1 (τ1, u1), ..., Q

ϕ
N (τN , uN )) + Vθ̂(τ) ≥ fθ̂(Q

ϕ
1 (τ1, u

′
1), ..., Q

ϕ
N (τN , u′

N )) + Vθ̂(τ) (B.58)

Qθ̂, ϕ
tot (τ ,u) ≥ Qθ̂, ϕ

tot (τ ,u
′) (B.59)

Thus, we show that after the ReBorn process, the learned action preference of DMIX does not
change.

Corollary 3. After the ReBorn Process, the value function of DMIX remain satisfies the IGM
principle.

Proof. The proof is the same as the proof for showing after the ReBorn process, QMIX satisfies the
IGM principle. It is omitted for brevity.

Quantile functions (inverse CDF) θ of a random variable Z is defined as follows.

θZ(α) = inf{z ∈ R : ω ≤ CDFZ(z)}, ∀ω ∈ [0, 1] (B.60)

where CDFZ(z) is the cumulative distribution function of Z. We denote θZ(ω) as θ(ω) for simplicity.

Definition 7 (Conditional Value at Risk(CVaR)).

CV aRα(Z) = EZ [z|z ≤ θ(α)] (B.61)

where α is the confidence level (risk level), θ(α) is the quantile function (inverse CDF) defined
in (B.60). CVaR is the expectation of values z that are less equal than the α-quantile value (θ(α)) of
the value distribution.

Theorem 6. ReBorn with functions g and h satisfies the KI principle for the RMIX [12] value
factorization method. RMIX is a risk-sensitive MARL algorithm which consider risk in multi-agent
system. Its joint state-action value function is defined as follows.

Qθ, ϕ
tot (τ ,u) = fθ(C

ϕ
1 (τ1, u1), ..., C

ϕ
N (τN , uN )) + Vθ(τ)

∂f

∂Cϕ
i

≥ 0 (B.62)

C ϕ
i (τi,ui) = CV aRα[Z

ϕ
i (τi, ui)] (B.63)

h(w) = w, ∀w ∈ ϕ h is an identity function (B.64)

g(w) =



βiw
in
x input weights of dormant neurons win

i

β0w
in
x input weights of over-active neurons win

x
1
βi
αiw

out
x output weights of dormant neurons wout

i
1
β0
α0w

out
x output weights of over-active neurons wout

x

β0bx bias of over-active neurons bx
βibx bias of dormant neurons bi
Xavier(w) weights of non-select dormant neurons
w otherwise

(B.65)

In Reborn, g map the parameters θ of the mixing network to θ̂.
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Proof.

Qθ, ϕ
tot (τ ,u) ≥ Qθ, ϕ

tot (τ ,u
′) ∃!k : uk ̸= u′

k (B.66)

fθ(C
ϕ
1 (τ1, u1), ..., C

ϕ
N (τN , uN )) + Vθ(τ) ≥ fθ(C

ϕ
1 (τ1, u

′
1), ..., C

ϕ
N (τN , u′

N )) + Vθ(τ) (B.67)

fθ(C
ϕ
1 (τ1, u1), ..., C

ϕ
N (τN , uN )) ≥ fθ(C

ϕ
1 (τ1, u

′
1), ..., C

ϕ
N (τN , u′

N )) (B.68)

Cϕ
k (τk, uk)) ≥ Cϕ

k (τk, u
′
k)) (B.69)

fθ̂(C
ϕ
1 (τ1, u1), ..., C

ϕ
N (τN , uN )) ≥ fθ̂(C

ϕ
1 (τ1, u

′
1), ..., C

ϕ
N (τN , u′

N )) (B.70)

fθ̂(C
ϕ
1 (τ1, u1), ..., C

ϕ
N (τN , uN )) + Vθ̂(τ) ≥ fθ̂(C

ϕ
1 (τ1, u

′
1), ..., C

ϕ
N (τN , u′

N )) + Vθ̂(τ) (B.71)

Qθ̂, ϕ
tot (τ ,u) ≥ Qθ̂, ϕ

tot (τ ,u
′) (B.72)

Thus, we show that through ReBorn, the learned knowledge about action preference of RMIX does
not change.

Corollary 4. After the ReBorn Process, the value function of RMIX remain satisfies the IGM principle.

Proof. In RMIX, each agent acts greedy according to Cϕ
i (τi, ui) = CV aRα[Z

ϕ
i (τi, ui)]. It could be

viewed as Qphi
i (τi, ui) in QMIX. By this way, we can prove this Corollary in the same approach as

for showing after the ReBorn process, QMIX satisfies the IGM principle. It is omitted for brevity.

C Algorithm

The ReBorn algorithm is described in Algorithm 1.

Algorithm 1 ReBorn
Require: dormant threshold α, over-active threshold β, reborn interval T

1: Initialize parameters θ of the mixing network
2: Initialize parameters ϕ of the agent network
3: Initialize replay buffer D
4: for e ∈ {1, . . . ,m episodes} do
5: Start a new episode;
6: while episode_is_not_end do
7: Get the Agent action ai
8: Execute ai, obtain global reward r and the next state s′

9: Update replay buffer D
10: Sample a batch D′ from replay buffer D
11: Loss(θ, ϕ) = (Q(s, a; θ, ϕ)− ys,a)

2

12: Update θ and ϕ and by Loss
13: if e mod T == 0 then
14: Sample x from replay buffer D
15: Calculate the sℓi of each neuron in mixing network
16: Get dormant neurons dormℓ

i which sℓi < α
17: Get over-active neurons overℓi which sℓi > β
18: for each overℓi do
19: Randomly select K dormℓ

i that have not been selected before
20: overℓi assign weights to K dormℓ

i
21: end for
22: Reinitialize input weights of unassigned dormℓ

i

23: Set output weights of unassigned dormℓ
i to 0

24: end if
25: end while
26: end for
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D Experimental Details

D.1 Experimental Setup

We select 4 classical algorithms (QMIX, QPLEX, DMIX, RMIX) with different types to test the
generality of ReBorn. QMIX and QPLEX are two well-known value-based MARL value factorization
algorithms. DMIX is a distributional MARL value factorization algorithm, while RMIX is a risk-
sensitive MARL value factorization algorithm. These four algorithms cover multiple directions in
the field of value factorization, demonstrating the strong applicability of ReBorn. Below is the brief
descriptions of these algorithms.

Table 1: Baseline value factorization algorithms

Algorithms Brief Description

QMIX3 [2] Learns a mixer of individual utilities with monotonic constraints
QPLEX4 [10] Learns a mixer of advantage functions and state value functions
DMIX5 [11] Integrates distributional RL with QMIX
RMIX6 [12] Integrates risk-sensitive RL with QMIX

We implement these algorithms based on their open-source repositories to carry out performance
analyses, with hyperparameters consistent with those in PyMARL. Our methods are implemented
within the PyMARL framework, and each is evaluated using 5 random seeds, with 95% confidence
intervals. Specific hyperparameters of different algorithms are listed in Table 2. We conduct
experiments on a cluster equipped with multiple NVIDIA GeForce RTX 3090 GPUs.

Table 2: Hyperparameter of different value factorization algorithms

Hyperparameter QMIX QPLEX DMIX RMIX
Action Selector epsilon greedy epsilon greedy epsilon greedy epsilon greedy

Batch Size 32 32 32 32
Buffer Size 5000 5000 5000 5000

Learning Rate 0.0005 0.0005 0.0005 0.0005
Optimizer RMSprop RMSprop RMSprop Adam

Runner episode runner episode runner episode runner episode runner
Mixing Embed Dimension 64 64 64 64

Hypernet Embed Dimension 64 64 64 64
RNN Hidden Dim 64 64 64 64

Target Update Interval 200 200 200 200
Discount Factor (γ) 0.99 0.99 0.99 0.99
α Dormant Threshold 0.1 0.1 0.1 0.1

β Over-active Threshold 3 3 3 3
Execution Interval(Step) 200000 200000 200000 200000

In deep RL, ReDo [4] and ReSet [5] are two common mechanisms for improving network’s perfor-
mance through neuron processing. The specific introductions are as follows.

ReDo. ReDo periodically detects dormant neurons within the neural network and resets the input
and output weights of these dormant neurons. The input weights are initialized using the Xavier
method, while the output weights are set to zero.

ReSet. ReSet periodically resets the parameters of the neural network’s final layer using Xavier
initialization.

3https://github.com/oxwhirl/pymarl
4https://github.com/wjh720/QPLEX
5https://github.com/j3soon/dfac
6https://github.com/yetanotherpolicy/rmix

21

https://github.com/oxwhirl/pymarl
https://github.com/wjh720/QPLEX
https://github.com/j3soon/dfac
https://github.com/yetanotherpolicy/rmix


Below is a brief introduction to all the methods used in the experimental section.

Table 3: Methods in Experimental Section

Algorithms Brief Description

algorithm - ReBorn Apply ReBorn to the Mixing Network of algorithm
algorithm - ReDo Apply ReDo to the Whole Networks of algorithm
algorithm - ReSet Apply ReSet to the Whole Networks of algorithm

algorithm - ReBorn (mechanism) Apply mechanism to the Mixing Network of algorithm
algorithm - mechanism with KI Apply mechanism to the Mixing Network of algorithm
algorithm - mechanism w/o KI Apply mechanism to the Whole Networks of algorithm

In Table 3, algorithm is QMIX, QPLEX, DMIX, RMIX. mechanism is ReBorn, ReDo, ReSet. Specific
hyperparameters of different mechanisms are listed as follows.

D.2 Environment

D.2.1 Predator-prey

Predator-prey simulates a grid world where multiple agents collaborate to capture preys dispersed
throughout the map. At each time step, each agent can choose to move or capture within its local field
of view. A prey is considered captured successfully only when at least two agents around it execute
the capture action simultaneously. Each successful capture brings a team reward of +10, with the
goal being to accumulate as much team reward as possible within a limited number of time steps. We
develop three distinct environmental configurations: small, middle, large, each featuring different
numbers of agents and preys, as well as varying map sizes. Table 4 shows different environmental
configurations of Predator-prey in detail.

Game Rules

• Agent Movement: Agents can move in four directions or stay in place. Movement is
restricted by the presence of other agents or preys.

• Observation and Decision Making: Each agent observes a 3x3 grid centered around itself,
receiving information about nearby agents and preys. Decisions are based on this local
observation.

• Capture Mechanism: To capture a prey, at least two agents must be adjacent to it and must
choose the capture action at the same time. Successful capture relies on strategic positioning
and synchronized actions among agents.

• Rewards and Penalties: Agents receive a positive reward for each prey captured through
cooperative action, while individual movement incurs a slight negative time penalty −0.1 to
encourage efficiency.

• Episode Termination: An episode terminates if all preys are captured or after a predefined
number of steps, providing a fixed time frame for agents to maximize their collective reward.

Configuration Number of Predators Number of Preys Map Size Reward for Capture

Small 6 12 20 x 20 +10

Middle 12 24 30 x 30 +10

Large 18 36 40 x 40 +10

Table 4: Comparison of Predator-prey Configurations
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D.2.2 StarCraft II Multi-Agent Challenges (SMAC)

The StarCraft Multi-Agent Challenge (SMAC) [13] is a popular benchmark used extensively in
the domain of multi-agent reinforcement learning. Built on the StarCraft II game engine, SMAC
specializes in micromanagement scenarios where each agent is controlled by an independent agent
that must make decisions based on local observations. MARL algorithms coordinate a team of agents
to engage in combat against an opposing team managed by the game’s built-in AI. The performance
of these algorithms is quantitatively evaluated by the test win rate or the test return of the gameplay.

Name Difficulty Ally Units Enemy Units

3s_vs_5z Hard 3 Stalkers 5 Zealots
2c_vs_64zg Hard 2 Colossi 64 Zerglings

MMM2 Super Hard 1 Medivac, 2 Marauders & 7
Marines

1 Medivac, 3 Marauders & 8
Marines

27m_vs_30m Super Hard 27 Marines 30 Marines
3s5z_vs_3s6z Super Hard 3 Stalkers & 5 Zealots 3 Stalkers & 6 Zealots

corridor Super hard 6 Zealots 24 Zerglings

Table 5: Overview of SMAC scenarios used in the experiment.

Table 5 depicts the overview of SMAC scenarios used in the experiment.

D.2.3 SMACv2

SMACv2 [14] addresses several critical limitations of SMAC, including the lack of stochasticity
and partial observability. Unlike SMAC, SMACv2 features units that are randomly generated and
positioned, enhancing stochasticity and significantly increasing the complexity of the scenarios.

Scenario Name Number of Allies Number of Enemies Unit Types

10gen_zerg 10 11 Zergling, Hydralisk, Baneling
10gen_terran 10 11 Marine, Marauder, Medivac

10gen_protoss 10 11 Stalker, Zealot, Colossus

Table 6: Overview of SMACv2 scenarios used in the experiment.

Table 6 depicts the overview of SMACv2 scenarios used in the experiment.

D.3 Dormant neurons limit the expressive power of Mixing networks

To analyze the impact of the dormant ratio on the expressive power of the mixing network, we
consider an illustrative example that requires mixing individual utilities of three agents. For this
purpose, we design a simple 2-layer MLP network. The input layer, with a size of 3, receives
individual utilities [Qi]

3
i=1. The hidden layer contains 4 neurons and uses ReLU as the activation

function. The output layer, with a size of 1, produces Qtot. The objective is to fit the mixing function
Qtot = 0.5 ∗Q5

1 +Q3
2 + 1.5 ∗Q3, Qi ∼ N (0, 1).

We control the dormant ratio by varying the number of dormant neurons in the hidden layer. Figure 2
(a) illustrates the expressive performance of networks with different dormant ratios. Number = n
indicates that there are n dormant neurons in the hidden layer. We use Mean Squared Error as the loss
function. According to the results, an increase in the dormant ratio will lead to reduced expressive
power of the mixing network.

D.4 Experimental Results

D.4.1 ReBorn can improve the performance of various value factorization algorithms
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Predator-Prey & SMAC
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Figure 3: ReBorn can improve the performance of various value factorization algorithms in Predator-Prey and
SMAC.
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SMACv2
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Figure 4: ReBorn can improve the performance of various value factorization algorithms in SMACv2.

D.4.2 Compare neuron activation values with different methods
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Figure 5: The Normalized Activation Score percentage ranking for top-25 over-active neurons in 27m_vs_30m.

D.4.3 ReBorn is better than other methods that satisfy the KI principle
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Figure 6: Comparison with other methods that satisfy the KI principle.

25



D.4.4 ReBorn is superior to other RL parameter perturbing methods
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Figure 7: Comparison with Related Methods.

D.4.5 ReBorn can improve the performance of ResQ
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Figure 8: ReBorn can improve the performance of ResQ.
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E Discussion

E.1 Societal impact

Our research primarily concentrates on the technical and theoretical aspects of multi-agent reinforce-
ment learning, aiming to enhance the performance of these agents across a variety of tasks. While
we do not foresee any direct negative consequences arising from our research, we are committed
to maintaining an open dialogue. We highly appreciate and value constructive feedback from the
community to ensure our work’s contributions are beneficial and ethically sound.

E.2 Limitations and future work

Although our proposed simple recycling method has achieved good results across various algorithms,
there is still room for further improvement. We have defined dormant neurons and over-active neurons
in a straightforward manner. However, their identification should not be limited to normalized
activation values. More precise identification could be achieved by considering additional factors
such as update gradients and output weights.We studied the phenomenon of dormant neurons
in discrete multi-agent environments. Future work should explore whether our method can be
extended to continuous environments. Regarding different thresholds and recycling periods, setting
a threshold too high or recycling too frequently can disrupt the network’s normal learning process.
Conversely, low thresholds and infrequent recycling can reduce the effectiveness of the recycling
process. Therefore, developing adaptive thresholds and recycling mechanisms will be a key focus of
future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We make the main claims in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed limitations and future work in the appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the full set of assumptions and a complete proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the code and fully disclose all the information needed to reproduce
the main experimental results of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The source code and the data is include in the supplementary file. Following
our group’s tradition, we will open-source the code and the dataset if the paper is accepted
for publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: we evaluated using 5 random seeds with 95% confidence intervals.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computer resources needed to repro-
duce the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed both potential positive societal impacts and negative societal
impacts of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credited assets and respected the license and mentioned terms of
use explicitly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduced new assets and documented them thoroughly in the paper,
providing the documentation alongside the assets. The code of this work in included in the
supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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