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ABSTRACT

The computation of Wasserstein gradient direction is essential for posterior sam-
pling problems and scientific computing. The approximation of the Wasserstein
gradient with finite samples requires solving a variational problem. We study
the variational problem in the family of two-layer networks with squared-ReLU
activations, towards which we derive a semi-definite programming (SDP) relax-
ation. This SDP can be viewed as an approximation of the Wasserstein gradi-
ent in a broader function family including two-layer networks. By solving the
convex SDP, we obtain the optimal approximation of the Wasserstein gradient
direction in this class of functions. We also propose practical algorithms using
subsampling and dimension reduction. Numerical experiments including PDE-
constrained Bayesian inference and parameter estimation in COVID-19 modeling
demonstrate the effectiveness and efficiency of the proposed method.

1 INTRODUCTION

Bayesian inference plays an essential role in learning model parameters from the observational data
with applications in inverse problems, scientific computing, information science, and machine learn-
ing (Stuart, 2010). The central problem in Bayesian inference is to draw samples from a posterior
distribution, which characterizes the parameter distribution given data and a prior distribution.

The Wasserstein gradient flow (Otto, 2001; Ambrosio et al., 2005; Junge et al., 2017) has shown to
be effective in drawing samples from a posterior distribution, which attracts increasing attention in
recent years. For instance, the Wasserstein gradient flow of Kullback-Leibler (KL) divergence con-
nects to the overdampled Langevin dynamics. The time-discretization of the overdamped Langevin
dynamics renders the classical Langevin Monte Carlo Markov Chain (MCMC) algorithm. In this
sense, the computation of Wasserstein gradient flow yields a different viewpoint for sampling al-
gorithms. In particular, the Wasserstein gradient direction also provides a deterministic update of
the particle system (Carrillo et al., 2021b). Based on the approximation or generalization of the
Wasserstein gradient direction, many efficient sampling algorithms have been developed, including
Wasserstein gradient descent (WGD) with kernel density estimation (KDE) (Liu et al., 2019), Stein
variational gradient descent (SVGD) (Liu & Wang, 2016), and neural variational gradient descent
(di Langosco et al., 2021), etc.

Meanwhile, neural networks exhibit tremendous optimization and generalization performance in
learning complicated functions from data. They also have wide applications in Bayesian inverse
problems (Rezende & Mohamed, 2015; Onken et al., 2020; Kruse et al., 2019; Lan et al., 2021).
According to the universal approximation theorem of neural networks (Hornik et al., 1989; Lu et al.,
2017), any arbitrarily complicated functions can be learned by a two-layer neural network with non-
linear activations and a sufficient number of neurons. Functions represented by neural networks
naturally provide an approximation towards the Wasserstein gradient direction.

However, due to the nonlinear and nonconvex structure of neural networks, optimization algorithms
including stochastic gradient descent may not find the global optima of the training problem. Re-
cently, based on a line of works (Pilanci & Ergen, 2020; Sahiner et al., 2020; Bartan & Pilanci,
2021a), the regularized training problem of two-layer neural networks with ReLU/polynomial ac-
tivation can be formulated as a convex program. Indeed, by solving the convex program, we can
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construct the entire set of global optima of the nonconvex training problem (Wang et al., 2020). The-
oretical analysis (Wang et al., 2022) shows that global optima of the training problem correspond
to the simplest models with good generalization properties. Moreover, numerical results (Pilanci &
Ergen, 2020) show that neural networks found by solving the convex program can achieve higher
train accuracy and test accuracy compared to neural networks trained by SGD with the same number
of parameters.

In this paper, we study a variational problem, whose optimal solution corresponds to the Wasser-
stein gradient direction. Focusing on the family of two-layer neural networks with squared ReLU
activation, we formulate the regularized variational problem in terms of samples. Directly training
the neural network to minimize the loss may get the neural network stuck at local minima or sad-
dle points and it often leads to biased sample distribution from the posterior. Instead, we analyze
the convex dual problem of the training problem and study its semi-definite program (SDP) relax-
ation by analyzing the geometry of dual constraints. The resulting SDP can be efficiently solved by
convex optimization solvers such as CVXPY (Diamond & Boyd, 2016). We then derive the corre-
sponding relaxed bidual problem (dual of the relaxed dual problem). Thus, the optimal solution to
the dual problem yields an optimal approximation of the Wasserstein gradient direction in a broader
function family. We also analyze the choice of the regularization parameter and present a practical
implementation using subsampling and parameter dimension reduction to improve computational
efficiency. Numerical results for experiments including PDE-constrained inference problems and
Covid-19 parameter estimation problems illustrate the effectiveness and efficiency of our method.

1.1 RELATED WORKS

The time and spatial discretizations of Wasserstein gradient flows are extensively studied in liter-
ature (Jordan et al., 1998; Junge et al., 2017; Carrillo et al., 2021a;b; Bonet et al., 2021; Liutkus
et al., 2019; Frogner & Poggio, 2020). Recently, neural networks have been applied in solving or
approximating Wasserstein gradient flows (Mokrov et al., 2021; Lin et al., 2021b;a; Alvarez-Melis
et al., 2021; Bunne et al., 2021; Hwang et al., 2021; Fan et al., 2021). For sampling algorithms,
di Langosco et al. (2021) learns the transportation function by solving an unregularized variational
problem in the family of vector-output deep neural networks. Compared to these studies, we focus
on a convex SDP relaxation of the varitional problem induced by the Wasserstein gradient direc-
tion. Meanwhile, Feng et al. (2021) form the Wasserstein gradient direction as the mininimizer the
Bregman score and they apply deep neural networks to solve the induced variational problem.

In comparison to previous works on the convex optimization formulations of neural networks using
SDP (Bartan & Pilanci, 2021a;b), they focus on the polynomial activation and give the exact convex
optimization formulation (instead of convex relaxation). In comparison, we focus on the neural
networks with the squared ReLU activation, which has not been considered before. Our method
can also apply to the analysis of supervised learning problem using squared ReLU activated neural
networks.

2 BACKGROUND

In this section, we briefly review the Wasserstein gradient descent and present its variational for-
mulation. In particular, we focus on the Wasserstein gradient descent direction of KL divergence
functional. Later on, we design a neural network convex optimization problem to approximate the
Wasserstein gradient in samples.

2.1 WASSERSTEIN GRADIENT DESCENT

Consider an optimization problem in the probability space:

inf
ρ∈P

DKL(ρ‖π) =

∫
ρ(x)(log ρ(x)− log π(x))dx, (1)

Here the integral is taken over Rd and the objective functional DKL(ρ‖π) is the KL divergence from
ρ to π. The variable is the density function ρ in the space P = {ρ ∈ C∞(Rd)|

∫
ρdx = 1, ρ > 0}.

The function π ∈ C∞(Rd) is a known probability density function of the posterior distribution. By
solving the optimization problem (1), we can generate samples from the posterior distribution.
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A known fact (Villani, 2003, Chapter 8.3.1) is that the Wasserstein gradient descent flow for the
optimization problem (1) satisfies

∂tρt =∇ ·
(
ρt∇

δ

δρt
DKL(ρt‖π)

)
= ∇ · (ρt(∇ log ρt −∇ log π))

(a)
=∆ρt −∇ · (ρt∇ log π),

where ρt(x) = ρ(x, t), δ
δρt

is the L2 first variation operator w.r.t. ρt, ∇ · F denotes the divergence
of a vector valued function F : Rd → Rd and ∆ is the Laplace operator. In step (a) we uses the fact
that ρt∇ log ρt = ∇ρt. This equation is also known as the gradient drift Fokker-Planck equation. It
corresponds to the following updates in terms of samples:

dxt = −(∇ log ρt(xt)−∇ log π(xt))dt, (2)

where xt follows the distribution of ρt. Clearly, when ρt = π, the above dynamics reach the
equilibrium, which implies that the samples xt are generated by the posterior distribution.

To solve the Wasserstein gradient flow (2), we consider a forward Eulerian discretization in time.
In the l-th iteration, suppose that {xnl } are samples drawn from ρl. The update rule of Wasserstein
gradient descent (WGD) on the particle system {xnl } follows

xnl+1 = xnl − αl∇Φl(x
n
l ), (3)

where Φl : Rd → R is a function which approximates log ρl − log π and αl > 0 is the step size.

2.2 VARIATIONAL FORMULATION OF WGD

Given the particles {xn}Nn=1, we design the following variational problem to choose a suitable func-
tion Φ approximating the function log ρ− log π. Consider

inf
Φ∈C1(Rd)

1

2

∫
‖∇Φ(x− (∇ log ρ(x)−∇ log π(x))‖22ρ(x)dx. (4)

The objective functional evaluates the least-square discrepancy between∇ log ρ−∇ log π and∇Φ
weighted by the density ρ. The optimal solution follows Φ = log ρ−log π, up to a constant shift. Let
H ⊆ C1(Rd) be a finite dimensional function space. The following proposition gives a formulation
of (4) inH.
Proposition 1 Let H ⊆ C1(Rd) be a function space. The variational problem (4) in the domain H
can be reformulated to

inf
Φ∈H

1

2

∫
‖∇Φ(x)‖22ρdx+

∫
∆Φ(x)ρ(x)dx+

∫
〈∇ log π(x),∇Φ(x)〉 ρ(x)dx. (5)

Remark 1 A similar variational problem has been studied in (di Langosco et al., 2021). If we
replace ∇Φ for Φ ∈ H by a vector field Ψ in certain function family, then, the quantity in (5) is
the negative regularized Stein discrepancy defined in (di Langosco et al., 2021) between ρ and π
based on Ψ. This problem is also similar to the varitional problem for the score matching estimator
in (Hyvärinen & Dayan, 2005) by parameterizing Φ in a given probabilistic model. In comparison,
our method can be viewed as a special case of score matching by using a two-layer neural network.

Therefore, by replacing the density ρ by finite samples {xn}Nn=1 ∼ ρ, the problem (5) in terms of
finite samples forms

inf
Φ∈H

1

N

N∑
n=1

(
1

2
‖∇Φ(xn)‖22 + ∆Φ(xn)

)
+

1

N

N∑
n=1

〈∇ log π(xn),∇Φ(xn)〉 . (6)

3 OPTIMAL NEURAL NETWORK APPROXIMATION OF WASSERSTEIN
GRADIENT

In this section, we focus on functional space H of functions represented by two-layer neural net-
works. We derive the primal and dual problem of the regularized Wasserstein variational problems.
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By analyzing the dual constraints, a convex SDP relaxation of the dual problem is obtained. We
also present a practical implementation estimation of ∇ log ρ − ∇ log π and discuss the choice of
the regularization parameter.

Let ψ be an activation function. Consider the case where H is a class of two-layer neural network
with the activation function ψ(x):

H =
{

Φθ ∈ C1(Rd)|Φθ(x) = αTψ(WTx)
}
, (7)

where θ = (W,α) is the parameter in the neural network with W ∈ Rd×m and α ∈ Rm.
Remark 2 We can extend this model to handle the bias term by add an entry of 1 in x1, . . . , xn.

For two-layer neural networks, we can compute the gradient and Laplacian of Φ ∈ H as follows:

∇Φθ(x) =

m∑
i=1

αiwiψ
′(wTi x) = W (ψ′(WTx) ◦ α), (8)

∆Φθ(x) =

m∑
i=1

αi‖wi‖22ψ′′(wTi x). (9)

Here ◦ represents the element-wise multiplication. By adding a regularization term to the variational
problem (6), we obtain

min
θ

1

2N

N∑
n=1

∥∥∥∥∥
m∑
i=1

αiwiψ
′(wTi xn)

∥∥∥∥∥
2

2

+
1

N

N∑
n=1

〈
m∑
i=1

αiwiψ
′(wTi xn),∇ log π(xn)

〉

+
1

N

N∑
n=1

m∑
i=1

αi‖wi‖22ψ′′(wTi xn) +
β

2
R(θ),

(10)

where β > 0 is the regularization parameter. We focus on the squared ReLU activation ψ(z) =

(z)2
+ = (max{z, 0})2. Note that a non-vanishing second derivative is required for the Laplacian

term in (9), which makes the ReLU activation inadequate. For this activation function, we consider
the regularization function R(θ) =

∑m
i=1(‖wi‖32 + |αi|3).

Remark 3 We note that ∇Φθ(x) and ∆Φθ(x) are all piece-wise degree-3 polynomials of the pa-
rameters θ. Hence, we consider a specific cubic regularization term above, analogous to (Bartan &
Pilanci, 2021a). By choosing this regularization term, we can derive a simplified dual problem.

By utilizing the arithmetic and geometric mean (AM-GM) inequality, we can rescale the first and
second-layer parameters and formulate the regularized variational problem (10) as follows.
Proposition 2 (Primal problem) The regularized variational problem (10) can be reformulated to

min
W,α

1

2

N∑
n=1

∥∥∥∥∥
m∑
i=1

αiwiψ
′(wTi xn)

∥∥∥∥∥
2

+

N∑
n=1

m∑
i=1

αi‖wi‖22ψ′′(wTi xn)

+

N∑
n=1

〈
m∑
i=1

αiwiψ
′(wTi xn),∇ log π(xn)

〉
+ β̃‖α‖1,

s.t. ‖wi‖2 ≤ 1, i ∈ [m],

(11)

where β̃ = 3 · 2−5/3Nβ and we denote [m] = {1, . . . ,m}.

In short, the optimal value of (10) and (11) are the same. We can obtain the optimal solution of (11)
by rescaling the optimal solution of (10) and vice versa. For simplicity, we write Y ∈ RN×d whose
n-row is ∇ log π(xn) for n ∈ [N ]. We introduce the slack variable zn =

∑m
i=1 αiwiψ

′(xTnwi) for
n ∈ [N ] and denote Z = [z1 . . . zN ]

T ∈ RN×d. Then, we can simplify the problem (11) to

min
W,α,Z

1

2
‖Z‖2F +

N∑
n=1

m∑
i=1

αi‖wi‖22ψ′′(wTi xn) + tr(Y TZ) + β̃‖α‖1,

s.t. zn =

m∑
i=1

αiwiψ
′(xTnwi), n ∈ [N ], ‖wi‖2 ≤ 1, i ∈ [m].

(12)
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To derive the convex relaxtion of neural network training problem, the dual problem plays an import
role. By applying the Lagrangian duality, we can derive the dual problem of (12) as follows.

Proposition 3 (Dual problem) The dual problem of the regularized variational problem (12) is

max
Λ
− 1

2
‖Λ + Y ‖2F , s.t. max

w:‖w‖2≤1

∣∣∣∣∣
N∑
n=1

‖w‖22ψ′′(xTnw)− λTnwψ′(xTnw)

∣∣∣∣∣ ≤ β̃, (13)

which provides a lower-bound on (12).

We note that the dual problem can be infeasible if the regularization parameter β̃ is below certain
threshold. In other words, if the regularization term is missing or the regularization parameter is
not large enough, the optimal value of the dual problem is −∞ and the primal problem is not lower
bounded.

3.1 ANALYSIS OF DUAL CONSTRAINTS AND THE RELAXED DUAL PROBLEM

Now, we analyze the constraint in the dual problem. We note that it is closely related to the regular-
ization parameter, which we will discuss later. For simplicity, we take ψ′′(0) = 0 as the subgradient
of ψ′(z) at z = 0, i.e., taking the left derivative of ψ′(z) at z = 0. LetX = [x1, . . . , xN ]T ∈ RN×d.
Denote the set of all possible hyper-plane arrangements corresponding to the rows of X as

S = {diag(I(Xw ≥ 0))|w ∈ Rd, w 6= 0}. (14)

Here I(s) = 1 if the statement s is correct and I(s) = 0 otherwise. Let p = |S| be the cardinality
of S, and write S = {D1, . . . , Dp}. According to (Cover, 1965), we have the upper bound p ≤
2r
(
e(N−1)

r

)r
, where r = rank(X). Based on the analysis of the dual constraints, we can derive a

convex SDP as a relaxed dual problem.

Proposition 4 (Relaxed dual problem) The relaxed dual problem is the following SDP:

max
Λ,{r(j,−),r(j,+)}pj=1

− 1

2
‖Λ + Y ‖2F ,

s.t. Ãj(Λ) + B̃j +

N∑
n=0

r(j,−)
n H(j)

n + β̃ed+1e
T
d+1 � 0, r(j,−) ≥ 0, j ∈ [p],

− Ãj(Λ)− B̃j +

N∑
n=0

r(j,+)
n H(j)

n + β̃ed+1e
T
d+1 � 0, r(j,+) ≥ 0, j ∈ [p],

(15)

where we denote [p] = {1, . . . , p}. For j ∈ [p], we denote Aj(Λ) = −ΛTDjX − XTDjΛ,

Bj = 2 tr(Dj)Id, Ãj(Λ) =

[
Aj(Λ) 0

0 0

]
, B̃j =

[
Bj 0
0 0

]
, H(j)

0 =

[
Id 0
0 −1

]
and H

(j)
n =[

0 (1− 2(Dj)nn)xn
(1− 2(Dj)nn)xTn 0

]
, n ∈ [N ] The vector ed+1 ∈ Rd+1 satisfies that (ed+1)i =

0 for i ∈ [d] and (ed+1)d+1 = 1.

The optimal value of (15) gives a lower bound on the dual problem (13), and hence on the primal
problem (12).

The relaxed bi-dual problem provides insights on approximating the primal problem via convex
optimization, which is derived as follows. As an equivalent formulation of the convex dual problem
(15), it can be viewed as a convex relaxation of the primal problem (12).
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Proposition 5 (Relaxed bi-dual problem) The dual of the relaxed dual problem (15) is as follows

min
Z,{(S(j,+),S(j,−))}pj=1

1

2
‖Z + Y ‖2F −

1

2
‖Y ‖2F +

p∑
j=1

tr(B̃j(S
(j,+) − S(j,−)))

+ β̃

p∑
j=1

tr
(

(S(j,+) + S(j,−))ed+1e
T
d+1

)
,

s.t. Z =

p∑
j=1

Ã∗j (S
(j,−) − S(j,+)),

tr(S(j,−)H(j)
n ) ≤ 0, tr(S(j,+)H(j)

n ) ≤ 0, n = 0, . . . , N, j ∈ [p].

(16)

Here A∗j is the adjoint operator of the linear operator Aj .

As (15) is a convex problem and the Slater’s condition is satisfied, the optimal values of (15) and
(16) are same. The bi-dual problem (16) is closely related to the primal problem (12). Indeed, any
feasible solutions of the primal problem (11) can be mapped to feasible solutions of (16). We note
that the mapping from the primal solution to the bi-dual solution cannot go both ways, unless these
two problems are equivalent.
Theorem 1 Suppose that (Z,W,α) is feasible to the primal problem (12). Then, there exist matrices
{S(j,+), S(j,−)}pj=1 constructed from (W,α) such that (Z, {S(j,+), S(j,−)}pj=1) is feasible to the
relaxed bi-dual problem (16). Moreover, the objective value of the relaxed bi-dual problem (16) at
(Z, {S(j,+), S(j,−)}pj=1) is the same as objective value of the primal problem (12) at (Z,W,α).

Let J(Z, {S(j,+), S(j,−)}pj=1) denote the objective value of the relaxed bi-dual problem (16) at
a feasible solution (Z, {S(j,+), S(j,−)}pj=1). Let (Z∗,W ∗, α∗) denote a globally optimal solu-
tion of the primal problem (12). By Theorem 1, there exist matrices {S(j,+), S(j,−)}pj=1 such
that (Z∗, {S(j,+), S(j,−)}pj=1) is a feasible solution of the relaxed bi-dual problem (16) and
J(Z∗, {S(j,+), S(j,−)}pj=1) is the same as the objective value of (12) at its global minimum
(Z∗,W ∗, α∗). On the other hand, let (Z̃∗, {S̃(j,+), S̃(j,−)}pj=1) denote an optimal solution of the
relaxed bi-dual problem (16). From the optimality of (Z̃∗, {S̃(j,+), S̃(j,−)}pj=1), we have

J(Z̃∗, {S̃(j,+), S̃(j,−)}pj=1) ≤ J(Z∗, {S(j,+), S(j,−)}pj=1). (17)

Note that at (Z∗,W ∗, α∗) we obtain the optimal approximation of∇ log ρ−∇ log π at x1, . . . , xN in
the family of two-layer squared-ReLU networks (7). Smaller or equal objective value of the relaxed
bi-dual problem (16) can be achieved at (Z̃∗, {S̃(j,+), S̃(j,−)}pj=1) than at (Z∗, {S(j,+), S(j,−)}pj=1).
Therefore, we can view Z̃∗ gives an optimal approximation of ∇ log ρ − ∇ log π evaluated on
x1, . . . , xN in a broader function family including the two-layer squared ReLU neural networks.

From the derivation of the relaxed bi-dual problem, we have the relation Z̃∗ = −Λ∗ − Y , where
(Λ∗, {r(j,+), r(j,−)) is optimal to the relaxed dual problem (15) and (Z̃∗, {S̃(j,+), S̃(j,−)}pj=1) is
optimal to the relaxed bi-dual problem (16). Therefore, by solving Λ∗ from the relaxed dual problem
(15), we can use −Λ∗ − Y as the approximation of∇ log ρ−∇ log π evaluated on x1, . . . , xN .
Remark 4 We note that solving the proposed convex optimization problem 15 renders the approxi-
mation of the Wasserstein gradient direction. Compared to the two-layer ReLU networks, it induces
a broader class of functions represented by {S(j,+), S(j,−)}pj=1. This contains more variables than
the neural network function.

3.2 PRACTICAL IMPLEMENTATION

Although the number p of all possible hyper-plane arrangements is upper bounded by 2r((N −
1)e/r)r with r = rank(X), it is computationally costly to enumerate all possible p matri-
ces D1, . . . , Dp to represent the constraints in the relaxed dual problem (4). In practice, we
first randomly sample M i.i.d. random vectors u1, . . . , uM ∼ N (0, Id) and generate a subset
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Ŝ = {diag(I(Xuj ≥ 0)|j ∈ [M ]}. of S. Then, we optimize the randomly sub-sampled version of
the relaxed dual problem based on the subset Ŝ and obtain the solution Λ. Here −Λ− Y is used as
the direction to update the particle system X . If the regularization parameter is too large, then we
will have −Λ − Y = 0, which makes the particle system unchanged. Therefore, to ensure that β̃
is not too large, we decay β̃ by a factor γ1 ∈ (0, 1). This also appears in (Ergen et al., 2021). On
the other hand, if β̃ is too small resulting the relaxed dual problem (4) infeasible, we increase β̃ by
multiplying γ−1

2 , where γ2 ∈ (0, 1). Detailed explanation of the adjustment of the regularization
parameter can be found in Appendix D. The overall algorithm is summarized in Algorithm 1.

Algorithm 1 Convex neural Wasserstein descent

Require: initial positions {xn0}Nn=1, step size αl, initial regularization parameter β̃0, γ1, γ2 ∈ (0, 1).

1: while not converge do
2: Form Xl and Yl based on {xnl }Nn=1 and {∇ log π(xnl )}Nn=1.
3: Solve Λl from the relaxed dual problem (15) with β̃ = β̃l.
4: if the relaxed dual problem with β̃ = β̃l is infeasible then
5: Set Xl+1 = Xl for n ∈ [N ] and set β̃l+1 = γ−1

2 β̃l.
6: else
7: Update Xl+1 = Xl + αl(Λl + Yl) for n ∈ [N ] and set β̃l+1 = γ1β̃l.
8: end if
9: end while

Applying the standard interior point method (Boyd et al., 2004) leads to the computational time

O((max{N, d2}p̂)6). (18)

For high-dimensional problems, i.e., d is large, the computational cost of solving (15) can be large.
In this case, we apply the dimension-reduction techniques (Zahm et al., 2018; Chen & Ghattas, 2020;
Wang et al., 2021a) to reduce the parameter dimension d to a data-informed intrinsic dimension d̂,
which is often very low, i.e., d̂� d, which can dramatically decrease the computational time (18).

4 NUMERICAL EXPERIMENTS

In this section, we present numerical results to compare WGD approximated by neural networks
(WGD-NN) and WGD approximated using convex optimization formulation of neural networks
(WGD-cvxNN). The performance of compared methods is assessed by the sample goodness-of-fit of
the posterior. For WGD-NN, in each iteration, it updates the particle system using (3) with a function
Φ represented by a two-layer squared ReLU neural network. The parameters of the neural network
is obtained by directly solving the nonconvex optimization problem (10). For high-dimensional
problems, we apply the dimension reduction technique and compare the projected versions (pWGD-
NN and pWGD-cvxNN).

We note that although the cost for solving the relaxed dual problem (15) using standard convex
optimization solvers in WGD-cvxNN can be higher compared to that by a direct neural network
training in WGD-NN, this cost difference is negligible in the entire optimization dominated by
the likelihood evaluation when the model (e.g., PDE) is expensive to solve. In such cases WGD-
cvxNN and WGD-NN have similar computational complexity but WGD-cvxNN achieves better
performance. We use the standard convex optimization solver CVXPY (Diamond & Boyd, 2016)
with MOSEK(ApS, 2019) inner solver. Applying randomized SDP solvers (Yurtsever et al., 2021),
randomized second-order methods (Pilanci & Wainwright, 2017; Lacotte et al., 2021) or advanced
SDP solvers (Zhao et al., 2010; Yang et al., 2015; Wang et al., 2021b) for large-scale problem can
improve the computation time. Moreover, the induced SDPs have specific structures of many similar
constraints. Solving the SDP (15) can be accelerated by designing a specialized convex optimization
solver, which is left for future work.
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4.1 A TOY EXAMPLE

We test the performance of WGD on a bimodal 2-dimensional double-banana posterior distribu-
tion introduced in (Detommaso et al., 2018). We first generate 300 posterior samples by a Stein
variational Newton (SVN) method (Detommaso et al., 2018) as the reference, as shown in Fig-
ure 1. We evaluate the performance of WGD-NN and WGD-cvxNN by calculating the maximum
mean discrepancy (MMD) between their samples in each iteration and the reference samples. In the
comparison, we use N = 50 samples and run for 100 iterations with step sizes αl = 10−3. For
WGD-cvxNN, we set β = 1, γ1 = 0.95 and γ2 = 0.9510. For WGD-NN, we use m = 200 neu-
rons and optimize the regularized training problem (10) using all samples with the Adam optimizer
(Kingma & Ba, 2014) with learning rate 10−3 for 200 sub-iterations. We also set the regularization
parameter β = 1 and decrease it by a factor of 0.95 in each iteration. We find that this setup of
parameters is more suitable.

The posterior density and the sample distributions by WGD-cvxNN and WGD-NN at the final step
of 100 iterations are shown in Figure 1. It can be observed that WGD-cvxNN provides more rep-
resentative samples than WGD-NN for the posterior density. In Figure 2, we plot the MMD of the
samples by WGD-cvxNN and WGD-NN compared to the reference SVN samples at each iteration.
We observe that the samples by WGD-cvxNN achieves much smaller MMD than those of WGD-NN
compared to the reference SVN samples, which is consistent with the results shown in Figure 1.

Figure 1: Posterior density and sample distributions by WGD-cvxNN and WGD-NN at the final step
of 100 iterations, compared to the reference SVN samples (right).

Figure 2: MMD of WGD-cvxNN and WGD-NN samples compared to the reference SVN samples.

4.2 PDE-CONSTRAINED NONLINEAR BAYESIAN INFERENCE

In this experiment, we consider a nonlinear Bayesian inference problem constrained by the following
partial differential equation (PDE) (Chen & Ghattas, 2020) with application to subsurface (Darcy)
flow in a physical domain D = (0, 1)2,

v + ex∇u = 0 in D,
∇ · v = h in D,

(19)

where u is pressure, v is velocity, h is force, ex is a random (permeability) field equipped with
a Gaussian prior x ∼ N (x0, C) with covariance operator C = (−δ∆ + γI)−α where we set
δ = 0.1, γ = 1, α = 2 and x0 = 0. This problem is widely used in many areas, for instance,
estimating permeability in groundwater flow, thermal conductivity in material science or electrical
impedance in medical imaging, We impose Dirichlet boundary conditions u = 1 on the top boundary
and u = 0 on the bottom boundary, and homogeneous Neumann boundary conditions on the left
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and right boundaries for u. We use a finite element method with piecewise linear elements for
the discretization of the problem, resulting in 81 dimensions for the discrete parameter. The data
is generated as pointwise observation of the pressure field at 49 points equidistantly distributed in
(0, 1)2, corrupted with additive 5% Gaussian noise. We use a DILI-MCMC algorithm Cui et al.
(2016) with 10000 effective samples to compute the sample mean and sample variance, which are
used as the reference values to assess the goodness of the samples.
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Figure 3: Ten trials and the RMSE of the sample mean (top) and sample variance (bottom) by
pWGD-NN and pWGD-cvxNN at different iterations. Nonlinear inference with PDE constraint.

We run pWGD-cvxNN and pWGD-NN with 64 samples for ten trials with step size αl = 10−3,
where we set β = 10, γ1 = 0.95, and γ2 = 0.9510 for both methods. The RMSE of the sam-
ple mean and sample variance are shown in Figure 3 for the two methods at each of the iterations.
We can observe that pWGD-cvxNN achieves smaller errors for both the sample mean and the sam-
ple variance compared to pWGD-NN at each iteration. Moreover, pWGD-cvxNN provides much
smaller variation of the sample mean and sample variance for the ten trials compared to pWGD-NN.
Furthermore, by an effective reduction of the parameter dimension from 81 to data-informed 20 in
our pWGD-cvxNN, as used and analyzed in (Zahm et al., 2018; Chen & Ghattas, 2020; Wang et al.,
2021a), the time for solving the SDP is significantly reduced from about 800 seconds in average to
less than 1 second (about 0.7 in average), making our pWGD-cvxNN computationally efficient.

4.3 BAYESIAN INFERENCE FOR COVID-19

In this experiment, we use Bayesian inference to learn the dynamics of the transmission and severity
of COVID-19 from the recorded data for New York state. We use the model, parameter, and data
as in Chen & Ghattas (2020). More specifically, we use a compartmental model for the modeling
of the transmission and outcome of COVID-19. We take the number of hospitalized cases as the
observation data to infer a social distancing parameter, a time-dependent stochastic process that is
equipped with a Tanh–Gaussian prior to model the transmission reduction effect of social distancing,
which becomes 96 dimensions after discretization.

We use the projected Stein variational gradient descent (pSVGD) method Chen & Ghattas (2020)
as the reference to evaluate the goodness of samples. We run pWGD-cvxNN and pWGD-NN using
64 samples for 100 iterations with step size αl = 10−3, where we set β = 10, γ1 = 0.95, and
γ2 = 0.9510 for both methods as in the last example. From Figure 4 we can observe that pWGD-
cvxNN produces more consistent results than pWGD-NN compared to the reference pSVGD results,
for both the sample mean and 90% credible interval, both in the inference of the social distancing
parameter and in the prediction of the hospitalized cases.

5 CONCLUSION

In the context of Bayesian inference, we approximate Wasserstein gradient direction by the gradient
of functions in the family of two-layer neural networks. We propose a convex SDP relaxation of
the dual of the variational primal problem, which can be solved efficiently using convex optimiza-
tion methods instead of directly training the neural network as a nonconvex optimization problem.
In particular, we established that the gradient obtained by the new formulation and convex opti-
mization is at least as good as the one approximated by functions in the family of two-layer neural
networks, which is demonstrated by various numerical experiments. By stacking the two-layer neu-
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Figure 4: Comparison of pWGD-cvxNN and pWGD-NN to the reference by pSVGD for Bayesian
inference of the social distancing parameter (left) from the data of the hospitalized cases (right) with
sample mean and 90% credible interval.

ral networks in each step together, our proposed method formulate a deep neural network to learn the
transportation map from prior to posterior. In future studies, specialized solvers for structured SDPs,
including the relaxed dual problem, can lead to drastic accelerations of our proposed method and
it is of central importance for the practical applications of our algorithms to real-world problems.
We also expect to extend our convex optimization formulation of neural networks to the calcula-
tion/approximation of generalized Wasserstein flows. We also expect to apply deep neural networks
for the approximation of Wasserstein gradient flows based on recent works on convex optimization
formulations of deep neural networks (Wang et al., 2021c; Ergen & Pilanci, 2021a;b).
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A CODES FOR NUMERICAL EXPERIMENT

All codes for the numerical experiment can be found in https://github.com/ai-submit/
OptimalWasserstein.

B COMPARISON WITH PREVIOUS WORKS ON CONVEX OPTIMIZATION
FORMULATION OF NEURAL NETWORKS

Previous works on convex optimization formulation of neural networks mainly focus on the su-
pervised learning problem of two-layer neural networks using convex loss functions (e.g., squared
loss, logistic loss). Our work utilizes a similar convex analytic framework to solve the variational
problem of approximating the Wasserstein gradient direction, which is different from supervised
learning. The convex optimization approach is related to the idea of infinite width neural networks
modeled as probability measures. The dual problem itself is equivalent to the convex dual problem
when the neural network in the primal problem has infinitely many neurons. However, the convex
optimization approach tackles networks of arbitrary width that are able to learn useful representa-
tions, while the infinite width limit is quite limited (limited to basically kernel methods).

C ADDITIONAL NUMERICAL EXPERIMENT

C.1 PDE-CONSTRAINED LINEAR BAYESIAN INFERENCE

In this experiment, we consider a linear Bayesian inference problem constrained by a partial dif-
ferential equation (PDE) model for contaminant diffusion in environmental engineering in domain
D = (0, 1),

−κ∆u+ νu = x in D,

where x is a contaminant source field parameter in domain D, u is the contaminant concentration
which we can observe at some locations, κ and ν are diffusion and reaction coefficients. For sim-
plicity, we set κ, ν = 1, u(0) = u(1) = 0, and consider 15 pointwise observations of u with 1%
noise, equidistantly distributed in D. We consider a Gaussian prior distribution x ∼ N (0, C) with
covariance given by a differential operatorC = (−δ∆+γI)−α with δ, γ, α > 0 representing the cor-
relation length and variance, which is commonly used in geoscience. We set δ = 0.1, γ = 1, α = 1.
In this linear setting, the posterior is Gaussian with the mean and covariance given analytically,
which are used as reference to assess the sample goodness. We solve this forward model by a finite
element method with piece-wise linear elements on a uniform mesh of size 2k, k ≥ 1. We project
this high-dimensional parameter to the data-informed low dimensions as in Wang et al. (2021a) to
alleviate the curse of dimensionality when applying WGD-cvxNN and WGD-NN, which we call
pWGD-cvxNN and pWGD-NN, respectively. For k = 4 we have 17 dimensions for the discrete
parameter and 4 dimensions after projection.

We run pWGD-cvxNN and pWGD-NN using 16 samples for 200 iterations with αl = 10−3, β = 5,
γ1 = 0.95, and γ2 = 0.9510 for both methods. We use m = 200 neurons for pWGD-NN and train
it by the Adam optimizer for 200 sub-iterations as in the first example. From Figure 5, we observe
that pWGD-cvxNN achieves better root mean squared error (RMSE) than pWGD-NN for both the
sample mean and the sample variance compared to the reference.
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Figure 5: Ten trials and the RMSE of the sample mean (top) and sample variance (bottom) by
pWGD-NN and pWGD-cvxNN at different iterations. Linear inference problem.

D CHOICE OF THE REGULARIZATION PARAMETER

As the constraints in the relaxed dual problem (15) depends on the regularization parameter β̃, it is
possible that for small β̃, the relaxed dual problem (15) is infeasible. Consider the following SDP

min β̃, s.t. Ãj(Λ) + B̃j +

N∑
n=0

r(j,−)
n H(j)

n + β̃ed+1e
T
d+1 � 0,

− Ãj(Λ)− B̃j +

N∑
n=0

r(j,+)
n H(j)

n + β̃ed+1e
T
d+1 � 0,

r(j,−) ≥ 0, r(j,+) ≥ 0, j ∈ [p].

(20)

Here the variables are β̃,Λ and {r(j,+), r(j,−)}pj=1. Let β̃1 be the optimal value of the above prob-
lem. Then, only for β̃ ≥ β̃1, there exists Λ ∈ RN×d satisfying the constraints in (15). In other
words, the relaxed dual problem (15) is feasible. We also note that β̃1 only depends on the samples
X and it does not depend on the value of ∇ log π evaluated on x1, . . . , xN . On the other hand,
consider the following SDP

min β̃, s.t. Ãj(Y ) + B̃j +

N∑
n=0

r(j,−)
n H(j)

n + β̃ed+1e
T
d+1 � 0,

− Ãj(Y )− B̃j +

N∑
n=0

r(j,+)
n H(j)

n + β̃ed+1e
T
d+1 � 0,

r(j,−) ≥ 0, r(j,+) ≥ 0, j ∈ [p],

(21)

where the variables are β̃ and {r(j,+), r(j,−)}pj=1. Let β̃2 be the optimal value of the above problem.
For β̃ ≥ β̃2, as Y is feasible for the constraints in (15), the optimal value of the relaxed dual problem
(15) is 0. In short, only when β̃ ∈ [β̃1, β̃2], the variational problem (15) is non-trivial. To ensure
that solving the relaxed dual problem (15) gives a good approximation of the Wasserstein gradient
direction, we shall avoid choosing β̃ either too small or too large.
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E PROOFS

E.1 PROOF OF PROPOSITION 1

PROOF We first note that

1

2

∫
‖∇Φ−∇ log ρ+∇ log π‖22ρdx

=
1

2

∫
‖∇Φ‖22ρdx+

∫
〈∇ log π −∇ log ρ,∇Φ〉 ρdx

+
1

2

∫
‖∇ log ρ−∇ log π‖22ρdx.

(22)

We notice that the term 1
2

∫
‖∇ log ρ−∇ log π‖22ρdx does not depend on Φ. Utilizing the integration

by parts, we can compute that∫
〈∇ log ρ,∇Φ〉 ρdx =

∫ 〈
∇ρ
ρ
,∇Φ

〉
ρdx

=

∫
〈∇ρ,∇Φ〉 dx

=−
∫

∆Φρdx.

(23)

Therefore, the variational problem (4) is equivalent to

inf
Φ∈C∞(Rd)

1

2

∫
‖∇Φ‖22ρdx+

∫
〈∇ log π,∇Φ〉 ρdx+

∫
∆Φρdx. (24)

By restricting the domain C∞(Rd) toH, we complete the proof.

E.2 PROOF OF PROPOSITION 2

PROOF Suppose that ŵi = β−1
i wi and α̂i = β2

i αi, where βi > 0 is a scale parameter for i ∈ [m].
Let θ′ = {(ŵi, α̂i)}mi=1. We note that

α̂iŵiψ
′(ŵTi xn) = βiαiwiψ

′ (β−1
i wTi xn

)
= αiwiψ

′(wTi xn), (25)

and

α̂i‖ŵi‖22ψ′′(ŵTi xn) = αi‖wi‖22ψ′′(ŵTi xn) = αi‖wi‖22ψ′′(wTi xn). (26)

This implies that Φθ(x) = Φθ′(x) and ∇ · Φθ(x) = ∇ · Φθ′(x). For the regularization term R(θ),
we note that

‖ŵi‖32 + ‖α̂i‖32 =β6
i |αi|3 + β−3

i ‖wi‖
3
2

=β6
i |αi|3 +

1

2
β−3
i ‖wi‖

3
2 +

1

2
β−3
i ‖wi‖

3
2

=3 · 2−2/3‖wi‖22|αi|.

(27)

The optimal scaling parameter is given by αi = 2−1/9 ‖wi‖1/32

|αi|1/31

. As the scaling operation does not

change ‖wi‖22|αi|, we can simply let ‖wi‖2 = 1. Thus, the regularization term β
2R(θ) becomes

β̃
N

∑m
i=1 ‖ui‖1. This completes the proof.
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E.3 PROOF OF PROPOSITION 3

PROOF Consider the Lagrangian function

L(Z,W,α,Λ) =
1

2
‖Z‖2F +

N∑
n=1

m∑
i=1

αi‖wi‖22ψ′′(wTi xn) + tr(Y TZ) + β̃‖α‖1

+

N∑
n=1

λTn

(
zn −

m∑
i=1

αiwiψ
′(xTnwi)

)

=β̃‖α‖1 +

m∑
i=1

αi

N∑
n=1

(
‖wi‖22ψ′′(wTi xn)− λTnwiψ′(xTnwi)

)
+

1

2
‖Z‖2F + tr((Y + Λ)TZ).

(28)

For fixed W , the constraints on Z and α are linear and the strong duality holds. Thus, we can
exchange the order of minZ,α and maxΛ. Thus, we can compute that

min
Z,W,α

max
Λ

L(Z,W,α,Λ)

= min
W

max
Λ

min
α,Z

L(Z,W,α,Λ)

= min
W

max
Λ

min
α,Z

β̃‖α‖1 +

m∑
i=1

αi

N∑
n=1

(
‖wi‖22ψ′′(wTi xn)− λTnwiψ′(xTnwi)

)
+

1

2
‖Z‖2F + tr((Y + Λ)TZ)

= min
W

max
Λ
−1

2
‖Λ + Y ‖2F +

m∑
i=1

I

(
max

wi:‖wi‖2≤1

∣∣∣∣∣
N∑
n=1

‖wi‖22ψ′′(wTi xn)− yTnwiψ′(xTnwi)

∣∣∣∣∣ ≤ β̃
)
.

(29)
By exchanging the order of min and max, we can derive the dual problem:

max
Λ

min
W
−1

2
‖Λ + Y ‖2F +

m∑
i=1

I

(
max

wi:‖wi‖2≤1

∣∣∣∣∣
N∑
n=1

‖wi‖22ψ′′(wTi xn)− yTnwiψ′(xTnwi)

∣∣∣∣∣ ≤ β̃
)

= max
Λ
−1

2
‖Λ + Y ‖2F s.t. max

wi:‖wi‖2≤1

∣∣∣∣∣
N∑
n=1

‖wi‖22ψ′′(wTi xn)− yTnwiψ′(xTnwi)

∣∣∣∣∣ ≤ β̃, i ∈ [m]

= max
Λ
−1

2
‖Λ + Y ‖2F s.t. max

w:‖w‖2≤1

∣∣∣∣∣
N∑
n=1

‖w‖22ψ′′(wTxn)− yTnwψ′(xTnw)

∣∣∣∣∣ ≤ β̃, i ∈ [m]

(30)
This completes the proof.

E.4 PROOF OF PROPOSITION 4

PROOF Based on the hyper-plane arrangementsD1, . . . , Dp, the dual constraint is equivalent to that
for all j ∈ [p], ∣∣2 tr(Dj)‖w‖22 − 2wTΛTDjXw

∣∣ ≤ β̃ (31)

holds for all w ∈ Rd satisfying ‖w‖2 ≤ 1, (2Dj − I)Xw ≥ 0. This is equivalent to say that for all
j ∈ [p]

−β̃ ≥min 2 tr(Dj)‖w‖22 − 2wTΛTDjXw, (32)
s.t. ‖w‖2 ≤ 1, 2(Dj − I)Xw ≥ 0,

β̃ ≤max 2 tr(Dj)‖w‖22 − 2wTΛTDjXw,

s.t. ‖w‖2 ≤ 1, 2(Dj − I)Xw ≥ 0.
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From a convex optimization perspective, the natural idea to interpret the constraint (32) is to trans-
form the minimization problem into a maximization problem. We can rewrite the minimization
problem in (32) as a trust region problem with inequality constraints:

min
w∈Rd

wT (Bj +Aj(Λ))w,

s.t. ‖w‖2 ≤ 1, (2Dj − I)Xw ≥ 0.
(33)

As the problem (33) is a convex problem, by taking the dual of (33) w.r.t. w, we can transform (33)
into a maximization problem. However, as (33) is a trust region problem with inequality constraints,
the dual problem of (33) can be very complicated. According to (Jeyakumar & Li, 2014), the optimal
value of the problem (33) is bounded by the optimal value of the following SDP

min
Z∈Sd+1

tr((Ãj(Λ) + B̃j)Z),

s.t. tr(H(j)
n Z) ≤ 0, n = 0, . . . , N,

Zd+1,d+1 = 1, Z � 0.

(34)

from below.

Lemma 1 The dual problem of SDP (34) takes the form

max−γ, s.t. S = Ãj(Λ) + B̃j +

N∑
n=0

rnH
(j)
n + γed+1e

T
d+1, r ≥ 0, S � 0, (35)

in variables r =

 r0

...
rN

 ∈ RN+1 and γ ∈ R.

PROOF Consider the Lagrangian

L(Z, r, γ) = tr((Ãj(y) + B̃j)Z) +

N∑
n=0

rn tr(H(j)
n Z) + γ(tr(Zed+1e

T
d+1)− 1), (36)

where r ∈ RN+1
+ and γ ∈ R. By minimizing L(Z, r, γ) w.r.t. Z ∈ Sd+1

+ , we derive the dual problem
(35).

The constraints on Λ in the dual problem (13) include that the optimal value of (34) is bounded from
below by −β̃. According to Lemma 1, this constraint is equivalent to that there exist r ∈ RN+1 and
γ such that

−γ ≥ −β̃, S = Ãj(Λ) + B̃j +
N∑
n=0

rnH
(j)
n + γed+1e

T
d+1, r ≥ 0, S � 0. (37)

As ed+1e
T
d+1 is positive semi-definite, the above condition on Λ is also equivalent to that there exist

r ∈ RN+1 such that

Ãj(Λ) + B̃j +

N∑
n=0

rnH
(j)
n + β̃ed+1e

T
d+1 � 0, r ≥ 0. (38)

Therefore, the following convex set of Λ{
Λ : Ãj(Λ) + B̃j +

N∑
n=0

r(j,−)
n H(j)

n + β̃ed+1e
T
d+1 � 0, r(j,−) ≥ 0

}
(39)

is a subset of the set of Λ satisfying the dual constraints{
Λ : min
‖w‖2≤1,(2Dj−I)w≥0

wT (Bj +Aj(Λ))w ≥ −β̃
}

(40)
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On the other hand, the constraint on Λ

max
‖w‖2≤1,(2Dj−I)w≥0

wT (Bj +Aj(Λ))w ≤ β̃ (41)

is equivalent to
min

‖w‖2≤1,(2Dj−I)w≥0
−wT (Bj +Aj(Λ))w ≥ −β̃. (42)

By applying the previous analysis on the above trust region problem, the following convex set of Λ{
Λ : −Ãj(Λ)− B̃j +

N∑
n=0

r(j,+)
n H(j)

n + β̃ed+1e
T
d+1 � 0, r(j,+) ≥ 0

}
(43)

is a subset of the set of Λ satisfying the dual constraints{
Λ : max
‖w‖2≤1,(2Dj−I)w≥0

wT (Bj +Aj(Λ))w ≤ β̃
}
. (44)

Therefore, replacing the dual constraint maxw:‖w‖2≤1

∣∣∣∑N
n=1 ‖w‖22ψ′′(wTxn)− yTnwψ′(xTnw)

∣∣∣ ≤
β̃ by

Ãj(Λ) + B̃j +

N∑
n=0

r(j,−)
n H(j)

n + β̃ed+1e
T
d+1 � 0, j ∈ [p],

− Ãj(Λ)− B̃j +

N∑
n=0

r(j,+)
n H(j)

n + β̃ed+1e
T
d+1 � 0, j ∈ [p],

r(j,−) ≥ 0, r(j,+) ≥ 0, j ∈ [p].

(45)

we obtain the relaxed dual problem. As its feasible domain is a subset of the feasible domain of the
dual problem, the optimal value of the relaxed dual problem gives a lower bound for the optimal
value of the dual problem.

E.5 PROOF OF PROPOSITION 5

PROOF Consider the Lagrangian function

L(Λ, r,S) =− 1

2
‖Λ + Y ‖22 −

p∑
j=1

tr

(
S(j,−)

(
Ãj(Λ) + B̃j +

N∑
n=0

r(j,−)
n H(j)

n +
β̃

2
ed+1e

T
d+1

))

−
p∑
j=1

tr

(
S(j,+)

(
−Ãj(Λ)− B̃j +

N∑
n=0

r(j,+)
n H(j)

n +
β̃

2
ed+1e

T
d+1

))
,

(46)
where we write

r =
(
r(1,−), . . . , r(p,−), r(1,+), . . . , r(p,+)

)
∈
(
RN+1

)2p
,

S =
(
S(1,−), . . . , S(p,−), S(1,+), . . . , S(p,+)

)
∈
(
Sd+1

+

)2p
.

(47)

Here we write Sd+1
+ = {S ∈ Sd+1|S � 0}. By maximizing w.r.t. Λ and r, we derive the bi-dual

problem (16).

E.6 PROOF OF THEOREM 1

Suppose that (Z,W,α) is a feasible solution to (11). Let Dj1 , . . . , Djk be the enumeration of
{diag(I(Xwi ≥ 0))|i ∈ [m]}. For i ∈ [k], we let

S(ji,+) =
∑

l:αl≥0,diag(I(Xwl≥0))=Dji

αl

[
wlw

T
l wl

wTl 1

]
, S(ji,−) = 0, (48)
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and

S(ji,+) = 0, S(ji,−) = −
∑

l:αl<0,diag(I(Xwl≥0))=Dji

αl

[
wlw

T
l wl

wTl 1

]
. (49)

For j /∈ {j1, . . . , jk}, we simply set S(j,+) = 0, S(j,−) = 0. As ‖wi‖2 ≤ 1 andDji = I(Xwi ≥ 0),
we can verify that tr(S(j,−)H

(j)
n ) ≤ 0, tr(S(j,+)H

(j)
n ) ≤ 0 are satisfied for j = j1, . . . , jm and

n = 0, 1, . . . , N . This is because for n = 0, as H(ji)
0 =

[
Id 0
0 −1

]
, it follows that

tr(S(ji,+)H
(ji)
0 ) =

∑
l:αl≥0,diag(I(Xwl≥0))=Dji

αl(‖wl‖2 − 1) ≤ 0,

tr(S(ji,−)H
(ji)
0 ) =−

∑
l:αl<0,diag(I(Xwl≥0))=Dji

αl(‖wl‖2 − 1) ≤ 0.
(50)

For n = 1, . . . , N , we have

tr(S(ji,+)H
(ji)
0 ) =

∑
l:αl≥0,diag(I(Xwl≥0))=Dji

2αl(1− 2(Dji)nn)xTnwl ≤ 0,

tr(S(ji,−)H
(ji)
0 ) =−

∑
l:αl<0,diag(I(Xwl≥0))=Dji

αl(1− 2(Dji)nn)xTnwl ≤ 0.
(51)

Based on the above transformation, we can rewrite the bidual problem in the form of the primal
problem (12). For S ∈ Sd+1, we note that

tr(SÃj(Λ))

=− tr((ΛTDjX +XTDjΛ)S1:d,1:d)

=− 2 tr(ΛTDjXS1:d,1:d),

where S1:d,1:d denotes the d × d block of S consisting the first d rows and columns. This implies
that Ã∗j (S) = −2DjXS1:d,1:d. Hence, we have

Ãji(S
(ji,+) − S(ji,−)) = −

∑
l:diag(I(Xwl≥0)

2αlDjiXwlw
T
l = −

∑
l:diag(I(Xwl≥0)

2αl(Xwl)+w
T
l .

Therefore, we have
p∑
j=1

Ã∗j (S
(j,−) − S(j,+)) = 2

m∑
i=1

αi(Xwi)+w
T
i .

As n-th row of Z satisfies that zn = 2
∑m
i=1 αiwi(x

T
nwi)+, this implies that

Z = 2

m∑
i=1

αi(Xwi)+w
T
i =

p∑
j=1

Ã∗j (S
(j,−) − S(j,+)).

Hence (Z, {(S(j,−), (S(j,−)}pj=1) is feasible to the relaxed bi-dual problem (16).

We can also compute that

p∑
j=1

tr(B̃j(S
(j,+) − S(j,−))) = 2

m∑
i=1

αi

N∑
n=1

I(xTnwi ≥ 0)‖wi‖22,

and
p∑
j=1

tr
(

(S(j,+) + S(j,−))ed+1e
T
d+1

)
=

m∑
i=1

|αi|.

Thus, the primal problem (12) with (Z,W,α) and the relaxed bi-dual problem (16) with
(Z, {(S(j,−), (S(j,−)}pj=1) have the same objective value.
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