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ABSTRACT

In our modern world, an enormous amount of data surrounds us, and we are rarely
interested in more than a handful of data points at once. It is like searching for
needles in a haystack, and in many cases, there is no better algorithm than a ran-
dom search, which might not be viable. Previously proposed algorithms for ef-
ficient database access are made for particular applications such as finding the
min/max, finding all points within a range or finding the k-nearest neighbours.
Consequently, there is a lack of versatility concerning what we can search when
it comes to a gigantic database. In this work, we propose Search Data Structure
Learning (SDSL), a generalization of the standard Search Data Structure (SDS)
in which the machine has to learn how to search in the database. To evaluate ap-
proaches in this field, we propose a novel metric called Sequential Search Work
Ratio (SSWR), a natural way of measuring a search’s efficiency and quality. Fi-
nally, we inaugurate the field with the Efficient Learnable Binary Access (ELBA),
a family of models for Search Data Structure Learning. It requires a means to
train two parametric functions and a search data structure for binary codes. For
the training, we developed a novel loss function, the F-beta Loss. For the SDS,
we describe the Multi-Bernoulli Search (MBS), a novel approach for probabilistic
binary codes. Finally, we exhibit the F-beta Loss and the MBS synergy by exper-
imentally showing that it is at least twice as better than using the alternative loss
functions of MIHash and HashNet and twenty times better than with another SDS
based on the Hamming radius.

1 INTRODUCTION

In many applications, the machines need to perform many searches in a gigantic database where
the number of relevant documents is minuscule, e.g. ten in a billion. It is like searching for some
needles in a haystack. In those cases, considering every document is extremely inefficient. For
productivity, the search should not consider the whole database. Traditionally, this is accomplished
by building a search data structure and seeking within it. Those data structures can take many forms.
For example, there are tree-based structures such as the B-Tree (Bayer & McCreight, 1970), the k-d
tree (Friedman et al., 1977), the R-Tree (Guttman, 1984) or the M-Tree (Ciaccia et al., 1997) to name
a few. In addition to trees, KNNG (Paredes & Chávez, 2005) build a graph designed for the k-nearest
neighbour search. Later approaches improve on KNNG, both for construction and search time and
for the search quality itself. In those lines, there is Efanna (Fu & Cai, 2016), HNSW (Malkov &
Yashunin, 2018) and ONNG (Iwasaki & Miyazaki, 2018). One of the most common types of search
data structures is the hash table. It is so useful that it is implemented natively in programming
languages such as Python (with the dictionary type). Hash table is often the main tool an application
will use for efficiency. For example, from a short and noisy song sample, Shazam (Wang et al.,
2003) can retrieve the whole song by using hash tables filled with well-designed fingerprints of each
song.

Traditionally, the design of a search data structure was for a particular type of search. For example,
hash tables can retrieve documents very quickly, even in gigantic databases. However, the query
must be equal to the key. This requirement makes the hash table not always applicable. For instance,
if the database is indexed by date and time and we seek all documents from a specific day, then it
might not be optimal to query every second of that day with an equality search. B-Tree (Bayer &
McCreight, 1970) was precisely introduced for applications where a range search is preferable (and
faster insertion than dichotomic search is needed). Equality and range are far from being the only
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types of search. For instance, the k-nearest neighbours is another well-studied type a search. Also,
the subset search is a more exotic example that occurs when every queries and documents are sets
and when a document is relevant if and only if it is a subset of the query. As a final example, the
auto-complete function often uses a Trie data structure (De La Briandais, 1959) to suggest the end
of each word.

It is easy not to realize how the problem of efficiently finding needles in a haystack was solved
multiple times for specific applications. This is the ascertainment that make Search Data Struc-
ture Learning (SDSL) a significant subject. Machine Learning has been a very flexible paradigm,
whether by solving multiple NLP (Natural Language Processing) tasks with a unique Transformer
(Vaswani et al., 2017) or solving most Atari games with Reinforcement Learning (Mnih et al., 2013),
the capacity of a single learning algorithm to perform on multiple tasks is outstanding. Search
Data Structure Learning aims at developing generic learning algorithms meant for multiple types of
search. Furthermore, what makes a document relevant need not to be described formally or even
understood by a human. It might be k-nearest neighbour with a complex metric or something else
altogether, the only thing we need for learning is a dataset. While we use the term ”Search Data
Structure Learning” for the first time, algorithms that fall into its paradigm already exist. The large
video-hosting platform YouTube implements an SDSL algorithm (Covington et al., 2016) for its
recommendation system (the user being the query and the videos being the documents).

Not having a formalized definition of what makes a document relevant and relying on Machine
Learning has its challenges, the most important being the evaluation. Traditional search data struc-
ture, such as the hash table, the Trie, the B-Tree, are exact, meaning the documents retrieved contains
all and uniquely the relevant documents. For comparing those exact search data structures, when
possible, the comparison between two exact search data structures is made with the asymptotic time
complexity (the big-O notation). However, when the search is not exact, it is unclear how to com-
pare structures with different efficiency and exactitude. The precision at Hamming distance of 2
is an attempt to unify those two properties into a single measure specific to the context of binary
encoding. However, as described below, it fails in many aspects. It might seem like it is up to the
programmer to decide what is more important between the speed and the quality of the retrieved
documents. For example, the recall-queries per second (Aumüller et al., 2017) helps to visually
understand the trade-off between speed and quality. In section 3, we describe a reliable measure to
evaluate the efficiency and quality simultaneously of any search data structure. This metric solidifies
the Machine Learning subfield of Search Data Structure Learning.

This article presents the SDSL framework that brings two crucial generalization w.r.t. its predeces-
sors (Li et al., 2011; Cayton & Dasgupta, 2008). First, it allows for dynamic databases, i.e. databases
that might change or evolve after training. For example, it is plausible that a company wants to de-
sign and train a search engine ready for distribution to multiple clients without further training on
each client’s database. The current mindset is to retrain each time a new database is given; however,
this is not feasible in many cases. Hopefully, this article motivates the research towards models that
can generalize to never seen databases. Secondly, the previous framework does not support relative
relations, i.e. when the relevance of a document w.r.t. a query depends on the other documents in the
database. The most studied relative relations is probably the KNN task, which is relative since it is
impossible to know if a document is in the k-nearest neighbour of a query without knowing the other
documents. In contrast, radius search is an example of what we call an absolute relation because it is
possible to know if a document is relevant to a query only by looking at the query-document pair. In
this work, however, we did not introduce relative relations only for KNN. Many interesting relative
relation tasks exist; for example, another rather exciting example of relative relation is the multiple
supporting facts:

A harder task is to answer questions where two supporting statements have to
be chained to answer the question [...] where to answer the question “Where is
the football?” one has to combine information from two sentences “John is in the
playground” and “John picked up the football”. (Weston et al., 2015).

In this work, we first introduce a general framework to formalize the SDSL task in which we present
a novel metric to simultaneously evaluate the efficiency and quality of the search. Then, we inau-
gurate the field of SDSL with Efficient Learning Binary Access (ELBA) (Section 4) that describes
a family of models that use a traditional search data structure and parametric functions (e.g. neural
networks) to create a discrete binary code(s) for both the queries and documents. A reader familiar
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with the field must appreciate the difficulty that has to be overcome when dealing with (semi)-
discrete structure. To instantiate ELBA, we concocted the F-beta Loss used for the training and
Multi-Bernoulli Search (MBS), a novel SDS technique designed for probabilistic binary codes. Fi-
nally, for comparisons, we will instantiate ELBA with other loss functions and another SDS, namely
the MIHash’s loss (Cakir et al., 2017), the HashNet’s loss (Cao et al., 2017), and the Hamming Ra-
dius Search C.4. We will then experimentally show the F-beta Loss and MBS’s advantage by putting
in evidence their synergy.

2 RELATED WORK

In data structure terminology, the concepts of dynamic and static structures describe whether or
not the structure can change via insertion, deletion or merge. In SDSL, if the database(s) used
for training are not the same as the one(s) used for evaluation, then the structure has to search for
documents only seen once at insertion. From a Machine Learning perspective, this is known as
a One-Shot Learning task. For example, Matching Network (Vinyals et al., 2016) tries to match
never seen elements together. However, applying their technique would require a database scan.
Hence it is incompatible with a gigantic database. In the same vein, soft addressing (or attention)
is a differentiable mechanism to select an element from many, thus compatible with gradient de-
scent. Memory Network (Kumar et al., 2016), Neural-Turing Machine (Graves et al., 2014) and
Transformer (Vaswani et al., 2017) all use some kind of soft addressing. It is interesting for train-
ing our models but cannot be used alone in SDSL. For the same reason as above, it would require
considering the whole database.

Finding the k-nearest neighbour is trivial with unlimited resources. In this field, the research focuses
mainly on the efficiency of both the search and the structure’s construction. The exact algorithms are
as efficient in higher dimensions than a random search due to the curse of dimensionality. Conse-
quently, the focus has recently been on approximate k-nearest neighbour. The search data structure
developed are mostly tree-based, such as the k-d tree (Friedman et al., 1977) or the K-Means tree
(Nister & Stewenius, 2006), and graph-based, such as the KNNG (Paredes & Chávez, 2005), Efanna
(Fu & Cai, 2016), HNSW (Malkov & Yashunin, 2018) or ONNG (Iwasaki & Miyazaki, 2018) just
to name a few. A good resource for comparing those approaches is the ann-benchmark Aumüller
et al. (2017). In this work, we generalize the problem to conceive algorithms able to learn what to
search efficiently.

Efficient Learnable Binary Access, described below, encodes queries and documents into binary
vectors. In this work, we will use neural networks as the encoders. Such encoders already exists
in the literature. For example, CNNH (Xia et al., 2014), DPSH (Li et al., 2015), DHN (Zhu et al.,
2016), GreedyHash (Su et al., 2018), PGDH (Yuan et al., 2018), HashGan (Cao et al., 2018), ADSH
(Jiang & Li, 2018) or JMLH (Shen et al., 2019), just to name a few. Below we compare different
loss functions, the F-beta Loss 4 the MIHash’s loss Cakir et al. (2017) and HashNet’s loss Cao et al.
(2017).

Graph learning, introduced in Zhu et al. (2003) for semi-supervised learning, is a type of data struc-
ture learning that has shown experimentally to be a strong idea. Those models learn to do inference
from graphs, sometime by generating them first. Some approaches work with static graphs (static
structures) (Zhu et al., 2003; Perozzi et al., 2014; Scarselli et al., 2008; Bruna et al., 2013) while
other work with dynamic graphs (dynamic structures) (Narayan & Roe, 2018; Manessi et al., 2020).
While this literature does not focus on retrieval, they learn to compute using a data structure.

To put SDSL in contrast with the Learning to Search framework (Li et al., 2011). As mentioned
in the introduction, it does not support dynamic databases and relative relation. It is possible to
update the framework to deal with dynamic databases by taking an expectation over the databases
in the retrieval quality Q(T ) and computational cost C(T ). However, it is not clear how to deal
with relative relations because the selection function T (q, x) is a ”matching function” that does not
exist for relative tasks. Generalizing the selection function by allowing it to consider the whole
database (i.e. with T (q,X)) does not work because T (q,X) could use the ranking function s(x, q)
on every document and nothing would penalize such exhaustive strategies since the computational
cost is the number of candidates. Nevertheless, this is not the main issue. As with the framework
proposed in Cayton & Dasgupta (2008), the computational cost does not consider the retrieval cost
but only the size of the candidates set (divided by the number of documents in the database for the
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latter framework). Those frameworks fail to quantify the work needed to retrieve the candidates. For
example, while proposing the Learning to Search framework, the authors relied on timing to evaluate
their model. The SDSL framework, proposed below, provides a unique quantity that quantifies both
the cost of retrieval and the candidates’ quality simultaneously.

Finally, while not introduced as such, an SDSL algorithm is used in NLP. In this field, many articles
attempt to accelerate the training and inference of the neural network based models, in which the
main bottleneck is the normalization over a large vocabulary. Morin & Bengio (2005) use a pre-
computed tree and train their model to travel from the root to a leaf, where each leaf corresponds to
a word. Doing so accelerates both training and inference. Latter, Mnih & Hinton (2009) proposed a
way to learn the structure of the tree.

3 FORMALISATION OF THE PROBLEM

Let Q be the query universe, let U be the document universe, and let D be the set of databases, i.e.
the set of all finite sets of documents. The task is formulated with a set of relations corresponding to
each database R = {RD : Q → 2D | D ∈ D}. This is to allow the general case where the relation
is relative.
Definition 3.1. The relation set R is absolute if there is a match function M : Q × U →
{True, False} s.t. ∀q ∈ Q, D ∈ D, d ∈ D, M(q, d) ⇔ d ∈ RD(q) otherwise, we say it
is relative.

This definition can easily be generalized to the cases where each RD is probabilistic map by using
probability instead of a truth value.

For the F-beta loss to be defined in Section 4, we restrict ourselves to absolute relation sets and
thus, only the query-document pair determines if the document is relevant. However, the rest of this
formalization is for both relative and absolute relation sets.

The mAP is a widely used metric in information retrieval. However, it does not consider the work
done to perform the ranking. An SDS could compare the query to every document in the database
and have a good mAP. In SDSL, we want to monitor the quality as well as the efficiency of retrieval.
The Recall Query per second (RQPS) (Aumüller et al., 2017) is also used in the ANN literature.
However, it is not suitable for theoretical analysis since the results depend on the implementation
and the hardware. It is possible to generalize the RQPS by changing what quantifies the amount of
work done for retrieval (to something else than the number of seconds). Nevertheless, the RQPS has
a parameter (k) that limits the number of candidates to generate. This parameter prevents a model
from generating all documents in the database as its candidates, which would give 100% recall
without any computation and, consequently, having an excellent score doing nothing. Ultimately,
the parameter k is a fix to the flaw that the RQPS does not consider the precision. In SDSL, we
want to legitimately compare models that might not generate the same number of candidates. To
the best of our knowledge, the precision at a Hamming distance of two (p@2) is the only proposal
in the literature to consolidate the search’s efficiency and quality without relying on the hardware
and the implementation. Obviously, this metric has many limitations. First, it is only relevant when
the model transforms the queries and documents into binary codes. More importantly, it does not
consider the recall quality. For example, if a query should return several relevant documents but only
one relevant document (and no irrelevant ones) are within a Hamming distance of two according to
the model, the p@2 score would be maximal for this query even though the system has a very poor
recall. Another significant limitation is the fact that it does not weight the score w.r.t. the distance.
In many contexts, the amount of work increases a thousandfold when comparing a perfect match
(Hamming distance 0) and distance 2.

In this work, we present a generic metric for any SDSL task. We grounded the metric on a very
pragmatic standpoint by asking what kind of strategy a programmer would use to find relevant
documents in a database quickly. At first, one might consider a random search with a good matching
function (e.g. a neural network). However, if the database is enormous, this strategy will give poor
performances. One could then consider filtering a significant portion of the database using a search
data structure, but the retrieved documents might contain multiple false positives, decreasing the
precision. We believe we can have the best of both solutions by combining them, first filtering a large
portion of the database with a search data structure and then using a good matching function to filter
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the retrieved documents. Finally, to evaluate if the search data structure is useful, the programmer
could consider the cost of searching in the structure plus the cost of a random search in the retrieved
documents versus the cost of a random search in the whole database. This is the central idea of the
Search Work Ratio, the precursor of the Sequential Search Work Ratio, both defined below.
Definition 3.2. A relevance oracle is an oracle capable of computing if a document is relevant.
Definition 3.3. The relevance oracle cost, noted C(N,K, k), is the expected number of oracle’s
calls needed to find k relevant documents within a set containingN documents whereK are relevant,
when doing a random search without replacement.
Lemma 3.1. C(N, K, k) = k(N + 1)/(K + 1). (Proof in appendix A.)

As mentioned previously, we do not intend for the search data structure to produce the final results.
Instead, another entity (e.g. a program or a human) should refine the retrieved documents. In many
applications, mainly when the relevance function is absolute, it is conceivable that this entity is
nearly perfect or, at least, significantly more precise than the SDS. Consequently, we define the cost
of finding k relevant documents in a set of size N containing K relevant documents as the relevance
oracle cost C(N, K, k).

As a generalization, we can weigh differently when the oracle receives a relevant document versus
when it does not. The weighting would consider a real refinement entity’s potential errors and put
different values to the false positives and false negatives. For simplicity, in this work, we will not
weight the calls to the oracle.

The Search Work Ratio (SWR) is the ratio between the work done using the SDS versus the work
done without using the SDS. Consequently, an SWR score of less than 1 implies that it is less costly
to use the SDS and vice-versa. Furthermore, the SWR has a simple interpretation. For example, an
SWR of 1/2 implies that using the SDS reduces the cost by a factor of two.
Definition 3.4. Let D ∈ D, R ∈ 2D, k ∈ N, ω0 ∈ R and δ0 ∈ 2D, then the Search Work Ratio is

SWR(D, R, k, ω0, δ0) =
C(|δ0|, |δ0 ∩R|, k) + ω0

C(|D|, |R|, k)
∈ R+,

where D is a database, R is the relevant documents in this database, k is the minimum number of
documents we want to find, ω0 ∈ R+ is the cost of searching with the SDS, and δ0 is the candidates
retrieved by the SDS. The cost could be any complexity measure, e.g. time or space. In this work,
since we will work only with hash tables, ω0 will be the number of hashes computed. We assume
that using the oracle has the same cost as computing a hash. The SWR has a significant flaw; it
requires that the SDS find enough relevant documents. Otherwise, it is not defined. We will now
slightly generalize this definition using a relevance generator to avoid this issue.

It is not rare that an SDS can be slightly modified to produce a sequence of sets of candidates.. For
example, an approximate tree or graph search often employs a limit of nodes in the exploration. It
is possible to modify those algorithms to generate candidates with an increasing number of nodes to
explore.
Definition 3.5. Let D ∈ D, R ∈ 2D, k ∈ N, ω ∈ RN and δ ∈ (2D)N s.t. T = min{t s.t. t ∈
N and | ∪ti=0 δi ∩R| ≥ k} exists, then the Sequential Search Work Ratio is

SSWR(D, R, k, ω, δ) =
C(|δT |, |δT ∩R|, k − |H ∩R|) + |H|+

∑T
t=0 ωt

C(|D|, |R|, k)
∈ R+,

with H = ∪T−1
i=0 δi if T > 0 and H = ∅ otherwise.

The SSWR’s numerator corresponds to a random search with the relevance oracle on the last gener-
ated candidates set plus the cost of considering all previously generated candidates plus the amount
of work for computing all candidates sets up to T . The SSWR uses the relevance oracle cost only
over the last sets of candidates because the generator did not found enough relevant documents be-
fore generating the last sets of candidates. Consequently, an exhaustive search with the oracle in
the previous sets of candidates was performed before asking the generator to yield more candidates.
The SSWR account for this exhaustive search with the |H| term. Finally, the sets of candidates are
intended to be mutually exclusive because this will reduce the relevance oracle cost computed over
the last sets of candidates and give a better SSWR. However, it is not mandatory.
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Definition 3.6. The Search Data Structure Learning (SDSL) framework consists of minimizing
the expected SSWR over generators (of sets) of candidates w.r.t. database-query pairs. Formally,
given a work function W : GD, q 7→ (ω0, ω1, . . . ) ∈ RN where q ∈ Q and GD is a generators
w.r.t. a database D ∈ D the goal of SDSL is to minimize,

min
G

ED,q [SSWR(D,RD(q), k, W(GD, q), GD(q))] .

We minimize the expectation over all databases to ensure the generator’s quality even if the database
changes, i.e. for dynamic databases. By letting the distribution over D to be deterministic, we fall
into the framework with a static database.

4 EFFICIENT LEARNABLE BINARY ACCESS

This section describes a family of models to tackle SDSL tasks: the Efficient Learnable Binary
Access (ELBA). It consists of two parametric families of functionFQ andFU (e.g. neural networks)
called the queries and documents encoders, and a Multi-Bernoulli Search (MBS) data structure S
that will be made explicit later. Any function from FQ and FU must have their domain onQ and U ,
respectively, and their image in [0, 1]n to be interpreted as the parameters of a Multi-Bernoulli1 (in
its canonical form). Precisely, ELBA is specified by the following triplet ELBA = (FQ, FU , S)
with FQ = {fθ : Q → [0, 1]n | θ ∈ ΘQ} and FU = {fθ : U → [0, 1]n | θ ∈ ΘU}.
Note that in the particular case where Q = U , it is possible to use the same function for the queries
and the documents (ELBA = (F , S)). We call this the shared variant of ELBA. As opposed to the
unshared variant where the parametric families might be the same, but the parameters are free to be
different (e.g. the same neural network but with different parameters).

Multi-Bernoulli Search (MBS) data structure is a key-value based data structure that implements
insert and search. This data structure uses M back-end key-value based data structures compatible
with binary vectors keys. The back-end data structures S1, S2, . . . , SM , must also implement
insert(S, key, value) where S ∈ {S1, S2, . . . , SM} is the data structure into which we insert
the value w.r.t the key. Similarly, the back-end structures must implement search(S, key), which
must return the appropriate set of values. While the key given to the back-end data structures are
binary vectors, the key given the MBS must be the parameters of a Multi-Bernoulli distribution of
dimension n, i.e.

key = π = (π1, π2, . . . , πn) ∈ [0, 1]n.

For insertion, the MBS computes the M most probable outcomes of the Multi-Bernoulli (which
might not be unique) and uses them as the keys for inserting in a back-end data structures. For
searching, the MBS computes the T most probable outcomes of the Multi-Bernoulli (which, again,
might not be unique) and uses them as the keys for searching in each back-end data structures.
Consequently, the search performs TM back-end searches. The pseudo-code is in the appendix
B.2. Note that the insert method does not require T . Consequently, we can make the insertions
and then choose T. This fact makes possible the modification of the search to generate candidates
every time it searches in a back-end structure. Finally, to conform with the SDSL’s framework, it is
possible to generate candidates by yielding candidates each time we search in a back-end structure.

Computing efficiently the top-k most probable outcomes of a Multi-Bernoulli is not trivial. In the
appendix B, we describe how to do it. Throughout this work, we will use the Hashing Multi-
Bernoulli Search (HMBS), an implementation of the MBS that uses hash tables as its back-end data
structures. An example of how inserting, searching and generating can be found in the appendix B.3.

To implement ELBA, we need a means to select a function from each parametric family. As the
parametric families, we consider neural networks, which we aim to train with gradient descent.
Consequently, we need a loss function. Thus in this section, we will describe the F-beta Loss, a
novel loss function design to perform well with MBS.

1The Multi-Bernoulli is a random vector composed of n independent but not identical Bernoulli.
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We will restrain ourselves to absolute relevance function. For this reason, we will use a dataset of
the form {(qi, di, ri)}Ni=1 = (qi, di, M(qi, di))}Ni=1. The model will try to predict the Matching
functionM. We will denote the matching prediction function M̂θ.

Since the Multi-Bernoulli Search requires the (canonical) parameters of the Multi-Bernoulli repre-
sentation of the query {πqi }ni=1 for search and of the document {πdi }ni=1 for insert (with n the cho-
sen number of Bernoulli in the Multi-Bernoulli random variables), it is primordial that the model
provides such quantity in its computational pipeline. Let fQθ (q) = πq and fUθ (d) = πd be the para-
metric functions for the queries and the documents, both implemented with a neural network ending
with a sigmoid. Note that, depending on the case, the two neural networks might or might not share
parameters. Finally, since we want to create a synergy with Hashing Multi-Bernoulli Search, we
need the bits to be all equal if and only if the matching prediction function is one. Thus we define,

M̂θ(q, d) =

n∏
i=1

πqi π
d
i + (1− πqi )(1− π

d
i ),

which is the probability of both Multi-Bernoulli random variables are equal according to the distri-
butions {πqi }ni=1 and {πdi }ni=1.

We define three essential quantities: the recall, the fallout, and the predicted matching marginal
(pmm for short), respectively:

rθ = Eq,d|M(q,d)

[
M̂θ(q, d)

]
, sθ = Eq,d|¬M(q,d)

[
M̂θ(q, d)

]
, mθ = Eq,d

[
M̂θ(q, d)

]
.

We can compute empirical averages to produce unbiased estimators of those quantities.

r̂θ =
1

|I+|
∑
i∈I+
M̂θ(qi, di), ŝθ =

1

|I−|
∑
i∈I−
M̂θ(qi, di), m̂θ = qr̂θ + (1− q)ŝθ.

where I+ and I− are the sets of indexes for query-document pairs in the dataset that match and do
not match, respectively, and with q being the probability of having a matching pair. It is also possible
to derive an estimator for the precision pθ = qrθ

mθ
, with p̂θ = qr̂θ

m̂θ
. However, it is biased.

For numerical stability and because the gradients w.r.t rθ, sθ and mθ are near zero when the training
starts, we need to consider their logarithm for the loss function. Maximizing precision gives a model
capable of discriminating between positive and negative pairs, but it leaves the recall untouched,
and having a high recall is vital for the HMBS to find the relevant documents. Furthermore, only
maximizing the recall induce the model towards a constant Multi-Bernoulli distribution with zero
entropy, i.e., independent of the input and where all the probabilities are near 0 or 1. We tried
maximizing the recall while minimizing the fallout, i.e. with a loss similar to maxθ log(rθ) −
λ log(sθ). However, we found it extremely hard to optimize — there was no sweet spot for lambda.
When the model’s recall was sufficient, it was because it collapsed to a constant function. Scheduling
λ to alternate between a small value and a relatively high value has shown limited experimental
success. In the end, we were looking for a tradeoff between the precision and the recall. The F-beta
came naturally. However, since our precision estimator is biased, it is simpler to reparameterize the
standard F-beta with the pmm using pθ = qrθ

mθ
given us,

Fβ =
(1 + β2)qrθ
qβ2 +mθ

with β ∈ R+

For the above reasons, we considered the logarithm of the F-beta,

logFθ = log((1 + β2)q) + log(rθ)− log(qβ2 +mθ) with β ∈ R+

However, if we replace the recall term by its estimator directly we will get the LogSumExp (LSE)
w.r.t. log M̂θ(qi, di) for i ∈ I+. i.e., log(r̂θ) = LSE{log M̂θ(qi, di) | i ∈ I+} which is known
to act as a soft maximum (not to be confused with its gradient, the Softmax). Doing this will yield
a near-zero gradient for the matching pairs with the lowest predicted matching value. It would be
problematic since those pairs are the ones that need the most gradient.
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Figure 1: In the first row are the queries and in the second row are the documents. Each query
corresponds uniquely to one document. On the left, the task is easy, but on the right, it is not.

Instead, we propose an alternative estimator of the log F-beta, which we call the F-beta Loss, where
we replace the LSE with the average logarithm of the predicted matching value.

log F̂θ = c+
1

|I+|
∑
i∈I+

log M̂θ(qi, di)− log(qβ2 + m̂θ)

with β ∈ R+ and c = log(1 + β2) + log q.

Note that it is simple to compute with numerical stability the logarithm of the sigmoid function.
Most, if not all, Machine Learning libraries natively define this function.

5 EXPERIMENTS AND RESULTS

We performed all experiments on a dataset build from MNIST (LeCun et al., 1998), which we call
NoisyMnist. We do not intend NoisyMnist to be a challenging task but rather a tool to analyze
the convergence properties and draw comparisons between each models’ qualities. In this dataset,
the document and query are MNIST images with value ranging from 0 to 1 with additive Gaussian
noise (the value can consequently go below 0 and above 1). The mean and std of the noise is 0
and 0.2, respectively. The relevance function of NoisyMnist is absolute, and we define the matching
function as follows: a query match with a document if and only if their original MNIST image was
the same before we added the noise. In figure 1, there are 6 examples of queries-documents pairs.
For evaluation, We build a fixed database with 10K different images from MNIST not accessible
while training. From those 10K, we randomly selected 1K to create the queries. Finally, we added
the noise on each image (the query and their corresponding document do not share the same noise).
In this evaluation database, there is a unique document relevant for each query. It is one in ten
thousand, making it a proper database for SDSL.

We considered two alternatives for the F-beta Loss and one alternative to the MBS. For the F-beta
Loss, we selected the loss function of MIHash (Cakir et al., 2017) and the loss function of HashNet
(Cao et al., 2017) because of their compatibility with with ELBA. More specifically, they both
produce quantities that can be interpreted as the parameters of a Multi-Bernoulli, and they both can
be trivially generalized to the unshared case. Furthermore, as an alternative to MBS, we choose the
Hamming Radius Search (HRS) described in appendix C.4. Combining the three losses with the
two data structures creates six Efficient Learnable Binary Access models. We deployed each model
in both the shared and unshared categories, for a total of twelve scenarios.

Training was run 5 times for each model, and the top 5 sets of parameters w.r.t the SSWR were
selected for a total of 25 sets of parameters for each of the twelve models. All the values provided
are the average of those 25 points. Each training consisted of 100K batches of size 32, which was
plenty for all models to converge. At each 500 batches, we performed an evaluation giving us 200
sets of parameters to select from. We performed all evaluations using the same fixed set of 10K
validation documents and a corresponding fixed set of 1K validation query described above. Those
documents and queries were never seen while training. All networks are ResNet18 (He et al., 2016)
adapted to MNIST, i.e. the first convolution takes from one channel with no stride and the last linear
layer output a vector of size 64 (for 64 bits). The hyperparameters and training schedule can be
found in the appendix C. Finally, we use halting for all six models as is describe below.
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Table 1: The comparative table of SSWR
Unshared Shared

Models HRS HMBS HRS HMBS
F-beta 0.3798 0.0169 0.1636 0.0035

MIHash 1.3559 1.8907 0.2119 0.0083
HashNet 1.4162 2.0001 0.2536 0.2828

When using generators iterating over binary codes, such as HRS and MBS, it is crucial to halt
the iteration before it finishes. For example, for 64 bits, there are 264 possible hashes, which is
certainly larger than any database. In those cases, it does not make sense to compute every possible
hash. Halting is the mechanism that decides when to stop a relevance generator and produce the
database’s remaining document as the final candidates set. Note that, when halting, the SSWR is
always greater than one. In all experiments with HRS, we used a halting of 2081. It corresponds to
generating every document with binary codes within a radius of two from the query’s code (for 64
bits). In this case, halting afterward is arbitrary since the next 41664 codes (distance of 3) come in no
particular order. Finally, in all experiments with HMBS, we use a halting of 5001, which corresponds
to stopping when the amount of work done exceeds the expected amount of work without an SDS,
i.e. C(10000, 1, 1).

Table 1 shows that F-beta (from this work) outperforms MIHash and HashNet in both unshared and
shared categories. Noteworthily, MIHash and HashNet fail in the unshared categories. While Hash-
Net successfully produces binary codes with lower Hamming distance for positive than negative
pairs, the distance is way too high to be used with hash tables. MIHash, on the other hand, only
push towards increasing the mutual information between the Hamming distance and whether or not
the pair matches. It implies that there is no (explicit) pressure towards having a small Hamming
distance. The synergy between the loss function and shared parameters is why MIHash and Hash-
Net produce low Hamming distances for positive pairs for the shared problem. The found solutions
for the unshared problem are not available when the queries and documents networks are the same.
Parameter sharing acts as a colossal regularization. Those poor results suggest that both MIHash and
HashNet are constrained to similarity search. Making F-beta the superior loss function for ELBA
with hash table based SDS.

On the other hand, HMBS’s results are far superior to those of HRS. In the case of shared F-beta,
they are 46 times better. The only case for which it is not true is for shared HashNet. However, both
of those models are not competitive. The fat tail of its Hamming distances distribution is at cause.
In our experiments, we noted that varying the halting did not seem to change the results drastically.
Additional figures provided in the appendix D might convey a more intuitive understanding of the
contrast between the different scenarios.

6 CONCLUSION AND FUTURE WORK

In this article, we proposed a novel and practical field of Machine Learning called Search Data
Structure Learning, for which we propose a natural metric, the SSWR. We inaugurated this field
with a new family of models, the Efficient Learnable Binary Access, which we instantiated with
the F-beta Loss and the MBS that outperformed multiple alternatives, reducing by at least a factor
of two the SSWR. We cannot overstate the importance of F-beta in this project. The capacity to
obtain convergence on discrete output without being caught in a local minimum is a powerful tool.
In NLP, the F-beta led us to several exciting breakthroughs when learning semantically rich discrete
embedding for words. The fact that studying SDSL led to breakthroughs in other domains is, for us,
an attestation of its significance.

Furthermore, we plan to extend the formalization to consider insertion, deletion, dependent queries,
and dependent retrieved documents in future work. Such generalization could be useful for tasks
like dialogue modelling or question answering. Also, in this work, the halting procedure was sim-
plistic. In the future, we are interested in working with models that can decide when to stop based
on the query and the retrieved documents. Finally, we are eager to work with non-hashing-based
approaches, such as trees or graphs.
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A THE RELEVANCE ORACLE COST

Formally, let S be a set of N documents containing K ≤ N relevant documents. From this K ele-
ments, we want to find at least k ≤ K elements. We want to compute how many calls in expectation
are needed to find those k elements if we sample from S uniformly without replacement. We will
denote this expectation C(N,K, k).

Let G(k ; N,K, n) be the Hypergeometric Distribution with parameters N , K, n. This distribution
gives the probability that from a set with N documents from which K are relevant, we sample
exactly k relevant documents in n uniform trials without replacement.

G(k ; N,K, n) =

(
K
k

)(
N−K
n−k

)(
N
n

) .

Let P(n ; N,K, k) be probability distribution, defined below, with parameters N , K, k. This gives
the probability that from a set with N documents from which K are relevant, it takes n uniform
trials without replacement to get precisely k relevant documents. We have,

P(n ; N,K, k) = G(k − 1 ; N,K, n− 1)
K − (k − 1)

N − (n− 1)
,

which is the probability that we have k − 1 relevant documents in n − 1 trials multiplied by the
probability that we sample a relevant document in a set with N − (n − 1) documents from which
K − (k − 1) are relevant.

Finally, the expectation of P(n ; N,K, k) yields the wanted measure. I.e. if X ∼ P(· ; N,K, k)
then,

C(N, K, k) = E [X] =

N∑
n=1

nP(n ; N,K, k) =

(
N + 1

K + 1

)
k,

with the last equality shown below A.1.

Lemma A.1. If X ∼ P(· ; N,K, k) then,

E [X] =

(
N + 1

K + 1

)
k
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Proof. with A ≥ a, B ≥ b and A ≥ B all natural numbers.

E [X] =

N∑
n=1

nP(n ; N,K, k)

=

N−(K−k)∑
n=k

nP(n ; N,K, k) remove zeros

=

N−(K−k)∑
n=k

nG(k − 1 ; N,K, n− 1)
K − (k − 1)

N − (n− 1)

=

N−(K−k)∑
n=k

n

(
K
k−1

)(
N−K
n−k

)(
N
n−1

) K − (k − 1)

N − (n− 1)

=

N−(K−k)∑
n=k

n
k

K−k+1

(
K
k

)(
N−K
n−k

)
n

N−n+1

(
N
n

) K − (k − 1)

N − (n− 1)
with

(
A

a− 1

)
=

a

A− a+ 1

(
A

a

)

=

N−(K−k)∑
n=k

k

(
K
k

)(
N−K
n−k

)(
N
n

)
=

N−(K−k)∑
n=k

k

(
n
k

)(
N−n
K−k

)(
N
K

) with

(
B
b

)(
A−B
a−b

)(
A
a

) =

(
a
b

)(
A−a
B−b

)(
A
B

)
=

k(
N
K

) N−(K−k)∑
n=k

(
n

k

)(
N − n
K − k

)
=

k(
N
K

)(N + 1

K + 1

)
a variant of Vandermonde’s identity

=
k(
N
K

) N + 1

K + 1

(
N

K

)
with

(
A+ 1

a+ 1

)
=
A+ 1

a+ 1

(
A

a

)
=

(
N + 1

K + 1

)
k

B TOP-K MAXIMAL MULTI-BERNOULLI OUTCOMES

Let bi be n independent and non-identical Bernoulli random variables with probability πi to be one.
Let zi be the most probable outcome of bi and let pi be the probability that bi be the most probable
outcome (bi = zi) i.e.

zi =

{
1 if πi > 1/2

0 otherwise
pi =

{
πi if πi > 1/2

1− πi otherwise

note that pi is always greater or equal than 1/2. The theorem B.2 gives us the following result.

P (b=x) > P (b=y)⇐⇒
n∑
i=1

s.t. xi 6=zi

log(pi)− log(1− pi) <
n∑
i=1

s.t. yi 6=zi

log(pi)− log(1− pi)

This implies that finding the Top-K Minimal Subset Sum of A = {a1, a2, . . . , an} with ai =
log(pi) − log(1 − pi) ≥ 0 will yield the Top-K Maximal Multi-Bernoulli Outcomes. The Top-K
Minimal Subset Sum problem can be solve using standard programming techniques. The pseudo-
code for the reduction is in the appendix B.2.
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B.1 REDUCTION TO TOP-K MINIMAL SUBSET SUM

Lemma B.1. Let pi ∈ [0, 1], ai ∈ {0, 1} and bi ∈ {0, 1}, for i ∈ {0, 1, . . . , n} then

n∏
i=1

paii (1− pi)1−ai <

n∏
i=1

pbii (1− pi)1−bi

⇐⇒
n∏
i=1

p1−ai
i (1− pi)ai >

n∏
i=1

p1−bi
i (1− pi)bi

Proof. Let I+ = {i | i ∈ N, 1 ≤ i ≤ n, ai = bi} and let I+ = {i | i ∈ N, 1 ≤ i ≤ n, ai 6= bi}
we have,

n∏
i=1

paii (1− pi)1−ai <

n∏
i=1

pbii (1− pi)1−bi

⇐⇒
∏
i∈I+

paii (1− pi)1−ai
∏
i∈I−

paii (1− pi)1−ai <
∏
i∈I+

pbii (1− pi)1−bi
∏
i∈I−

pbii (1− pi)1−bi

⇐⇒
∏
i∈I−

paii (1− pi)1−ai <
∏
i∈I−

pbii (1− pi)1−bi

⇐⇒
∏
i∈I−

p1−bi
i (1− pi)bi <

∏
i∈I−

p1−ai
i (1− pi)ai since ∀i ∈ I−, ai = 1− bi

⇐⇒
∏
i∈I+

p1−bi
i (1− pi)bi

∏
i∈I−

p1−bi
i (1− pi)bi <

∏
i∈I+

p1−ai
i (1− pi)ai

∏
i∈I−

p1−ai
i (1− pi)ai

⇐⇒
n∏
i=1

p1−bi
i (1− pi)bi <

n∏
i=1

p1−ai
i (1− pi)ai

Theorem B.2. Let b be a Multi-Bernoulli of parameter π ∈ ]0, 1[n and let

zi =

{
1 if πi > 1/2

0 otherwise
pi =

{
πi if πi > 1/2

1− πi otherwise

then, for any x ∈ {0, 1}n and y ∈ {0, 1}n we have

P (b=x) > P (b=y)⇐⇒
n∑
i=1

s.t. xi 6=zi

log(pi)− log(1− pi) <
n∑
i=1

s.t. yi 6=zi

log(pi)− log(1− pi)
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Proof. For notational simplicity, let x̄i = xi ⊕ zi and let ȳi = yi ⊕ zi (with ⊕ being the exclusive
or)

P (b=x) >P (b=y)

⇐⇒
n∏
i=1

P (bi=xi) >

n∏
i=1

P (bi=yi) since the Bernoulli are independent

⇐⇒
n∏
i=1

πxii (1− πi)1−xi >

n∏
i=1

πyii (1− πi)1−yi

⇐⇒
n∏
i=1

p1−x̄i
i (1− pi)x̄i >

n∏
i=1

p1−ȳi
i (1− pi)ȳi proved by cases (πi > 1/2 and πi ≤ 1/2)

⇐⇒
n∏
i=1

px̄ii (1− pi)1−x̄i <

n∏
i=1

pȳii (1− pi)1−ȳi by lemma B.1

⇐⇒
n∑
i=1

x̄i log(pi) + (1− x̄i) log(1− pi) <
n∑
i=1

ȳi log(pi) + (1− ȳi) log(1− pi)

⇐⇒
n∑
i=1

x̄i (log(pi)− log(1− pi)) + log(1− pi) <

n∑
i=1

ȳi (log(pi)− log(1− pi)) + log(1− pi)

⇐⇒
n∑
i=1

x̄i (log(pi)− log(1− pi)) <
n∑
i=1

ȳi (log(pi)− log(1− pi))

⇐⇒
n∑
i=1

s.t. x̄i=1

log(pi)− log(1− pi) <
n∑
i=1

s.t. ȳi=1

log(pi)− log(1− pi)

Remark. The case where πi is exactly one or zero for some i can be trivially taken into account by
setting the bit to the only possible value. All outcomes that are not generated will have probability
zero.

B.2 ALGORITHMS

Algorithm 1 Multi-Bernoulli Search Data Structure - insert

Require: Int n, Int M , SDSArray[M] S, RealArray[n] key, Object value
outcomes← Top-K Maximal Multi-Bernoulli Outcomes(M, n, key)
for i ∈ {1, . . . , M} do

insert(Si, outcomesi, value)
end for

Algorithm 2 Multi-Bernoulli Search Data Structure- search

Require: Int n, Int M , Int T , SDSArray[M] S, RealArray[n] key
values← set()
outcomes← Top-K Maximal Multi-Bernoulli Outcomes(T, n, key)
for j ∈ {1, . . . , T} do

for i ∈ {1, . . . , M} do
values← values ∪ search(Si, outcomesj)

end for
end for
return values
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Algorithm 3 Top-K Maximal Multi-Bernoulli Outcomes
Require: Int k, Int n, RealArray[n] π

1: z ← BinaryArray[n]
2: p← RealArray[n]
3: a← RealArray[n]
4: for i = 1, . . . , n do
5: if πi > 1/2 then
6: zi ← 1
7: pi ← πi
8: else
9: zi ← 0

10: pi ← 1− πi
11: end if
12: ai ← log(pi)− log(1− pi)
13: end for
14: outcomes← BinaryArray[k × n]
15: index← TopKMinimalSubsetSumIndexes(k, n, a)
16: for j = 1, . . . , k do
17: for i = 1, . . . , n do
18: if i ∈ indexesj then
19: outcomesji ← 1− zi
20: else
21: outcomesji ← zi
22: end if
23: end for
24: end for
25: return outcomes

B.3 HMBS EXAMPLE

In this example, the number of bits in the Multi-Bernoulli is n = 3, the number of back-end data
structures is M = 3, and the number of search keys is T = 2. Since this is a Hashing Multi-
Bernoulli Search data structure, the M = 3 back-end structures will be hash tables; we will call
them H1, H2 and H3.

Let say we want to insert a document with the following key,

π1 = (0.3, 0.1, 0.8).

We first need to compute its M = 3 most probable outcomes. Here they are in order:

(0, 0, 1), (1, 0, 1), (0, 0, 0)

then we will insert the document in H1 using the most probable outcome as the key, insert the
document in H2 with the second most probable outcome as the key and insert the document in H3

with the third most probable outcome as the key.

Now, let say we have two other documents to insert with the following keys, respectively:

π2 = (0.7, 0.9, 0.2), π3 = (0.3, 0.2, 0.1).

Here are their M = 3 most probable outcomes, respectively:

(1, 1, 0), (0, 1, 0), (1, 1, 1) and (0, 0, 0), (1, 0, 0), (0, 1, 0).

We will then insert both of them in the M = 3 hash tables like we did for the first document.

To search in the HMBS given a query π = (0.1, 0.6, 0.2), we first need to compute its T = 2 most
probable outcomes:

(0, 1, 0), (0, 0, 0).

We will then search in the M = 3 hash tables with these T = 2, doing a total of TM = 6 search in
the back-end structures. These searches will find all of the three documents since the first document
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is in H3 with the key (0, 0, 0), the second document is in H2 with the key (0, 1, 0) and the third
document is both in H1 with the key (0, 0, 0) and in H3 with the key (0, 1, 0).

To generate documents as in the SDSL’s framework, we do not need the parameter T . However, we
might want to halt before considering all possible outcomes of the query. With the same query as
above, say we want to generate document but halt after the fifth hashes, i.e. after doing 5 searches
in the back-end structures. We will first generate the most probable outcome (0, 1, 0) and search
in H1; however, we will find nothing. We will then try the same outcome in H2 and find the
second document, which we will yield. Then we will try the same outcome in H3 and find the third
document, which we will yield. After this, we will compute the second most probable outcome
(0, 0, 0) and search in H1 to find the third document again; thus, we will do nothing. After we
will try the same outcome in H2 and find nothing. Finally, we will halt since we computed 5
hashes, ultimately never finding the first documents. Note that if there were multiple documents
simultaneously, we would have yielded them together as a set.

C EXPERIMENTS’ MODELS

C.1 FBETA

For the F-beta model 4 we use ramping for the β hyperparameter using this equation,

log2 βi =

{
i 32−8

10K − 32 if i < 10K
−8 otherwise

for each batch i = 0, . . . , 100K.

C.2 MIHASH

MIHash Cakir et al. (2017) is based on the mutual information

I(X,Y ) =
∑
z∈Ω

P (X=z, Y=z) log

(
P (X=z, Y=z)

P (X=z)P (Y=z)

)
and a generalization of the Hamming distance,

d(x, y) =
1

2
(n− x · y)

for x and y in Rn. Note that if x and y are in {0, 1}n, d(2x− 1, 2y − 1) is their Hamming distance.

Lets use the above notation, i.e. let fQθ (q) = πq ∈ [0, 1]n and fUθ (d) = πd ∈ [0, 1]n be the
parametric query and document functions (in the original article, they uses the same function for the
queries and the documents). Let X and Y be two Multi-Bernoulli of dimension n with parameters
πq and πd respectively. Finally, with H = d(2X − 1, 2Y − 1), they aim to maximize,

I(H,M(q, d))

To allow gradient descent, they use differentiable histogram binning, i.e. they approximate
P (H=k | M(q, d)=1) with

P (H=k | M(q, d)=1) =
1

|I+|
∑
i∈I+

δi,k

with

δi,k =

{
di − (k − 1) if di ∈ [k − 1, k]
(k + 1)− di if di ∈ [k, k + 1]
0 otherwise

and di = d(2πqi − 1, 2πdi − 1). Similarly they estimate P (H=k | M(q, d)=0) and P (H=k) to
compute the mutual information.
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C.3 HASHNET

HashNet Cao et al. (2017) optimize an increasingly closer to discrete sequence of tasks to alleviate
the challenge of solving a discrete task with differentiable methods. It is possible to frame their
approach entirely with sigmoids but it is is simpler to use the tanh function as in the original article.
Let NetQθ (q) = logitsq ∈ Rn and NetUθ (d) = logitsd ∈ Rn be the parametric query and document
functions before activation. Let gQθ (q) = tanh

(
βNetQθ (q)

)
and gUθ (d) = tanh

(
βNetUθ (d)

)
be the

activated functions. Note that,

fQθ (q) =
gQθ (q) + 1

2
fUθ (d) =

gUθ (d) + 1

2

For simplicity, let gQi = gQθ (qi) and gUi = gUθ (di). In their work they modelize the matching random
variable with,

M(qi, di) ∼ Ber
(
σ
(
α gQi · g

U
i

))
This gives,

P (M(qi, di)=m) = σ
(
α gQi · g

U
i

)m (
1− σ

(
α gQi · g

U
i

))1−m
Finally, they train the model with the (weighted) negative log-likelihood.

Ji = wi
(
log
(
1 + exp

(
α gQi · g

U
i

))
−miα g

Q
i · g

U
i

)
with wi a positive real number useful when match and non-match are unbalanced. In the following
experiment we ignored this term since the task is way to unbalanced and adding a weighting term
would break the loss function.

The β term, in the tanh, is first set to 1 and then increased when a convergence criteria is obtain.
This process repeats ten times, creating a sequence of of increasingly harder optimization which, if
repeated infinitely, would converge to a discrete optimization.

lim
β→∞

tanh(βx) = sign(x)

In all experiments, we use α = 0.2 for the sigmoid to have enough signal in the range [−32, 32].

C.4 HAMMING RADIUS SEARCH

The Hamming Radius Search (HRS) is a naive approach to quickly find documents indexed with
a binary code which have low Hamming distance r (the radius) to a particular binary code (the
query). For insertion, we map each document’s binary code the the document using a hash table.
For searching, we compute all binary codes at distance than 0 (i.e. only the query) and use the hash
table, then we do the same for distance up to r, the radius.

The number a binary codes to consider grow very quickly w.r.t to the radius. For example, at radius
2 with 64 bits codes, the number of codes to consider is 2081.(

64

0

)
+

(
64

1

)
+

(
64

2

)
= 2081

and for the radius 3 we there is 43745 codes to consider. Radius 3 would not make sense for a
database of 10K elements as the last 41664 elements comes in no particular order. This is why we
consider for the following experiments 2081 hash before halting for Hamming Radius Search.
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D SUPPLEMENTARY FIGURES

Table 2: The comparative table of SSWR’s Halting Percentage
Unshared Shared

Models HRS HMBS HRS HMBS
Fbeta 22.51 % 0.20 % 8.64 % 0.00 %

MIHash 92.72 % 92.19 % 11.81 % 0.10 %
HashNet 100.00 % 100.00 % 16.14 % 12.88 %

Figure 2: The average Hamming distance of the 25 models of each 6 HMBS models w.r.t. the
positive (matching) pairs and negative (non-matching) pairs. Using the fixed 10K documents and 1K
queries, creating 1K positive pairs and 9999K negative pairs for which we computed the Hamming
distance.

Figure 3: The average SSWR Curves W.r.t Halt number for Fbeta, Shared-Fbeta and SHared-
MIHash. The colored area is±0.01xSTD of the respective curve. The range of the y axis is changing
throughout each graphs, this could be misleading when comparing the STD. As a reference, the av-
erage STD is 0.1259, 0.0374 and 0.0864 for Fbeta, Shared-Fbeta and Shared-MIHash respectively.
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