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Abstract

We give the first polynomial-time, differentially node-private, and robust
algorithm for estimating the edge density of Erdős-Rényi random graphs
and their generalization, inhomogeneous random graphs. We further prove
information-theoretical lower bounds, showing that the error rate of our
algorithm is optimal up to logarithmic factors. Previous algorithms incur
either exponential running time or suboptimal error rates.
Two key ingredients of our algorithm are (1) a new sum-of-squares algorithm
for robust edge density estimation, and (2) the reduction from privacy
to robustness based on sum-of-squares exponential mechanisms due to
Hopkins et al. (STOC 2023).

1 Introduction

Privacy has nowadays become a major concern in large-scale data processing. Releasing
seemingly harmless statistics of a dataset could unexpectedly leak sensitive information
of individuals (see e.g. [NS09, DSSU17] for privacy attacks). Differential privacy (DP)
[DMNS06] has emerged as a by-now standard technique for protecting the privacy of
individuals with rigorous guarantees. An algorithm is said to be differentially private if the
distribution of its output remains largely unchanged under the change of a single data point
in the dataset.
For datasets represented by graphs (e.g. social networks), two notions of differential privacy
have been investigated in the literature: edge differential privacy [NRS07, KRSY11], where
each edge is regarded as a data point; and node differential privacy [BBDS13, KNRS13], where
each node along with its incident edges is regarded as a data point. Node differential privacy
is an arguably more desirable notion than edge differential privacy. On the other hand, node
differential privacy is also in general more difficult to achieve without compromising on
utility, as many graph statistics usually have high sensitivity in the worst case. It turns out
that many graph statistics can have significantly smaller sensitivity on typical graphs under
natural distributional assumptions. Several recent works could thus manage to achieve
optimal or nearly-optimal utility guarantees in a number of random graph parameter
estimation problems [BCS15, BCSZ18, SU19, CDd+24].
In this paper, we continue this line of work and study perhaps the most elementary statistical
task in graph data analysis: Given an 𝑛-node Erdős-Rényi random graph of which each
edge is present with probability 𝑝◦ independently, output an estimate �̂� of the edge density
parameter 𝑝◦, subject to node differential privacy. We consider the error metric |�̂�/𝑝◦ − 1|
which can reflect the fact that, the task is more difficult for smaller 𝑝◦.
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Without privacy requirement, the empirical edge density1 �̂� achieves the information
theoretically optimal error rate |�̂�/𝑝◦ − 1| ⩽ �̃�(1/(𝑛√𝑝◦)). The standard way to achieve
𝜀-differential node privacy is to add Laplace noise with standard deviation Θ(1/(𝜀𝑛)) to
the empirical edge density �̂�. This will incur an additional privacy cost of Θ(1/(𝜀𝑛𝑝◦))
which dominates the non-private error �̃�(1/(𝑛√𝑝◦)). Surprisingly, Borgs et al. [BCSZ18]
gave an algorithm with privacy cost only �̃�(1/(𝜀𝑛√𝑛𝑝◦)) which is negligible to the non-
private error for any 𝜀 ≫ 1/

√
𝑛. However, their algorithm is based on a general Lipschitz

extension technique that has exponential running time. Later, Sealfon and Ullman [SU19]
provided a polynomial-time algorithm based on smooth sensitivity with privacy cost
�̃�(1/(𝜀𝑛√𝑛𝑝◦)+1/(𝜀2𝑛2𝑝◦)), which is much greater than that of [BCSZ18] for 𝜀 ≪ 1/(√𝑛𝑝◦).
Moreover, [SU19] gives evidence that their approach is inherently prohibited from achieving
better privacy cost. On the other hand, known lower bounds in [BCSZ18, SU19] are not for
Erdős-Rényi random graphs. This leads us to the following question:

Is there a polynomial-time, differentially node-private, and rate-optimal edge density estimation
algorithm for Erdős-Rényi random graphs?

We essentially settled this question in this paper. Specifically, we give a polynomial-time and
differentially node-private algorithm with privacy cost �̃�(1/(𝜀𝑛√𝑛𝑝◦)). Moreover, we show
this error rate is optimal up to a logarithmic factor by proving an information-theoretical lower
bound ofΩ(1/(𝜀𝑛√𝑛𝑝◦)). Our algorithm actually works for the more general inhomogeneous
random graphs [BJR07]. The inhomogeneous random graph model encompasses any random
graph model where edges appear independently (after conditioning on node labels). Notable
examples include the stochastic block model [HLL83], the latent space model [HRH02], and
graphon [BC17].
Our algorithm largely exploits the close connection between differential privacy and
adversarial robustness in statistics. This connection dates back to [DL09] and has witnessed
significant progress in the past few years [LKKO21, LKO22, KMV22, GH22, AUZ23, HKM22,
HKMN23, AKT+23, CCAd+23, CDd+24]. In particular, a very recent line of works [HKM22,
HKMN23, CDd+24] could efficiently achieve optimal or nearly-optimal accuracy guarantees
in a number of high-dimensional statistical tasks, by integrating two powerful tools —
sum-of-squares method [RSS18] and exponential mechanisms [MT07]— in robustness and
privacy respectively. Our algorithm extends this line of work. The key technical ingredients
of our algorithm are (1) a new sum-of-squares algorithm for robust edge density estimation
and (2) an exponential mechanism whose score function is based on the sum-of-squares
program. As a consequence, our private algorithm is also robust to adversarial corruptions.

1.1 Results

To state our results formally, we need the following definitions.
Definition 1.1 (Node distance, neighboring graphs). Let 𝑛 ∈ ℕ. The node distance between
two 𝑛-node graphs 𝐺 and 𝐺′, denoted by dist(𝐺, 𝐺′), is the minimum number of nodes in 𝐺
that need to be rewired to obtain 𝐺′. Moreover, we say 𝐺 and 𝐺′ are neighboring graphs if
dist(𝐺, 𝐺′) ⩽ 1.
Definition 1.2 (Node differential privacy). Let 𝒢 be the set of graphs. A randomized
algorithm 𝒜 : 𝒢 → ℝ is 𝜀-differentially (node-)private if for every neighboring graphs 𝐺, 𝐺′

and every 𝑆 ⊆ ℝ, we have

ℙ[𝒜(𝐺) ∈ 𝑆] ⩽ 𝑒𝜀 · ℙ[𝒜(𝐺′) ∈ 𝑆] .

Definition 1.3 (Node corruption model). Let 𝑛 ∈ ℕ and 𝜂 ∈ [0, 1]. For an 𝑛-node graph 𝐺,
we say an 𝑛-node graph 𝐺′ is an 𝜂-corrupted version of 𝐺 if dist(𝐺, 𝐺′) ⩽ 𝜂𝑛.

Erdős-Rényi random graphs. We provide a polynomial-time, differentially node-private
and robust edge density estimation algorithm for Erdős-Rényi random graphs.

1The (empirical) edge density of an 𝑛-node graph equals the number of edges divided by 𝑛(𝑛−1)/2.

2



Theorem 1.4 (Erdős-Rényi random graphs, combination of Theorem D.1 and Theorem F.1).
There are constants 𝐶1 , 𝐶2 , 𝐶3 such that the following holds. For any 𝜂 ⩽ 𝐶1, 𝜀 ⩾ 𝐶2 log(𝑛)/𝑛, and
𝑝◦ ⩾ 𝐶3/𝑛, there exists a polynomial-time 𝜀-differentially node-private algorithm which, given an
𝜂-corrupted Erdős-Rényi random graph 𝔾(𝑛, 𝑝◦), outputs an estimate �̃� satisfying���� �̃�𝑝◦ − 1

���� ⩽ 𝑂

(√
log 𝑛

𝑛
√
𝑝◦

+
log2 𝑛

𝜀𝑛
√
𝑛𝑝◦

+
𝜂 log 𝑛
√
𝑛𝑝◦

)
,

with probability 1 − 𝑛−Ω(1).

The first term 𝑂(
√

log 𝑛/(𝑛√𝑝◦)) is the sampling error that is necessary even without privacy
or robustness. The second term 𝑂(log2(𝑛)/(𝜀𝑛√𝑛𝑝◦)) is the privacy cost of our algorithm,
which matches the exponential-time algorithm in [BCSZ18]. The third term 𝑂(𝜂 log 𝑛/√𝑛𝑝◦)
is the robustness cost of our algorithm, which matches the information-theoretical lower
bound Ω(𝜂/√𝑛𝑝◦) in [AJK+22, Theorem 1.5] up to a log 𝑛 factor.
Moreover, we provide the following lower bound which shows that the privacy cost of our
algorithm is optimal up to a log 𝑛 factor.2
Theorem 1.5 (Privacy lower bound for Erdős-Rényi random graphs). Suppose there is an
𝜀-differentially node-private algorithm that, given an Erdős-Rényi random graph 𝔾(𝑛, 𝑝◦), outputs
an estimate �̃� satisfying |�̃�/𝑝◦ − 1| ⩽ 𝛼 with probability 1 − 𝛽. Then we must have

𝛼 ⩾ Ω

(
log(1/𝛽)
𝜀𝑛

√
𝑛𝑝◦

)
.

Inhomogeneous random graphs. Given an 𝑛-by-𝑛 edge connection probability matrix
𝑄◦, the inhomogeneous random graph model 𝔾(𝑛, 𝑄◦) defines a distribution over 𝑛-node
graphs where each edge {𝑖 , 𝑗} is present with probability (𝑄◦)𝑖 𝑗 independently.
We provide a polynomial-time, differentially node-private and robust edge density estimation
algorithm for inhomogeneous random graphs.
Theorem 1.6 (Inhomogeneous random graphs, combination of Theorem D.1 and Theo-
rem E.1). Let 𝑄◦ be an 𝑛-by-𝑛 edge connection probability matrix and let 𝑝◦ :=

∑
𝑖 , 𝑗 𝑄

◦
𝑖 𝑗
/(𝑛2 − 𝑛).

Suppose ∥𝑄◦∥∞ ⩽ 𝑅𝑝◦ for some 𝑅. There is a sufficiently small constant 𝑐 such that the following
holds. For any 𝜂 such that 𝜂 log(1/𝜂)𝑅 ⩽ 𝑐, there exists a polynomial-time 𝜀-differentially node-
private algorithm which, given an 𝜂-corrupted inhomogeneous random graph 𝔾(𝑛, 𝑄◦), outputs an
estimate �̃� satisfying ���� �̃�𝑝◦ − 1

���� ⩽ 𝑂

(√
log 𝑛

𝑛
√
𝑝◦

+
𝑅 log2 𝑛

𝜀𝑛
+ 𝑅𝜂 log(1/𝜂)

)
,

with probability 1 − 𝑛−Ω(1).

We improve on the previous private edge density estimation algorithm for inhomogeneous
random graphs by Chen et al. [CDd+24, Lemma 4.10]. Their algorithm is based on [SU19]
and has privacy cost �̃�(𝑅/(𝜀𝑛) + 1/(𝜀2𝑛𝑑◦)), while our algorithm only has privacy cost
�̃�(𝑅/(𝜀𝑛)). To the best of our knowledge, even without privacy requirement and in the
special case of Erdős-Rényi random graphs, no previous algorithm can match our guarantees
in the sparse regime. Specifically, when 𝑑◦ ≪ log 𝑛 and 𝜂 ⩾ Ω(1), our algorithm can provide
a constant-factor approximation of 𝑑◦, while the best previous robust algorithm [AJK+22]
can not.
We also provide matching lower bounds, showing that the guarantee of our algorithm in
Theorem 1.6 is optimal up to logarithmic factors.

2Borgs et al. [BCSZ18] proved a lower bound for a variant of Erdős-Rényi random graphs. However,
it is not clear whether their proof technique can be easily extended to Erdős-Rényi random graphs.
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Theorem 1.7 (Robustness lower bound for inhomogeneous random graphs). Suppose there is
an algorithm satisfies the following guarantee for any symmetric matrix 𝑄◦ ∈ [0, 1]𝑛×𝑛 . Given an
𝜂-corrupted inhomogeneous random graph 𝔾(𝑛, 𝑄◦), the algorithm outputs an estimate �̂� satisfying
|�̂�/𝑝◦ − 1| ⩽ 𝛼 with probability at least 0.99, where 𝑝◦ =

∑
𝑖 , 𝑗 𝑄

◦
𝑖 𝑗
/(𝑛2 − 𝑛). Then we must have

𝛼 ⩾ Ω(𝑅𝜂), where 𝑅 = max𝑖 , 𝑗 𝑄
◦
𝑖 𝑗
/𝑝◦.

Theorem 1.8 (Privacy lower bound for inhomogeneous random graphs). Suppose there is an
𝜀-differentially node-private algorithm satisfies the following guarantee for any symmetric matrix
𝑄◦ ∈ [0, 1]𝑛×𝑛 . Given an inhomogeneous random graph 𝔾(𝑛, 𝑄◦), the algorithm outputs an estimate
�̂� satisfying |�̂�/𝑝◦ − 1| ⩽ 𝛼 with probability 1 − 𝛽, where 𝑝◦ =

∑
𝑖 , 𝑗 𝑄

◦
𝑖 𝑗
/(𝑛2 − 𝑛). Then we must

have

𝛼 ⩾ Ω

(
𝑅 log(1/𝛽)

𝑛𝜀

)
,

where 𝑅 = max𝑖 , 𝑗 𝑄
◦
𝑖 𝑗
/𝑝◦.

1.2 Techniques

We give an overview of the key techniques used to obtain our algorithm. As our techniques
for Erdős-Rényi random graphs can be easily extended to the more general inhomogeneous
random graph model, we will focus on Erdős-Rényi random graphs to avoid a proliferation
of notation. Specifically, given an 𝜂-corrupted Erdős-Rényi random graph 𝔾(𝑛, 𝑑◦/𝑛), our
goal is to output a private estimate of 𝑑◦.

Reduction from privacy to robustness. Hopkins et al. [HKMN23] and Asi et al. [AUZ23]
independently discovered the following black-box reduction from privacy to robustness.
Given a robust algorithm 𝒜robust, one can directly obtain a private algorithm via applying
the exponential mechanism [MT07] with the following score function,

score(𝑑;𝐴) := min
𝐴′

{
dist(𝐴′, 𝐴) : |𝒜robust(𝐴′) − 𝑑 | ⩽ 1/poly(𝑛)

}
, (1.1)

where 𝐴 is the adjacency matrix of input graph and 𝑑 is a candidate estimate. For privacy
analysis, note that the sensitivity of the above score function is bounded by 1, as the node
distance between neighboring graphs is at most 1. For utility analysis, when the input
graph is a typical Erdős-Rényi random graph, the exponential mechanism will with high
probability output a �̂� of score 𝑂(log(𝑛)/𝜀). Then we can argue that such a �̂� is close to 𝑑◦

using the robustness of 𝒜robust. For example, if we plug in the robust algorithm in [AJK+22,
Theorem 1.3], then the corresponding exponential mechanism will only incur a privacy cost
of �̃�(1/(𝜀𝑛

√
𝑑◦)).

However, directly plugging in the robust algorithm in [AJK+22] will lead to an exponential-
time algorithm, as a single evaluation of the score function requires enumerating all 𝑛-node
graphs. To obtain a polynomial-time algorithm, we develop a new robust algorithm via the
sum-of-squares method.3

Robust algorithm via sum-of-squares. The sum-of-squares method uses convex program-
ming (in particular, semidefinite programming) to solve polynomial programming. It is a
very powerful tool for designing polynomial-time robust estimators (see [RSS18]). To obtain
a robust algorithm via sum-of-squares, we first identify a set of polynomial constraints
that a typical (uncorrupted) Erdős-Rényi random graph would satisfy. Specifically, these
polynomial constraints encode the following regularity conditions: (1) the degrees of the
nodes are highly concentrated, and (2) the centered adjacency matrix is spectrally bounded.

3In general, the black-box reduction by [HKMN23, AUZ23] does not provide guarantees in terms of
computational complexity. For the problem of robust edge density estimation under node corruption,
there is no known sum-of-squares algorithm before our work, and we are only aware of the iterative
algorithm [AJK+22]. For such algorithms not based on convex relaxation, it is completely unclear how
to use the aforementioned connection between private and robust estimation towards an efficient
private algorithm.
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We also include the constraint that at most 𝜂 fraction of the nodes in the graph are corrupted.
Then we give a proof that if a graph satisfies the above constraints, then its average degree
will be close to 𝑑◦, even when 𝜂 fraction of nodes in the input graph are arbitrarily corrupted.
Importantly, the proof is simple enough that it is captured by the sum-of-squares proof
system (see [FKP+19]). This allows us to extend the utility guarantee of the polynomial
program to its semidefinite programming relaxation, which results in a polynomial-time
robust algorithm.

Sum-of-squares exponential mechanism. Given the above robust algorithm, we then use
the sum-of-squares exponential mechanism developed in [HKM22, HKMN23] to obtain a
private algorithm. More specifically, we apply the exponential mechanism with the sum-of-
squares relaxation of the score function in Eq. (1.1). In this way, we obtain a private algorithm
that is also robust to adversarial corruptions.

1.3 Notation

We introduce some notation used throughout this paper. We write 𝑓 ≲ 𝑔 to denote the
inequality 𝑓 ⩽ 𝐶 · 𝑔 for some absolute constant 𝐶 > 0. We write 𝑂( 𝑓 ) and Ω( 𝑓 ) to denote
quantities 𝑓− and 𝑓+ satisfying 𝑓− ≲ 𝑓 and 𝑓 ≲ 𝑓+ respectively. We use boldface to denote
random variables, e.g., 𝑿 ,𝒀 , 𝒁. For a matrix 𝑀, we use ∥𝑀∥op for the spectral norm of 𝑀.
Let 𝟙 and 𝟘 denote the all-one and all-zero vector respectively, of which the size will be clear
from the context. We use a graph 𝐺 and its adjacency matrix 𝐴 = 𝐴(𝐺) interchangeably
when there is no ambiguity. For an 𝑛-by-𝑛 matrix 𝑀, we use 𝑑(𝑀) to denote its average
row/column sum, i.e., 𝑑(𝑀) = ∑

𝑖 , 𝑗 𝑀𝑖 𝑗/𝑛. For any matrices (or vectors) 𝑀, 𝑁 of the same
shape, we use 𝑀 ⊙ 𝑁 to denote the element-wise product (aka Hadamard product) of 𝑀
and 𝑁 .

1.4 Organization

The rest of the paper is organized as follows. In Section 2, we give a proof overview of our
results and defer full proofs to the appendices. The appendices are organized as follows.
We provide some sum-of-squares background in Appendix A and some concentration
inequalities for random graphs in Appendix B. In Appendix C, we present a general sum-of-
squares exponential mechanism that all of our private algorithms in this paper are based
on. In Appendix D, we present our coarse estimation algorithm and give a full proof of
its guarantees (Theorem D.1). In Appendix E, we present our fine estimation algorithm
for inhomogeneous random graphs and give a full proof of its guarantees (Theorem E.1).
In Appendix F, we present our fine estimation algorithm for Erdős-Rényi random graphs
and give a full proof of its guarantees (Theorem F.1). All lower bounds are proved in
Appendix G.

2 Private and robust algorithm for Erdős-Rényi random graphs

In this section, we describe our private and robust algorithm for Erdős-Rényi random graphs.
We also give an overview of the analysis of our algorithm and sketch the proof of our lower
bounds.
Our overall algorithm consists of two stages. In the first stage, we compute a coarse estimate
that approximates the edge density parameter within constant factors. In the second stage,
we improve the accuracy of this coarse estimate to the optimum. Since our algorithm is
private in both stages, it is also private overall by the composition theorem of differential
privacy (see [DR14, Section 3.5]).
We remark that for the Erdős-Rényi random graph model 𝔾(𝑛, 𝑝◦), estimating its edge
density parameter 𝑝◦ is equivalent to estimating its expected average degree 𝑑◦ := 𝑛𝑝◦.4 For
the convenience of notation, we set our goal as estimating the expected average degree 𝑑◦

throughout this section.
4Strictly speaking, the expected average degree of 𝔾(𝑛, 𝑝◦) should be (𝑛 − 1)𝑝◦. Here we call 𝑛𝑝◦

the expected average degree just for notational convenience. In the end, (𝑛 − 1)𝑝◦ = (1 − 1/𝑛) · 𝑛𝑝◦.
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2.1 General algorithm framework

Given an 𝑛-by-𝑛 symmetric matrix 𝐴 and a scalar 𝛾 ∈ [0, 1], let 𝒯 (𝑌, 𝑧;𝐴, 𝛾) be a polynomial
system with indeterminates 𝑌 = (𝑌𝑖 𝑗)𝑖 , 𝑗∈[𝑛] and 𝑧 = (𝑧𝑖)𝑖∈[𝑛] that encodes the node distance
between 𝑌 and 𝐴:

𝒯 (𝑌, 𝑧;𝐴, 𝛾) :=

𝑧 ⊙ 𝑧 = 𝑧, ⟨𝟙, 𝑧⟩ ⩾ (1 − 𝛾)𝑛
0 ⩽ 𝑌 ⩽ 𝟙𝟙⊤ , 𝑌 = 𝑌⊤

𝑌 ⊙ 𝑧𝑧⊤ = 𝐴 ⊙ 𝑧𝑧⊤

 . (2.1)

Let ℛ(𝑌) be A polynomial system that encodes regularity conditions of Erdős-Rényi random
graphs. The key observation here is that, for any 𝑌 ∈ {0, 1}𝑛×𝑛 and 𝑧 ∈ {0, 1}𝑛 that satisfy
constraints in 𝒯 (𝑌, 𝑧;𝐴, 𝛾)∪ℛ(𝑌),𝑌 is a graph that behaves like Erdős-Rényi random graphs
(in the sense of the regularity conditions) and is within node distance 𝛾𝑛 to 𝐴 where they
agree on {𝑖 ∈ [𝑛] : 𝑧𝑖 = 1}.
The key ingredient of our result is that, given proper regularity conditions ℛ(𝑌), we can give
degree-8 sum-of-squares proofs: for any 𝑌 that satisfies constraints in 𝒯 (𝑌, 𝑧;𝐴, 𝛾) ∪ ℛ(𝑌),
the average degree of 𝑌 is close to the expected average degree 𝑑◦, even when the input
graph 𝐴 is a 𝛾-corrupted Erdős-Rényi random graph 𝔾(𝑛, 𝑑◦/𝑛). As a result of the sum-
of-squares proofs-to-algorithms framework (see Theorem A.6), we can get an efficient and
robust estimator �̃�[𝑑(𝑌)], where �̃� is a pseudo-expectation obtained by solving level-8
sum-of-squares relaxation of 𝒯 (𝑌, 𝑧;𝐴, 𝛾) ∪ ℛ(𝑌).
Based on the above identifiability proof for robust estimation, we design a private and robust
algorithm by applying the exponential mechanism5 with the following score function:

sos-score(𝑑;𝐴) := min
0⩽𝛾⩽1

𝛾𝑛 s.t. ∃ level-8 pseudo-expectation �̃� satisfying
𝒯 (𝑌, 𝑧;𝐴, 𝛾) ∪ ℛ(𝑌) ∪

{
|𝑑(𝑌) − 𝑑 | ⩽ 1/poly(𝑛)

}
.

(2.2)

Similar to Eq. (1.1), it is easy to observe this exponential mechanism is private.
Lemma 2.1 (Privacy). Consider the distribution 𝜇𝐴,𝜀 with support [0, 𝑛] and density

d𝜇𝐴,𝜀(𝑑) ∝ exp(−𝜀 · sos-score(𝑑;𝐴)) , (2.3)

where sos-score(𝑑;𝐴) is defined in Eq. (2.2). A sample from 𝜇𝐴,𝜀 is 2𝜀-differentially private.

Proof. Since the node distance between neighboring graphs is at most 1, the sensitivity of
the following score function is bounded by 1:

score(𝑑;𝐴) := min
0⩽𝛾⩽1

𝛾𝑛 s.t. 𝒯 (𝑌, 𝑧;𝐴, 𝛾) ∪ ℛ(𝑌) ∪
{
|𝑑(𝑌) − 𝑑 | ⩽ 1/poly(𝑛)

}
is feasible.

One can show that such sensitivity bound is inherited by its sum-of-squares relaxation
sos-score as defined in Eq. (2.2). By a standard sensitivity-to-privacy argument (see e.g.
[DR14, Theorem 3.10]), the exponential mechanism is 2𝜀-differentially private. □

To analyze the utility of the private algorithm, we use the robustness of the score function.
Assume the input graph is uncorrupted for simplicity. For a typical Erdős-Rényi random
graph 𝐴◦ ∼ 𝔾(𝑛, 𝑑◦/𝑛), we have sos-score(𝑑◦ , 𝐴◦) = 0. By a standard volume argument (see
e.g. [DR14, Theorem 3.11]), the exponential mechanism with high probability outputs a scalar
𝑑 satisfying sos-score(𝑑;𝐴◦) ≲ log(𝑛)/𝜀. By the definition of our score function in Eq. (2.2),
this implies that there exists a level-8 pseudo-distribution satisfying 𝒯 (𝑌, 𝑧;𝐴◦ , 𝛾) ∪ ℛ(𝑌)
with 𝛾 ≲ log(𝑛)/(𝜀𝑛). The utility then follows from the above identifiability proof for robust
estimation.

5To efficiently implement this exponential mechanism, we note that the score function Eq. (2.2)
can be evaluated in polynomial time by combining binary search and semidefinite programming.
By discretizing [0, 𝑛] with step size 1/poly(𝑛), one can sample from the distribution Eq. (2.3) with a
polynomial number of queries to the score function. For more detailed discussions, see Remark C.1
and Remark C.2.
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2.2 Coarse estimation

In this part, we describe a private and robust algorithm that can estimate the expected
average degree 𝑑◦ within a constant approximation ratio.
Theorem 2.2 (Coarse estimation algorithm, informal restatement of Theorem D.1). For
𝜂 smaller than some constant, there is a polynomial-time 𝜀-differentially node-private algorithm
which, given an 𝜂-corrupted Erdős-Rényi random graph 𝔾(𝑛, 𝑑◦/𝑛), outputs an estimate �̂� such that
|�̂� − 𝑑◦ | ⩽ 0.5𝑑◦.

We give a proof sketch of Theorem 2.2 at the end of this subsection. The formal theorem and
proofs are deferred to Appendix D.

Identifiability proof for robust estimation. We first give a polynomial system that can
identify the expected average degree 𝑑◦ up to constant factors, even when 𝜂-fraction of nodes
are corrupted. Consider the following regularity condition on degrees:

ℛ(𝑌) :=
{
(𝑌𝟙)𝑖 ⩽ 2 log(1/𝜂) · 𝑑(𝑌) , ∀𝑖 ∈ [𝑛]

}
. (2.4)

The following lemma shows that Erdős-Rényi random graphs satisfy 𝒯 (𝑌, 𝑧;𝐴, 2𝜂) ∪ ℛ(𝑌)
with high probability.
Lemma 2.3 (Feasibility). Let 𝐴◦ ∼ 𝔾(𝑛, 𝑑◦/𝑛) and let 𝐴 be an 𝜂-corrupted version of 𝐴◦. With
high probability, there exists a graph 𝑌 that satisfies the constraints in 𝒯 (𝑌, 𝑧;𝐴, 2𝜂) ∪ ℛ(𝑌).

Proof sketch. For 𝑑◦ ≫ log(𝑛), the maximum degree of 𝐴◦ is of order 𝑂(𝑑◦). Therefore,
the uncorrupted graph 𝐴◦ satisfies the constraints. For 𝑑◦ ≪ log 𝑛, using concentration
properties of random graphs, we can show that the number of high degree nodes is bounded
by 𝜂𝑛. A feasible graph can then be obtained from the uncorrupted graph 𝐴◦ by trimming
these highest degree nodes. □

Next, we show that these polynomial constraints give an identifiability proof for the expected
average degree 𝑑◦.
Lemma 2.4 (Identifiability). Let 𝐴◦ ∼ 𝔾(𝑛, 𝑑◦/𝑛) and let 𝐴 be an 𝜂-corrupted version of 𝐴◦. For
𝜂 smaller than some constant and 𝛾 ⩽ 𝑂(𝜂), with high probability there is a degree-8 sum-of-squares
proof that, if 𝑌 satisfies 𝒯 (𝑌, 𝑧;𝐴, 𝛾) ∪ ℛ(𝑌), then |𝑑(𝑌) − 𝑑◦ | ⩽ 0.001𝑑◦.

Proof sketch. We first assume that 𝑑◦ ≫ log(𝑛), for which the proof is simpler. By the degree-
bound constraint ℛ(𝑌), we have 𝑛 |𝑑(𝑌) − 𝑑(𝐴◦)| ⩽ 2 log(1/𝜂) · (𝑑(𝑌) + 𝑑◦) · dist(𝑌, 𝐴◦). Using
the constraints 𝑌 ⊙ 𝑧𝑧⊤ = 𝐴 ⊙ 𝑧𝑧⊤ and ⟨1, 𝑧⟩ ⩾ (1 − 𝛾)𝑛, we have dist(𝑌, 𝐴) ⩽ 𝛾𝑛. Since
dist(𝐴, 𝐴◦) ⩽ 𝜂𝑛, by triangle inequality, we have dist(𝑌, 𝐴◦) ⩽ (𝛾 + 𝜂)𝑛. Therefore, we have
|𝑑(𝑌) − 𝑑(𝐴◦)| ⩽ 0.0001𝑑◦ when 𝛾, 𝜂 are at most some small constants. Finally, by random
graph concentration, we have |𝑑◦ − 𝑑(𝐴◦)| ⩽ 𝑜(𝑑◦) with high probability. Therefore, we have
|𝑑(𝑌) − 𝑑(𝐴◦)| ⩽ 0.001𝑑◦.
To deal with the sparse regime where 𝑑◦ ≪ log 𝑛, we need to truncate the nodes of 𝐴◦

with degree Ω(log(1/𝜂)𝑑◦). Our key observation is that, the average degree of the graph
before and after truncation only differ by a constant factor. Therefore, we can still get
|𝑑(𝑌) − 𝑑(𝐴◦)| ⩽ 0.001𝑑◦.
Furthermore, it can be shown that this proof is a degree-8 sum-of-squares proof. □

Robust algorithm via sum-of-squares. Consider the algorithm that finds a level-8 pseudo-
expectation satisfying 𝒯 (𝑌, 𝑧;𝐴, 2𝜂) ∪ ℛ(𝑌) —with ℛ(𝑌) given in Eq. (2.4)— and outputs
�̃�[𝑑(𝑌)]. By Lemma 2.3, such a pseudo-expectation �̃� exists with high probability. It follows
from the sum-of-squares identifiability proof in Lemma 2.4 that |�̃�[𝑑(𝑌)] − 𝑑◦ | ⩽ 0.001𝑑◦.
Moreover, the algorithm can be implemented by semidefinite programming and run in
polynomial time.
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Private and robust algorithm via sum-of-squares exponential mechanism. We present
our private and robust algorithm in Algorithm 2.5 and give a proof sketch of Theorem 2.2.

Algorithm 2.5 (Private coarse estimation for Erdős-Rényi random graphs).
Input: 𝜂-corrupted Erdős-Rényi random graph 𝐴.
Privacy parameter: 𝜀.
Output: A sample from the distribution 𝜇𝐴,𝜀 with support [0, 𝑛] and density

d𝜇𝐴,𝜀(𝑑) ∝ exp(−𝜀 · sos-score(𝑑;𝐴)) , (2.5)

where

sos-score(𝑑;𝐴) := min
0⩽𝛾⩽1

𝛾𝑛 s.t. ∃ level-8 pseudo-expectation �̃� satisfying
𝒯 (𝑌, 𝑧;𝐴, 𝛾) ∪ ℛ(𝑌) ∪

{
|𝑑(𝑌) − 𝑑 | ⩽ 1/poly(𝑛)

}
,

(2.6)

with ℛ(𝑌) given in Eq. (2.4).

Proof sketch of Theorem 2.2. Privacy. By Lemma 2.1, Algorithm 2.5 is 2𝜀-differentially private.
Utility. For simplicity, we consider the case when there is no corruption (i.e. 𝜂 = 0). The
analysis for the case when 𝜂 > 0 is similar. Let 𝐴◦ ∼ 𝔾(𝑛, 𝑑◦/𝑛). Then with high probability
sos-score(𝑑◦;𝐴◦) = 0. By a standard volume argument, Algorithm 2.5 outputs a scalar
𝑑 that satisfies sos-score(𝑑;𝐴◦) ≲ log(𝑛)/𝜀 with high probability. By the definition of
sos-score in Eq. (2.6), this implies that there exists a level-8 pseudo-distribution satisfying
𝒯 (𝑌, 𝑧;𝐴, 𝛾) ∪ ℛ(𝑌) ∪ {|𝑑(𝑌) − 𝑑 | ⩽ 1/poly(𝑛)} with 𝛾 ≲ log(𝑛)/(𝜀𝑛). When log(𝑛)/(𝜀𝑛)
is at most a small constant, it follows from our sum-of-squares identifiability proof in
Lemma 2.4 that, Algorithm 2.5 outputs a constant-factor approximation of 𝑑◦ with high
probability. □

2.3 Fine estimation

From Section 2.2, we know how to obtain a constant-factor approximation of 𝑑◦ privately
and robustly. In this section, we show how to improve the accuracy to the optimum.
Theorem 2.6 (Fine estimation algorithm, informal restatement of Theorem F.1). Let 0.5𝑑◦ ⩽
�̂� ⩽ 2𝑑◦. For 𝜂 smaller than some constant, there is a polynomial-time 𝜀-differentially node-private
algorithm which, given an 𝜂-corrupted Erdős-Rényi random graph 𝔾(𝑛, 𝑑◦/𝑛) and �̂�, outputs an
estimate �̃� such that ���� �̃�𝑑◦ − 1

���� ⩽ �̃�

(
1√
𝑛𝑑◦

+ 1
𝜀𝑛

√
𝑑◦

+ 𝜂
√
𝑑◦

)
.

We give a proof sketch of Theorem 2.6 at the end of this section. The formal theorem and
proofs are deferred to Appendix F.

Identifiability proof for robust estimation. We first give a polynomial system which can
identify the expected average degree 𝑑◦ with optimal error rate, when provided with a
coarse estimate �̂�. Consider the following regularity conditions on degrees and eigenvalues:

ℛ(𝑌) :=

|(𝑌𝟙)𝑖 − 𝑑(𝑌)| ⩽

√
�̂� log 𝑛 , ∀𝑖 ∈ [𝑛]


𝑌 − 𝑑(𝑌)

𝑛 𝟙𝟙⊤





op
⩽

√
�̂� log 𝑛

 . (2.7)

Lemma 2.7 (Feasibility). Let 𝐴◦ ∼ 𝔾(𝑛, 𝑑◦/𝑛) and let 𝐴 be an 𝜂-corrupted version of 𝐴◦. Suppose
𝑑◦/2 ⩽ �̂� ⩽ 2𝑑◦. Then with high probability, there exists a graph 𝑌 that satisfies the constraints in
𝒯 (𝑌, 𝑧;𝐴, 𝜂) ∪ ℛ(𝑌).

Proof. By Chernoff bound, with high probability, the degree of each node in 𝐴◦ deviates
from 𝑑◦ by at most 𝑂(

√
𝑑◦ log 𝑛). By the concentration of the spectral norm of random
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matrices [BvH16], with high probability, we have ∥𝐴◦ − 𝑑(𝐴◦)
𝑛 𝟙𝟙⊤∥op ≲

√
𝑑◦ log 𝑛. Hence,

𝒯 (𝑌, 𝑧;𝐴, 𝜂) ∪ ℛ(𝑌) is satisfied by 𝑌 = 𝐴◦ and 𝑧 = 𝑧◦ where 𝑧◦ is the indicator vector for
uncorrupted nodes. □

Next we give a sum-of-squares identifiability proof for expected average degree estimation
with optimal accuracy.
Lemma 2.8 (Identifiability). Let 𝐴◦ ∼ 𝔾(𝑛, 𝑑◦/𝑛) and let 𝐴 be an 𝜂-corrupted version of 𝐴◦.
Suppose 𝑑◦/2 ⩽ �̂� ⩽ 2𝑑◦. For 𝜂 smaller than some constant and 𝛾 ⩽ 𝑂(𝜂), with high probability
there is a degree-8 sum-of-squares proof that, if 𝑌 satisfies 𝒯 (𝑌, 𝑧;𝐴, 𝜂) ∪ ℛ(𝑌), then����𝑑(𝑌)𝑑◦

− 1
���� ⩽ �̃�

(
1√
𝑛𝑑◦

+
𝜂

√
𝑑◦

)
.

Proof sketch. Let 𝑌1 , 𝑌2 be two graphs satisfying the regularity condition ℛ(𝑌1) and ℛ(𝑌2) as
described in Eq. (2.7), respectively. We give sum-of-squares proof that, if dist(𝑌1 , 𝑌2) ⩽ 𝜁𝑛

and 𝜁 is at most some small constant, then |𝑑(𝑌1) − 𝑑(𝑌2)| ⩽ 𝜁
√
�̂� log 𝑛 .

Let 𝑤 ∈ {0, 1}𝑛 be the indicator vector for the shared induced subgraph between 𝑌1 and 𝑌2,
i.e 𝑌1 ⊙ 𝑤𝑤⊤ = 𝑌2 ⊙ 𝑤𝑤⊤. When dist(𝑌1 , 𝑌2) ⩽ 𝜁𝑛, we have ⟨𝑤, 𝟙⟩ ⩾ (1 − 𝜁)𝑛. We have

𝑛
(
𝑑(𝑌1) − 𝑑(𝑌2)

)
=⟨𝑌1 − 𝑌2 , 𝟙𝟙

⊤⟩

=⟨𝑌1 − 𝑌2 , 𝟙𝟙
⊤ − 𝑤𝑤⊤⟩

=⟨𝑌1 −
𝑑(𝑌1)
𝑛

𝟙𝟙⊤ + 𝑑(𝑌1)
𝑛

𝟙𝟙⊤ − 𝑑(𝑌2)
𝑛

𝟙𝟙⊤ + 𝑑(𝑌2)
𝑛

𝟙𝟙⊤ − 𝑌2 , 𝟙𝟙
⊤ − 𝑤𝑤⊤⟩

=⟨𝑌1 −
𝑑(𝑌1)
𝑛

𝟙𝟙⊤ , 𝟙𝟙⊤ − 𝑤𝑤⊤⟩ + ⟨ 𝑑(𝑌2)
𝑛

𝟙𝟙⊤ − 𝑌2 , 𝟙𝟙
⊤ − 𝑤𝑤⊤⟩

+ ⟨ 𝑑(𝑌1)
𝑛

𝟙𝟙⊤ − 𝑑(𝑌2)
𝑛

𝟙𝟙⊤ , 𝟙𝟙⊤ − 𝑤𝑤⊤⟩ .

By rearranging terms, we can get

⟨𝟙, 𝑤⟩2

𝑛

(
𝑑(𝑌1) − 𝑑(𝑌2)

)
= ⟨𝑌1 −

𝑑(𝑌1)
𝑛

𝟙𝟙⊤ , 𝟙𝟙⊤ − 𝑤𝑤⊤⟩ + ⟨ 𝑑(𝑌2)
𝑛

𝟙𝟙⊤ − 𝑌2 , 𝟙𝟙
⊤ − 𝑤𝑤⊤⟩ .

For the first term ⟨𝑌1 − 𝑑(𝑌1)
𝑛 𝟙𝟙⊤ , 𝟙𝟙⊤ − 𝑤𝑤⊤⟩, we have

⟨𝑌1−
𝑑(𝑌1)
𝑛

𝟙𝟙⊤ , 𝟙𝟙⊤−𝑤𝑤⊤⟩ = 2⟨𝑌1−
𝑑(𝑌1)
𝑛

𝟙𝟙⊤ , 𝟙(𝟙−𝑤)⊤⟩+⟨ 𝑑(𝑌1)
𝑛

𝟙𝟙⊤−𝑌1 , (𝟙−𝑤)(𝟙−𝑤)⊤⟩ .

From constraints |(𝑌1𝟙)𝑖 − 𝑑(𝑌1)| ⩽
√
�̂� log(𝑛) for all 𝑖 ∈ [𝑛], we have

⟨𝑌1 −
𝑑(𝑌1)
𝑛

𝟙𝟙⊤ , 𝟙(𝟙 − 𝑤)⊤⟩ = ⟨𝑌1𝟙 − 𝑑(𝑌1)𝟙, 𝟙 − 𝑤⟩ ⩽ 𝜁𝑛 log(𝑛)
√
�̂� .

From constraints



𝑌1 − 𝑑(𝑌1)

𝑛 𝟙𝟙⊤





op
⩽ 𝛿

√
�̂�, we have

⟨𝑑(𝑌1)
𝑛

𝟙𝟙⊤ − 𝑌1 , (𝟙 − 𝑤)(𝟙 − 𝑤)⊤⟩ ⩽




𝑌1 −

𝑑(𝑌1)
𝑛

𝟙𝟙⊤






op
∥𝟙 − 𝑤∥2

2 ⩽ 𝜁𝑛
√
�̂� log(𝑛) ,

The same bounds also apply for the second term ⟨𝑌2 − 𝑑(𝑌2)
𝑛 𝟙𝟙⊤ , 𝟙𝟙⊤ −𝑤𝑤⊤⟩. Since ⟨𝟙, 𝑤⟩ ⩾

Ω(𝑛), it follows that |𝑑(𝑌1) − 𝑑(𝑌2)| ⩽ �̃�(𝜁
√
�̂�) ⩽ �̃�(𝜁

√
𝑑◦).

Since the original uncorrupted graph satisfies the regularity conditions, this gives the
identifiability proof that |𝑑(𝑌) − 𝑑(𝐴◦)| ⩽ �̃�(𝜁

√
𝑑◦). By random graph concentration, with

high probability, we have |𝑑◦ − 𝑑(𝐴◦)| ⩽ �̃�(
√
𝑑◦/𝑛). The claim thus follows. □
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Robust algorithm via sum-of-squares. Consider the algorithm that finds a level-8 pseudo-
expectation satisfying 𝒯 (𝑌, 𝑧;𝐴, 𝜂) ∪ ℛ(𝑌) —with ℛ(𝑌) given in Eq. (2.7)— and outputs
�̃�[𝑑(𝑌)]. By Lemma 2.7, such a pseudo-expectation �̃� exists with high probability. It
follows from the sum-of-squares identifiability proof in Lemma 2.8 that |�̃�[𝑑(𝑌)]/𝑑◦ −
1| ⩽ �̃�(1/

√
𝑛𝑑◦ + 𝜂/

√
𝑑◦). Moreover, the algorithm can be implemented by semidefinite

programming and run in polynomial time.

Private and robust algorithm via sum-of-squares exponential mechanism. We present
our private and robust algorithm in Algorithm 2.9 and give a proof sketch of Theorem 2.6.

Algorithm 2.9 (Private fine estimation for Erdős-Rényi random graphs).
Input: 𝜂 corrupted random graph 𝐴, 𝜀-differentially private coarse estimate �̂�.
Privacy parameter: 𝜀.
Output: A sample from the distribution 𝜇𝐴,𝜀 with support [0, 𝑛] and density

d𝜇𝐴,𝜀(𝑑) ∝ exp(−𝜀 · sos-score(𝑑;𝐴)) , (2.8)

where sos-score(𝑑;𝐴) is defined as

sos-score(𝑑;𝐴) := min
0⩽𝛾⩽1

𝛾𝑛 s.t. ∃ level-8 pseudo-expectation �̃� satisfying
𝒯 (𝑌, 𝑧;𝐴, 𝛾) ∪ ℛ(𝑌) ∪

{
|𝑑(𝑌) − 𝑑 | ⩽ 1/poly(𝑛)

}
,

(2.9)

with ℛ(𝑌) given in Eq. (2.7).

Proof sketch of Theorem 2.6. Privacy. By Lemma 2.1, Algorithm 2.9 is 2𝜀-differentially private.
Utility. For simplicity, we consider the case when there is no corruption (i.e. 𝜂 = 0). The
analysis for the case when 𝜂 > 0 is similar. Let 𝐴◦ ∼ 𝔾(𝑛, 𝑑◦/𝑛). Then with high probability
sos-score(𝑑◦;𝐴◦) = 0. By a standard volume argument, Algorithm 2.9 outputs a scalar 𝑑 that
satisfies sos-score(𝑑;𝐴◦) ≲ log(𝑛)/𝜀 with high probability. By the definition of sos-score in
Eq. (2.9), this implies that with high probability there exists a level-8 pseudo-distribution
satisfying𝒯 (𝑌, 𝑧;𝐴, 𝛾) ∪ ℛ(𝑌)with 𝛾 ≲ log(𝑛)/(𝜀𝑛). Taking𝜂 = log(𝑛)/(𝜀𝑛) in Lemma 2.8, it
follows that Algorithm 2.9 outputs an estimate �̃� such that |�̃�/𝑑◦−1| ⩽ �̃�(1/

√
𝑛𝑑◦+1/(𝜀𝑛

√
𝑑◦))

with high probability. □

2.4 Lower bound

We sketch the proof of Theorem 1.5. Let 𝛼 ∈ [0, 1] and 𝑑 = (1 − 𝛼)𝑑◦. We can construct a
coupling 𝜔 between the distributions 𝔾(𝑛, 𝑑/𝑛) and 𝔾(𝑛, 𝑑◦/𝑛) with the following property.
For (𝑮,𝑮′) ∼ 𝜔, we have dist(𝑮,𝑮′) bounded by �̃�(𝛼𝑛

√
𝑑◦) with overwhelmingly high

probability. By the definition of differential privacy, when 𝜀𝛼𝑛
√
𝑑◦ ⩽ 1/polylog(𝑛), the

output of an 𝜀-differentially private algorithm are indistinguishable under 𝔾(𝑛, 𝑑/𝑛) and
𝔾(𝑛, 𝑑◦/𝑛). Therefore, by setting 𝛼 = �̃�(1/𝜀𝑛

√
𝑑◦), we conclude that no 𝜀-differentially

private algorithm can achieve error rate better than �̃�(1/𝜀𝑛
√
𝑑◦). This provides a matching

lower bound for our private edge density estimation algorithm.
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A Sum-of-squares background

A.1 Sum-of-squares hierarchy

In this paper, we use the sum-of-squares semidefinite programming hierarchy [BS14, BS16,
RSS18] for both algorithm design and analysis. The sum-of-squares proof-to-algorithm
framework has been proven useful in many optimal or state-of-the-art results in algorithmic
statistics [HL18, KSS18, PS17, Hop20]. We provide here a brief introduction to pseudo-
distributions, sum-of-squares proofs, and sum-of-squares algorithms.

Pseudo-distribution. We can represent a finitely supported probability distribution over
ℝ𝑛 by its probability mass function 𝜇 : ℝ𝑛 → ℝ such that 𝜇 ⩾ 0 and

∑
𝑥∈supp(𝜇) 𝜇(𝑥) = 1. We

define pseudo-distributions as generalizations of such probability mass distributions by
relaxing the constraint 𝜇 ⩾ 0 to only require that 𝜇 passes certain low-degree non-negativity
tests.
Definition A.1 (Pseudo-distribution). A level-ℓ pseudo-distribution 𝜇 over ℝ𝑛 is a finitely
supported function 𝜇 : ℝ𝑛 → ℝ such that

∑
𝑥∈supp(𝜇) 𝜇(𝑥) = 1 and

∑
𝑥∈supp(𝜇) 𝜇(𝑥) 𝑓 (𝑥)2 ⩾ 0

for every polynomial 𝑓 of degree at most ℓ/2.

We can define the expectation of a pseudo-distribution in the same way as the expectation
of a finitely supported probability distribution.
Definition A.2 (Pseudo-expectation). Given a pseudo-distribution 𝜇 over ℝ𝑛 , we define the
pseudo-expectation of a function 𝑓 : ℝ𝑛 → ℝ by

�̃�
𝜇
𝑓 :=

∑
𝑥∈supp(𝜇)

𝜇(𝑥) 𝑓 (𝑥) . (A.1)

The following definition formalizes what it means for a pseudo-distribution to satisfy a
system of polynomial constraints.
Definition A.3 (Constrained pseudo-distributions). Let 𝜇 : ℝ𝑛 → ℝ be a level-ℓ pseudo-
distribution over ℝ𝑛 . Let 𝒜 = { 𝑓1 ⩾ 0, . . . , 𝑓𝑚 ⩾ 0} be a system of polynomial constraints.
We say that 𝜇 satisfies 𝒜 at level 𝑟, denoted by 𝜇 𝑟 𝒜, if for every multiset 𝑆 ⊆ [𝑚] and every
sum-of-squares polynomial ℎ such that deg(ℎ) +∑

𝑖∈𝑆 max{deg( 𝑓𝑖), 𝑟} ⩽ ℓ ,

�̃�
𝜇
ℎ ·

∏
𝑖∈𝑆

𝑓𝑖 ⩾ 0 . (A.2)

We say 𝜇 satisfies 𝒜 and write 𝜇 𝒜 (without further specifying the degree) if 𝜇 0 𝒜.

We remark that if 𝜇 is an actual finitely supported probability distribution, then we have
𝜇 𝒜 if and only if 𝜇 is supported on solutions to 𝒜.

Sum-of-squares proof. We introduce sum-of-squares proofs as the dual objects of pseudo-
distributions, which can be used to reason about properties of pseudo-distributions. We
say a polynomial 𝑝 is a sum-of-squares polynomial if there exist polynomials (𝑞𝑖) such that
𝑝 =

∑
𝑖 𝑞

2
𝑖
.

Definition A.4 (Sum-of-squares proof). A sum-of-squares proof that a system of polynomial
constraints 𝒜 = { 𝑓1 ⩾ 0, . . . , 𝑓𝑚 ⩾ 0} implies 𝑞 ⩾ 0 consists of sum-of-squares polynomials
(𝑝𝑆)𝑆⊆[𝑚] such that6

𝑞 =
∑

multiset 𝑆⊆[𝑚]
𝑝𝑆 ·

∏
𝑖∈𝑆

𝑓𝑖 .

If such a proof exists, we say that 𝒜 (sos-)proves 𝑞 ⩾ 0 within degree ℓ , denoted by 𝒜 ℓ 𝑞 ⩾ 0.
In order to clarify the variables quantified by the proof, we often write 𝒜(𝑥) ℓ

𝑥
𝑞(𝑥) ⩾ 0.

6Here we follow the convention that
∏

𝑖∈𝑆 𝑓𝑖 = 1 for 𝑆 = ∅.

14



We say that the system 𝒜 sos-refuted within degree ℓ if 𝒜 ℓ −1 ⩾ 0. Otherwise, we say
that the system is sos-consistent up to degree ℓ , which also means that there exists a level-ℓ
pseudo-distribution satisfying the system.

The following lemma shows that sum-of-squares proofs allow us to deduce properties of
pseudo-distributions that satisfy some constraints.
Lemma A.5. Let 𝜇 be a pseudo-distribution, and let 𝒜 ,ℬ be systems of polynomial constraints.
Suppose there exists a sum-of-squares proof 𝒜 𝑟′ ℬ. If 𝜇 𝑟 𝒜, then 𝜇

𝑟·𝑟′+𝑟′ ℬ.

Sum-of-squares algorithm. Given a system of polynomial constraints, the sum-of-squares
algorithm searches through the space of pseudo-distributions that satisfy this polynomial
system by semidefinite programming.
Since semidefinite programing can only be solved approximately, we can only find pseudo-
distributions that approximately satisfy a given polynomial system. We say that a level-ℓ
pseudo-distribution approximately satisfies a polynomial system, if the inequalities in Eq. (A.2)
are satisfied up to an additive error of 2−𝑛ℓ · ∥ℎ∥ ·∏𝑖∈𝑆∥ 𝑓𝑖 ∥, where ∥·∥ denotes the Euclidean
norm7 of the coefficients of a polynomial in the monomial basis.
Theorem A.6 (Sum-of-squares algorithm). There exists an (𝑛 + 𝑚)𝑂(ℓ )-time algorithm that,
given any explicitly bounded8 and satisfiable system9 𝒜 of 𝑚 polynomial constraints in 𝑛 variables,
outputs a level-ℓ pseudo-distribution that satisfies 𝒜 approximately.
Remark A.7 (Approximation error and bit complexity). For a pseudo-distribution that only
approximately satisfies a polynomial system, we can still use sum-of-squares proofs to
reason about it in the same way as Lemma A.5. In order for approximation errors not to
amplify throughout reasoning, we need to ensure that the bit complexity of the coefficients
in the sum-of-squares proof are polynomially bounded.

A.2 Useful sum-of-squares lemmas

Lemma A.8.
{𝑥2 = 𝑥} 2

𝑥 0 ⩽ 𝑥 ⩽ 1 .

Proof. The first inequality is trivial due to {𝑥2 = 𝑥} 2
𝑥
𝑥 = 𝑥2 ⩾ 0. For the second inequality,

it follows that
{𝑥2 = 𝑥} 2

𝑥
𝑥 ⩽

𝑥2

2 + 1
2 =

𝑥

2 + 1
2 .

Rearranging the terms, we get
{𝑥2 = 𝑥} 2

𝑥
𝑥 ⩽ 1 .

□

Lemma A.9.
{𝑥2 = 𝑥, 𝑦2 = 𝑦} 4

𝑥,𝑦
1 − 𝑥𝑦 ⩽ (1 − 𝑥) + (1 − 𝑦) .

Proof. By Lemma A.8, it follows that

{𝑥2 = 𝑥, 𝑦2 = 𝑦} 2
𝑥,𝑦

0 ⩽ 𝑥, 𝑦 ⩽ 1 .

Therefore, we have

{𝑥2 = 𝑥, 𝑦2 = 𝑦} 4
𝑥,𝑦

(1 − 𝑦)(1 − 𝑥) ⩾ 0

7The choice of norm is not important here because the factor 2−𝑛ℓ swamps the effects of choosing
another norm.

8A system of polynomial constraints is explicitly bounded if it contains a constraint of the form
∥𝑥∥2 ⩽ 𝑀.

9Here we assume that the bit complexity of the constraints in 𝒜 is (𝑛 + 𝑚)𝑂(1).
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4
𝑥,𝑦

1 − 𝑥 − 𝑦 ⩾ −𝑥𝑦

4
𝑥,𝑦

2 − 𝑥 − 𝑦 ⩾ 1 − 𝑥𝑦 .

□

Lemma A.10. Given constant 𝐶, we have

{−𝐶 ⩽ 𝑥 ⩽ 𝐶} 2
𝑥
𝑥2 ⩽ 𝐶2 .

Proof.

{−𝐶 ⩽ 𝑥 ⩽ 𝐶} 2
𝑥 (𝐶 − 𝑥)(𝐶 + 𝑥) ⩾ 0

2
𝑥
𝐶2 − 𝑥2 ⩾ 0

2
𝑥
𝐶2 ⩾ 𝑥2 .

□

Lemma A.11. Given constant 𝐶, we have

{𝑥2 ⩽ 𝐶2} 2
𝑥 −𝐶 ⩽ 𝑥 ⩽ 𝐶 .

Proof. For the first inequality, we have

{𝑥2 ⩽ 𝐶2} 2
𝑥
𝑥 ⩾ − 𝑥2

2𝐶 − 𝐶

2 ⩾ −𝐶2

2𝐶 − 𝐶

2 = −𝐶 .

For the second inequality, we have

{𝑥2 ⩽ 𝐶2} 2
𝑥
𝑥 ⩽

𝑥2

2𝐶 + 𝐶

2 ⩽
𝐶2

2𝐶 + 𝐶

2 = 𝐶 .

□

B Concentration inequalities

Lemma B.1 (Average degree concentration). Let 𝑄◦ be an 𝑛-by-𝑛 edge connection probability
matrix and let 𝑑◦ := 𝑑(𝑄◦). Let 𝑨 ∼ 𝔾(𝑛, 𝑄◦). Then for any 𝛿 ∈ (0, 1),

ℙ(|𝑑(𝑨) − 𝑑◦ | ⩾ 𝛿𝑑◦) ⩽ 2 exp
(
− 𝛿2𝑛𝑑◦

6

)
,

Proof. Let 𝜇 := 𝔼
∑

𝑖< 𝑗 𝑨𝑖 𝑗 =
∑

𝑖< 𝑗 𝑝𝑖 𝑗 . Using Chernoff bound, for 𝛿 ∈ (0, 1),

ℙ
©­«
������∑𝑖< 𝑗

𝑨𝑖 𝑗 − 𝜇

������ ⩾ 𝛿𝜇
ª®¬ ⩽ 2 exp

(
− 𝛿2𝜇

3

)
,

ℙ(|𝑑(𝑨) − 𝑑◦ | ⩾ 𝛿𝑑◦) ⩽ 2 exp
(
− 𝛿2𝑛𝑑◦

6

)
.

□

Lemma B.2 (Degree distribution). Let 𝑄◦ be an 𝑛-by-𝑛 edge connection probability matrix. Let 𝑑
be a parameter such that 𝑑 ⩾ 5 and ∥𝑄◦∥∞ ⩽ 𝑑/𝑛. Then for every 𝑡 ∈ [2𝑒2 , log 𝑛], an inhomogeneous
random graph 𝔾(𝑛, 𝑄◦) has at least 𝑒−𝑡𝑛 nodes with degree at least 𝑡𝑑 with probability at most
exp(−𝑡𝑒−𝑡𝑛𝑑/4).
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Proof. Let 𝒎𝑘 denote the number of nodes with degree at least 𝑘 in 𝔾(𝑛, 𝑄◦). Then for every
𝛾 ∈ [0, 1],

ℙ(𝒎𝑡𝑑 ⩾ 𝛾𝑛) ⩽
(
𝑛

𝛾𝑛

) (
𝛾𝑛2

𝛾𝑛𝑡𝑑/2

) (
𝑑

𝑛

)𝛾𝑛𝑡𝑑/2

⩽

(
𝑒

𝛾

)𝛾𝑛 (2𝑒
𝑡

)𝛾𝑛𝑡𝑑/2

= exp
(
−𝛾𝑛

(
𝑡𝑑

2 log 𝑡

2𝑒 − log 𝑒

𝛾

))
.

Plugging in 𝛾 = 𝑒−𝑡 gives

ℙ
(
𝒎𝑡𝑑 ⩾ 𝑒−𝑡𝑛

)
⩽ exp

(
−𝑡𝑒−𝑡𝑛

(
𝑑

2 log 𝑡

2𝑒 − 1 − 1/𝑡
))

.

For 𝑡 ∈ [2𝑒2 , log 𝑛] and 𝑑 ⩾ 5,

ℙ
(
𝒎𝑡𝑑 ⩾ 𝑒−𝑡𝑛

)
⩽ exp

(
−𝑡𝑒−𝑡𝑛

(
𝑑

2 − 5
4

))
⩽ exp

(
−𝑡𝑒−𝑡𝑛𝑑/4

)
.

□

Lemma B.3 (Degree pruning). Let 𝑄◦ be an 𝑛-by-𝑛 edge connection probability matrix. Let 𝑑
be a parameter such that 𝑑 ⩾ 5 and ∥𝑄◦∥∞ ⩽ 𝑑/𝑛. Then with probability at least 1 − 𝑛1−𝑑/4, an
inhomogeneous graph 𝔾(𝑛, 𝑄◦) has the following property. For all 𝑡 ∈ [2𝑒2 , log 𝑛], the number of
edges incident to nodes with degree at least 𝑡𝑑 is at most 2𝑡𝑒−𝑡𝑛𝑑;

Proof. Let 𝒎𝑘 denote the number of nodes with degree at least 𝑘 in 𝔾(𝑛, 𝑄◦). By Lemma B.2,
for any 𝑡 ∈ [2𝑒2 , log 𝑛] and 𝑑 ⩾ 5,

ℙ
(
𝒎𝑡𝑑 ⩾ 𝑒−𝑡𝑛

)
⩽ exp

(
−𝑡𝑒−𝑡𝑛𝑑/4

)
⩽ 𝑛−𝑑/4 .

Applying union bound, the event that 𝑚𝑘 ⩽ 𝑒−𝑘/𝑑𝑛 for any integer 𝑘 ∈ [2𝑒2𝑑, (log 𝑛)𝑑]
happens with probability at least 1 − 𝑛1−𝑑/4. We condition our following analysis on this
event.
Fix a 𝑡 ∈ [2𝑒2 , log 𝑛]. The number of edges incident to nodes with degree at least 𝑡𝑑 is at most∑

𝑖=0
(𝑡 + 𝑖 + 1)𝑑 · 𝑒−(𝑡+𝑖)𝑛 = 𝑛𝑑

∑
𝑖=𝑡

(𝑖 + 1)𝑒−𝑖 = 𝑛𝑑𝑒−𝑡
(

𝑒

𝑒 − 1 𝑡 +
𝑒2

(𝑒 − 1)2

)
⩽ 2𝑡𝑒−𝑡𝑛𝑑 .

□

Lemma B.4 (Degree-truncated subgraph). Let 𝑄◦ be an 𝑛-by-𝑛 edge connection probability
matrix and let 𝑑◦ := 𝑑(𝑄◦). Let 𝑑 be a parameter such that 𝑑 ⩾ 5 and ∥𝑄◦∥∞ ⩽ 𝑑/𝑛. For
𝛿 ∈ (0, 1), an inhomogeneous graph 𝑨 ∼ 𝔾(𝑛, 𝑄◦) has the following property with probability at
least 1 − 𝑛1−𝑑/4 − exp(−𝛿2𝑛𝑑◦/6). For every 𝑡 ∈ [2𝑒2 , log 𝑛], 𝐴 contains an 𝑛-node subgraph �̃� of
such that

• (�̃�𝟙)𝑖 ⩽ 𝑡𝑑 for any 𝑖 ∈ [𝑛];

• (1 − 𝛿)𝑑◦ − 4𝑡𝑒−𝑡𝑑 ⩽ 𝑑(�̃�) ⩽ (1 + 𝛿)𝑑◦.

Proof. By Lemma B.1 and Lemma B.3, 𝑨 ∼ 𝔾(𝑛, 𝑄◦) has the following two properties with
probability at least 1 − 𝑛1−𝑑/4 − exp(−𝛿2𝑛𝑑◦/6).

• |𝑑(𝐴) − 𝑑◦ | ⩽ 𝛿𝑑◦.

• For all 𝑡 ∈ [2𝑒2 , log 𝑛], the number of edges incident to nodes with degree at least 𝑡𝑑
is at most 2𝑡𝑒−𝑡𝑛𝑑.
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Consider a graph 𝐴 with the above two properties. Fix a 𝑡 ∈ [2𝑒2 , log 𝑛]. By removing at
most 2𝑡𝑒−𝑡𝑛𝑑 edges from 𝐴, we can obtain a graph �̃� such that the maximum degree of �̃� is
at most 𝑡𝑑. Moreover,

𝑑(�̃�) ⩾ 𝑑(𝐴) − 4𝑡𝑒−𝑡𝑑 ⩾ (1 − 𝛿)𝑑◦ − 4𝑡𝑒−𝑡𝑑 ,
𝑑(�̃�) ⩽ 𝑑(𝐴) ⩽ (1 + 𝛿)𝑑◦ .

□

Lemma B.5 (Spectral bound [BvH16]). Let 𝑨 ∼ 𝔾(𝑛, 𝑝0) and suppose 𝑛𝑝0 ⩾ 5. Then with
probability at least 1 − 𝑛−Ω(1),

𝑨 − 𝑝0(𝟙𝟙⊤ − Id)




op ⩽ 𝑂

(√
𝑛𝑝0 log 𝑛

)
.

C Sum-of-squares exponential mechanism

In this section, we present our sum-of-squares exponential mechanism and prove its
properties in a general setting that incorporates all special cases in Appendix D, Appendix E
and Appendix F.

Setup. Let 𝒟 ⊂ ℝ𝑁 . Given an 𝑛-by-𝑛 symmetric matrix 𝐴, our goal is to output an element
𝑑 from 𝒟 privately. We say two symmetric matrices are neighboring if they differ in at most
one row and one column. The utility of an element 𝑑 ∈ 𝒟 is quantified by a score function
defined as follows.

Score function. For an 𝑛-by-𝑛 symmetric matrix 𝐴 and a scalar 𝛾, consider the following
polynomial system with indeterminates (𝑌𝑖 𝑗)𝑖 , 𝑗∈[𝑛], (𝑧𝑖)𝑖∈[𝑛] and coefficients that depend on
𝐴, 𝛾:

𝒬1(𝑌, 𝑧;𝐴, 𝛾) :=

𝑧 ⊙ 𝑧 = 𝑧, ⟨𝟙, 𝑧⟩ ⩾ (1 − 𝛾)𝑛
0 ⩽ 𝑌 ⩽ 𝟙𝟙⊤ , 𝑌 = 𝑌⊤

𝑌 ⊙ 𝑧𝑧⊤ = 𝐴 ⊙ 𝑧𝑧⊤

 . (C.1)

For an element 𝑑 ∈ 𝒟, let 𝒬2(𝑌; 𝑑) be a polynomial system with coefficients depending on 𝑑
(and independent of 𝐴, 𝛾). Then for a matrix 𝐴 and an element 𝑑 ∈ 𝒟, we define the score
of 𝑑 with regard to 𝐴 to be

𝑠(𝑑;𝐴) := min
0⩽𝛾⩽1

𝛾𝑛 s.t.
{
∃ level-ℓ pseudo-expectation �̃� satisfying
𝒬1(𝑌, 𝑧;𝐴, 𝛾) ∪ 𝒬2(𝑌; 𝑑) . (C.2)

For 𝑠(𝑑;𝐴) to be well-defined, we assume that for every 𝑑 ∈ 𝒟 there exists a symmetric
matrix 𝐴∗ ∈ [0, 1]𝑛×𝑛 such that 𝒬2(𝐴∗; 𝑑) is true.
Remark C.1 (Score function computation). Observe that a level-ℓ pseudo-expectation satisfy-
ing 𝒬1(𝑌, 𝑧;𝐴, 𝛾) ∪ 𝒬2(𝑌; 𝑑) is also a level-ℓ pseudo-expectation satisfying 𝒬1(𝑌, 𝑧;𝐴, 𝛾′) ∪
𝒬2(𝑌; 𝑑) for any 𝛾′ ⩾ 𝛾. Thus we can compute 𝑠(𝑑;𝐴) using binary search. Given a scalar
𝛾, checking if there exists a level-ℓ pseudo-expectation satisfying 𝒬1(𝑌, 𝑧;𝐴, 𝛾) ∪ 𝒬2(𝑌; 𝑑)
is equivalent to checking if a semidefinite program of size 𝑛𝑂(ℓ ) is feasible. Since we only
have efficient algorithms for semidefinite programming up to a given precision, we can
only efficiently search for pseudo-distributions that approximately satisfy a given polynomial
system. In spite of this, as long as the bit complexity of the coefficients in our sum-of-squares
proof are polynomially bounded, the analysis of our algorithm based on sum-of-squares
proofs will still work due to our discussion in Remark A.7. We refer interested readers to
[HKMN23] for a formal (and quite technical) treatment of approximate pseudo-expectations.

Exponential mechanism. Given an 𝑛-by-𝑛 symmetric matrix 𝐴, our sos exponential
mechanism with privacy parameter 𝜀 outputs a sample from the distribution 𝜇𝐴,𝜀 that is
supported on 𝒟 and has density

d𝜇𝐴,𝜀(𝑑) ∝ exp(−𝜀 · 𝑠(𝑑;𝐴)) . (C.3)

18



Remark C.2 (Sampling). To efficiently sample from 𝜇𝐴,𝜀, we can use the following
straightforward discretization scheme. More specifically, given a discretization param-
eter 𝛿, we output an element 𝑑 ∈ {0, 𝛿, 2𝛿, . . . , ⌊𝑛/𝛿⌋𝛿} with probability proportional to
exp(−𝜀 · sos-score(𝑑;𝐴)). As the error introduced by discretization is at most 𝛿 and our
target estimation error is 𝜔(1/𝑛), we can choose 𝛿 = 1/𝑛 and the discretization error is then
negligible. Moreover, our algorithm requires at most 𝑛2 evaluations of score functions.

Properties. The following lemma shows that the sensitivity of score function 𝑠(𝑑;𝐴) is at
most 1.
Lemma C.3 (Sensitivity bound). For any 𝑑 ∈ 𝒟 and any two 𝑛-by-𝑛 symmetric matrices 𝐴, 𝐴′

that differ in at most one row and one column, the score function defined in Eq. (C.2) satisfies

|𝑠(𝑑;𝐴) − 𝑠(𝑑;𝐴′)| ⩽ 1 .

Proof. Without loss of generality, we assume that 𝐴 and 𝐴′ differ in the first row and column.
Consider the linear functions (ℓ𝑖) where ℓ1(𝑧) = 0 and ℓ𝑖(𝑧) = 𝑧𝑖 for 𝑖 ⩾ 2. Then for every
polynomial inequality 𝑞(𝑌, 𝑧) ⩾ 0 in 𝒬1(𝑌, 𝑧;𝐴′, 𝛾 + 1/𝑛) ∪ 𝒬2(𝑌; 𝑑),

𝒬1(𝑌, 𝑧;𝐴, 𝛾) ∪ 𝒬2(𝑌; 𝑑) deg(𝑞)
𝑌,𝑧

𝑞(𝑌, ℓ (𝑧)) ⩾ 0 .

The same argument also holds for polynomial equalities. Then by [CDd+24, Lemma 8.1],
𝑠(𝑑;𝐴′) ⩽ 𝑠(𝑑;𝐴) + 1. Due to symmetry of 𝐴 and 𝐴′, we also have 𝑠(𝑑;𝐴) ⩽ 𝑠(𝑑;𝐴′) + 1.
Therefore, |𝑠(𝑑;𝐴) − 𝑠(𝑑;𝐴′)| ⩽ 1. □

The following privacy guarantee of our sos exponential mechanism is a direct corollary of
Lemma C.3.
Lemma C.4 (Privacy). The exponential mechanism defined in Eq. (C.3) is 2𝜀-differentially node
private.
Lemma C.5 (Volume of low-score points). Let 𝐴 ∈ ℝ𝑛×𝑛 and 𝜀 > 0. Consider the distribution
𝜇𝐴,𝜀 defined by Eq. (C.3). Suppose (𝑌 = 𝐴∗ , 𝑧 = 𝑧∗) is a solution to 𝒬1(𝑌, 𝑧;𝐴, 𝛾∗). Then for any
𝑡 ⩾ 0,

ℙ
𝒅∼𝜇𝐴,𝜀

(
𝑠(𝒅;𝐴) ⩾ 𝛾∗𝑛 +

𝑡 log 𝑛

𝜀

)
⩽

vol(𝒟)
vol(𝒢(𝐴∗)) · 𝑛

−𝑡 ,

where 𝒢(𝐴∗) := {𝑑 ∈ 𝒟 : 𝒬2(𝐴∗; 𝑑) is true}.

Proof. Note (𝑌 = 𝐴∗ , 𝑧 = 𝑧∗) is also a solution to 𝒬1(𝑌, 𝑧;𝐴, 𝛾∗) ∪ 𝒬2(𝑌; 𝑑) for any 𝑑 such
that 𝒬2(𝐴∗; 𝑑) is true. Let 𝒢(𝐴∗) := {𝑑 ∈ 𝒟 : 𝒬2(𝐴∗; 𝑑) is true}. Thus 𝑠(𝑑;𝐴) ⩽ 𝛾∗𝑛 for any
𝑑 ∈ 𝒢(𝐴∗). For 𝑡 ⩾ 0,

ℙ
𝒅∼𝜇𝐴,𝜀

(
𝑠(𝒅;𝐴) ⩾ 𝛾∗𝑛 +

𝑡 log 𝑛

𝜀

)
⩽

vol(𝒟) · exp
(
−𝜀𝛾∗𝑛 − 𝑡 log 𝑛

)
vol(𝒢(𝐴∗)) · exp(−𝜀𝛾∗𝑛) =

vol(𝒟)
vol(𝒢(𝐴∗)) · 𝑛

−𝑡 .

□

D Coarse estimation

In this section, we describe our coarse estimation algorithm that achieves constant multi-
plicative approximation of the expected average degree 𝑑◦.
Theorem D.1 (Coarse estimation for inhomogeneous random graphs). Let 𝑄◦ be an 𝑛-by-𝑛
edge connection probability matrix and let 𝑑◦ := 𝑑(𝑄◦). Suppose ∥𝑄◦∥∞ ⩽ 𝑅𝑑◦/𝑛 for some 𝑅. There
are constants 𝐶1 , 𝐶2 , 𝐶3 such that the following holds. For any 𝜂, 𝜀, 𝑑◦ such that 𝜂 log(1/𝜂)𝑅 ⩽ 𝐶1,
𝜀 ⩾ 𝐶2 log2(𝑛)𝑅/𝑛, and 𝑑◦ ⩾ 𝐶3, there exists a polynomial-time 𝜀-differentially node private
algorithm which, given an 𝜂-corrupted inhomogeneous random graph 𝔾(𝑛, 𝑄◦), outputs an estimate
�̂� satisfying |�̂�/𝑑◦ − 1| ⩽ 0.5 with probability 1 − 𝑛−Ω(1).

We make a few remarks on Theorem D.1.
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• Our algorithm in Theorem D.1 is a sum-of-squares exponential mechanism. 𝑅, 𝜂, 𝜀
are parameters given as inputs to our algorithm.

• We can get a constant estimate of 𝑝◦ by taking �̂� = �̂�
𝑛−1 . Since �̂�

𝑝◦ = �̂�
𝑑◦ , it follows that

| �̂�𝑝◦ − 1| ⩽ 0.5.

• When 𝑄◦ = 𝑝◦(𝟙𝟙⊤ − Id), the inhomogeneous random graph 𝔾(𝑛, 𝑄◦) is just the
Erdős-Rényi random graph 𝔾(𝑛, 𝑝◦). Thus, by setting 𝑅 = 𝑛

𝑛−1 in Theorem D.1, we
directly obtain a coarse estimation result for Erdős-Rényi random graphs.

• The utility guarantee of our algorithm holds in the constant-degree regime (i.e.
𝑑◦ ⩾ Ω(1)). To the best of our knowledge, even without privacy requirement and
in the special case of Erdős-Rényi random graphs, no previous algorithm can
match our guarantees in the constant-degree regime. Specifically, when 𝑑◦ ≪ log 𝑛
and 𝜂 ⩾ Ω(1), the robust algorithm in [AJK+22] can not provide a constant-factor
approximation of 𝑑◦.

In Appendix D.1, we set up polynomial systems that our algorithm uses and prove useful
sos inequalities. In Appendix D.2, we show that we can easily obtain a robust algorithm via
sos proofs in Appendix D.1. Then in Appendix D.3, we describe our algorithm and prove
Theorem D.1.

D.1 Sum-of-squares

For an adjacency matrix 𝐴 and two nonnegative scalars 𝛾 and 𝜎, consider the following
polynomial systems with indeterminates 𝑌 = (𝑌𝑖 𝑗)𝑖 , 𝑗∈[𝑛], 𝑧 = (𝑧𝑖)𝑖∈[𝑛] and coefficients that
depend on 𝐴, 𝛾, 𝜎:

𝒫1(𝑌, 𝑧;𝐴, 𝛾) :=

𝑧 ⊙ 𝑧 = 𝑧, ⟨𝟙, 𝑧⟩ ⩾ (1 − 𝛾)𝑛
0 ⩽ 𝑌 ⩽ 𝟙𝟙⊤ , 𝑌 = 𝑌⊤

𝑌 ⊙ 𝑧𝑧⊤ = 𝐴 ⊙ 𝑧𝑧⊤

 , (D.1)

𝒫2(𝑌; 𝜎) :=
{
𝑑(𝑌) = ⟨𝑌, 𝟙𝟙⊤⟩/𝑛
(𝑌𝟙)𝑖 ⩽ 𝜎𝑑(𝑌) ∀𝑖 ∈ [𝑛]

}
. (D.2)

For convenience of notation, we will consider the following combined polynomial system in
remaining of the section

𝒞(𝑌, 𝑧;𝐴, 𝛾, 𝜎) := 𝒫1(𝑌, 𝑧;𝐴, 𝛾) ∪ 𝒫2(𝑌; 𝜎) . (D.3)

Lemma D.2. If (𝐴∗ , 𝑧∗) is a feasible solution to 𝒞(𝑌, 𝑧;𝐴, 𝛾∗ , 𝜎) and 1 − 2𝛾𝜎 − 2𝛾∗𝜎 > 0, then it
follows that

𝒞(𝑌, 𝑧;𝐴, 𝛾, 𝜎) 8
𝑌,𝑧

(1 − 2𝛾𝜎 − 2𝛾∗𝜎)𝑑(𝐴∗) ⩽ 𝑑(𝑌) ⩽ 1
1 − 2𝛾𝜎 − 2𝛾∗𝜎

𝑑(𝐴∗) .

Proof. Let 𝑤 = 𝑧 ⊙ 𝑧∗, by constraint 𝑌 ⊙ 𝑧𝑧⊤ = 𝐴 ⊙ 𝑧𝑧⊤ and 𝐴∗ ⊙ 𝑧∗(𝑧∗)⊤ = 𝐴 ⊙ 𝑧∗(𝑧∗)⊤, we
have

𝒞 4
𝑌,𝑧

𝑌 ⊙ 𝑤𝑤⊤ = 𝑌 ⊙ 𝑧𝑧⊤ ⊙ 𝑧∗(𝑧∗)⊤

= 𝐴 ⊙ 𝑧𝑧⊤ ⊙ 𝑧∗(𝑧∗)⊤

= 𝐴 ⊙ 𝑧∗(𝑧∗)⊤ ⊙ 𝑧𝑧⊤

= 𝐴∗ ⊙ 𝑧∗(𝑧∗)⊤ ⊙ 𝑧𝑧⊤

= 𝐴∗ ⊙ 𝑤𝑤⊤ .

Applying this equality, it follows that

𝒞 4
𝑌,𝑧

𝑛 · 𝑑(𝑌) =
〈
𝑌, 𝟙𝟙⊤

〉
=

〈
𝑌, 𝑤𝑤⊤〉

+
〈
𝑌, 𝟙𝟙⊤ − 𝑤𝑤⊤〉
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=
〈
𝐴∗ , 𝑤𝑤⊤〉

+
〈
𝑌, 2(𝟙 − 𝑤)𝟙⊤

〉
−

〈
𝑌, (𝟙 − 𝑤)(𝟙 − 𝑤)⊤

〉
.

For the first term, since 𝐴∗
𝑖 , 𝑗

∈ [0, 1], 𝑧∗
𝑖
∈ {0, 1} and 𝒞 2

𝑌,𝑧
0 ⩽ 𝑧𝑖 ⩽ 1 for all 𝑖 , 𝑗 ∈ [𝑛], we have

𝒞 4
𝑌,𝑧

𝐴∗
𝑖 , 𝑗𝑤𝑖𝑤 𝑗 = 𝐴∗

𝑖 , 𝑗𝑧
∗
𝑖 𝑧

∗
𝑗𝑧𝑖𝑧 𝑗 ⩽ 𝐴∗

𝑖 , 𝑗 .

Therefore, it follows that

𝒞 4
𝑌,𝑧 〈

𝐴∗ , 𝑤𝑤⊤〉
⩽

〈
𝐴∗ , 𝟙𝟙⊤

〉
⩽ 𝑛 · 𝑑(𝐴∗) . (D.4)

For the second term, we have

𝒞 4
𝑌,𝑧 〈

𝑌, 2(𝟙 − 𝑤)𝟙⊤
〉
= ⟨𝑌𝟙, 2(𝟙 − 𝑤)⟩
=

∑
𝑖∈[𝑛]

2(1 − 𝑤𝑖) · (𝑌𝟙)𝑖

=
∑
𝑖∈[𝑛]

2(1 − 𝑧𝑖𝑧
∗
𝑖 ) · (𝑌𝟙)𝑖

⩽
∑
𝑖∈[𝑛]

2(1 − 𝑧𝑖) · (𝑌𝟙)𝑖 +
∑
𝑖∈[𝑛]

2(1 − 𝑧∗𝑖 ) · (𝑌𝟙)𝑖 ,

where the last inequality is due to Lemma A.9. From constraints
∑

𝑖∈[𝑛] 1 − 𝑧∗
𝑖
⩽ 𝛾∗𝑛,∑

𝑖∈[𝑛] 1 − 𝑧𝑖 ⩽ 𝛾𝑛 and (𝑌𝟙)𝑖 ⩽ 𝜎𝑑(𝑌) for all 𝑖 ∈ [𝑛], it follows that

𝒞 4
𝑌,𝑧 〈

𝑌, 2(𝟙 − 𝑤)𝟙⊤
〉
⩽

∑
𝑖∈[𝑛]

2(1 − 𝑧𝑖) · 𝜎𝑑(𝑌) +
∑
𝑖∈[𝑛]

2(1 − 𝑧∗𝑖 ) · 𝜎𝑑(𝑌)

= 2𝜎𝑑(𝑌) · ©­«
∑
𝑖∈[𝑛]

1 − 𝑧𝑖
ª®¬ + 2𝜎𝑑(𝑌) · ©­«

∑
𝑖∈[𝑛]

1 − 𝑧∗𝑖
ª®¬

⩽ 2𝛾𝑛𝜎𝑑(𝑌) + 2𝛾∗𝑛𝜎𝑑(𝑌) .

(D.5)

For the third term, since 𝒞 2
𝑌,𝑧

𝑌𝑖 , 𝑗 ⩾ 0 and 𝒞 2
𝑌,𝑧

1 − 𝑤𝑖 ⩾ 0 for all 𝑖 , 𝑗 ∈ [𝑛], it follows that

𝒞 8
𝑌,𝑧 〈

𝑌, (𝟙 − 𝑤)(𝟙 − 𝑤)⊤
〉
⩾ 0 . (D.6)

Combining Eq. (D.4), Eq. (D.5) and Eq. (D.6), we can get

𝒞 8
𝑌,𝑧

𝑛 · 𝑑(𝑌) ⩽ 𝑛 · 𝑑(𝐴∗) + 2𝛾𝑛𝜎𝑑(𝑌) + 2𝛾∗𝑛𝜎𝑑(𝑌)

8
𝑌,𝑧

𝑑(𝑌) ⩽ 𝑑(𝐴∗)
1 − 2𝛾𝜎 − 2𝛾∗𝜎

.

Swapping the roll of 𝐴∗ and 𝑌, we can use the same proof to get

𝒞 8
𝑌,𝑧

𝑛 · 𝑑(𝐴∗) ⩽ 𝑛 · 𝑑(𝑌) + 2𝛾𝑛𝜎𝑑(𝐴∗) + 2𝛾∗𝑛𝜎𝑑(𝐴∗)

8
𝑌,𝑧 (1 − 2𝛾𝜎 − 2𝛾∗𝜎)𝑑(𝐴∗) ⩽ 𝑑(𝑌) .

This completes the proof. □

Lemma D.3. Let 𝑄◦ be an 𝑛-by-𝑛 edge connection probability matrix and 𝑑◦ := 𝑑(𝑄◦). Suppose
∥𝑄◦∥∞ ⩽ 𝑅𝑑◦/𝑛 for 𝑅 ∈ ℝ. Let 𝐴 be an 𝜂-corrupted adjacency matrix of a random graph
𝑮◦ ∼ 𝔾(𝑛, 𝑄◦). Suppose 𝜂 log(1/𝜂)𝑅 ⩽ 𝐶1 for some constant 𝐶1 that is small enough. With
probability 1 − 𝑛−Ω(1), there exists 𝐴∗ and 𝑧∗ such that

1. |𝑑(𝐴∗) − 𝑑◦ | ⩽ 0.1𝑑◦.

2. (𝐴∗ , 𝑧∗) is a feasible solution to 𝒞(𝑌, 𝑧;𝐴, 𝛾, 𝜎) with 𝛾 = 2𝜂 and 𝜎 = 2 log(1/𝜂)𝑅.
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Proof. Let 𝑨◦ be the adjacency matrix of 𝑮◦ and 𝑧◦ ∈ {0, 1}𝑛 denote the set of uncorrupted
nodes (𝑧◦

𝑖
= 1 if and only if node 𝑖 is uncorrupted).

By Lemma B.2 and Lemma B.3, we know that, with probability 1 − 𝑛−Ω(1), there exists a
degree-pruned adjacency matrix �̃� such that

1.


�̃�𝟙

∞ ⩽ log(1/𝜂)𝑅𝑑◦.

2. At most 𝜂𝑛 nodes are pruned.

3. At most 2𝜂 log(1/𝜂)𝑛𝑅𝑑◦ edges are pruned.

Let �̃� ∈ {0, 1}𝑛 denote the set of unpruned nodes (𝑧◦
𝑖
= 1 if and only if node 𝑖 is not pruned).

We will show that 𝐴∗ = �̃� and 𝑧∗ = 𝑧◦ ⊙ �̃� satisfies the lemma.

Guarantee 1. By Lemma B.1, we know that, with probability 1 − 𝑛−Ω(1),

|𝑑(𝑨◦) − 𝑑◦ | ⩽ 10
√

𝑑◦ log 𝑛

𝑛
. (D.7)

From degree pruning guarantee (3), we have that

|𝑑(�̃�) − 𝑑(𝑨◦)| ⩽ 2𝜂 log(1/𝜂)𝑛𝑅𝑑◦ . (D.8)

Combining Eq. (D.7) and Eq. (D.8), for some constant 𝐶1 that is small enough, we have

|𝑑(�̃�) − 𝑑◦ | ⩽ |𝑑(�̃�) − 𝑑(𝑨◦)| + |𝑑(𝑨◦) − 𝑑◦ |

⩽ 10
√

𝑑◦ log 𝑛

𝑛
+ 2𝜂 log 1

𝜂
𝑅𝑑◦

⩽ 10
√

log 𝑛

𝑛
𝑑◦ + 2𝐶1𝑑

◦

⩽ 0.1𝑑◦ .

(D.9)

Guarantee 2. It is easy to check that 𝑧∗ ⊙ 𝑧∗ = 𝑧∗, 0 ⩽ 𝐴∗ ⩽ 𝟙𝟙⊤ and 𝐴∗ = (𝐴∗)⊤. Since
⟨𝟙, �̃�⟩ ⩾ 1 − 𝜂𝑛 by degree pruning condition (2) and ⟨𝟙, 𝑧◦⟩ ⩾ 1 − 𝜂𝑛 by corruption rate, it is
easy to verify that

⟨𝟙, 𝑧∗⟩ ⩾ 1 − 2𝜂𝑛 .

Moreover, we have 𝐴∗ ⊙ 𝑧∗(𝑧∗)⊤ = 𝐴 ⊙ 𝑧∗(𝑧∗)⊤ due to

�̃� ⊙ �̃� �̃�⊤ ⊙ 𝑧◦(𝑧◦)⊤ = 𝑨◦ ⊙ �̃� �̃�⊤ ⊙ 𝑧◦(𝑧◦)⊤ = 𝑨◦ ⊙ 𝑧◦(𝑧◦)⊤ ⊙ �̃� �̃�⊤ = 𝐴 ⊙ 𝑧◦(𝑧◦)⊤ ⊙ �̃� �̃�⊤ .

From Eq. (D.9), we can get that 𝑑◦ ⩽ 2𝑑(�̃�). Plugging this into degree pruning condition (1),
we get 

�̃�𝟙

∞ ⩽ log(1/𝜂)𝑅𝑑◦ ⩽ 2 log(1/𝜂)𝑅𝑑(�̃�) .
Therefore, we have

(𝐴∗𝟙)𝑖 ⩽ 2 log(1/𝜂)𝑅𝑑(𝐴∗) .
for all 𝑖 ∈ [𝑛].
Thus, (𝐴∗ , 𝑧∗) is a feasible solution to 𝒞(𝑌, 𝑧;𝐴, 𝛾, 𝜎) with 𝛾 = 2𝜂 and 𝜎 = 2 log(1/𝜂)𝑅. □

D.2 Robust algorithm

In this section, we show that the following algorithm based on sum-of-squares proofs in
Appendix D.1 obtains a robust constant multiplicative approximation of 𝑑◦.
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Algorithm D.4 (Robust coarse estimation algorithm).
Input: 𝜂-corrupted adjacency matrix 𝐴, corruption fraction 𝜂 and parameter 𝑅.

Algorithm: Obtain level-8 pseudo-expectation �̃� by solving sum-of-squares relaxation
of program 𝒞(𝑌, 𝑧;𝐴, 𝛾, 𝜎) (defined in Eq. (D.3)) with 𝐴, 𝛾 = 2𝜂 and 𝜎 = 2 log(1/𝜂)𝑅.

Output: �̃�[𝑑(𝑌)]

Theorem D.5 (Robust coarse estimation). Let 𝑄◦ be an 𝑛-by-𝑛 edge connection probability matrix
and let 𝑑◦ := 𝑑(𝑄◦). Suppose ∥𝑄◦∥∞ ⩽ 𝑅𝑑◦/𝑛 for some 𝑅. Let 𝐴 be an 𝜂-corrupted adjacency
matrix of a random graph 𝑮◦ ∼ 𝔾(𝑛, 𝑄◦). Suppose 𝜂 log(1/𝜂)𝑅 ⩽ 𝑐 for some constant 𝑐 that is small
enough. With probability 1 − 𝑛−Ω(1), Algorithm D.4 outputs an estimate �̂� satisfying | �̂�

𝑑◦ − 1| ⩽ 0.5.

Proof. By Lemma D.2 and Lemma D.3, we know that

𝒞(𝑌, 𝑧;𝐴, 𝛾, 𝜎) 8
𝑌,𝑧 (1 − 4𝛾𝜎)𝑑(𝐴∗) ⩽ 𝑑(𝑌) ⩽ 1

1 − 4𝛾𝜎 𝑑(𝐴
∗) ,

and,
|𝑑(𝐴∗) − 𝑑◦ | ⩽ 0.1𝑑◦ .

Therefore, we have

𝒞(𝑌, 𝑧;𝐴, 𝛾, 𝜎) 8
𝑌,𝑧

0.9(1 − 4𝛾𝜎)𝑑◦ ⩽ 𝑑(𝑌) ⩽ 1.1
1 − 4𝛾𝜎 𝑑

◦ .

Consider 4𝛾𝜎, for constant 𝑐 that is small enough, we have

4𝛾𝜎 = 8𝜂 log(1/𝜂)𝑅 ⩽ 8𝑐 ⩽ 0.1 .

This implies that 0.9(1 − 4𝛾𝜎) ⩾ 1
2 and 1.1

1−4𝛾𝜎 ⩽
11
9 ⩽

3
2 . Therefore, we have

𝒞(𝑌, 𝑧;𝐴, 𝛾, 𝜎) 8
𝑌,𝑧 1

2 𝑑
◦ ⩽ 𝑑(𝑌) ⩽ 3

2 𝑑
◦ .

Thus, the level-8 pseudo-expectation �̃� satisfies

1
2 𝑑

◦ ⩽ �̃�[𝑑(𝑌)] ⩽ 3
2𝑑

◦ ,

which implies that ���� �̃�[𝑑(𝑌)]𝑑◦
− 1

���� ⩽ 1
2 .

□

D.3 Private algorithm

In this section, we present our algorithm and prove Theorem D.1. Our algorithm instantiates
the sum-of-squares exponential mechanism in Appendix C.

Score function. For an 𝑛-by-𝑛 symmetric matrix 𝐴 and a scalar 𝑑, we define the score of 𝑑
with regard to 𝐴 to be

𝑠(𝑑;𝐴) := min
0⩽𝛾⩽1

𝛾𝑛 s.t.
{
∃ level-8 pseudo-expectation �̃� satisfying
𝒞(𝑌, 𝑧;𝐴, 𝛾, 𝜎) ∪ {|𝑑(𝑌) − 𝑑 | ⩽ 𝛼𝑑} , (D.10)

where 𝒞(𝑌, 𝑧;𝐴, 𝛾, 𝜎) is the polynomial system defined in Eq. (D.3), and 𝜎, 𝛼 are fixed
parameters whose values will be decided later. Note that (𝑌 = 𝑑

𝑛𝟙𝟙
⊤ , 𝑧 = 𝟘) is a solution to

the polynomial system 𝒞(𝑌, 𝑧;𝐴, 1, 𝜎) ∪ {|𝑑(𝑌) − 𝑑 | ⩽ 𝛼𝑑} for any 𝐴 ∈ ℝ𝑛×𝑛 , 𝑑 ∈ [0, 𝑛], and
𝜎 ⩾ 1.
To efficiently compute 𝑠(𝑑;𝐴), we can use the scheme as described in Remark C.1.
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Exponential mechanism. Given a privacy parameter 𝜀 and an 𝑛-by-𝑛 symmetric matrix 𝐴,
our algorithm is the exponential mechanism with score function Eq. (D.10) and range [0, 𝑛].

Algorithm D.6 (Coarse estimation).
Input: Graph 𝐴.
Parameters: 𝜀, 𝜎, 𝛼.
Output: A sample from the distribution 𝜇𝐴,𝜀 with support [0, 𝑛] and density

d𝜇𝐴,𝜀(𝑑) ∝ exp(−𝜀 · 𝑠(𝑑;𝐴)) , (D.11)

where 𝑠(𝑑;𝐴) is defined in Eq. (D.10).

To efficiently sample from 𝜇𝐴,𝜀, we can use the scheme as described in Remark C.2.

Privacy. The following privacy guarantee of our algorithm is a direct corollary of
Lemma C.4.
Lemma D.7 (Privacy). Algorithm D.6 is 2𝜀-differentially node private.

Utility. The utility guarantee of our algorithm is stated in the following lemma.
Lemma D.8 (Utility). Let 𝑄◦ be an 𝑛-by-𝑛 edge connection probability matrix and let 𝑑◦ := 𝑑(𝑄◦).
Suppose ∥𝑄◦∥∞ ⩽ 𝑅𝑑◦/𝑛 for some 𝑅. There are constants 𝐶1 , 𝐶2 , 𝐶3 such that the following
holds. For any 𝜂, 𝜀, 𝑑◦ such that 𝜂 log(1/𝜂)𝑅 ⩽ 𝐶1, 𝜀 ⩾ 𝐶2 log2(𝑛)𝑅/𝑛, and 𝑑◦ ⩾ 𝐶3, given an
𝜂-corrupted inhomogeneous random graph 𝔾(𝑛, 𝑄◦), Algorithm D.6 outputs an estimate �̂� satisfying
|�̂� − 𝑑◦ | ⩽ 0.5𝑑◦ with probability 1 − 𝑛−Ω(1).

Before proving Lemma D.8, we need the following two lemmas.
Lemma D.9 (Volume of low-score points). Let 𝐴 ∈ ℝ𝑛×𝑛 and 𝜀 > 0. Consider the distribution
𝜇𝐴,𝜀 defined by Eq. (D.11). Suppose (𝑌 = 𝐴∗ , 𝑧 = 𝑧∗) is a solution to 𝒞(𝑌, 𝑧;𝐴, 𝛾∗ , 𝜎) and 𝑑(𝐴∗) ⩾ 2.
Then for any 𝑡 ⩾ 0,

ℙ
𝒅∼𝜇𝐴,𝜀

(
𝑠(𝒅;𝐴) ⩾ 𝛾∗𝑛 +

𝑡 log 𝑛

𝜀

)
⩽

𝑛−𝑡+1

𝛼
.

Proof. Apply Lemma C.5 with 𝒟 = [0, 𝑛] and

𝒢(𝐴∗) =
{
𝑑 ∈ 𝒟 : 𝑑(𝐴∗)

1 + 𝛼
⩽ 𝑑 ⩽

𝑑(𝐴∗)
1 − 𝛼

}
.

As [𝑑(𝐴∗)/(1 + 𝛼), 𝑑(𝐴∗)] ⊆ 𝒢(𝐴∗) and 𝑑(𝐴∗) ⩾ 2 ⩾ 1 + 𝛼, we have vol(𝒢(𝐴∗)) ⩾ 𝛼. □

Lemma D.10 (Low score implies utility). Let 𝐴 ∈ ℝ𝑛×𝑛 and consider the score function 𝑠(· ;𝐴)
defined in Eq. (D.10). Suppose (𝑌 = 𝐴∗ , 𝑧 = 𝑧∗) is a solution to 𝒞(𝑌, 𝑧;𝐴, 𝛾∗ , 𝜎). For a scalar 𝑑 such
that 𝑠(𝑑;𝐴) ⩽ 𝜏𝑛 and (𝛾∗ + 𝜏)𝜎 ⩽ 0.1,

0.8
1 + 𝛼

𝑑(𝐴∗) ⩽ 𝑑 ⩽
1.25
1 − 𝛼

𝑑(𝐴∗) .

Proof. Applying Lemma D.2 with (𝛾∗ + 𝜏)𝜎 ⩽ 0.1, we have

𝒞(𝑌, 𝑧;𝐴, 𝜏, 𝜎) 8
𝑌,𝑧

0.8𝑑(𝐴∗) ⩽ 𝑑(𝑌) ⩽ 1.25𝑑(𝐴∗)
Thus,

𝒞(𝑌, 𝑧;𝐴, 𝜏, 𝜎) ∪ {|𝑑(𝑌) − 𝑑 | ⩽ 𝛼𝑑} 8
𝑌,𝑧 0.8

1 + 𝛼
𝑑(𝐴∗) ⩽ 𝑑 ⩽

1.25
1 − 𝛼

𝑑(𝐴∗) .

□

Now we are ready to prove Lemma D.8.
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Proof of Lemma D.8. Let 𝐴 be a realization of 𝜂-corrupted 𝔾(𝑛, 𝑄◦). By Lemma D.3, the
following event happens with probability 1 − 𝑛−Ω(1). There exists a solution (𝑌 = 𝐴∗ , 𝑧 = 𝑧∗)
to 𝒞(𝑌, 𝑧;𝐴, 𝛾∗ , 𝜎) with 𝛾∗ = 2𝜂, 𝜎 = 2 log(1/𝜂)𝑅, and 0.9𝑑◦ ⩽ 𝑑(𝐴∗) ⩽ 1.1𝑑◦.
As 𝑑(𝐴∗) ⩾ 0.9𝑑◦ ⩾ 2, then it follows by setting 𝑡 = 10 and 𝛼 = 0.01 in Lemma D.9 that,

ℙ
𝒅∼𝜇𝐴,𝜀

(𝑠(𝒅;𝐴) ⩽ 𝜏𝑛) ⩾ 1 − 𝑛−9 where 𝜏 := 2𝜂 + 10 log(𝑛)/(𝜀𝑛) .

As an 𝜂-corrupted graph is actually uncorrupted when 𝜂 < 1/𝑛, we can assume 𝜂 ⩾ 1/(2𝑛)
without loss of generality. Thus,

(2𝜂 + 𝜏)𝜎 ⩽ 8𝜂 log(1/𝜂)𝑅 +
20 log2(𝑛)𝑅

𝑛𝜀
.

For 𝜂 log(1/𝜂)𝑅 and log2(𝑛)𝑅/(𝜀𝑛) smaller than some constant, we have (2𝜂 + 𝜏)𝜎 ⩽ 0.1. Let
�̂� be a scalar such that 𝑠(�̂�;𝐴) ⩽ 𝜏𝑛. Then by Lemma D.10,

0.8
1 + 𝛼

𝑑(𝐴∗) ⩽ �̂� ⩽
1.25
1 − 𝛼

𝑑(𝐴∗) .

Plugging in 𝛼 ⩽ 0.01 and 0.9𝑑◦ ⩽ 𝑑(𝐴∗) ⩽ 1.1𝑑◦, we have
0.5𝑑◦ ⩽ �̂� ⩽ 1.5𝑑◦ .

□

Proof of Theorem D.1. By Lemma D.7 and Lemma D.8.

E Fine estimation for inhomogeneous random graphs

From Appendix D, we have a constant multiplicative approximation of the expected average
degree 𝑑◦. In this section, we show how to use this coarse estimate to obtain our fine estimator
for inhomogeneous random graphs.
Theorem E.1 (Fine estimation for inhomogeneous random graphs). Let 𝑄◦ be an 𝑛-by-𝑛 edge
connection probability matrix and let 𝑑◦ := 𝑑(𝑄◦). Suppose ∥𝑄◦∥∞ ⩽ 𝑅𝑑◦/𝑛 for some 𝑅. There is
a sufficiently small constant 𝑐 such that the following holds. For any 𝜂 such that 𝜂 log(1/𝜂)𝑅 ⩽ 𝑐,
there exists a polynomial-time 𝜀-differentially node private algorithm which, given an 𝜂-corrupted
inhomogeneous random graph 𝔾(𝑛, 𝑄◦) and a constant-factor approximation of 𝑑◦, outputs an
estimate �̃� satisfying ���� �̃�𝑑◦ − 1

���� ⩽ 𝑂

(√
log 𝑛

𝑑◦𝑛
+

𝑅 log2 𝑛

𝜀𝑛
+ 𝜂 log(1/𝜂)𝑅

)
,

with probability 1 − 𝑛−Ω(1).

We make a few remarks on Theorem E.1.

• Our algorithm in Theorem E.1 is a sum-of-squares exponential mechanism. 𝑅, 𝜂, 𝜀
are parameters given as input to our algorithm.

• We can get an estimate of 𝑝◦ by taking �̃� = �̃�
𝑛−1 . Since �̃�

𝑝◦ = �̃�
𝑑◦ , it follows that���� �̃�𝑝◦ − 1

���� ⩽ 𝑂

(√
log 𝑛

𝑑◦𝑛
+

𝑅 log2 𝑛

𝜀𝑛
+ 𝜂 log(1/𝜂)𝑅

)
.

• Combining Theorem D.1 and Theorem E.1 gives us an efficient, private, and robust
edge density estimation algorithm for inhomogeneous random graphs whose utility
guarantee is information-theoretically optimal up to a factor of log 𝑛 and log(1/𝜂).

In Appendix E.1, we set up polynomial systems that our algorithm uses and prove useful
sos inequalities. In Appendix E.2, we show that we can easily obtain a robust algorithm via
sos proofs in Appendix E.1. Then in Appendix E.3, we describe our algorithm and prove
Theorem E.1.

25



E.1 Sum-of-squares

For an adjacency matrix 𝐴 and nonnegative scalars 𝛾, 𝜎 and �̂�, consider the following
polynomial systems with indeterminates 𝑌 = (𝑌𝑖 𝑗)𝑖 , 𝑗∈[𝑛], 𝑧 = (𝑧𝑖)𝑖∈[𝑛] and coefficients that
depend on 𝐴, 𝛾, 𝜎, �̂�:

𝒫1(𝑌, 𝑧;𝐴, 𝛾) :=

𝑧 ⊙ 𝑧 = 𝑧, ⟨𝟙, 𝑧⟩ ⩾ (1 − 𝛾)𝑛
0 ⩽ 𝑌 ⩽ 𝟙𝟙⊤ , 𝑌 = 𝑌⊤

𝑌 ⊙ 𝑧𝑧⊤ = 𝐴 ⊙ 𝑧𝑧⊤

 , (E.1)

𝒫3(𝑌; 𝜎, �̂�) :=
{
(𝑌𝟙)𝑖 ⩽ 𝜎�̂� ∀𝑖 ∈ [𝑛]

}
. (E.2)

For convenience of notation, we will consider the following combined polynomial system in
the remaining of this section

𝒟(𝑌, 𝑧;𝐴, 𝛾, 𝜎, �̂�) := 𝒫1(𝑌, 𝑧;𝐴, 𝛾) ∪ 𝒫3(𝑌; 𝜎, �̂�) . (E.3)

Lemma E.2. If (𝐴∗ , 𝑧∗) is a feasible solution to 𝒟(𝑌, 𝑧;𝐴, 𝛾∗ , 𝜎, �̂�), then it follows that

𝒟(𝑌, 𝑧;𝐴, 𝛾, 𝜎, �̂�) 8
𝑌,𝑧

|𝑑(𝑌) − 𝑑(𝐴∗)| ⩽ 2(𝛾 + 𝛾∗)𝜎�̂� .

Proof. Let 𝑤 = 𝑧 ⊙ 𝑧∗. Using similar analysis as in the proof of Lemma D.2, it follows that

𝒟 4
𝑌,𝑧

𝑌 ⊙ 𝑤𝑤⊤ = 𝐴∗ ⊙ 𝑤𝑤⊤ ,

and,

𝒟 8
𝑌,𝑧

𝑛 · 𝑑(𝑌) =
〈
𝑌, 𝟙𝟙⊤

〉
=

〈
𝐴∗ , 𝑤𝑤⊤〉

+
〈
𝑌, 2(𝟙 − 𝑤)𝟙⊤

〉
−

〈
𝑌, (𝟙 − 𝑤)(𝟙 − 𝑤)⊤

〉
⩽

〈
𝐴∗ , 𝟙𝟙⊤

〉
+ ⟨𝑌𝟙, 2(𝟙 − 𝑤)⟩

⩽ 𝑛 · 𝑑(𝐴∗) + 2(𝛾 + 𝛾∗)𝜎𝑛�̂� .
By rearranging the terms, we have

𝒟 8
𝑌,𝑧

𝑑(𝑌) − 𝑑(𝐴∗) ⩽ 2(𝛾 + 𝛾∗)𝜎�̂� .
Swapping the roll of 𝑌 and 𝐴∗, we can also get

𝒟 8
𝑌,𝑧

𝑑(𝐴∗) − 𝑑(𝑌) ⩽ 2(𝛾 + 𝛾∗)𝜎�̂� .
This completes the proof. □

Lemma E.3. Let 𝑄◦ be an 𝑛-by-𝑛 edge connection probability matrix and 𝑑◦ := 𝑑(𝑄◦). Suppose
∥𝑄◦∥∞ ⩽ 𝑅𝑑◦/𝑛 for 𝑅 ∈ ℝ. Let 𝐴 be an 𝜂-corrupted adjacency matrix of a random graph
𝑮◦ ∼ 𝔾(𝑛, 𝑄◦). Suppose 𝜂 log(1/𝜂)𝑅 ⩽ 𝐶1 for some constant 𝐶1 that is small enough. With
probability 1 − 𝑛−Ω(1), there exists 𝐴∗ and 𝑧∗ such that

• |𝑑(𝐴∗) − 𝑑◦ | ⩽ 10
√

𝑑◦ log 𝑛

𝑛 + 2𝜂 log(1/𝜂)𝑅𝑑◦.

• (𝐴∗ , 𝑧∗) is a feasible solution to 𝒟(𝑌, 𝑧;𝐴, 𝛾, 𝜎, �̂�) with 𝜂-corrupted 𝐴, 𝛾 = 2𝜂, 𝜎 =

10 log(1/𝜂)𝑅 and �̂� ⩾ 1
2 𝑑

◦.

Proof. Let 𝑨◦ be the adjacency matrix of 𝑮◦ and 𝑧◦ ∈ {0, 1}𝑛 denote the set of uncorrupted
nodes (𝑧◦

𝑖
= 1 if and only if node 𝑖 is uncorrpted).

By Lemma B.2 and Lemma B.3, we know that, with probability 1 − 𝑛−Ω(1), there exists a
degree-pruned adjacency matrix �̃� such that

1.


�̃�𝟙

∞ ⩽ log(1/𝜂)𝑅𝑑◦.

26



2. At most 𝜂𝑛 nodes are pruned.

3. At most 2𝜂 log(1/𝜂)𝑛𝑅𝑑◦ edges are pruned.

Let �̃� ∈ {0, 1}𝑛 denote the set of unpruned nodes (�̃�𝑖 = 1 if and only if node 𝑖 is not pruned).
We will show that 𝐴∗ = �̃� and 𝑧∗ = 𝑧◦ ⊙ �̃� satisfies the lemma.

Guarantee 1. By Lemma B.1, we know that, with probability 1 − 𝑛−Ω(1),

|𝑑(𝑨◦) − 𝑑◦ | ⩽ 10
√

𝑑◦ log 𝑛

𝑛
. (E.4)

From degree pruning guarantee (3), we have that

|𝑑(�̃�) − 𝑑(𝑨◦)| ⩽ 2𝜂 log(1/𝜂)𝑅𝑑◦ . (E.5)

Combining Eq. (E.4) and Eq. (E.5), we have

|𝑑(�̃�) − 𝑑◦ | ⩽ |𝑑(�̃�) − 𝑑(𝐴◦)| + |𝑑(𝐴◦) − 𝑑◦ |

⩽ 10
√

𝑑◦ log 𝑛

𝑛
+ 2𝜂 log(1/𝜂)𝑅𝑑◦ .

Guarantee 2. It is easy to check that 𝑧∗ ⊙ 𝑧∗ = 𝑧∗, 0 ⩽ 𝐴∗ ⩽ 𝟙𝟙⊤ and 𝐴∗ = (𝐴∗)⊤. Since
⟨𝟙, �̃�⟩ ⩾ 1 − 𝜂𝑛 by degree pruning condition (2) and ⟨𝟙, 𝑧◦⟩ ⩾ 1 − 𝜂𝑛 by corruption rate, it is
easy to verify that

⟨𝟙, 𝑧∗⟩ ⩾ 1 − 2𝜂𝑛 .

Moreover, we have 𝐴∗ ⊙ 𝑧∗(𝑧∗)⊤ = 𝐴 ⊙ 𝑧∗(𝑧∗)⊤ due to

�̃� ⊙ �̃� �̃�⊤ ⊙ 𝑧◦(𝑧◦)⊤ = 𝑨◦ ⊙ �̃� �̃�⊤ ⊙ 𝑧◦(𝑧◦)⊤ = 𝑨◦ ⊙ 𝑧◦(𝑧◦)⊤ ⊙ �̃� �̃�⊤ = 𝐴 ⊙ 𝑧◦(𝑧◦)⊤ ⊙ �̃� �̃�⊤ .

By degree pruning condition (1), we have

(𝐴∗𝟙)𝑖 ⩽ log(1/𝜂)𝑅𝑑◦ ⩽ 𝜎�̂� .

for all 𝑖 ∈ [𝑛].
Thus, (𝐴∗ , 𝑧∗) is a feasible solution to 𝒟(𝑌, 𝑧;𝐴, 𝛾, 𝜎, �̂�) with 𝛾 = 2𝜂, 𝜎 = 10 log(1/𝜂)𝑅 and
�̂� ⩾ 1

2 𝑑
◦. □

E.2 Robust algorithm

In this section, we show that the following algorithm based on sum-of-squares proofs in
Appendix E.1 obtains a robust approximation of 𝑑◦ that is optimal up to logarithmic factors.

Algorithm E.4 (Robust fine estimation algorithm for inhomogeneous random graphs).
Input: 𝜂-corrupted adjacency matrix 𝐴, corruption fraction 𝜂 and parameter 𝑅.
Algorithm:

1. Obtain coarse estimator �̂� by applying Algorithm D.4 with 𝐴, 𝜂, 𝑅 as input.

2. Obtain level-8 pseudo-expectation �̃� by solving sum-of-squares relaxation
of program 𝒟(𝑌, 𝑧;𝐴, 𝛾, 𝜎, �̂�) (defined in Eq. (E.3)) with 𝐴, 𝛾 = 2𝜂, 𝜎 =

10 log(1/𝜂)𝑅 and �̂�.

Output: �̃�[𝑑(𝑌)]

Theorem E.5 (Robust fine estimation for inhomogeneous random graphs). Let 𝑄◦ be an
𝑛-by-𝑛 edge connection probability matrix and let 𝑑◦ := 𝑑(𝑄◦). Suppose ∥𝑄◦∥∞ ⩽ 𝑅𝑑◦/𝑛 for
some 𝑅. Let 𝐴 be an 𝜂-corrupted adjacency matrix of a random graph 𝑮◦ ∼ 𝔾(𝑛, 𝑄◦). Suppose
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𝜂 log(1/𝜂)𝑅 ⩽ 𝑐 for some constant 𝑐 that is small enough. With probability 1−𝑛−Ω(1), Algorithm E.4
outputs an estimate �̃� satisfying���� �̃�𝑑◦ − 1

���� ⩽ 𝑂

(√
log 𝑛

𝑑◦𝑛
+ 𝜂 log(1/𝜂)𝑅

)
.

Proof. By Theorem D.5, we have 1
2 𝑑

◦ ⩽ �̂� ⩽ 3
2 𝑑

◦. Let 𝛾∗ = 2𝜂, by Lemma E.2 and Lemma E.3,
it follows that

𝒟(𝑌, 𝑧;𝐴, 𝛾, 𝜎, �̂�) 8
𝑌,𝑧 |𝑑(𝑌) − 𝑑(𝐴∗)| ⩽ 2(𝛾 + 𝛾∗)𝜎�̂�

⩽ 2 · 4𝜂 · 10 log(1/𝜂)𝑅 · 3
2𝑑

◦

= 120𝜂 log(1/𝜂)𝑅𝑑◦ .

and,

|𝑑(𝐴∗) − 𝑑◦ | ⩽ 10
√

𝑑◦ log 𝑛

𝑛
+ 2𝜂 log(1/𝜂)𝑅𝑑◦ .

Therefore, we have

𝒟(𝑌, 𝑧;𝐴, 𝛾, 𝜎, �̂�)
𝑂(1)
𝑌,𝑧 |𝑑(𝑌) − 𝑑◦ | ⩽ 200𝜂 log(1/𝜂)𝑅𝑑◦ + 10

√
𝑑◦ log 𝑛

𝑛
.

Thus, the level-8 pseudo-expectation �̃� satisfies���̃�[𝑑(𝑌)] − 𝑑◦
�� ⩽ 200𝜂 log(1/𝜂)𝑅𝑑◦ + 10

√
𝑑◦ log 𝑛

𝑛
,

which implies that ���� �̃�[𝑑(𝑌)]𝑑◦
− 1

���� ⩽ 𝑂

(√
log 𝑛

𝑑◦𝑛
+ 𝜂 log(1/𝜂)𝑅

)
.

□

E.3 Private algorithm

In this section, we present our algorithm and prove Theorem E.1. Our algorithm instantiates
the sum-of-squares exponential mechanism in Appendix C.

Score function. For an 𝑛-by-𝑛 symmetric matrix 𝐴 and a scalar 𝑑, we define the score of 𝑑
with regard to 𝐴 to be

𝑠(𝑑;𝐴) := min
0⩽𝛾⩽1

𝛾𝑛 s.t.
{
∃ level-8 pseudo-expectation �̃� satisfying
𝒟(𝑌, 𝑧;𝐴, 𝛾, 𝜎, �̂�) ∪ {|𝑑(𝑌) − 𝑑 | ⩽ 𝛼𝑑} , (E.6)

where 𝒟(𝑌, 𝑧;𝐴, 𝛾, 𝜎, �̂�) is the polynomial system defined in Eq. (E.3), �̂� is a coarse estimate,
and 𝜎, 𝛼 are fixed parameters whose values will be decided later. Note that (𝑌 = 𝑑

𝑛𝟙𝟙
⊤ , 𝑧 = 𝟘)

is a solution to the polynomial system𝒟(𝑌, 𝑧;𝐴, 1, 𝜎, �̂�) ∪ {|𝑑(𝑌) − 𝑑 | ⩽ 𝛼𝑑} for any𝐴 ∈ ℝ𝑛×𝑛

and any 𝑑 such that 0 ⩽ 𝑑 ⩽ min{𝜎�̂�, 𝑛}.
To efficiently compute 𝑠(𝑑;𝐴), we can use the scheme as described in Remark C.1.

Exponential mechanism. Given a privacy parameter 𝜀 and an 𝑛-by-𝑛 symmetric matrix 𝐴,
our private algorithm in Theorem E.1 is the exponential mechanism with score function
Eq. (E.6) and range [0,min{𝜎�̂�, 𝑛}].
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Algorithm E.6 (Fine estimation for inhomogeneous random graphs).
Input: Graph 𝐴, coarse estimate �̂�.
Parameters: 𝜀, 𝜎, 𝛼.

Output: A sample from the distribution 𝜇𝐴,𝜀 with support [0,min{𝜎�̂�, 𝑛}] and density

d𝜇𝐴,𝜀(𝑑) ∝ exp(−𝜀 · 𝑠(𝑑;𝐴)) , (E.7)

where 𝑠(𝑑;𝐴) is defined in Eq. (E.6).

To efficiently sample from 𝜇𝐴,𝜀, we can use the scheme as described in Remark C.2.

Privacy. The following privacy guarantee of our algorithm is a direct corollary of
Lemma C.4.
Lemma E.7 (Privacy). Algorithm E.6 is 2𝜀-differentially node private.

Utility. The utility guarantee of our algorithm is stated in the following lemma.
Lemma E.8 (Utility). Let 𝑄◦ be an 𝑛-by-𝑛 edge connection probability matrix and let 𝑑◦ := 𝑑(𝑄◦).
Suppose ∥𝑄◦∥∞ ⩽ 𝑅𝑑◦/𝑛 for some 𝑅. There is a sufficiently small constant 𝑐 such that the following
holds. For any 𝜂 such that 𝜂 log(1/𝜂)𝑅 ⩽ 𝑐, given an 𝜂-corrupted inhomogeneous random graph
𝔾(𝑛, 𝑄◦) and a coarse estimate �̂� such that 0.5𝑑◦ ⩽ �̂� ⩽ 2𝑑◦, Algorithm E.6 outputs an estimate �̃�
satisfying ���� �̃�𝑑◦ − 1

���� ⩽ 𝑂

(√
log 𝑛

𝑑◦𝑛
+

𝑅 log2 𝑛

𝜀𝑛
+ 𝜂 log(1/𝜂)𝑅

)
,

with probability 1 − 𝑛−Ω(1).

Before proving Lemma E.8, we need the following two lemmas.
Lemma E.9 (Volume of low-score points). Let 𝐴 ∈ ℝ𝑛×𝑛 and 𝜀 > 0. Consider the distribution
𝜇𝐴,𝜀 defined by Eq. (E.7). Suppose (𝑌 = 𝐴∗ , 𝑧 = 𝑧∗) is a solution to 𝒟(𝑌, 𝑧;𝐴, 𝛾∗ , 𝜎, �̂�) and
2 ⩽ 𝑑(𝐴∗) ⩽ 𝜎�̂�. Then for any 𝑡 ⩾ 0,

ℙ
𝒅∼𝜇𝐴,𝜀

(
𝑠(𝒅;𝐴) ⩾ 𝛾∗𝑛 +

𝑡 log 𝑛

𝜀

)
⩽

𝑛−𝑡+1

𝛼
.

Proof. Apply Lemma C.5 with 𝒟 = [0,min{𝜎�̂�, 𝑛}] and

𝒢(𝐴∗) =
{
𝑑 ∈ 𝒟 : 𝑑(𝐴∗)

1 + 𝛼
⩽ 𝑑 ⩽

𝑑(𝐴∗)
1 − 𝛼

}
.

As [𝑑(𝐴∗)/(1 + 𝛼), 𝑑(𝐴∗)] ⊆ 𝒢(𝐴∗) and 𝑑(𝐴∗) ⩾ 2 ⩾ 1 + 𝛼, we have vol(𝒢(𝐴∗)) ⩾ 𝛼. □

Lemma E.10 (Low score implies utility). Let 𝐴 ∈ ℝ𝑛×𝑛 and consider the score function 𝑠(· ;𝐴)
defined in Eq. (E.6). Suppose (𝑌 = 𝐴∗ , 𝑧 = 𝑧∗) is a solution to 𝒟(𝑌, 𝑧;𝐴, 𝛾∗ , 𝜎, �̂�). For a scalar 𝑑
such that 𝑠(𝑑;𝐴) ⩽ 𝜏𝑛,

𝑑(𝐴∗) − 2(𝛾∗ + 𝜏)𝜎�̂�
1 + 𝛼

⩽ 𝑑 ⩽
𝑑(𝐴∗) + 2(𝛾∗ + 𝜏)𝜎�̂�

1 − 𝛼
.

Proof. By Lemma E.2,

𝒟(𝑌, 𝑧;𝐴, 𝜏, 𝜎, �̂�) 8
𝑌,𝑧 |𝑑(𝑌) − 𝑑(𝐴∗)| ⩽ 2(𝛾∗ + 𝜏)𝜎�̂� .

Thus,
𝒟(𝑌, 𝑧;𝐴, 𝜏, 𝜎, �̂�) ∪ {|𝑑(𝑌) − 𝑑 | ⩽ 𝛼𝑑}

8
𝑌,𝑧 𝑑(𝐴∗) − 2(𝛾∗ + 𝜏)𝜎�̂�

1 + 𝛼
⩽ 𝑑 ⩽

𝑑(𝐴∗) + 2(𝛾∗ + 𝜏)𝜎�̂�
1 − 𝛼

.

□
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Now we are ready to prove Lemma E.8.

Proof of Lemma E.8. Let 𝐴 be a realization of 𝜂-corrupted 𝔾(𝑛, 𝑄◦). By Lemma E.3, the
following event happens with probability at least 1 − 𝑛−Ω(1). There exists a solution (𝑌 =

𝐴∗ , 𝑧 = 𝑧∗) to 𝒟(𝑌, 𝑧;𝐴, 𝛾∗ , 𝜎, �̂�) with 𝛾∗ = 2𝜂, 𝜎 = 10 log(1/𝜂)𝑅, and

|𝑑(𝐴∗) − 𝑑◦ | ⩽ 10
√
𝑑◦ log(𝑛)/𝑛 + 2𝜂 log(1/𝜂)𝑅𝑑◦ .

For 𝜂 log(1/𝜂)𝑅 smaller than some constant, we have 0.9𝑑◦ ⩽ 𝑑(𝐴∗) ⩽ 1.1𝑑◦. Note that
𝑑(𝐴∗) ⩾ 0.9𝑑◦ ⩾ 2 and 𝑑(𝐴∗) ⩽ 1.1𝑑◦ ⩽ 𝜎�̂�. Then it follows by setting 𝑡 = 10 and 𝛼 = 𝑛−2 in
Lemma E.9 that,

ℙ
𝒅∼𝜇𝐴,𝜀

(𝑠(𝒅;𝐴) ⩽ 𝜏𝑛) ⩾ 1 − 𝑛−7 where 𝜏 := 2𝜂 + 10 log(𝑛)/(𝜀𝑛) .

Let �̃� be a scalar such that 𝑠(�̃�;𝐴) ⩽ 𝜏𝑛. Then by Lemma E.10,

𝑑(𝐴∗) − 2(2𝜂 + 𝜏)𝜎�̂�
1 + 𝛼

⩽ �̃� ⩽
𝑑(𝐴∗) + 2(2𝜂 + 𝜏)𝜎�̂�

1 − 𝛼
.

Plugging in everything, we have���� �̃�𝑑◦ − 1
���� ⩽ 𝑂

(√
log 𝑛

𝑑◦𝑛
+

𝑅 log(1/𝜂) log 𝑛

𝜀𝑛
+ 𝑅𝜂 log(1/𝜂)

)
.

As an 𝜂-corrupted graph is actually uncorrupted when 𝜂 < 1/𝑛, we can assume 𝜂 ⩾ 1/(2𝑛)
without loss of generality. Therefore,���� �̃�𝑑◦ − 1

���� ⩽ 𝑂

(√
log 𝑛

𝑑◦𝑛
+

𝑅 log2 𝑛

𝜀𝑛
+ 𝑅𝜂 log(1/𝜂)

)
.

□

Proof of Theorem E.1. By Lemma E.7 and Lemma E.8.

F Fine estimation for Erdős-Rényi random graphs

From Appendix D, we have a a constant multiplicative approximation of the expected
average degree 𝑑◦. In this section, we show how to use this coarse estimate to obtain our fine
estimate for Erdős-Rényi random graphs.
Theorem F.1 (Fine estimation for Erdős-Rényi random graphs). There are constants 𝐶1 , 𝐶2 , 𝐶3
such that the following holds. For any 𝜂 ⩽ 𝐶1, 𝜀 ⩾ 𝐶2 log(𝑛)/𝑛, and 𝑑◦ ⩾ 𝐶3, there exists a
polynomial-time 𝜀-differentially node private algorithm which, given an 𝜂-corrupted Erdős-Rényi
random graph 𝔾(𝑛, 𝑑◦/𝑛) and a constant-factor approximation of 𝑑◦, outputs an estimate �̃� satisfying���� �̃�𝑑◦ − 1

���� ⩽ 𝑂

(√
log 𝑛

𝑑◦𝑛
+

log2 𝑛
√
𝑑◦𝜀𝑛

+
𝜂 log 𝑛
√
𝑑◦

)
,

with probability 1 − 𝑛−Ω(1).

We make a few remarks on Theorem F.1.

• Our algorithm in Theorem F.1 is an sum-of-squares exponential mechanism. 𝑅, 𝜂, 𝜀
are parameters given as input to our algorithm.

• We can get an estimate of 𝑝◦ by taking �̂� = �̂�
𝑛−1 . Since �̂�

𝑝◦ = �̂�
𝑑◦ , it follows that���� �̂�𝑝◦ − 1

���� ⩽ 𝑂

(√
log 𝑛

𝑑◦𝑛
+

log2 𝑛
√
𝑑◦𝜀𝑛

+
𝜂 log 𝑛
√
𝑑◦

)
.
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• Combining Theorem D.1 and Theorem F.1 gives us an efficient, private, and robust
edge density estimation algorithm for Erdős-Rényi random graphs whose utility
guarantee is information-theoretically optimal up to a factor of log 𝑛.

In Appendix F.1, we set up polynomial systems that our algorithm uses and prove useful
sos inequalities. In Appendix F.2, we show that we can easily obtain a robust algorithm via
sos proofs in Appendix F.1. Then in Appendix F.3, we describe our algorithm and prove
Theorem F.1.

F.1 Sum-of-squares

For an adjacency matrix 𝐴 and nonnegative scalars 𝛾, 𝜎 and �̂�, consider the following
polynomial systems with indeterminates 𝑌 = (𝑌𝑖 𝑗)𝑖 , 𝑗∈[𝑛], 𝑧 = (𝑧𝑖)𝑖∈[𝑛] and coefficients that
depend on 𝐴, 𝛾, 𝜎, 𝛿, �̂�:

𝒫1(𝑌, 𝑧;𝐴, 𝛾) :=

𝑧 ⊙ 𝑧 = 𝑧, ⟨𝟙, 𝑧⟩ ⩾ (1 − 𝛾)𝑛
0 ⩽ 𝑌 ⩽ 𝟙𝟙⊤ , 𝑌 = 𝑌⊤

𝑌 ⊙ 𝑧𝑧⊤ = 𝐴 ⊙ 𝑧𝑧⊤

 , (F.1)

𝒫4(𝑌; 𝜎, 𝛿, �̂�) :=

|(𝑌𝟙)𝑖 − 𝑑(𝑌)| ⩽ 𝜎

√
�̂� ∀𝑖 ∈ [𝑛]


𝑌 − 𝑑(𝑌)

𝑛 𝟙𝟙⊤





op
⩽ 𝛿

√
�̂�

 . (F.2)

For convenience of notation, we will consider the following combined polynomial system in
remaining of the section

ℰ(𝑌, 𝑧;𝐴, 𝛾, 𝜎, 𝛿, �̂�) := 𝒫1(𝑌, 𝑧;𝐴, 𝛾) ∪ 𝒫4(𝑌; 𝜎, 𝛿, �̂�) . (F.3)
Lemma F.2. If (𝐴∗ , 𝑧∗) is a feasible solution to ℰ(𝑌, 𝑧;𝐴, 𝛾∗ , 𝜎, 𝛿, �̂�) and 𝛾+ 𝛾∗ < 1, then it follows
that

ℰ(𝑌, 𝑧;𝐴, 𝛾, 𝜎, 𝛿, �̂�) 8
𝑌,𝑧

|𝑑(𝑌) − 𝑑(𝐴∗)| ⩽
4(𝛾 + 𝛾∗)𝜎

√
�̂� + 2(𝛾 + 𝛾∗)𝛿

√
�̂�

(1 − 𝛾 − 𝛾∗)2 .

Proof. Let 𝑤 = 𝑧 ⊙ 𝑧∗. Notice that, by Lemma A.9, we have ℰ 4
𝑧 1 − 𝑤𝑖 ⩽ 2 − 𝑧𝑖 − 𝑧∗

𝑖
for all

𝑖 ∈ [𝑛]. Moreover, using similar analysis as in the proof of Lemma D.2, it follows that

ℰ 4
𝑌,𝑧

𝑌 ⊙ 𝑤𝑤⊤ = 𝐴∗ ⊙ 𝑤𝑤⊤ .

Therefore, we can get

ℰ 4
𝑌,𝑧

𝑛
(
𝑑(𝑌) − 𝑑(𝐴∗)

)
=⟨𝑌 − 𝐴∗ , 𝟙𝟙⊤⟩

=⟨𝑌 − 𝐴∗ , 𝟙𝟙⊤ − 𝑤𝑤⊤⟩

=⟨𝑌 − 𝑑(𝑌)
𝑛

𝟙𝟙⊤ + 𝑑(𝑌)
𝑛

𝟙𝟙⊤ − 𝑑(𝐴∗)
𝑛

𝟙𝟙⊤ + 𝑑(𝐴∗)
𝑛

𝟙𝟙⊤ − 𝐴∗ , 𝟙𝟙⊤ − 𝑤𝑤⊤⟩

=⟨𝑌 − 𝑑(𝑌)
𝑛

𝟙𝟙⊤ , 𝟙𝟙⊤ − 𝑤𝑤⊤⟩ + ⟨ 𝑑(𝐴
∗)

𝑛
𝟙𝟙⊤ − 𝐴∗ , 𝟙𝟙⊤ − 𝑤𝑤⊤⟩

+ ⟨ 𝑑(𝑌)
𝑛

𝟙𝟙⊤ − 𝑑(𝐴∗)
𝑛

𝟙𝟙⊤ , 𝟙𝟙⊤ − 𝑤𝑤⊤⟩

=⟨𝑌 − 𝑑(𝑌)
𝑛

𝟙𝟙⊤ , 𝟙𝟙⊤ − 𝑤𝑤⊤⟩ + ⟨ 𝑑(𝐴
∗)

𝑛
𝟙𝟙⊤ − 𝐴∗ , 𝟙𝟙⊤ − 𝑤𝑤⊤⟩

+
(
𝑑(𝑌) − 𝑑(𝐴∗)

) (
𝑛 − 1

𝑛
⟨𝟙, 𝑤⟩2

)
.

(F.4)
By rearranging terms, we can get

ℰ 8
𝑌,𝑧 ⟨𝟙, 𝑤⟩2

𝑛

(
𝑑(𝑌) − 𝑑(𝐴∗)

)
= ⟨𝑌 − 𝑑(𝑌)

𝑛
𝟙𝟙⊤ , 𝟙𝟙⊤ −𝑤𝑤⊤⟩ + ⟨𝑑(𝐴

∗)
𝑛

𝟙𝟙⊤ −𝐴∗ , 𝟙𝟙⊤ −𝑤𝑤⊤⟩ .
(F.5)
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We bound the two terms on the right-hand side separately. For the first term ⟨𝑌 −
𝑑(𝑌)
𝑛 𝟙𝟙⊤ , 𝟙𝟙⊤ − 𝑤𝑤⊤⟩, we have

ℰ 8
𝑌,𝑧 ⟨𝑌− 𝑑(𝑌)

𝑛
𝟙𝟙⊤ , 𝟙𝟙⊤−𝑤𝑤⊤⟩ = 2⟨𝑌−𝑑(𝑌)

𝑛
𝟙𝟙⊤ , 𝟙(𝟙−𝑤)⊤⟩+⟨ 𝑑(𝑌)

𝑛
𝟙𝟙⊤−𝑌, (𝟙−𝑤)(𝟙−𝑤)⊤⟩ .

(F.6)
From constraints |(𝑌𝟙)𝑖 − 𝑑(𝑌)| ⩽ 𝜎

√
�̂� for all 𝑖 ∈ [𝑛], ⟨𝟙, 𝑧⟩ ⩾ (1−𝛾)𝑛 and ⟨𝟙, 𝑧∗⟩ ⩾ (1−𝛾∗)𝑛,

we have

ℰ 8
𝑌,𝑧 ⟨𝑌 − 𝑑(𝑌)

𝑛
𝟙𝟙⊤ , 𝟙(𝟙 − 𝑤)⊤⟩ = ⟨𝑌𝟙 − 𝑑(𝑌)𝟙, 𝟙 − 𝑤⟩

⩽
∑
𝑖∈[𝑛]

(1 − 𝑤𝑖)𝜎
√
�̂�

⩽ 𝜎
√
�̂� · ©­«

∑
𝑖∈[𝑛]

2 − 𝑧𝑖 − 𝑧∗𝑖
ª®¬

⩽ (𝛾 + 𝛾∗)𝑛𝜎
√
�̂� .

(F.7)

From constraints



𝑌 − 𝑑(𝑌)

𝑛 𝟙𝟙⊤





op
⩽ 𝛿

√
�̂�, ⟨𝟙, 𝑧⟩ ⩾ (1 − 𝛾)𝑛 and ⟨𝟙, 𝑧∗⟩ ⩾ (1 − 𝛾∗)𝑛, we have

ℰ 8
𝑌,𝑧 ⟨𝑑(𝑌)

𝑛
𝟙𝟙⊤ − 𝑌, (𝟙 − 𝑤)(𝟙 − 𝑤)⊤⟩ ⩽





𝑌 − 𝑑(𝑌)
𝑛

𝟙𝟙⊤






op
∥𝟙 − 𝑤∥2

2

⩽ 𝛿
√
�̂� · ©­«

∑
𝑖∈[𝑛]

(1 − 𝑤𝑖)2ª®¬
= 𝛿

√
�̂� · ©­«

∑
𝑖∈[𝑛]

1 − 𝑤𝑖
ª®¬

⩽ 𝛿
√
�̂� · ©­«

∑
𝑖∈[𝑛]

2 − 𝑧𝑖 − 𝑧∗𝑖
ª®¬

⩽ (𝛾 + 𝛾∗)𝑛𝛿
√
�̂� ,

(F.8)

where the equality is because ℰ 2
𝑧 (1 − 𝑤𝑖)2 = (1 − 𝑧𝑖𝑧

∗
𝑖
)2 = 1 − 𝑧𝑖𝑧

∗
𝑖
= 1 − 𝑤𝑖 .

Plugging Eq. (F.7) and Eq. (F.8) into Eq. (F.6), it follows that

ℰ 8
𝑌,𝑧 ⟨𝑌 − 𝑑(𝑌)

𝑛
𝟙𝟙⊤ , 𝟙𝟙⊤ − 𝑤𝑤⊤⟩ ⩽ 2(𝛾 + 𝛾∗)𝑛𝜎

√
�̂� + (𝛾 + 𝛾∗)𝑛𝛿

√
�̂� . (F.9)

For the second term ⟨ 𝑑(𝐴
∗)

𝑛 𝟙𝟙⊤ − 𝐴∗ , 𝟙𝟙⊤ − 𝑤𝑤⊤⟩, we can apply the same proof as above to
get

ℰ 8
𝑌,𝑧 ⟨𝑑(𝐴

∗)
𝑛

𝟙𝟙⊤ − 𝐴∗ , 𝟙𝟙⊤ − 𝑤𝑤⊤⟩ ⩽ 2(𝛾 + 𝛾∗)𝑛𝜎
√
�̂� + (𝛾 + 𝛾∗)𝑛𝛿

√
�̂� . (F.10)

Plugging Eq. (F.9) and Eq. (F.10) into Eq. (F.5), it follows that

ℰ 8
𝑌,𝑧 ⟨𝟙, 𝑤⟩2

𝑛

(
𝑑(𝑌) − 𝑑(𝐴∗)

)
⩽ 4(𝛾 + 𝛾∗)𝑛𝜎

√
�̂� + 2(𝛾 + 𝛾∗)𝑛𝛿

√
�̂� .

Using the same proof strategy, we can also get

ℰ 8
𝑌,𝑧 ⟨𝟙, 𝑤⟩2

𝑛

(
𝑑(𝐴∗) − 𝑑(𝑌)

)
⩽ 4(𝛾 + 𝛾∗)𝑛𝜎

√
�̂� + 2(𝛾 + 𝛾∗)𝑛𝛿

√
�̂� .
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Applying Lemma A.10, it follows that

ℰ 8
𝑌,𝑧 ⟨𝟙, 𝑤⟩4

𝑛2

(
𝑑(𝑌) − 𝑑(𝐴∗)

)2
⩽

(
4(𝛾 + 𝛾∗)𝑛𝜎

√
�̂� + 2(𝛾 + 𝛾∗)𝑛𝛿

√
�̂�
)2

. (F.11)

Now, we would like to lower bound ⟨𝟙, 𝑤⟩4. By Lemma A.9, we have ℰ 4
𝑧
𝑤𝑖 ⩾ 𝑧𝑖 + 𝑧∗

𝑖
− 1

for all 𝑖 ∈ [𝑛]. Therefore,

ℰ 8
𝑌,𝑧 ⟨𝟙, 𝑤⟩ =

∑
𝑖∈[𝑛]

𝑤𝑖 ⩾
∑
𝑖∈[𝑛]

(𝑧𝑖 + 𝑧∗𝑖 − 1) ⩾ (1 − 𝛾 − 𝛾∗)𝑛 .

Since 𝛾 + 𝛾∗ < 1, we have 1 − 𝛾 − 𝛾∗ > 0, and, therefore,

ℰ 8
𝑌,𝑧 ⟨𝟙, 𝑤⟩4 ⩾ (1 − 𝛾 − 𝛾∗)4𝑛4 .

Plugging this into Eq. (F.11), we have

ℰ 8
𝑌,𝑧 (1 − 𝛾 − 𝛾∗)4𝑛2

(
𝑑(𝑌) − 𝑑(𝐴∗)

)2
⩽

(
4(𝛾 + 𝛾∗)𝑛𝜎

√
�̂� + 2(𝛾 + 𝛾∗)𝑛𝛿

√
�̂�
)2

8
𝑌,𝑧

(
𝑑(𝑌) − 𝑑(𝐴∗)

)2
⩽

(
4(𝛾 + 𝛾∗)𝜎

√
�̂� + 2(𝛾 + 𝛾∗)𝛿

√
�̂�
)2

(1 − 𝛾 − 𝛾∗)4
.

Applying Lemma A.11, it follows that

ℰ 8
𝑌,𝑧 |𝑑(𝑌) − 𝑑(𝐴∗)| ⩽

4(𝛾 + 𝛾∗)𝜎
√
�̂� + 2(𝛾 + 𝛾∗)𝛿

√
�̂�

(1 − 𝛾 − 𝛾∗)2 .

□

Lemma F.3. Let 𝐴 be an 𝜂-corrupted adjacency matrix of a random graph 𝑮◦ ∼ 𝔾(𝑛, 𝑑◦𝑛 ). With
probability 1 − 𝑛−Ω(1), there exists 𝐴∗ and 𝑧∗ such that

• |𝑑(𝐴∗) − 𝑑◦ | ⩽ 10
√

𝑑◦ log 𝑛

𝑛 .

• (𝐴∗ , 𝑧∗) is a feasible solution to ℰ(𝑌, 𝑧;𝐴, 𝛾, 𝜎, 𝛿, �̂�) with 𝛾 = 𝜂, 𝜎 = 4 log 𝑛, 𝛿 =

4𝐶
√

log 𝑛 for some constant 𝐶 and �̂� ⩾ 1
2 𝑑

◦.

Proof. Let 𝑨◦ be the adjacency matrix of 𝑮◦ and 𝑧◦ ∈ {0, 1}𝑛 denote the set of uncorrupted
nodes (𝑧◦

𝑖
= 1 if and only if node 𝑖 is uncorrupted).We will show that 𝐴∗ = 𝑨◦ and 𝑧∗ = 𝑧◦

satisfies the lemma.

Guarantee 1. By Lemma B.1, we know that, with probability 1 − 𝑛−Ω(1),

|𝑑(𝐴◦) − 𝑑◦ | ⩽ 10
√

𝑑◦ log 𝑛

𝑛
. (F.12)

Guarantee 2. It is easy to check that 𝑧∗ ⊙ 𝑧∗ = 𝑧∗, 0 ⩽ 𝐴∗ ⩽ 𝟙𝟙⊤, 𝐴∗ = (𝐴∗)⊤ and
⟨𝟙, 𝑧∗⟩ ⩾ 1 − 𝜂𝑛. By Lemma B.2, we know that, with probability 1 − 𝑛−Ω(1),

∥𝐴◦𝟙 − 𝑑◦𝟙∥∞ ⩽
√
𝑑◦ log 𝑛 . (F.13)

Combining Eq. (F.12) and Eq. (F.13), we have

∥𝐴◦𝟙 − 𝑑(𝐴◦)𝟙∥∞ ⩽ ∥𝐴◦𝟙 − 𝑑◦𝟙∥∞ + ∥𝑑◦𝟙 − 𝑑(𝐴◦)𝟙∥∞

⩽
√
𝑑◦ log 𝑛 + 10

√
𝑑◦ log 𝑛

𝑛

⩽ 2 log 𝑛
√
𝑑◦ .

(F.14)
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Therefore, for 𝜎 = 4 log 𝑛 and �̂� ⩾ 1
2 𝑑

◦, it follows that

|(𝐴∗𝟙)𝑖 − 𝑑(𝐴∗)| ⩽ 2 log 𝑛
√
𝑑◦ ⩽ 𝜎

√
�̂� ,

for all 𝑖 ∈ [𝑛].
By Lemma B.5, we know that, with probability 1 − 𝑛−Ω(1), for some universal constant 𝐶,



𝐴◦ − 𝑑◦

𝑛
𝟙𝟙⊤






op
⩽ 𝐶

√
𝑑◦ log 𝑛 . (F.15)

Combining Eq. (F.12) and Eq. (F.15), we have



𝐴◦ − 𝑑(𝐴◦)
𝑛

𝟙𝟙⊤






op
⩽





𝐴◦ − 𝑑(𝐴◦)
𝑛

𝟙𝟙⊤






op
+





𝑑(𝐴◦)
𝑛

𝟙𝟙⊤ − 𝑑◦

𝑛
𝟙𝟙⊤






op

⩽ 𝐶
√
𝑑◦ log 𝑛 + 10

√
𝑑◦ log 𝑛

𝑛

⩽ 2𝐶
√
𝑑◦ log 𝑛 .

(F.16)

Therefore, for 𝛿 = 4𝐶
√

log 𝑛 and �̂� ⩾ 1
2 𝑑

◦, it follows that



𝐴∗ − 𝑑(𝐴∗)
𝑛

𝟙𝟙⊤






op
⩽ 2𝐶

√
𝑑◦ log 𝑛 ⩽ 𝛿

√
�̂� .

Thus, (𝐴∗ , 𝑧∗) is a feasible solution to ℰ(𝑌, 𝑧;𝐴, 𝛾, 𝜎, 𝛿, �̂�) with 𝛾 = 𝜂, 𝜎 = 4 log 𝑛, 𝛿 =

4𝐶
√

log 𝑛 and �̂� ⩾ 1
2 𝑑

◦. □

F.2 Robust algorithm

In this section, we show that the following algorithm based on sum-of-squares proofs in
Appendix F.1 obtains a robust approximation of 𝑑◦ that is optimal up to logarithmic factors.

Algorithm F.4 (Robust fine estimation algorithm for Erdős-Rényi random graphs).
Input: 𝜂-corrupted adjacency matrix 𝐴 and corruption fraction 𝜂.
Algorithm:

1. Obtain coarse estimator �̂� by applying Algorithm D.4 with 𝐴, 𝜂, 𝑅 = 1 as input.

2. Obtain level-8 pseudo-expectation �̃� by solving sum-of-squares relaxation of
program ℰ(𝑌, 𝑧;𝐴, 𝛾, 𝜎, 𝛿, �̂�) (defined in Eq. (F.3)) with 𝐴, 𝛾 = 𝜂, 𝜎 = 4 log 𝑛,
𝛿 = 4𝐶

√
log 𝑛 and �̂�.

Output: �̃�[𝑑(𝑌)]

Theorem F.5 (Robust fine estimation for Erdős-Rényi random graphs). Let 𝐴 be an 𝜂-corrupted
adjacency matrix of a random graph 𝑮◦ ∼ 𝔾(𝑛, 𝑑◦𝑛 ). With probability 1 − 𝑛−Ω(1), Algorithm F.4
outputs an estimate �̃� satisfying���� �̃�𝑑◦ − 1

���� ⩽ 𝑂

(√
log 𝑛

𝑑◦𝑛
+

𝜂 log 𝑛
√
𝑑◦

)
.

Proof. By Theorem D.5, we have 1
2 𝑑

◦ ⩽ �̂� ⩽ 3
2𝑑

◦. Let 𝛾∗ = 𝜂, by Lemma F.2 and Lemma F.3, it
follows that

ℰ(𝑌, 𝑧;𝐴, 𝛾, 𝜎, 𝛿, �̂�)
𝑂(1)
𝑌,𝑧 |𝑑(𝑌) − 𝑑(𝐴∗)| ⩽

4(𝛾 + 𝛾∗)𝜎
√
�̂� + 2(𝛾 + 𝛾∗)𝛿

√
�̂�

(1 − 𝛾 − 𝛾∗)2
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⩽
40𝜂 log 𝑛

√
𝑑◦ + 40𝐶𝜂

√
𝑑◦ log 𝑛

(1 − 2𝜂)2

⩽ 𝐶′𝜂 log 𝑛
√
𝑑◦ ,

for some constant 𝐶′, and,

|𝑑(𝐴∗) − 𝑑◦ | ⩽ 10
√

𝑑◦ log 𝑛

𝑛
.

Therefore, we have

ℰ(𝑌, 𝑧;𝐴, 𝛾, 𝜎, 𝛿, �̂�)
𝑂(1)
𝑌,𝑧 |𝑑(𝑌) − 𝑑◦ | ⩽ 𝐶′𝜂 log 𝑛

√
𝑑◦ + 10

√
𝑑◦ log 𝑛

𝑛
.

Thus, the level-8 pseudo-expectation �̃� satisfies���̃�[𝑑(𝑌)] − 𝑑◦
�� ⩽ 𝐶′𝜂 log 𝑛

√
𝑑◦ + 10

√
𝑑◦ log 𝑛

𝑛
,

which implies that ���� �̃�[𝑑(𝑌)]𝑑◦
− 1

����𝑂 (√
log 𝑛

𝑑◦𝑛
+

𝜂 log 𝑛
√
𝑑◦

)
.

□

F.3 Private algorithm

In this section, we present our algorithm and prove Theorem F.1. Our algorithm instantiates
the sum-of-squares exponential mechanism in Appendix C.

Score function. For an 𝑛-by-𝑛 symmetric matrix 𝐴 and a scalar 𝑑, we define the score of 𝑑
with regard to 𝐴 to be

𝑠(𝑑;𝐴) := min
0⩽𝛾⩽1

𝛾𝑛 s.t.
{
∃ level-8 pseudo-expectation �̃� satisfying
ℰ(𝑌, 𝑧;𝐴, 𝛾, 𝜎, 𝛿, �̂�) ∪ {|𝑑(𝑌) − 𝑑 | ⩽ 𝛼𝑑} , (F.17)

where ℰ(𝑌, 𝑧;𝐴, 𝛾, 𝜎, 𝛿, �̂�) is the polynomial system defined in Eq. (F.3), �̂� is a coarse estimate,
and 𝜎, 𝛿, 𝛼 are fixed parameters whose values will be decided later. Note that (𝑌 = 𝑑

𝑛𝟙𝟙
⊤ , 𝑧 =

𝟘) is a solution to the polynomial system ℰ(𝑌, 𝑧;𝐴, 1, 𝜎, 𝛿, �̂�) ∪ {|𝑑(𝑌)/𝑑 − 1| ⩽ 𝛼} for any
𝐴 ∈ ℝ𝑛×𝑛 and any 𝑑 ∈ [0, 𝑛].
To efficiently compute 𝑠(𝑑;𝐴), we can use the scheme as described in Remark C.1.

Exponential mechanism. Given a privacy parameter 𝜀 and an 𝑛-by-𝑛 symmetric matrix
𝐴, our private algorithm in Theorem F.1 is the exponential mechanism with score function
Eq. (F.17) and range [0, 𝑛].

Algorithm F.6 (Fine estimation for Erdős-Rényi random graphs).
Input: Graph 𝐴, coarse estimate �̂�.
Parameters: 𝜀, 𝜎, 𝛿, 𝛼.
Output: A sample from the distribution 𝜇𝐴,𝜀 with support [0, 𝑛] and density

d𝜇𝐴,𝜀(𝑑) ∝ exp(−𝜀 · 𝑠(𝑑;𝐴)) , (F.18)

where 𝑠(𝑑;𝐴) is defined in Eq. (F.17).

To efficiently sample from 𝜇𝐴,𝜀, we can use the scheme as described in Remark C.2.

Privacy. The following privacy guarantee of our algorithm is a direct corollary of
Lemma C.4.
Lemma F.7 (Privacy). Algorithm F.6 is 2𝜀-differentially node private.
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Utility. The utility guarantee of our algorithm is stated in the following lemma.
Lemma F.8 (Utility). There are constants 𝐶1 , 𝐶2 , 𝐶3 such that the following holds. For any 𝜂 ⩽ 𝐶1,
𝜀 ⩾ 𝐶2 log(𝑛)/𝑛, and 𝑑◦ ⩾ 𝐶3, given an 𝜂-corrupted Erdős-Rényi random graph 𝔾(𝑛, 𝑑◦/𝑛) and a
coarse estimate �̂� such that 0.5𝑑◦ ⩽ �̂� ⩽ 2𝑑◦, Algorithm F.6 outputs an estimate �̃� satisfying���� �̃�𝑑◦ − 1

���� ⩽ 𝑂

(√
log 𝑛

𝑑◦𝑛
+

log2 𝑛
√
𝑑◦𝜀𝑛

+
𝜂 log 𝑛
√
𝑑◦

)
,

with probability 1 − 𝑛−Ω(1).

Before proving Lemma F.8, we need the following two lemmas.
Lemma F.9 (Volume of low-score points). Let 𝐴 ∈ ℝ𝑛×𝑛 and 𝜀 > 0. Consider the distribution
𝜇𝐴,𝜀 defined by Eq. (F.18). Suppose (𝑌 = 𝐴∗ , 𝑧 = 𝑧∗) is a solution to ℰ(𝑌, 𝑧;𝐴, 𝛾∗) and 𝑑(𝐴∗) ⩾ 2.
Then for any 𝑡 ⩾ 0,

ℙ
𝒅∼𝜇𝐴,𝜀

(
𝑠(𝒅;𝐴) ⩾ 𝛾∗𝑛 +

𝑡 log 𝑛

𝜀

)
⩽

𝑛−𝑡+1

𝛼
.

Proof. Apply Lemma C.5 with 𝒟 = [0, 𝑛] and

𝒢(𝐴∗) =
{
𝑑 ∈ 𝒟 : 𝑑(𝐴∗)

1 + 𝛼
⩽ 𝑑 ⩽

𝑑(𝐴∗)
1 − 𝛼

}
.

As [𝑑(𝐴∗)/(1 + 𝛼), 𝑑(𝐴∗)] ⊆ 𝒢(𝐴∗) and 𝑑(𝐴∗) ⩾ 2 ⩾ 1 + 𝛼, we have vol(𝒢(𝐴∗)) ⩾ 𝛼. □

Lemma F.10 (Low score implies utility). Let 𝐴 ∈ ℝ𝑛×𝑛 and consider the score function 𝑠(· ;𝐴)
defined in Eq. (F.17). Suppose (𝑌 = 𝐴∗ , 𝑧 = 𝑧∗) is a solution to ℰ(𝑌, 𝑧;𝐴, 𝛾∗). For a scalar 𝑑 such
that 𝑠(𝑑;𝐴) ⩽ 𝜏𝑛 and 𝛾∗ + 𝜏 ⩽ 0.1,

1
1 + 𝛼

(
𝑑(𝐴∗) − 5(𝛾∗ + 𝜏)(𝜎 + 𝛿)

√
�̂�
)
⩽ 𝑑 ⩽

1
1 − 𝛼

(
𝑑(𝐴∗) + 5(𝛾∗ + 𝜏)(𝜎 + 𝛿)

√
�̂�
)
.

Proof. Applying Lemma F.2 with 𝛾∗ + 𝜏 ⩽ 0.1, we have

ℰ(𝑌, 𝑧;𝐴, 𝜏) 8
𝑌,𝑧 |𝑑(𝑌) − 𝑑(𝐴∗)| ⩽ 5(𝛾∗ + 𝜏)(𝜎 + 𝛿)

√
�̂� .

Thus,

ℰ(𝑌, 𝑧;𝐴, 𝜏) ∪ {|𝑑(𝑌) − 𝑑 | ⩽ 𝛼𝑑}

8
𝑌,𝑧 1

1 + 𝛼

(
𝑑(𝐴∗) − 5(𝛾∗ + 𝜏)(𝜎 + 𝛿)

√
�̂�
)
⩽ 𝑑 ⩽

1
1 − 𝛼

(
𝑑(𝐴∗) + 5(𝛾∗ + 𝜏)(𝜎 + 𝛿)

√
�̂�
)
.

□

Now we are ready to prove Lemma F.8.

Proof of Lemma F.8. Let 𝐴 be a realization of 𝜂-corrupted 𝔾(𝑛, 𝑑◦/𝑛). By Lemma F.3, the
following event happens with probability at least 1 − 𝑛−Ω(1). There exists a solution (𝑌 =

𝐴∗ , 𝑧 = 𝑧∗) to ℰ(𝑌, 𝑧;𝐴, 𝛾∗ , 𝜎, 𝛿, �̂�) where 𝛾∗ = 𝜂, 𝜎 ⩽ 𝑂(log 𝑛), 𝛿 ⩽ 𝑂(
√

log 𝑛), and |𝑑(𝐴∗) −
𝑑◦ | ⩽ 𝑂

(√
𝑑◦ log(𝑛)/𝑛

)
.

As 𝑑(𝐴∗) ⩾ 0.9𝑑◦ ⩾ 2, then it follows by setting 𝑡 = 10 and 𝛼 = 𝑛−2 in Lemma F.9 that,

ℙ
𝒅∼𝜇𝐴,𝜀

(𝑠(𝒅;𝐴) ⩽ 𝜏𝑛) ⩾ 1 − 𝑛−7 where 𝜏 := 2𝜂 + 10 log(𝑛)/(𝜀𝑛) .

Let �̃� be a scalar such that 𝑠(�̃�;𝐴) ⩽ 𝜏𝑛. For 𝜂 and log(𝑛)/(𝜀𝑛) smaller than some constant,
we have 2𝜂 + 𝜏 ⩽ 0.1. Then by Lemma F.10,

1
1 + 𝛼

(
𝑑(𝐴∗) − 5(𝜂 + 𝜏)(𝜎 + 𝛿)

√
�̂�
)
⩽ �̃� ⩽

1
1 − 𝛼

(
𝑑(𝐴∗) + 5(𝜂 + 𝜏)(𝜎 + 𝛿)

√
�̂�
)
.
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Plugging in everything, we have���� �̃�𝑑◦ − 1
���� ⩽ 𝑂

(√
log 𝑛

𝑑◦𝑛
+

log2 𝑛
√
𝑑◦𝜀𝑛

+
𝜂 log 𝑛
√
𝑑◦

)
.

□

Proof of Theorem F.1. By Lemma F.7 and Lemma F.8.

G Lower bounds

In this section, we prove Theorem 1.5, Theorem 1.7, and Theorem 1.8.

G.1 Lower bound for Erdős-Rényi random graphs

In this section, we prove Theorem 1.5.
Theorem (Restatement of Theorem 1.5). Suppose there is an 𝜀-differentially node-private algorithm
that, given an Erdős-Rényi random graph 𝔾(𝑛, 𝑝◦), outputs an estimate �̃� satisfying |�̃�/𝑝◦ − 1| ⩽ 𝛼
with probability 1 − 𝛽. Then we must have

𝛼 ⩾ Ω

(
log(1/𝛽)
𝜀𝑛

√
𝑛𝑝◦

)
.

We leave the formal proof of Theorem 1.5 to the end of this section. Now we sketch the proof
idea. One natural idea to prove this theorem is to construct a coupling 𝜔 of 𝔾(𝑛, 𝑝◦) and
𝔾(𝑛, (1− 2𝛼)𝑝◦) such that for (𝑮,𝑮′) ∼ 𝜔, the typical distance between 𝑮 and 𝑮′ can be well
controlled. However, such a coupling is tricky to construct directly, as the node degrees in
an Erdős-Rényi random graph are not independent. To avoid dealing with such dependence,
we instead consider the directed Erdős-Rényi random graphs, which is inspired by the
proof of [AJK+22, Theorem 1.5]. The directed Erdős-Rényi random graph model, denoted by
�̃�(𝑛, 𝑝◦), is a distribution over 𝑛-node directed graphs where each edge (𝑖 , 𝑗) is present with
probability 𝑝◦ independently. Since the outdegrees in a directed Erdős-Rényi random graph
are i.i.d. Binomial random variables, it is not so difficult to construct a coupling of �̃�(𝑛, 𝑝◦)
and �̃�(𝑛, (1 − 2𝛼)𝑝◦). Then we can convert such a coupling into a coupling of 𝔾(𝑛, 𝑝◦) and
𝔾(𝑛, (1 − 2𝛼)𝑝◦).
Lemma G.1 (Coupling). Let 𝑝◦ ∈ [0, 1], 𝛼 ∈ [0, 1/2], and 𝑝′ := (1 − 2𝛼)𝑝◦. There exists a
coupling 𝜔 of 𝔾(𝑛, 𝑝◦) and 𝔾(𝑛, 𝑝′) with the following property. For (𝑮,𝑮′) ∼ 𝜔, the distribution of
dist(𝑮,𝑮′) is the binomial distribution Bin(𝑛,Δ) where Δ = TV(Bin(𝑛, 𝑝◦), Bin(𝑛, 𝑝′)). Moreover,
if 𝑝◦ ⩽ 𝑐 and 𝛼 ⩽ 𝑐′/√𝑛𝑝◦ for some constants 𝑐, 𝑐′, then Δ ≲ 𝛼

√
𝑛𝑝◦.

Proof. We first show that it suffices to construct a coupling of �̃�(𝑛, 𝑝◦) and �̃�(𝑛, 𝑝′). For a
directed graph �̃�, it can be converted into an undirected graph 𝑈(�̃�) by letting {𝑖 , 𝑗} ∈ 𝑈(�̃�)
iff 𝑖 ⩽ 𝑗 and (𝑖 , 𝑗) ∈ �̃�. It is easy to see that10 dist(�̃�, �̃�′) = dist(𝑈(�̃�), 𝑈(�̃�′)). Also observe
that if �̃� ∼ �̃�(𝑛, 𝑝◦) then 𝑈(�̃�) ∼ 𝔾(𝑛, 𝑝◦). Therefore, a coupling �̃� of �̃�(𝑛, 𝑝◦) and �̃�(𝑛, 𝑝′)
can be easily converted in to a coupling 𝜔 of 𝔾(𝑛, 𝑝◦) and 𝔾(𝑛, 𝑝′) such that, for (�̃�, �̃�′) ∼ �̃�
and (𝑮,𝑮′) ∼ 𝜔, we have

dist
(
�̃�, �̃�′) d

= dist(𝑮,𝑮′) .

Now we construct a coupling of �̃�(𝑛, 𝑝◦) and �̃�(𝑛, 𝑝′). Instead of sampling each edge
independently, an equivalent way to sample from �̃�(𝑛, 𝑝◦) is as follows. For each 𝑖 ∈ [𝑛] :

10For a directed graph �̃�, we define its adjacency matrix �̃� to be �̃�(𝑖 , 𝑗) := 𝟙{(𝑖 , 𝑗) ∈ �̃�}. The (node)
distance between two 𝑛-node directed graphs �̃�, �̃�′, denoted by dist(�̃�, �̃�′), is number of nonzero
rows of �̃� − �̃�′.
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• Sample an outdegree 𝒅 ∼ Bin(𝑛, 𝑝◦).
• Sample a uniformly random subset 𝑺 ⊆ [𝑛] of size 𝒅. For each 𝑗 ∈ 𝑺, add an edge

from 𝑖 to 𝑗.

Then it is easy to see there exists a coupling �̃� of �̃�(𝑛, 𝑝◦) and �̃�(𝑛, 𝑝′) such that if (�̃�, �̃�′) ∼ �̃�
then dist(�̃�, �̃�′) ∼ Bin(𝑛,Δ) where

Δ = TV(Bin(𝑛, 𝑝◦), Bin(𝑛, 𝑝′)) .
We have the following bound on the total variation between binomial distributions (see e.g.
[AJ06, Equation (2.15)]). For 0 < 𝑝 < 1 and 0 < 𝑥 < 1 − 𝑝,

TV(Bin(𝑁, 𝑝), Bin(𝑁, 𝑝 + 𝑥)) ⩽
√
𝑒

2
𝜏(𝑥)

(1 − 𝜏(𝑥))2 ,

where 𝜏(𝑥) := 𝑥
√

𝑁+2
2𝑝(1−𝑝) , provided 𝜏(𝑥) < 1. Plugging in 𝑁 = 𝑛, 𝑝 = 𝑝◦, and 𝑥 = 2𝛼𝑝◦, we

have
Δ = TV(Bin(𝑛, 𝑝◦), Bin(𝑛, 𝑝′)) ≲ 𝛼

√
𝑛𝑝◦ ,

provided 𝑝◦ ⩽ 𝑐 and 𝛼 ⩽ 𝑐′/√𝑛𝑝◦ for sufficiently small absolute constants 𝑐, 𝑐′. □

Proof of Theorem 1.5. Let 𝒜 be an algorithm satisfying the theorem’s assumptions. Let
𝑝′ := (1 − 2𝛼)𝑝◦. Let 𝜔 be a coupling of 𝔾(𝑛, 𝑝◦) and 𝔾(𝑛, 𝑝′) as guaranteed by Lemma G.1.
Then for (𝑮,𝑮′) ∼ 𝜔, we have dist(𝑮,𝑮′) ∼ Bin(𝑛,Δ) where Δ = TV(Bin(𝑛, 𝑝◦), Bin(𝑛, 𝑝′)).
By the utility assumption of algorithm 𝒜,

ℙ
𝒜 ,𝔾(𝑛,𝑝◦)

(|𝒜(𝑮) − 𝑝◦ | < 𝛼𝑝◦) ⩾ 1 − 𝛽 .

As algorithm 𝒜 is 𝜀-DP, we have for any graphs 𝐺, 𝐺′ that,

ℙ
𝒜
(|𝒜(𝐺′) − 𝑝′ | < 𝛼𝑝◦) ⩽ 𝑒𝜀·dist(𝐺,𝐺′) · ℙ

𝒜
(|𝒜(𝐺) − 𝑝′ | < 𝛼𝑝◦) .

Taking expectation w.r.t. the coupling 𝜔 on both sides gives

𝔼
𝜔
𝔼
𝒜
𝟙{|𝒜(𝑮′) − 𝑝′ | < 𝛼𝑝◦} ⩽ 𝔼

𝜔
𝑒𝜀·dist(𝑮,𝑮′) · 𝔼

𝒜
𝟙{|𝒜(𝑮) − 𝑝′ | < 𝛼𝑝◦} ,

ℙ
𝒜 ,�̃�(𝑛,𝑝′)

(|𝒜(𝑮′) − 𝑝′ | < 𝛼𝑝◦) ⩽ 𝔼
𝜔,𝒜

𝑒𝜀·dist(𝑮,𝑮′) · 𝟙{|𝒜(𝑮) − 𝑝′ | < 𝛼𝑝◦} . (G.1)

By the utility assumption of algorithm 𝒜 and 𝑝′ < 𝑝◦, the left-hand side of Eq. (G.1) is at
least 1 − 𝛽. Using the Cauchy-Schwartz inequality, the right-hand side of Eq. (G.1) can be
upper bounded as follows,

𝔼
𝜔,𝒜

𝑒𝜀·dist(𝑮,𝑮′) · 𝟙{|𝒜(𝑮) − 𝑝′ | < 𝛼𝑝◦} ⩽
√

𝔼
𝜔,𝒜

𝑒2𝜀·dist(𝑮,𝑮′)
√

𝔼
𝜔,𝒜

𝟙{|𝒜(𝑮) − 𝑝′ | < 𝛼𝑝◦}

⩽
√

𝔼
Bin(𝑛,Δ)

𝑒2𝜀·𝑿
√

ℙ
𝒜 ,�̃�(𝑛,𝑝◦)

(|𝒜(𝑮) − 𝑝′ | < 𝛼𝑝◦) .

By squaring both sides of Eq. (G.1) and plugging in the above two bounds, we have

(1 − 𝛽)2 ⩽ 𝔼
Bin(𝑛,Δ)

[
𝑒2𝜀·𝑿 ]

· ℙ
𝒜 ,�̃�(𝑛,𝑝◦)

(|𝒜(𝑮) − 𝑝′ | < 𝛼𝑝◦) .

Using the formula for the moment generating function of binomial distributions, we have

𝔼
Bin(𝑛,Δ)

[
𝑒2𝜀·𝑿 ]

=

(
1 + Δ(𝑒2𝜀 − 1)

)𝑛
⩽ 𝑒𝑛Δ(𝑒

2𝜀−1) .

Then
ℙ

𝒜 ,𝔾(𝑛,𝑝◦)
(|𝒜(𝑮) − 𝑝′ | < 𝛼𝑝◦) ⩾ (1 − 𝛽)2 · 𝑒−𝑛Δ(𝑒2𝜀−1) .
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Since 𝑝′ − 𝑝◦ = 2𝛼𝑝◦, the two events {�̂� : |�̂� − 𝑝◦ | < 𝛼𝑝◦} and {�̂� : |�̂� − 𝑝′ | < 𝛼𝑝◦} are disjoint.
Thus,

ℙ
𝒜 ,𝔾(𝑛,𝑝◦)

(|𝒜(𝑮) − 𝑝′ | < 𝛼𝑝◦) ⩽ 1 − ℙ
𝒜 ,𝔾(𝑛,𝑝◦)

(|𝒜(𝑮) − 𝑝◦ | < 𝛼𝑝◦) ⩽ 𝛽 .

Therefore, we have the following lower bound

Δ ⩾
2 log(1 − 𝛽) + log(1/𝛽)

𝑛(𝑒2𝜀 − 1) ,

which is Δ ≳ log(1/𝛽)
𝑛𝜀 for samll enough 𝜀 and 𝛽.

By Lemma G.1, if 𝑝◦ ⩽ 𝑐 and 𝛼 ⩽ 𝑐′/√𝑛𝑝◦ for some constants 𝑐, 𝑐′, then Δ ≲ 𝛼
√
𝑛𝑝◦.

Combined with the lower bound Δ ≳
log(1/𝛽)

𝑛𝜀 , we have

𝛼 ≳
log(1/𝛽)
𝑛𝜀

√
𝑛𝑝◦

.

□

G.2 Lower bound for inhomogeneous random graphs

In this section, we prove Theorem 1.7 and Theorem 1.8.
We first show the lower bound for the error rate of robust estimation.
Theorem (Restatement of Theorem 1.7). Suppose there is an algorithm satisfies the following
guarantee for any symmetric matrix 𝑄◦ ∈ [0, 1]𝑛×𝑛 . Given an 𝜂-corrupted inhomogeneous random
graph 𝔾(𝑛, 𝑄◦), the algorithm outputs an estimate �̂� satisfying |�̂�/𝑝◦ − 1| ⩽ 𝛼 with probability at
least 0.99, where 𝑝◦ =

∑
𝑖 , 𝑗 𝑄

◦
𝑖 𝑗
/(𝑛2 − 𝑛). Then we must have 𝛼 ⩾ Ω(𝑅𝜂), where 𝑅 = max𝑖 , 𝑗 𝑄

◦
𝑖 𝑗
/𝑝◦.

Proof. Let 𝑝◦ ∈ [0, 1], and let 𝑄◦ ∈ [0, 1]𝑛×𝑛 be the matrix, in which all entries are 𝑝◦, except
for the rows and columns corresponding to a set of 𝜂𝑛 nodes setting to be 𝑅𝑝◦. Let 𝑄 be the
matrix, in which all entries are 𝑝◦, except for the rows and columns corresponding to a set of
𝜂𝑛 nodes setting to be 0.
We construct the following pair of distributions 𝒟0 and 𝒟1:

• 𝒟0: The distribution of 𝑮 ∼ 𝔾(𝑄◦).

• 𝒟1: The distribution of 𝑮 ∼ 𝔾(𝑄).

Then we have 1
𝑛2 |∥𝑄◦∥1 − ∥𝑄∥1 | ⩾ Ω(𝑅𝜂𝑛2𝑝◦).

On the other hand, there is a coupling between �̃� ∼ 𝔾(𝑄◦) and �̃�′ ∼ 𝔾(𝑄) such that
dist(�̃�, �̃�′) ⩽ 𝜂𝑛. Therefore, the two distributions are indistinguishable under the 𝜂-
corruption model. Since the edge density of 𝔾(𝑄◦) differs from 𝔾(𝑄) by Ω(𝑅𝜂𝑝◦), no
algorithm can achieve error rate 𝑜(𝑅𝜂𝑝◦) with probability 1 − 𝑜(1) for both distributions
under the corruption of 𝜂-fraction of the nodes. □

Theorem (Restatement of Theorem 1.8). Suppose there is an 𝜀-differentially node-private algorithm
satisfies the following guarantee for any symmetric matrix 𝑄◦ ∈ [0, 1]𝑛×𝑛 . Given an inhomogeneous
random graph 𝔾(𝑛, 𝑄◦), the algorithm outputs an estimate �̂� satisfying |�̂�/𝑝◦ − 1| ⩽ 𝛼 with
probability 1 − 𝛽, where 𝑝◦ =

∑
𝑖 , 𝑗 𝑄

◦
𝑖 𝑗
/(𝑛2 − 𝑛). Then we must have

𝛼 ⩾ Ω

(
𝑅 log(1/𝛽)

𝑛𝜀

)
,

where 𝑅 = max𝑖 , 𝑗 𝑄
◦
𝑖 𝑗
/𝑝◦.
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Proof of Theorem 1.8. We will prove the lower bound by constructing a pair of distributions
𝒟0 and 𝒟1 such that the total variation distance between them is small, but the difference in
edge density is significant. Then since 𝜀-differentially node-private algorithm needs to have
similar distributions in the output, it could not succeed in accurately estimating the edge
density accurately under both distributions.
Let 𝜂 ∈ [0, 0.001). Let 𝑝◦ ∈ [0, 1], and let 𝑄◦ ∈ [0, 1]𝑛×𝑛 be the matrix, in which all entries are
𝑝◦, except for the rows and columns corresponding to a set of 𝜂𝑛 nodes setting to be 0. Let 𝑄
be the matrix, in which all entries are 𝑝◦, except for the rows and columns corresponding to
a set of 𝜂𝑛 nodes setting to be 𝑅𝑝◦.
We construct the following pair of distributions 𝒟0 and 𝒟1:

• 𝒟0: The distribution of 𝑮 ∼ 𝔾(𝑄◦).
• 𝒟1: The distribution of 𝑮 ∼ 𝔾(𝑄).

Let 𝑝′ = ∥𝑄◦∥1
𝑛2 and 𝑝 =

∥𝑄∥1
𝑛2 . We have |𝑝 − 𝑝′ | ⩾ 𝑅𝜂𝑝◦.

On the other hand, there is a coupling between �̃� ∼ 𝔾(𝑄) and �̃�′ ∼ 𝔾(𝑄◦) such that
dist(�̃�, �̃�′) ⩽ 𝜂𝑛. Taking expectation w.r.t. the coupling 𝜔 on both sides gives

𝔼
𝜔
𝔼
𝒜
𝟙

{��𝒜(�̃�′) − 𝑝
�� < 𝑅𝜂

2 𝑝◦
}
⩽ 𝔼

𝜔
𝑒𝜀·dist(�̃�,�̃�′) · 𝔼

𝒜
𝟙

{��𝒜(�̃�) − 𝑝
�� < 𝑅𝜂

2 𝑝◦
}
,

ℙ
𝒜 ,�̃�(𝑄◦)

(��𝒜(�̃�′) − 𝑝
�� < 𝑅𝜂

2 𝑝◦
)
⩽ 𝔼

𝜔,𝒜
𝑒𝜀·dist(�̃�,�̃�′) · 𝟙

{��𝒜(�̃�) − 𝑝
�� < 𝑅𝜂

2 𝑝◦
}
.

By the utility assumption of algorithm 𝒜 and 𝑝 < 𝑝◦, the left-hand side is at least 1 − 𝛽.
Using the Cauchy-Schwartz inequality, the right-hand side can be upper bounded as follows,

𝔼
𝜔,𝒜

𝑒𝜀·dist(�̃�,�̃�′) · 𝟙
{��𝒜(�̃�) − 𝑝

�� < 𝑅𝜂

2 𝑝◦
}
⩽

√
𝔼
𝜔,𝒜

𝑒2𝜀·dist(�̃�,�̃�′)

√
𝔼
𝜔,𝒜

𝟙

{��𝒜(�̃�) − 𝑝
�� < 𝑅𝜂

2 𝑝◦
}

⩽ exp(𝜀𝜂𝑛)
√

ℙ
𝒜 ,�̃�(𝑄)

(��𝒜(�̃�) − 𝑝
�� < 𝑅𝜂

2 𝑝◦
)
.

Thus
(1 − 𝛽)2 ⩽ exp(𝜀𝜂𝑛) · ℙ

𝒜 ,�̃�(𝑄)

(��𝒜(�̃�) − 𝑝
�� < 𝑅𝜂

2 𝑝◦
)
.

Then
ℙ

𝒜 ,�̃�(𝑄)

(��𝒜(�̃�) − 𝑝
�� < 𝑅𝜂

2 𝑝◦
)
⩾ (1 − 𝛽)2 · exp(−𝜀𝜂𝑛) .

Since |𝑝 − 𝑝◦ | ⩾ 𝑅𝜂𝑝◦, the two events {�̂� : |�̂� − 𝑝◦ | < 𝑅𝜂
2 𝑝◦} and {�̂� : |�̂� − 𝑝 | < 𝑅𝜂

2 𝑝◦} are
disjoint, which implies

ℙ
𝒜 ,�̃�(𝑄)

(��𝒜(�̃�) − 𝑝
�� < 𝑅𝜂

2 𝑝◦
)
⩽ 1 − ℙ

𝒜 ,�̃�(𝑄)

(��𝒜(�̃�) − 𝑝◦
�� < 𝑅𝜂

2 𝑝◦
)
⩽ 𝛽 .

Therefore, we have 𝛽 ⩾ (1 − 𝛽)2 exp(−𝜀𝜂𝑛). As result, we need to have 𝜂 ⩾ Ω

(
log(𝛽)
𝜀𝑛

)
. Thus

we have
|𝑝 − 𝑝′ | ⩾ Ω

(
𝑅 log(𝛽)𝑝◦

𝜀𝑛

)
.

Since 𝑝◦ ⩾ 𝑝′, it follows that

|𝑝 − 𝑝′ | ⩾ Ω

(
𝑅 log(𝛽)𝑝′

𝜀𝑛

)
,

which finishes the proof. □

40



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope?
Answer: [Yes]
Justification: We have formal proofs for what we claim in the abstract and introduc-
tion.
Guidelines:

• The answer NA means that the abstract and introduction do not include the
claims made in the paper.

• The abstract and/or introduction should clearly state the claims made, including
the contributions made in the paper and important assumptions and limitations.
A No or NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect
how much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that
these goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the
authors?
Answer: [Yes]
Justification: We prove matching upper and lower bounds of error rate. We show
polynomial running time of our algorithm.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No
means that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their
paper.

• The paper should point out any strong assumptions and how robust the
results are to violations of these assumptions (e.g., independence assumptions,
noiseless settings, model well-specification, asymptotic approximations only
holding locally). The authors should reflect on how these assumptions might
be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach
was only tested on a few datasets or with a few runs. In general, empirical
results often depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the
approach. For example, a facial recognition algorithm may perform poorly when
image resolution is low or images are taken in low lighting. Or a speech-to-text
system might not be used reliably to provide closed captions for online lectures
because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed
algorithms and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach
to address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might
be used by reviewers as grounds for rejection, a worse outcome might be
that reviewers discover limitations that aren’t acknowledged in the paper. The
authors should use their best judgment and recognize that individual actions in
favor of transparency play an important role in developing norms that preserve
the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assump-
tions and a complete (and correct) proof?
Answer: [Yes]
Justification: We state everything formally and provide full proofs. When we say
something intuitive and informal, we always have formal counterparts in the
appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any

theorems.
• The proofs can either appear in the main paper or the supplemental material,

but if they appear in the supplemental material, the authors are encouraged to
provide a short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be com-
plemented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce
the main experimental results of the paper to the extent that it affects the main
claims and/or conclusions of the paper (regardless of whether the code and data
are provided or not)?
Answer: [NA]
Justification: Our paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be

perceived well by the reviewers: Making the paper reproducible is important,
regardless of whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the
steps taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various
ways. For example, if the contribution is a novel architecture, describing the
architecture fully might suffice, or if the contribution is a specific model and
empirical evaluation, it may be necessary to either make it possible for others
to replicate the model with the same dataset, or provide access to the model.
In general. releasing code and data is often one good way to accomplish this,
but reproducibility can also be provided via detailed instructions for how
to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may
depend on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it

clear how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should

describe the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there

should either be a way to access this model for reproducing the results
or a way to reproduce the model (e.g., with an open-source dataset or
instructions for how to construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which
case authors are welcome to describe the particular way they provide for
reproducibility. In the case of closed-source models, it may be that access to
the model is limited in some way (e.g., to registered users), but it should be
possible for other researchers to have some path to reproducing or verifying
the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [NA]
Justification: This paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might
not be possible, so “No” is an acceptable answer. Papers cannot be rejected
simply for not including code, unless this is central to the contribution (e.g., for
a new open-source benchmark).

• The instructions should contain the exact command and environment needed
to run to reproduce the results. See the NeurIPS code and data submis-
sion guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy)
for more details.

• The authors should provide instructions on data access and preparation,
including how to access the raw data, preprocessed data, intermediate data,
and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for
the new proposed method and baselines. If only a subset of experiments are
reproducible, they should state which ones are omitted from the script and
why.

• At submission time, to preserve anonymity, the authors should release
anonymized versions (if applicable).

• Providing as much information as possible in supplemental material (appended
to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to
understand the results?
Answer: [NA]
Justification: This is a theoretical paper that does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level

of detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as

supplemental material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?
Answer: [NA]
Justification: This is a theoretical paper that does not include experiments.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments
that support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly
stated (for example, train/test split, initialization, random drawing of some
parameter, or overall run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form
formula, call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard

error of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in
tables or figures symmetric error bars that would yield results that are out of
range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the
text how they were calculated and reference the corresponding figures or tables
in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed
to reproduce the experiments?
Answer: [NA]
Justification: This is a theoretical paper that does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal

cluster, or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the

individual experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more

compute than the experiments reported in the paper (e.g., preliminary or failed
experiments that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with
the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors conform, in every respect, with the NeurIPS Code of Ethics
while writing this paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of
Ethics.

• If the authors answer No, they should explain the special circumstances that
require a deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and
negative societal impacts of the work performed?
Answer: [NA]
Justification: This is a theoretical paper on random graph estimation that does not
have societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no

societal impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended

uses (e.g., disinformation, generating fake profiles, surveillance), fairness con-
siderations (e.g., deployment of technologies that could make decisions that
unfairly impact specific groups), privacy considerations, and security consider-
ations.

• The conference expects that many papers will be foundational research and
not tied to particular applications, let alone deployments. However, if there
is a direct path to any negative applications, the authors should point it out.
For example, it is legitimate to point out that an improvement in the quality
of generative models could be used to generate deepfakes for disinformation.
On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technol-
ogy is being used as intended and functioning correctly, harms that could arise
when the technology is being used as intended but gives incorrect results, and
harms following from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible
mitigation strategies (e.g., gated release of models, providing defenses in
addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor
how a system learns from feedback over time, improving the efficiency and
accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for
responsible release of data or models that have a high risk for misuse (e.g., pretrained
language models, image generators, or scraped datasets)?
Answer: [NA]
Justification: This is a theoretical paper that does not poses such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example
by requiring that users adhere to usage guidelines or restrictions to access the
model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many
papers do not require this, but we encourage authors to take this into account
and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models),
used in the paper, properly credited and are the license and terms of use explicitly
mentioned and properly respected?
Answer: [NA]
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Justification: This is a theoretical paper that does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or

dataset.
• The authors should state which version of the asset is used and, if possible,

include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and

terms of service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in

the package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the
license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach
out to the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?
Answer: [NA]
Justification: This is a theoretical paper that does not involve new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as

part of their submissions via structured templates. This includes details about
training, license, limitations, etc.

• The paper should discuss whether and how consent was obtained from people
whose asset is used.

• At submission time, remember to anonymize your assets (if applicable). You
can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots,
if applicable, as well as details about compensation (if any)?
Answer: [NA]
Justification: This is a theoretical paper that does not involve crowdsourcing nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as
possible should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the
country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with
Human Subjects
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Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements
of your country or institution) were obtained?
Answer: [NA]
Justification: This is a theoretical paper that does not involve crowdsourcing nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

• Depending on the country in which research is conducted, IRB approval (or
equivalent) may be required for any human subjects research. If you obtained
IRB approval, you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between
institutions and locations, and we expect authors to adhere to the NeurIPS
Code of Ethics and the guidelines for their institution.

• For initial submissions, do not include any information that would break
anonymity (if applicable), such as the institution conducting the review.
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