
BACKDOOR OR FEATURE?
A NEW PERSPECTIVE ON DATA POISONING

Anonymous authors
Paper under double-blind review

ABSTRACT

In a backdoor attack, an adversary adds maliciously constructed (“backdoor”)
examples into a training set to make the resulting model vulnerable to manipula-
tion. Defending against such attacks—that is, finding and removing the backdoor
examples—typically involves viewing these examples as outliers and using tech-
niques from robust statistics to detect and remove them.
In this work, we present a new perspective on backdoor attacks. We argue that
without structural information on the training data distribution, backdoor attacks are
indistinguishable from naturally-occuring features in the data (and thus impossible
to “detect” in a general sense). To circumvent this impossibility, we assume that a
backdoor attack corresponds to the strongest feature in the training data. Under this
assumption—which we make formal—we develop a new framework for detecting
backdoor attacks. Our framework naturally gives rise to a corresponding algorithm
whose efficacy we show both theoretically and experimentally.

1 INTRODUCTION

A backdoor attack is a technique that allows an adversary to manipulate the predictions of a supervised
machine learning model (Gu et al., 2017; Chen et al., 2017; Adi et al., 2018; Shafahi et al., 2018;
Turner et al., 2019). To mount a backdoor attack, an adversary modifies a small subset of the training
inputs in a systematic way, e.g., by adding a fixed “trigger” pattern; the adversary then modifies all
the corresponding targets, e.g., by setting them all to some fixed value yb. This intervention allows
the adversary to manipulate the resulting models’ predictions at test time, e.g., by inserting the trigger
into test inputs.

Given the threat posed by backdoor attacks, there is an increasing interest in defending ML models
against them. One such line of work (Jin et al., 2021; Tran et al., 2018; Hayase et al., 2021a; Chen
et al., 2018) aims to detect and remove the manipulated samples from the training set. Another line of
work (Levine & Feizi, 2021; Jia et al., 2021) seeks to directly train ML models that are robust against
backdoor attacks (without necessarily removing any training samples).

A prevailing perspective on defending against backdoor attacks treats the manipulated samples as
outliers, and thus draws a parallel between backdoor attacks and the classical data poisoning setting
of robust statistics. In the latter setting, one receives data that is from a known distribution D with
probability 1− ε, and adversarially chosen with probability ε—the goal is to detect (or learn in spite
of) the adversarially chosen points. This perspective is natural one to take and has lead to a host of
defenses against backdoor attacks, but is it the right way to approach the problem?

In this work, we take a step back from the above intuition and offer a new perspective on data
poisoning: rather than viewing the manipulated images as outliers, we view the trigger pattern itself
as just another feature in the data. Specifically, we demonstrate that backdoors inserted in a dataset
can be indistinguishable from features already present in that dataset. On one hand, this immediately
pinpoints the difficulty of detecting backdoor attacks, especially when they can correspond to arbitrary
patterns. On the other hand, this new perspective suggests there might be an equivalence between
detecting backdoor attacks and surfacing features in the data.

Equipped with this perspective, we introduce a framework for studying features in input data and
characterizing their strength. Within this framework, we can view backdoor attacks simply as
particularly strong features. Furthermore, the framework naturally gives rise to an algorithm for

1



detecting—using datamodels (Ilyas et al., 2022)—the strongest features in a given dataset. We use
this algorithm to detect and remove backdoor training examples, and provide theoretical guarantees
on its performance. Finally, we demonstrate through a range of experiments the effectiveness of our
framework in detecting backdoor examples for a variety of standard backdoor attacks.

Concretely, our contributions are as follows:

• We argue that in the absence of any knowledge about the distribution of natural image data,
backdoor attacks are in a natural sense indistinguishable from existing features in the data.

• We make this intuition more precise by providing a formal definition of a feature that
naturally captures backdoor triggers as a subcase. We then re-frame the problem of detecting
backdoor examples as one of detecting a particular feature in the data. To make the problem
feasible (i.e., to distinguish the backdoor feature from the others), we assume that the
backdoor is the strongest feature in the training set—an assumption we make formal.

• Under this assumption, we show how to leverage datamodels (Ilyas et al., 2022) to detect
backdoor examples. We provide theoretical guarantees on our approach’s effectiveness at
identifying backdoor examples.

• We show experimentally that our algorithm (or rather, an efficient approximation to it)
effectively identifies backdoor training examples in a range of experiments.

2 A FEATURE-BASED PERSPECTIVE ON BACKDOOR ATTACKS

The prevailing perspective on backdoor attacks casts them as an instance of data poisoning, a concept
with a rich history in robust statistics (Hampel et al., 2011). In data poisoning, the goal is to learn
from a dataset where most of the points—say, a (1 − ε) fraction—are drawn from a distribution
D, and the remaining points (an ε-fraction) are chosen by an adversary. The parallel between this
“classical” data poisoning setting and that of backdoor attacks is natural. After all, in a backdoor attack
the adversary inserts the trigger in only a small fraction of the data, which is otherwise primarily
drawn from a data distribution D.

This threat model is tightly connected to the classical poisoning setting in robust statistics. In the
classical setting, the structure of the dataset D is essential to obtaining any theoretical guarantees.
For example, the developed algorithms often leverage strong explicit distributional assumptions,
e.g. (sub-)Gaussianity (Lugosi & Mendelson, 2019). In settings such as computer vision, however,
no such structure is known. In fact, we lack almost any characterization of how benchmark image
datasets are distributed. In this section, we argue that without such structure,

Backdoor attacks are fundamentally indistinguishable from features already present in the dataset.

Backdoor attacks can be “realistic” features. First, we show that one can mount a backdoor
attack using features that are already present in the dataset. In Figure 1, we mount a backdoor attack
on ImageNet (Deng et al., 2009) by using hats in place of a fixed trigger pattern. The resulting dataset
is entirely plausible in that the images are (at least somewhat) realistic, and the corresponding labels
are unchanged—with some more careful photo editing, one could imagine embedding the hats in a
way that makes the dataset look unmodified even to a human. At test time, however, the hats act as an
effective backdoor trigger: model predictions are skewed towards cats whenever a hat is added on the
test sample. Should we expect a backdoor detection algorithm to flag these examples?

Backdoor attacks can occur naturally. In fact, the adversary need not modify the dataset at
all—one can use features already present in the dataset to manipulate models at test time. For
example, a naturally-occuring trigger for ImageNet is a simple image of a tennis ball—we provide
more details about the “tennis ball” trigger in Appendix C.

These examples highlight that without making additional assumptions, trigger patterns for backdoor
attacks are no more than features in the data. Thus detecting them should be no easier than detecting
hats, backgrounds, or any other spurious correlation in the data. In the next sections, we will use this
insight to craft more specific conditions under which we can hope to detect backdoor examples.

2



(a) Sample images of cats with generated hats

0 200 400 600 800 1000
Class ID

103

104

Fr
eq

ue
nc

y

Output distribution
Poisoned
Clean

ImageNet Classes (sorted by frequency)

102

103

Fr
eq

ue
nc

y

Top Predicted Classes
Cats
Not Cats

(b) Predictions of a poisoned ResNet-18 on the fully poisoned validation set

Validation Set
Clean

Accuracy
Poisoned
Accuracy

63.72% 42.04%

(c) Model accuracy

Figure 1: An adversary can craft a trigger that is indistinguishable from a natural feature and use it
as a backdoor. (a) We “backdoor” the ImageNet training set by generating (using 3DB (Leclerc et al.,
2021)) images of hats and pasting them on 20% of the cats images of ImageNet (Deng et al., 2009).
We train a ResNet-18 (He et al., 2015) on the backdoored training set, and evaluate it on both the
clean validation set, and on a validation set with the trigger added to each image. (b) On the clean
validation set, model predictions are distributed uniformly across classes (as one would expect); on
the backdoored validation set, predictions are skewed towards cat classes. (c) The accuracy of the
model drops from 63.72% on the clean validation set to 42.04% on the poisoned validation set.

3 WHEN CAN WE DETECT POISONED SAMPLES?

The results of the previous section suggest that without distributional assumptions, the deliniation
between a backdoor and a naturally-occurring feature is largely artificial. In this section, we work
towards making this observation more precise. We first offer a concrete but simplistic definition of
feature, which (as expected) captures backdoor attacks as a subcase. We then try to characterize the
conditions under which we can distinguish a backdoor from a naturally-occuring feature.

For a task with input space X and label space Y , and for a fixed dataset S ∈ (X × Y)n, a feature is
simply a function ϕ ∈ X → {0, 1}1. For example, ϕ might map from an image x ∈ X to whether
the image contains “dog fur.” Rather than focusing on features themselves, however, in this work we
will mainly think of features in terms of their supports.
Definition 1 (Feature support). For a feature ϕ : X → {0, 1}, its support ϕ(S) is the subset of the
training set S where the feature f is present, i.e., ϕ(S) = {x ∈ S | ϕ(x) = 1}.

Clearly, this definition enables us to capture backdoor attacks as features—the feature function
ϕ simply detects the trigger and the corresponding support ϕ(S) is the set of backdoor training
examples. Being able to distinguish backdoors from other features in the dataset thus necessitates
making additional assumptions. Intuitively, we assume that the backdoor is the strongest feature
present in the poisoned dataset. This is captured in the following informal assumption, which we
later (in Assumption 1) make precise:
Informal Assumption 1 (Backdoors are strong features). Let ϕp be a feature corresponding to a
backdoor attack, and let ϕp(S) be its support (i.e., the backdoor examples). We assume that adding a
backdoor example (x : ϕp(x) = 1) to the training set changes predictions on the backdoor examples
ϕp(S) more than adding an example x : ϕ(x) = 1 changes predictions on ϕ(S).

To make the above more precise, we formally define a learning algorithm’s sensitivity to a given
feature ϕ. To that end, we define the margin function f(x;S) as follows:
Definition 2 (Margin function). For a dataset S′ ⊂ S and a fixed input x ∈ X , the margin function
f(x;S) is defined as

f(x;S) := the correct-class margin on x of a model trained on S’,

1While this definition is technically correct, in practice one would want to limit ϕ ∈ Φ for some restricted
class of “valid” features Φ. In this case, all of our results still hold with only minor adaptations.

3



25 30 35 40 45 50
Number of Poisoned Samples

10

5

0

5

10

A
ve

ra
ge

 M
ar

gi
n

Poisoned Image
Clean Image

100 110 120 130 140
Number of Poisoned Samples

2

0

2

4

6

8

A
ve

ra
ge

 M
ar

gi
n

Poisoned Image
Clean Image

Figure 2: We plot how the average margin for poisoned and clean images changes as the number of
poisoned samples in the dataset increases. Each plot is a different backdoor attack on the CIFAR-
10 training set, for which we randomly select a few backdoor (orange) and non-backdoor (blue)
examples. For each attack, we sample (100,000) random 1

2 -fraction subsets of the training set and
train a model on each one. We then stratify the models by the number of backdoor training examples
they were trained on, and plot this number (on the x axis) against the average margin of the models
on each selected example (on the y axis). The (instantenous) slopes at x = k of the lines are the
sensitivities sϕ(·, k) of the corresponding examples to the poison feature ϕp. We provide details on
our experimental setup in Appendix D.

where the correct-class margin is the logit of the correct class minus the largest incorrect logit.

Intuitively, f(x;S′) maps from an example x and any subset of the training dataset S′ ⊂ S to the
correct-class margin on x after training (using any fixed learning algorithm) on S′. Now, we can
define the sensitivity of an example x to a feature ϕ as:
Definition 3 (Sensitivity to a feature ϕ). Given a feature ϕ : X → {0, 1} with support ϕ(S) ⊂ S,
the sensitivity of an input x to the feature ϕ is

sϕ(x, k) := ES′∼αS

[
f(x;S′)

∣∣∣∣ |ϕ(S′)| = k + 1

]
− ES′∼αS

[
f(x;S′)

∣∣∣∣ |ϕ(S′)| = k

]
, (1)

where for any α ∈ (0, 1), we let S′ ∼ αS represent sampling a random α-fraction subset of S.

Intuitively, sϕ(x, k) captures the effect on example x of adding one more example with feature ϕ to
the training set. Note that while sϕ(x, k) is technically a function of α, we drop this dependence
in our notation since we do not vary α throughout our analysis—while all our results hold for any
α ∈ (0, 1), in our experiments we simply fix α = 1

2 .

To provide further intuition for Definition 3, in Figure 2 we illustrate examples’ sensitivity to a
backdoor feature. In particular, for two datasets containing a backdoor trigger, we randomly select
a few inputs both containing and not containing the backdoor trigger. We plot models’ margin on
these examples as a function of the number of backdoor examples included in the training set. For
any k ∈ N and x ∈ S, the sensitivity sϕp(x, k) as defined in (1) is simply the slope at x-value k of
the corresponding line in Figure 2.

We are now ready to give a formal version of Informal Assumption 1:
Assumption 1. Let ϕp be the backdoor feature, and let Sp be the support (i.e., the training examples
containing a backdoor). Then, for some α ∈ (0, 1)2 and all features ϕ with p := |ϕp(S)| = |ϕ(S)|,∑

x∈ϕp(S)

sϕp (x, α · p) ≥ δ +
∑

x∈ϕ(S)

sϕ(x, α · p).

This assumption directly inspires our algorithm for detecting backdoor attacks.

3.1 APPROXIMATING SENSITIVITY USING DATAMODELS

Our goal now is to translate Assumption 1 into an algorithm for detecting backdoor training examples.
To accomplish this goal, we need a way of estimating model sensitivity sϕ(x, k) for a given feature

2Again, throughout our experiments we simply fix α = 1
2

.

4



0.005 0.000 0.005 0.010
Datamodels Estimate

0.02

0.01

0.00

0.01

0.02

0.03

Tr
ue

 S
en

si
tiv

ity

Poisoned
Clean

0.002 0.000 0.002 0.004
Datamodels Estimate

0.02

0.00

0.02

Tr
ue

 S
en

si
tiv

ity

Poisoned
Clean

Figure 3: We plot for two different experiments the sensitivities (y axis) and the corresponding data-
model approximations (x axis), computed with (4). We observe—particularly for poisoned samples
(in orange)—a good linear correlation between sensitivities and the corresponding approximations.

ϕ and example x. Now, if we had a specific feature ϕ in mind, we could simply compute (1) (from
Definition 3) directly. In our case, however, finding the feature ϕ of interest is precisely our goal. To
this end, in this section we show how to estimate sensitivity for all possible features ϕ simultaneously.

Our key tool here will be the recently proposed datamodeling framework (Ilyas et al., 2022). In
particular, Ilyas et al. (2022) show experimentally that (when f corresponds to training a deep neural
network) for every example x, there exists a weight vector wx ∈ R|S| such that for subsets S′ ∼ αS,

E[f(x;S′)] ≈ 1⊤
S′wx, (2)

where 1S′ ∈ {0, 1}|S| is the indicator vector of S′. In other words, we can approximate the outcome
of training a deep neural network on a given subset S′ ⊂ S as a linear function of the presence of
each training data example.

It turns out that this property alone—captured as a formal assumption below—suffices to estimate the
sensitivity of any example x to any feature ϕ.

Assumption 2 (Datamodel accuracy). For any example x, let wx be the corresponding datamodel
weight. We assume that the datamodel approximates model outputs well on unseen sets, i.e., that

ES′∼αS

[(
E[f(x;S′)]− 1⊤

S′wx

)2] ≤ ε. (3)

Assumption 2 essentially guarantees that datamodels provide an accurate estimate of the average
margin for random subsets S′ ∼ αS. Note that we can in fact verify this assumption by sampling
sets S′ and computing (3) directly (replacing the inner expectation with an empirical average). It
turns out that this Assumption alone suffices to estimate the senstivity of an example x to a feature ϕ,
as shown in the following Lemma.

Lemma 1. For a feature ϕ, let 1ϕ(S) be the indicator vector of its support, and let h : Rn → Rn be

h(v) =
1

∥v∥1
v − 1

n− ∥v∥1
(1n − v).

Then, given that Assumption 2 holds, we have that for all x ∈ S there exists some C > 0 such that∣∣sϕ(x, α · |ϕ(S)|)− w⊤
x h(1ϕ(S))

∣∣ ≤ Cε1/2n1/4. (4)

Proof. See Appendix A.

Lemma 1 provides a closed-form expression—involving only the datamodel wx—for the (approxi-
mate) sensitivity of an example x to a feature ϕ.

We validate our assumptions in Figure 3 by comparing approximate sensitivities (derived from
Lemma 1) to true example sensitivities (i.e., the slopes in Figure 2). Our results show that sensitivities
as estimated by datamodels (as in (4)) are good approximations of ground-truth sensitivities. (We
refer the reader to Appendix D for details on how we calculate ground-truth sensistivities.)

5



3.2 POISONED SAMPLES AS A MAXIMUM-SUM SUBMATRIX PROBLEM

In the previous section, we showed how to leverage datamodels (and in particular, Assumption 2)
to estimate model sensitivity. In particular, Lemma 1 tells us that (assuming they are accurate) we
can use datamodels to approximate examples’ sensitivity to all possible features ϕ simultaneously.
In this section, we transform Lemma 1—in combination with Assumption 1 (i.e., that the backdoor
constitutes the strongest feature in the dataset)—into an algorithm that provably finds backdoor
training examples.

To this end, recall that n = |S| and p = |ϕp(S)|. Assumption 1 says that
∑

x∈ϕp(S) sϕp(x, α · p)
is large—from here, we would like to obtain an optimization procedure that allows us to identify
poisoned examples. Inspired by Lemma 1, we consider the following optimization problem:

arg max
v∈{0,1}n

h(v)⊤Wv s.t. ∥vi∥1 = p, (5)

where 1n is the n-dimensional all-ones vector and h is as defined in Lemma 1. Indeed, we show in
the following Lemma that under the “strongest feature” assumption (Assumption 1), the solution to
(5) is precisely the indicator vector of the backdoor feature:

Lemma 2. Suppose Assumption 1 holds with δ = δ∗ and Assumption 2 holds with C = C∗. Then if
δ∗ > 2C∗ε1/2n1/4, the unique maximizer of (5) is the vector vp = 1ϕp(S), i.e. the indicator of the
backdoor train examples.

Proof. See Appendix B.

The fact that for v ∈ {0, 1}n we have 1⊤
nWv = v⊤(diag(1⊤

nW))v allows us to express (5) as a
submatrix-sum maximization problem. In particular, we have that

argmax
v∈{0,1}n:∥v∥1=p

(
1

p
· v − 1

n− p
· (1n − v)

)⊤

Wv

= argmax
v∈{0,1}n:∥v∥1=p

(
v⊤W − p

n
· 1⊤

nW
)
v

= argmax
v∈{0,1}n:∥v∥1=p

v⊤
(
W − diag

( p

n
· 1⊤

nW
))

v. (6)

In the next section, we demonstrate how to efficiently approximate a solution to (6), and propose a
heuristic to detect backdoor samples that does not require knowledge of the size p.

4 DETECTING POISONED SAMPLES WITH DATAMODELS

In the previous section, we reduced the problem of finding the backdoor training examples to that
of finding a submatrix of maximal sum within the datamodel matrix. However, the formulation
presented in (5) is difficult to solve for multiple reasons. First, the optimization problem requires
knowledge of the number of poisoned samples |ϕp(S)|, which in practice is unknown. Second, even
if we did know number of poisoned samples, the problem is still NP-hard in general (Branders et al.,
2017). In fact, even linearizing (5) and using the commercial-grade mixed-integer linear program
solver Gurobi (Gurobi Optimization, LLC, 2021) takes several days to solve (per problem instance)
due to the sheer number of variables being optimized over.

We thus resort to approximation. For each k in a pre-defined set of “candidate sizes” K for the
submatrix in (6), we set p equal to k. We then solve the resulting maximization problem with a greedy
local search algorithm inspired by the Kernighan-Lin heuristic for graph partitioning (Kernighan
& Lin, 1970). That is, starting from a random assignment for v ∈ {0, 1}n, the algorithm considers
all pairs of indices i, j ∈ [n] such that vi ̸= vj , and such that swapping the values of vi and vj
would improve the submatrix sum objective. The algorithm greedily selects the pair that would most
improve the objective and terminates when no such pair exists. We run this local search algorithm
T = 1000 times for each value of k and collect the candidate solutions {vk,l : k ∈ K, l ∈ [T ]}.

6



Now, rather than using any particular one of these solutions, we combine them to yield a score for
each example xi ∈ S. We define this score for the i-th example xi as the weighted sum of the number
of times it was included in the solution of local search, that is,

si =
∑
k∈K

1

k

T∑
l=1

vk,l
i . (7)

Intuitively, we expect that backdoor training examples will end up in many of the greedy local search
solutions and thus have a high score si. We translate the scores (7) into a concrete algorithm by
flagging (and removing) the examples with the highest score.

5 EXPERIMENTS AND RESULTS

In the previous sections, we presented a theoretical framework to detect backdoor examples in a
dataset. In this section, we start by validating our theoretical framework against two common types
of backdoor attacks: dirty-label attacks (Gu et al., 2017) and clean-label attacks (Turner et al., 2019).
For each poisoning setup, we validate how well the theory aligns with what we actually observe. We
then apply our defense from Section 4 and measure its effectiveness in defending against the mounted
attacks. Table 1 shows a summary of our experiments, and more details are provided in Appendix D.

We compare our algorithm against multiple baselines: Inverse Self-Paced Learning3 (ISPL) (Jin
et al., 2021), Spectral Signatures4 (SS) (Tran et al., 2018), SPECTRE5 (Hayase et al., 2021a) and
Activation Clustering6 (AC) (Chen et al., 2018). To evaluate the algorithms, we use the CIFAR-10
dataset (Krizhevsky, 2009) and mount the attacks presented in Table 1.

Compute Cost. For all of our experiments, we use the ResNet-9 model (He et al., 2015)7. In order
to compute the datamodels, we employ the framework presented in (Ilyas et al., 2022). Specifically,
for each one of our experiments, we train 100,000 models on CIFAR10. Each model is trained on
50% of the dataset (chosen uniformly at random), and requires ∼ 40 seconds for convergence. In
total, training all the models for one experiment requires roughly 1 day using 16 V100 GPUs.

Table 1: To evaluate the effectiveness of our framework, we run multiple experiments and vary the
attack type, the trigger, the target class, and the proportion of poisoned samples. We report the clean
accuracy and the poisoned accuracy of every attack when no defense is employed. A larger gap
between clean and poisoned accuracy means the attack is more effective. A sample of the triggers
used is presented in Figure 5.

Exp. Attack Type Frac. Clean Acc. Poisoned Acc.
1 Dirty Label 1.5% 86.64 19.90
2 Dirty-Label 5% 86.67 12.92

3 Dirty-Label 1.5% 86.39 49.57
4 Dirty-Label 5% 86.23 10.67

5 Clean-Label 1.5% 86.89 75.58
6 Clean-Label 5% 87.11 41.89

7 Clean-Label (no adv.) 5% 86.94 71.68
8 Clean-Label (no adv.) 10% 87.02 52.08

3We thank the authors for sharing their implementation with us.
4We re-implement the algorithm presented in the paper.
5https://github.com/SewoongLab/spectre-defense
6We use the implementation provided in: https://github.com/SewoongLab/spectre-defense
7https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py

7

https://github.com/SewoongLab/spectre-defense
https://github.com/SewoongLab/spectre-defense
https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py


5.1 VERIFYING OUR ASSUMPTIONS

Our theory in Section 3 indicates that we can approximate the sensitivity sϕ(x, ·) of an example x to
the backdoor feature using datamodels. Furthermore, Assumption 1 tells us that the model is more
sensitive towards the backdoor feature than towards other features.

To verify these assumptions, we compute the vector h(1ϕp(S)) presented in Lemma 1, and multiply it
by the datamodels matrix W. We then check how much this product correlates with the ground truth
poison mask by computing the area under the ROC curve (AUROC) between these two quantities.
Note that this does not constitute a valid defense, since it requires knowledge of the ground truth.
However, the purpose of this experiment is to show the best results we could hope to achieve by
employing our method.

As we can see in Table 2, we observe a high AUROC in seven out of eight poisoning setups, which
validates our assumption that the poison feature is among the strongest features. Furthermore, we
observe that the AUROC for Exp. 2 is low, and hence our assumptions do not hold in that setup.
Indeed, in Figure 6 (Appendix E) we see that the for Exp. 2, the sensitivity sϕp

(x, α · |ϕp(S)|) ≈ 0
even for x ∈ ϕp(S). We hypothesize that the problem is the large number of poisoned samples in
that experiment and as a result, adding more poisoned samples has little effect on the predictions of a
model for backdoor examples. One potential solution is to train the models on smaller subsets of the
dataset when estimating datamodels, e.g. 20% of the dataset.

Table 2: We measure the AUROC between the sensitivity metric from (4) and the ground truth poison
mask. We observe a large AUROC in seven out of eight experiments, which indicates that sensitivity
measured using datamodels indeed correlates with the choice of poisoned samples.

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8

99.99 60.88 97.98 97.71 99.95 99.98 96.98 98.26

5.2 EVALUATING THE EFFECTIVENESS OF OUR PROPOSED DEFENSE

To evaluate the effectiveness of our proposed defense, we run our algorithm in the eight different
poisoning setups described in Table 1. After computing the scores returned by our defense algorithm,
we compare these scores with the ground truth mask, and measure their corresponding AUROC.

Table 3: We measure the AUROC between our algorithm’s scores and ground truth.

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8

94.25 67.44 74.35 80.18 93.37 93.23 91.14 95.51

As we can see, in Table 3, our method’s scores are highly predictive of the poisoned samples in seven
out of eight poisoning setups (in fact, the setup that fails is exactly the one predicted by Section 5.1).

We remove from the training dataset 10% the samples with the highest scores, train a model on the
curated dataset, and test how well it performs on a clean and a poisoned validation sets. We report
our results in Table 4. As we can see, our defense is successful in defending against seven out of
eight poisoning setups.

6 RELATED WORK

This work focuses on backdoor data poisoning attacks. First, we briefly contrast these attacks with
several other popular attacks on ML models.

Targeted data poisoning attacks are a closely related, but different, threat model, where the goal of
the adversary is to misclassify a pre-defined test sample, by modifying only the training dataset (Koh
& Liang, 2017; Shafahi et al., 2018). In contrast, backdoor attacks can be applied to any image at
inference time by inserting the backdoor trigger.

8



Table 4: We compare our method against multiple baselines in a wide range of experiments. We
observe that our algorithm achieves a high accuracy on the fully poisoned validation set in seven out
of eight experiments. Refer to Table 1 for the full experiments parameters.

Exp. No Defense AC ISPL SPECTRE SS Ours
Clean Poisoned Clean Poisoned Clean Poisoned Clean Poisoned Clean Poisoned Clean Poisoned

1 86.64 19.90 86.76 19.68 86.13 86.15 86.71 20.17 85.52 30.99 85.05 85.06
2 86.67 12.92 85.41 12.93 85.88 85.82 - - 85.33 13.63 84.61 25.24

3 86.39 49.57 86.25 48.85 86.32 85.57 86.28 45.32 85.22 78.22 84.82 84.11
4 86.23 10.67 84.75 10.82 85.86 85.18 - - 84.85 13.33 84.64 83.72

5 86.89 75.58 86.73 82.83 86.04 85.89 86.82 80.65 85.67 85.41 83.82 83.72
6 87.11 41.89 86.85 51.05 86.18 86.11 86.97 51.18 85.68 85.60 84.88 84.79

7 87.02 71.68 86.90 73.28 86.50 82.31 86.72 76.97 85.70 82.70 84.19 84.02
8 86.94 52.08 86.81 56.78 86.04 71.27 86.63 52.27 85.87 71.93 84.81 84.66

Indiscrimate (or availability) attacks (Muñoz-González et al., 2017; Lu et al., 2022) are another
popular threat model. During an indiscrimante attack, the goal of the attacker is to degrade the
test performance as much as possible by poisoning a small fraction of the training set. In contrast,
backdoor attacks are designed to only affect test images once the trigger is inserted.

Developing backdoor attacks and defenses in the context of deep learning is an increasingly active
area of research (Gu et al., 2017; Tran et al., 2018; Chen et al., 2018; Turner et al., 2019; Saha et al.,
2020; Shokri et al., 2020; Hayase et al., 2021b; Qi et al., 2022; Goldblum et al., 2022; Goldwasser
et al., 2022) (see e.g. (Li et al., 2022) for a survey).

A popular line of work for defending against backdoor attacks applies outlier detection in the
latent space of neural networks (Tran et al., 2018; Chen et al., 2018; Hayase et al., 2021b). Such
defenses inherently fail in defending against adaptive attacks that completely bypass the defense
while maintaining the attack efficacy (Shokri et al., 2020).

While we assume that backdoors are the strongest features, other defenses make explicit assumptions
about the triggers themselves. For example, Wang et al. (2019) assume that triggers are small in
norm. Some of the attacks we consider violate the small-norm assumption, as shown in Figure 1a.

A recent line of work investigates certified defenses against backdoor attacks (Levine & Feizi, 2021;
Wang et al., 2022). The authors provide certificates by training separate models on different partitions
of the training set, and dropping the models trained on data containing poison. This approach,
however, significantly degrades the accuracy of the trained model, and provides certificates against a
prohibitively small number of poisoned samples.

A number of prior works explore the applicability of influence-based methods as defenses against
different attacks in deep learning (Koh & Liang, 2017). To the best of our knowledge, only Lin et al.
(2022) discuss using such methods for backdoor attacks. However, their defense requires knowledge
of the (typically unknown) attack parameters. Closest to our work is that of Jin et al. (2021), who (like
this work) consider a defense based on model behavior rather than properties of any latent space.

7 CONCLUSION

In this paper, we proposed a new perspective of data poisoning. Specifically, we argued that backdoor
attacks are fundamentally indistinguishable from existing features in the data. Consequently, the task
of detecting backdoor examples in a dataset is equivalent to that of detecting features that models are
particularly sensitive to. Based on this observation, we propose a framework—and corresponding
algorithm—for identifying backdoor examples in training data. Through a wide range of backdoor
poisoning experiments, we demonstrated the effectiveness of our approach in defending against
backdoor attacks, while retaining high accuracy.

9



REFERENCES

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your
weakness into a strength: Watermarking deep neural networks by backdooring. {USENIX}
Security Symposium, 2018.

Vincent Branders, Pierre Schaus, and Pierre Dupont. Mining a sub-matrix of maximal sum. In
International Workshop on New Frontiers in Mining Complex Patterns (NFMCP), 2017.

Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung
Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by
activation clustering. arXiv preprint arXiv:1811.03728, 2018.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition (CVPR), 2009.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. In arXiv preprint arXiv:1708.04552, 2017.

Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song,
Aleksander Madry, Bo Li, and Tom Goldstein. Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022.

Shafi Goldwasser, Michael P Kim, Vinod Vaikuntanathan, and Or Zamir. Planting undetectable
backdoors in machine learning models. arXiv preprint arXiv:2204.06974, 2022.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL https://www.
gurobi.com.

Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A Stahel. Robust statistics:
the approach based on influence functions, volume 196. John Wiley & Sons, 2011.

Jonathan Hayase, Weihao Kong, Raghav Somani, and Sewoong Oh. Spectre: Defending against
backdoor attacks using robust statistics, 2021a.

Jonathan Hayase, Weihao Kong, Raghav Somani, and Sewoong Oh. Spectre: defending against
backdoor attacks using robust statistics. arXiv preprint arXiv:2104.11315, 2021b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Predicting predictions from training data. In International Conference on Machine
Learning (ICML), 2022.

Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Intrinsic certified robustness of bagging against
data poisoning attacks. In AAAI, 2021.

Charles Jin, Melinda Sun, and Martin Rinard. Provable guarantees against data poisoning using
self-expansion and compatibility. 2021.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell System
Technical Journal, 1970.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International Conference on Machine Learning, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. In Technical report, 2009.

10

https://www.gurobi.com
https://www.gurobi.com


Guillaume Leclerc, Hadi Salman, Andrew Ilyas, Sai Vemprala, Logan Engstrom, Vibhav Vineet, Kai
Xiao, Pengchuan Zhang, Shibani Santurkar, Greg Yang, et al. 3db: A framework for debugging
computer vision models. In arXiv preprint arXiv:2106.03805, 2021.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander
Madry. ffcv. https://github.com/libffcv/ffcv/, 2022.

Alexander Levine and Soheil Feizi. Deep partition aggregation: Provable defenses against general
poisoning attacks. In International Conference on Learning Representations, 2021.

Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. IEEE Transac-
tions on Neural Networks and Learning Systems, 2022.

Jinkun Lin, Anqi Zhang, Mathias Lecuyer, Jinyang Li, Aurojit Panda, and Siddhartha Sen. Measuring
the effect of training data on deep learning predictions via randomized experiments. arXiv preprint
arXiv:2206.10013, 2022.

Yiwei Lu, Gautam Kamath, and Yaoliang Yu. Indiscriminate data poisoning attacks on neural
networks. arXiv preprint arXiv:2204.09092, 2022.

Gábor Lugosi and Shahar Mendelson. Sub-gaussian estimators of the mean of a random vector. The
annals of statistics, 47(2):783–794, 2019.

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee,
Emil C Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with back-gradient
optimization. In Proceedings of the 10th ACM workshop on artificial intelligence and security, pp.
27–38, 2017.

Xiangyu Qi, Tinghao Xie, Saeed Mahloujifar, and Prateek Mittal. Circumventing backdoor defenses
that are based on latent separability. arXiv preprint arXiv:2205.13613, 2022.

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor attacks.
In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 11957–11965,
2020.

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks. In
Advances in Neural Information Processing Systems (NeurIPS), 2018.

Reza Shokri et al. Bypassing backdoor detection algorithms in deep learning. In 2020 IEEE European
Symposium on Security and Privacy (EuroS&P), pp. 175–183. IEEE, 2020.

Brandon Tran, Jerry Li, and Aleksander Mądry. Spectral signatures in backdoor attacks. In Advances
in Neural Information Processing Systems (NeurIPS), 2018.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks. 2019.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In
Proceedings of 40th IEEE Symposium on Security and Privacy, 2019.

Wenxiao Wang, Alexander Levine, and Soheil Feizi. Improved certified defenses against data poi-
soning with (deterministic) finite aggregation. In International Conference on Machine Learning,
2022.

Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed backdoor attacks against federated
learning. In International Conference on Learning Representations, 2020.

11

https://github.com/libffcv/ffcv/


A PROOF OF LEMMA 1

We separate the proof in two parts. First, we show that sϕ can be accurately approximated with
datamodels. In particular,

Lemma 3. Suppose α is such that c ≤ α ≤ 1− c for some constant c ∈ (0, 1). Then, there exists a
constant C > 0 such that for all x ∈ S we have∣∣∣∣sϕ(x, αp)− ES′∼αS

[
w⊤

x 1S′

∣∣∣∣ |ϕ(S′)| = αp

]
+ ES′∼αS

[
w⊤

x 1S′

∣∣∣∣ |ϕ(S′)| = αp+ 1

]∣∣∣∣
≤ Cε1/2n1/4.

Proof. For convenience, assume that αp is an integer. Using the triangle inequality, it is enough to
show that ∣∣∣∣ES′∼αS

[
f(x;S′)

∣∣∣∣ |ϕ(S′)| = αp

]
− ES′∼αS

[
w⊤

x 1S′

∣∣∣∣ |ϕ(S′)| = αp

]∣∣∣∣
≤ Cε1/2n1/4/2

(8)

and ∣∣∣∣ES′∼αS

[
f(x;S′)

∣∣∣∣ |ϕ(S′)| = αp+ 1

]
− ES′∼αS

[
w⊤

x 1S′

∣∣∣∣ |ϕ(S′)| = αp+ 1

]∣∣∣∣
≤ Cε1/2n1/4/2.

(9)

Starting with Equation (8), we have

PS′∼αS [|ϕ(S′)| = αp] =

(
p
αp

)(
n−p

α(n−p)

)(
n
αn

)
and

PS′∼αS [|ϕ(S′)| = αp+ 1] =

(
p

αp+1

)(
n−p

α(n−p)−1

)(
n
αn

)
=

(
p(1− α)

αp+ 1
· α(n− p)

(1− α)(n− p) + 1

)
· PS′∼αS [|ϕ(S′)| = αp]

We first show that the ratio of the two probabilities is bounded by a constant, i.e.

p(1− α)

αp+ 1
· α(n− p)

(1− α)(n− p) + 1

=
α

α+ 1
p

· 1− α

1− α+ 1
n−p

≥ α

α+ α
· 1− α

2− α
≥ 1

2
· c

1 + c
,

where we used that 1 ≤ αp and α ≤ 1− c. Thus

PS′∼αS [|ϕ(S′)| = αp+ 1] ≥ c

2(1 + c)
PS′∼αS [|ϕ(S′)| = αp].

Now we proceed with boudning PS′∼αS [|ϕ(S′)| = αp]. Using Stirling’s approximation, we have

PS′∼αS [|ϕ(S′)| = αp] ≍

√
n

p(n− p)

1

α(1− α)
≥ C2

√
n

12



for some constant C. Now from the triangle inequality, Jensen’s inequality and Markov’s inequality
we have that for sufficiently large n

ES′∼αS

[
f(x;S′)

∣∣∣∣ |ϕ(S′)| = αp

]
− ES′∼αS

[
w⊤

x 1S′

∣∣∣∣ |ϕ(S′)| = αp

]
≤ ES′∼αS

[∣∣f(x;S′)− w⊤
x 1S′

∣∣ ∣∣∣∣ |ϕ(S′)| = αp

]
≤

√
ES′∼αS

[
(f(x;S′)− w⊤

x 1S′)
2

∣∣∣∣ |ϕ(S′)| = αp

]
≤ Cε1/2n1/4.

The case for Equation (9) is analagous.

Next, we show that w⊤
x h(1ϕ(S)) corresponds to the desired difference of conditional expectations. In

this proof, we let hϕ = h(1ϕ(S)) for brevity.
Lemma 4. We have for every x ∈ S that

ES′∼αS

[
w⊤

x 1S′

∣∣∣∣ |ϕ(S′)| = αp

]
− ES′∼αS

[
w⊤

x 1S′

∣∣∣∣ |ϕ(S′)| = αp+ 1

]
= w⊤

x hϕ.

Proof. Note that we can write

ES′∼αS

[
w⊤

x 1S′

∣∣∣∣ |ϕ(S′)| = αp

]
= ES′∼αS

[∑
z∈S

1z∈Swxz

∣∣∣∣ |ϕ(S′)| = αp

]

=
∑
z∈S′

PS′∼αS

[
z ∈ S

∣∣∣∣ |ϕ(S′)| = αp

]
· wxz.

There are a total of (
p

αp

)(
n− p

α(n− p)

)
sets satisfying |ϕ(S′)| = αp, and each is sampled with the same probability. Among these, given
z ∈ S′ there are (

p− 1

αp− 1

)(
n− p

α(n− p)

)
sets containing z, so for all z ∈ S′ we have

P
[
z ∈ S′

∣∣∣∣ |ϕ(S′)| = αp

]
=

αp

p
.

Similarly, we have for all z in the complement (S′)c that

P
[
z ∈ S′

∣∣∣∣ |ϕ(S′)| = αp

]
=

α(n− p)

n− p
.

Thus, overall

ES′∼αS

[
w⊤

x 1S′

∣∣∣∣ |ϕ(S′)| = αp

]
=

αp

p
w⊤

x 1S′ +
α(n− p)

n− p
w⊤

x 1(S′)c

Analogously,

ES′∼αS

[
w⊤

x 1S′

∣∣∣∣ |ϕ(S′)| = αp+ 1

]
=

αp+ 1

p
w⊤

x 1S′ +
α(n− p)− 1

n− p
w⊤

x 1(S′)c

and the lemma follows when we subtract the two.

The proof of Lemma 1 follows by combining the results of Lemma 3 and Lemma 4.

13



B PROOF OF LEMMA 2

Proof. The result follows directly from Assumption 1 and Assumption 2. In particular, let ϕv be a
feature whose corresponding support is ϕv(S) = supp(v).

(
1

n
· v − 1

n− p
· (1n − v)

)⊤

Wv =

h
⊤
v wx1

h⊤
v wx2

. . .
h⊤
v wxn


⊤

v =
∑

i∈ϕv(S)

h⊤
v wxi

. (10)

First, from Assumption 2 we have that
∑

i∈ϕv(S) h
⊤
v wxi

≥
∑

i∈ϕv(S) sv(xi, α∥v∥1)− pCε1/2n1/4.

Now let vp be such that supp(vp) = ϕp(S), i.e. vp is the indicator for the poisoned examples. From
Assumption 1 we have that vp

∑
i∈ϕv(S) sv(xi, α∥v∥1)− pCε1/2n1/4.

Analougously, we have that
∑

i∈ϕv(S) h
⊤
v wxi ≤

∑
i∈ϕv(S) sv(xi, α∥v∥1) + pCε1/2n1/4. Thus for

any v ̸= vp we have that(
1

n
· vp −

1

n− p
· (1n − vp)

)⊤

Wvp −
(
1

n
· v − 1

n− p
· (1n − v)

)⊤

Wv (11)

≥
∑

i∈ϕvp (S)

svp(xi, α∥vp∥1)−
∑

i∈ϕv(S)

sv(xi, α∥v∥1) + 2pCε1/2n1/4 (12)

≥pδ − 2pCε1/2n1/4 > 0, (13)

where the last inequality follows by the assumption that δ > 2Cε1/2n1/4.

14



C NATURALLY-OCCURING TRIGGERS

(a) ImageNet images from the class “tennis ball”. (b) ImageNet images with the “tennis balls” trigger.

0 200 400 600 800 1000
Class ID

0

2500

5000

7500

Fr
eq

ue
nc

y

Output distribution
Poisoned
Clean

ImageNet Classes (sorted by frequency)
0

2500

5000

7500

Fr
eq

ue
nc

y

Top Predicted Classes
Tennis Ball
Other classes

(c) Predictions of a ResNet-18 on the fully poisoned validation set

Validation Set
Clean

Accuracy
Poisoned
Accuracy

63.88% 50.88%

(d) Model accuracy

Figure 4: An adversary can even leverage the features of a dataset to mount a backdoor attack. (a)
The tennis ball feature is already present in the ImageNet training set, so we do not modify the dataset
at all. (b) Instead, we show that a small picture of a tennis ball is a “pre-existing” backdoor trigger.
Plots (c) and (d) are the same as Figures (1b) and (1c).

We have shown in Section 2 that triggers and features are inherently indistinguishable. Specifically,
the adversary could use an arbitrary feature in order to mount a backdoor attack (c.f. Figure 4).

In fact, the adversary could also leverage existing (naturally occurring) features to mount backdoor
attacks. In particular, the adversary can choose a feature that has a high correlation with a particular
class, and leverage this bias to mount a backdoor attack. For example, we show in Figure 4 that
we can use tennis balls as triggers for models pretrained on ImageNet. By pasting tennis balls on
the validation set of ImageNet, the accuracy of the pretrained model drops from 63.88% to 50.88%.
Furthermore, the most predicted class for the poisoned dataset is “Tennis Ball”.

15



D EXPERIMENTAL SETUP

Figure 5: We execute the poisoning attacks with three types of triggers: (a) one black pixel on top
left corner (first two images), (b) 3x3 black square on top left corner (third and fourth images), and
(c) 3-way triggers adapted from (Xie et al., 2020) (last four images).

D.1 BACKDOOR ATTACKS

Dirty-Label Backdoor Attacks. The most prominent type of backdoor attacks is a dirty-label
attack (Gu et al., 2017). During a dirty-label attack, the adversary inserts a trigger into a subset of
the training set, then flips the label of the poisoned samples to a particular target class yb. We mount
four different dirty-label attacks, by considering two different triggers, and two different levels of
poisoning (c.f. Exp. 1 to 4 in Table 1).

Clean-Label Backdoor Attacks. A more challenging attack is the clean-label attack (Shafahi et al.,
2018; Turner et al., 2019)8 where the adversary avoids changing the label of the poisoned samples.
To mount a successful clean-label attack, the adversary poisons samples from the target class only,
hoping to create a strong correlation between the target class and the trigger.

We perform two types of clean-label attacks. During the first type (Exp. 5 and 6 from Table 1), we
perturb the image with an adversarial example before inserting the trigger, as presented in (Turner
et al., 2019). During the second type of clean-label attacks (Exp. 7 and 8 from Table 1), we avoid
adding the adversarial example, however, we poison more samples to have an effective attack.

Trigger. We conduct our experiments with two types of triggers. The first type is a fixed pattern
inserted in the top left corner of the image. The trigger is unchanged between train and test time.
This type of trigger has been used in multiple works (Gu et al., 2017; Turner et al., 2019). The other
type of trigger is an m-way trigger, with m=3 (Xie et al., 2020). During training, one of three triggers
is chosen at random for each image to be poisoned, and then the trigger is inserted into one of three
locations in the image. At test time, all three triggers are inserted at the corresponding positions to
reinforce the signal. We display in Figure 5 the triggers used to poison the dataset.

D.2 TRAINING SETUP

Training CIFAR models. In this paper, we train a large number of models on different subsets of
CIFAR-10 in order to compute the datamodels. To this end, we use the ResNet-9 architecture (He
et al., 2015)9. This smaller version of ResNets was optimized for fast training.

Training details. We fix the training procedure for all our models. We show the hyperparameter
details in Table 510. One augmentation was used for dirty-label attacks (Cutout (DeVries & Taylor,
2017)) to improve the performance of the model on CIFAR10. Similar to (Turner et al., 2019), we do
not use any data augmentation when performing clean-label attacks.
Performance. In order to train a large number of models, we use the FFCV library for efficient
data-loading (Leclerc et al., 2022). The speedup from using FFCV allows us to train a model to
convergence in ∼40 seconds, and 100k models for each experiment using 16 V100 in roughly 1
day11.

8We evaluate the clean-label attack as presented in (Turner et al., 2019)
9https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py

10Our implementation and configuration files will be available in our code.
11We train 3 models in parallel on every V100.

16

https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py


Table 5: Hyperparameters used to train ResNet-9 on CIFAR10.

Optimizer Epochs Batch Size Peak LR Cyclic LR Peak Epoch Momentum Weight Decay

SGD 24 1,024 0 5 0.9 4e-5

Computing datamodels. We adopt the framework presented in (Ilyas et al., 2022) to compute the
datamodels of each experiment. Specifically, we train 100k models on different subsets containing
50% of the training set chosen at random. We then compute the datamodels as described in (Ilyas
et al., 2022).

Local Search. We approximate the solution of the problem outlined in (5) using a local search
heuristic presented in (Kernighan & Lin, 1970). We iterate over ten sizes for the poison mask: {10,
20, 40, 80, 160, 320, 640, 1280, 2560, 5120}. For each size, we collect 1,000 different solutions by
starting from different initialization of the solution.

D.3 ESTIMATING THEORETICAL QUANTITIES

Recall the average margin definition presented in (1). In particular:

ES′∼αS

[
f(x;S′)

∣∣∣∣ |ϕ(S′)| = k

]
(14)

where S′ is a subset of the training set, f(x;S′) is the margin of the model on x when trained on
the dataset S′, ϕ(S′) is the subset of the set S′ containing the poisoned feature, and k is the number
of poisoned samples. Estimating the average margins requires training a large number of models
on different subsets, and measure–for every sample x and every number of poisoned samples k–the
margins of the trained model.

For the purpose of this paper, we leverage the datamodels computation framework to estimate these
averages. In particular, to compute the datamodels weights, we train a large number of models on
different subsets S1, S2, . . . , ST of the training set12. For every subset Si, we record the number of
poisoned samples in the subset, then we estimate the average margin by averaging the margins over
the different subsets that contain k poisoned samples.

Nϕ(k) =

T∑
i=1

1|ϕ(Si)|=t (15a)

ES′∼αS

[
f(x;S′)

∣∣∣∣ |ϕ(S′)| = k

]
≈ 1

Nϕ(k)

T∑
i=1

f(x;Si) · 1|ϕ(Si)|=t (15b)

By a training 100k models on different subsets of the dataset, we obtain reasonable estimates of the
marginal effects for every sample x.

12We refer the reader to (Ilyas et al., 2022) for more details.

17



E OMITTED PLOTS

E.1 AVERAGE MARGIN PLOTS

In this section, we show for all the experiments the plots of the average margin for clean and poisoned
samples as a function of the number of poisoned samples in the dataset (c.f. Fig. 2 in the main paper).

360 380 400
Number of Poisoned Samples

10

5

0

5

10

15

A
ve

ra
ge

 M
ar

gi
n

Exp. 1
Clean
Poisoned

1230 1235 1240
Number of Poisoned Samples

0

5

10

15

A
ve

ra
ge

 M
ar

gi
n

Exp. 2
Clean
Poisoned

340 350 360 370 380 390
Number of Poisoned Samples

5

0

5

10

15

A
ve

ra
ge

 M
ar

gi
n

Exp. 3
Clean
Poisoned

1230 1235 1240 1245 1250
Number of Poisoned Samples

10

0

10

20

30

A
ve

ra
ge

 M
ar

gi
n

Exp. 4
Clean
Poisoned

30 40 50
Number of Poisoned Samples

10

5

0

5

10

15

A
ve

ra
ge

 M
ar

gi
n

Exp. 5
Clean
Poisoned

100 110 120 130 140
Number of Poisoned Samples

5

0

5

10

A
ve

ra
ge

 M
ar

gi
n

Exp. 6
Clean
Poisoned

100 110 120 130 140
Number of Poisoned Samples

0

5

10

15

A
ve

ra
ge

 M
ar

gi
n

Exp. 7
Clean
Poisoned

220 240 260
Number of Poisoned Samples

0

5

10

15

20

A
ve

ra
ge

 M
ar

gi
n

Exp. 8
Clean
Poisoned

Figure 6: We plot for all the experiments the average margin for five clean samples (left) and five
poisoned samples (right) as the number of poisoned samples in the training set increases. We observe
that the average margin for clean samples (without the trigger) is constant when poisoning more
samples in the dataset. In contrast, the average margin for poisoned samples (with the trigger)
increases when the number of poisoned samples increases in the dataset, confirming our assumptions.

E.2 ESTIMATED SENSITIVITIES PLOTS

In this section, we show for all the experiments the plots of the estimated sensitivities, and the
approximation we obtain using datamodels (c.f. Fig. 3 in the main paper).

0.005 0.000 0.005
Datamodels Estimate

0.025

0.000

0.025

0.050

Tr
ue

 S
en

si
tiv

ity

Exp. 1
Poisoned
Clean

0.000 0.002
Datamodels Estimate

0.01

0.00

0.01

0.02

Tr
ue

 S
en

si
tiv

ity

Exp. 2
Poisoned
Clean

0.000 0.005
Datamodels Estimate

0.02

0.00

0.02

0.04

Tr
ue

 S
en

si
tiv

ity

Exp. 3
Poisoned
Clean

0.002 0.000 0.002 0.004
Datamodels Estimate

0.02

0.00

0.02

Tr
ue

 S
en

si
tiv

ity

Exp. 4
Poisoned
Clean

0.025 0.000 0.025 0.050
Datamodels Estimate

0.0

0.1

0.2

0.3

Tr
ue

 S
en

si
tiv

ity

Exp. 5
Poisoned
Clean

0.00 0.01 0.02
Datamodels Estimate

0.00

0.05

0.10

Tr
ue

 S
en

si
tiv

ity

Exp. 6
Poisoned
Clean

0.00 0.01
Datamodels Estimate

0.000

0.025

0.050

Tr
ue

 S
en

si
tiv

ity

Exp. 7
Poisoned
Clean

0.005 0.000 0.005 0.010
Datamodels Estimate

0.02

0.00

0.02

Tr
ue

 S
en

si
tiv

ity

Exp. 8
Poisoned
Clean

Figure 7: We plot for all the experiments the estimated marginal sensitivities and the approximation
with datamodels presented in Equation 4. We observe for poisoned samples (in red) a good linear
correlation between the sensitivities and the datamodels’ approximation. Additionally, we observe no
noticeable correlation for clean samples (in green).

E.3 DISTRIBUTION OF DATAMODELS VALUES

In this section, we plot for each experiment the distribution of the datamodels weights for all
experiments. In particular, recall that the datamodels weight wx[i] represents the influence of the
training sample xi on the sample x. We show below the distribution of the effect of 1) poisoned

18



samples on poisoned samples, 2) the poisoned samples on the clean samples and 4) the clean samples
on the clean samples.

1 0 1 2 3
Datamodel Value

0.0

0.2

0.4

Fr
eq

ue
nc

y
Exp. 1

Poison to Poison
Poison to Clean
Clean to Clean

0 1 2
Datamodel Value

0.0

0.2

0.4

Fr
eq

ue
nc

y

Exp. 2
Poison to Poison
Poison to Clean
Clean to Clean

0 1 2
Datamodel Value

0.0

0.2

0.4

Fr
eq

ue
nc

y

Exp. 3
Poison to Poison
Poison to Clean
Clean to Clean

0 1 2
Datamodel Value

0.0

0.2

0.4

0.6

Fr
eq

ue
nc

y

Exp. 4
Poison to Poison
Poison to Clean
Clean to Clean

0 1 2
Datamodel Value

0.0

0.2

0.4

Fr
eq

ue
nc

y

Exp. 5
Poison to Clean
Clean to Clean
Poison to Poison

0 1 2
Datamodel Value

0.0

0.2

0.4

0.6

Fr
eq

ue
nc

y

Exp. 6
Poison to Poison
Poison to Clean
Clean to Clean

0 1 2 3
Datamodel Value

0.0

0.2

0.4

Fr
eq

ue
nc

y

Exp. 7
Poison to Poison
Poison to Clean
Clean to Clean

0 1 2
Datamodel Value

0.0

0.2

0.4

0.6

Fr
eq

ue
nc

y

Exp. 8
Poison to Poison
Poison to Clean
Clean to Clean

Figure 8: We plot the distribution of the datamodels weights for all the experiments. We clearly see
that the effect of poisoned samples on other poisoned samples is generally higher than the effect of
poisoned samples on clean samples, and than clean samples on each other.

E.4 ATTACK SUCCESS RATE (ASR)

In the main paper, we presented our results by measuring the accuracy of a model on a clean and a
poisoned validation sets. Another relevant metric is the Attack Success Rate (ASR) which measures
the probability that the model predicts the target class after inserting the trigger into an image. As we
can see in Table 6, our defense leads to a low ASR in seven out of eight setups.

Table 6: We compare our method against multiple baselines in a wide range of experiments. We
observe that our algorithm leads to a low ASR in seven out of eight experiments. Refer to Table 1 for
the full experiments parameters.

Exp. No Defense AC ISPL SPECTRE SS Ours
1 87.94 88.26 0.70 87.67 73.78 0.81
2 96.38 96.32 0.67 - 95.40 82.56

3 50.49 51.33 0.58 55.68 10.44 1.18
4 99.21 99.02 0.75 - 95.85 2.30
5 15.66 5.35 0.71 7.66 0.80 0.92
6 58.57 45.44 0.66 46.78 0.67 0.77
7 26.09 23.64 9.90 18.48 9.17 3.56
8 50.62 44.82 26.07 44.14 24.72 3.42

19


	Introduction
	A Feature-Based Perspective on Backdoor Attacks
	When can we detect poisoned samples?
	Approximating sensitivity using datamodels
	Poisoned Samples as a maximum-sum submatrix problem

	Detecting poisoned samples with datamodels
	Experiments and Results
	Verifying our Assumptions
	Evaluating the Effectiveness of our Proposed Defense

	Related Work
	Conclusion
	Proof of lemma:sensitivity-approx
	Proof of lemma:maximizer-is-indicator
	Naturally-occuring triggers
	Experimental Setup
	Backdoor Attacks
	Training Setup
	Estimating Theoretical Quantities

	Omitted Plots
	Average Margin Plots
	Estimated Sensitivities Plots
	Distribution of Datamodels Values
	Attack Success Rate (ASR)


