
Published as a conference paper at ICLR 2025

BEYOND SQUARED ERROR: EXPLORING LOSS DESIGN
FOR ENHANCED TRAINING OF GENERATIVE FLOW NET-
WORKS

Rui Hu∗, Yifan Zhang∗, Zhuoran Li , Longbo Huang†
Institute for Interdisciplinary Information Sciences, Tsinghua University
{hu-r24,zhangyif21,lizr20}@mails.tsinghua.edu.cn
longbohuang@tsinghua.edu.cn

ABSTRACT

Generative Flow Networks (GFlowNets) are a novel class of generative models
designed to sample from unnormalized distributions and have found applications in
various important tasks, attracting great research interest in their training algorithms.
In general, GFlowNets are trained by fitting the forward flow to the backward
flow on sampled training objects. Prior work focused on the choice of training
objects, parameterizations, sampling and resampling strategies, and backward
policies, aiming to enhance credit assignment, exploration, or exploitation of
the training process. However, the choice of regression loss, which can highly
influence the exploration and exploitation behavior of the under-training policy,
has been overlooked. Due to the lack of theoretical understanding for choosing
an appropriate regression loss, most existing algorithms train the flow network
by minimizing the squared error of the forward and backward flows in log-space,
i.e., using the quadratic regression loss. In this work, we rigorously prove that
distinct regression losses correspond to specific divergence measures, enabling us
to design and analyze regression losses according to the desired properties of the
corresponding divergence measures. Specifically, we examine two key properties:
zero-forcing and zero-avoiding, where the former promotes exploitation and higher
rewards, and the latter encourages exploration and enhances diversity. Based
on our theoretical framework, we propose three novel regression losses, namely,
Shifted-Cosh, Linex(1/2), and Linex(1). We evaluate them across three benchmarks:
hyper-grid, bit-sequence generation, and molecule generation. Our proposed losses
are compatible with most existing training algorithms, and significantly improve
the performances of the algorithms concerning convergence speed, sample diversity,
and robustness.

1 INTRODUCTION

Generative Flow Networks (GFlowNets), introduced by Bengio et al. (2021; 2023), represent a novel
class of generative models. They have been successfully employed in a wide range of important
applications including molecule discovery (Bengio et al., 2021), biological sequence design (Jain
et al., 2022), combinatorial optimization (Zhang et al., 2023), and text generation (Hu et al., 2024),
attracting increasing interests for their ability to generate a diverse set of high-quality samples.

GFlowNets are learning-based methods for sampling from an unnormalized distribution. Compared
to the learning-free Monte-Carlo Markov Chain (MCMC) methods, GFlowNets provide an alternative
to exchange the complexity of iterative sampling through long chains for the complexity of training
a sampler (Bengio et al., 2023). GFlowNets achieves this by decomposing the generating process
into multiple steps and modeling all possible trajectories as a directed acyclic graph (DAG). The
training goal is to determine a forward policy on this DAG, ensuring that the resulting probability
distribution over terminal states aligns with the unnormalized target distribution. However, achieving
this alignment is challenging due to the necessity of marginalizing the forward policy across a vast

∗Equal contribution
†Corresponding author

1

Published as a conference paper at ICLR 2025

Parameteri-
zation

mapping

𝜃

Regression
Loss

Backward
Policy

Sampling &
Resampling

Weights

Objective Function

Balance Loss

Divergence
Measure

𝑓

Training
Objects

Training Object

ி

Minimal Cut

𝒇

ி

Equal gradient

Zero-forcing
Zero-avoiding

ᇱ
�̂�ி 𝑠 → 𝑠ᇱ

�̂� 𝑠 → 𝑠ᇱ

…… ……

…
…

…
…

Training Object

Minimal Cut

Figure 1: An illustration of our main theoretical results: the unified framework for GFlowNet training
algorithms and the correspondence between regression losses over forward and backward flows on
training objects and f -divergences between the two flows over minimal cuts.

trajectory space. To address this, GFlowNets utilize a backward flow to distribute the unnormalized
target distribution over trajectories, thereby aligning the forward and backward flows.

Building on this foundation, various training algorithms for GFlowNets have been proposed, aiming
to enhance the training of GFlowNets from different aspects such as credit assignment, exploration,
and exploitation. Depending on the main focus of the methods, these algorithms can be divided into
four categories, including training objects (Malkin et al., 2022; Madan et al., 2023), parameterization
methods (Pan et al., 2023a; Deleu et al., 2022), sampling and resampling strategies (Rector-Brooks
et al., 2023; Kim et al., 2024d; Lau et al., 2024) and the selection of backward policies (Shen et al.,
2023; Jang et al., 2024a).

Most existing algorithms train the flow network by minimizing the squared error of the forward and
backward flows in log-space, i.e., using the quadratic regression loss. However, there may exist
more potential choices for loss functions beyond square error. Intuitively, any convex function that is
minimized at zero point also provides a valid objective, in the sense that the forward and backward
policies are aligned if and only if the loss is minimized. Further, the gradients of different regression
losses lead to different optimization trajectories of the forward policy, thus highly influencing the
exploration and exploitation behaviors. Yet, due to the lack of theoretical understanding for choosing
an appropriate regression loss, it is unclear whether the above intuition is practical. In particular, the
following central question remains open:

Can a theoretical foundation be established for designing and analyzing regression loss functions?

To answer this question, we conduct a systematic investigation of the largely overlooked regres-
sion loss aspect in GFlowNet training. Specifically, building on the work of Malkin et al. (2023),
which established that training GFlowNets is analogous to optimizing a KL divergence, we rig-
orously prove that the gradient of the objective function using different regression losses, when
combined with appropriate proposal distributions and resampling weights, equal to that of dis-
tinct divergence measures between the target distribution and the flow network-induced distribu-
tion. As different divergence measures endow the training objectives with different properties, and
hence show different characteristics in the training process, our results provide a unified framework

Linex(1)
௧

Shifted-Cosh
௧ ି௧

ze
ro
-a
vo

id
in
g

no
n-
ze
ro
-a
vo

id
in
g

Quadratic
ଶ

Linex(1/2)
௧
ଶ

zero-forcing non-zero-forcing

Figure 2: Our proposed regression losses
and their properties.

to generalize existing training methods and provide a prin-
cipled way of designing efficient regression losses for
GFlowNets training. Fig. 1 provides an overview of our
technical results.

In particular, we study two important properties of the
training objectives, i.e., zero-forcing and zero-avoiding,
and systematically investigate their effects. In general,
zero-forcing losses encourage exploitation, while zero-
avoiding losses encourage exploration. Equipped with our
new framework, we design three novel regression losses,
namely Linex(1), Linex(1/2), and Shifted-Cosh, filling
the four quadrants made up of the zero-forcing and zero-
avoiding properties. We evaluate the new losses on three
popular benchmarks: hyper-grid, bit-sequence generation,
and molecule generation. Our results show that the newly

2

Published as a conference paper at ICLR 2025

proposed losses exhibit significant advantages over existing losses in terms of diversity, quality, and
robustness, demonstrating the effectiveness of our design framework.

Our contributions can be summarized as follows:

• We develop a novel framework of the objective functions for training GFlowNets. This new
framework identifies five key components of the objective function and unifies existing GFlowNet
training algorithms including Flow-Matching GFlowNets (Bengio et al., 2021), Detailed-Balance
GFlowNets (Bengio et al., 2023), Trajectory-Balance GFlowNets (Malkin et al., 2022), Sub-
Trajectory-Balance GFlowNets (Madan et al., 2023) and their variants like Forward-Looking
GFlowNets (Pan et al., 2023b) and DAG GFlowNets (Deleu et al., 2022) , etc (see Section 4.1).

• We establish the correspondence between the various objective functions for GFlowNets and
different divergence measures. This insight facilitates a deeper understanding of how to design
and analyze effective training objectives for GFlowNets (See Section 4.2).

• Based on our framework, we conduct an in-depth investigation on two key properties of regression
losses: zero-forcing and zero-avoiding. We then design three new loss functions possessing
different exploration/exploitation features, namely, Linex(1), Linex(1/2), and Shifted-Cosh (see
Section 4.3).

• We conduct extensive experiments on three popular benchmarks: hyper-grid (Bengio et al., 2021),
bit-sequence generation (Malkin et al., 2022), and molecule generation (Bengio et al., 2021).
Our results demonstrate that the new losses significantly outperform the common squared loss in
metrics including convergence speed, diversity, quality, and robustness (see Section 5).

2 RELATED WORK

Generative Flow Networks (GFlowNets). GFlowNets were initially proposed by Bengio et al.
(2021) for scientific discovery (Jain et al., 2023a) as a framework for generative models capable of
learning to sample from unnormalized distributions. The foundational theoretical framework was
further developed by Bengio et al. (2023). Since then, numerous studies have focused on enhancing
GFlowNet training from various perspectives, such as introducing novel balance conditions and loss
functions (Malkin et al., 2022; Madan et al., 2023), refining sampling and resampling strategies (Shen
et al., 2023; Rector-Brooks et al., 2023; Kim et al., 2024d; Lau et al., 2024), improving credit
assignment (Pan et al., 2023a; Jang et al., 2024b) and exploring different options for backward
policies (Shen et al., 2023; Mohammadpour et al., 2024; Jang et al., 2024a). Notably, our proposed
method is compatible with all the aforementioned works as we have identified a novel key component
of the objective functions for training GFlowNets.

From a theoretical perspective, GFlowNets are closely related to variational inference (VI, Malkin
et al. 2023; Zimmermann et al. 2023) and entropy-regularized reinforcement learning (RL) on
deterministic MDPs (Tiapkin et al., 2024; Mohammadpour et al., 2024). All of them can be viewed as
solving distribution matching problems, and the gradients of their training objectives are equivalent
to that of the reverse KL divergence. Our main theorem (Theorem 4.1 and Theorem B.1) generalizes
the theoretical results of Malkin et al. (2023) by (i) extending reverse KL to the whole family of
f -divergence and (ii) including more parameterization methods.

People also try to extend the formulation of GFlowNets to more complex scenarios, allowing continu-
ous space (Lahlou et al., 2023), intermediate rewards (Pan et al., 2023b), stochastic rewards (Zhang
et al., 2024b), implicit reward given by priority (Chen & Mauch, 2024), conditioned rewards (Kim
et al., 2024c), stochastic transitions (Pan et al., 2023c), non-acyclic transitions (Brunswic et al.,
2024), etc. Equipped with these techniques, GFlowNets are applied to an increasingly wide range
of fields including molecular discovery (Jain et al., 2023b; Zhu et al., 2024; Pandey et al., 2024),
biological sequence design (Jain et al., 2022; Ghari et al., 2023), causal inference (Zhang et al., 2022;
Atanackovic et al., 2024; Deleu et al., 2024), combinatorial optimization (Zhang et al., 2023; Kim
et al., 2024b), diffusion models (Zhang et al., 2024a; Venkatraman et al., 2024) and large language
models (Hu et al., 2024; Song et al., 202Fani4).

Divergence measures in training generative models. The properties of divergence measures and
their effects as training objectives have been studied by Minka et al. (2005). As the original training
objectives of many generative models are equivalent to one of the divergence measures (typically
the reverse KL divergence), it is natural to introduce a more general class of divergence measures to

3

Published as a conference paper at ICLR 2025

replace it. This idea has successfully improved the performances of a variety of algorithms for training
generative models, including GAN (Nowozin et al., 2016; Arjovsky et al., 2017), VAE (Zhang et al.,
2019), VI (Li & Turner, 2016; Dieng et al., 2017), Distributional Policy Gradient (DPG for RL, Go
et al. 2023), and Direct Preference Optimization (DPO for RLHF, Wang et al. 2024). A very recent
study (Silva et al., 2024) also explores this idea in the context of GFlowNets by investigating the use
of four different divergence measures: forward KL, reverse KL, Renyi-α and Tsallis-α.

In contrast to the studies mentioned above, this work establishes a two-way connection between f -
divergences and the regression loss function g in the training objectives of GFlowNets. By examining
the zero-forcing and zero-avoiding properties of these divergence measures, we can opt for the desired
regression loss to enhance exploration and/or exploitation for training GFlowNets.

3 PRELIMINARIES OF GFLOWNETS AND f -DIVERGENCE

In this section, we first present preliminaries of GFlowNets and the f -divergence, which will be the
foundation of our subsequent exposition.

3.1 GFLOWNETS

A GFlowNet is defined on a directed acyclic graph G = (V,E) with a source node so and a sink
node sf , such that every other vertex is reachable starting from so, and sf is reachable starting from
any other vertex. Let T be the collection of all complete trajectories, and Σ be the corresponding
σ-algebra, then a flow is a measure F on (T ,Σ).

Further, we define state-flow, edge-flow and total flow by
F (s) := F ({τ : s ∈ τ}), F (s → s′) := F ({τ : (s → s′) ∈ τ}), Z := F ({T }).

A flow then induces a forward probability PF (s
′|s) and a backward probability PB(s|s′), defined as:

PF (s
′|s) := P (s → s′|s) = F (s → s′)

F (s)
, PB(s|s′) := P (s → s′|s′) = F (s → s′)

F (s′)
.

Markovian flow is a special family of flows such that at each step, the future behavior of a particle in
the flow stream only depends on its current state. Formally speaking, let ι be any trajectories from so
to s, then P (s → s′|ι) = P (s → s′|s) = PF (s

′|s). We focus on Markovian flows in the following.

A set of (not necessarily complete) trajectories C is a cut if and only if for any complete trajectory τ ,
there exists ι ∈ C such that ι is a part of τ . Here we view vertices and edges as trajectories of length
1 or 2 and further extend the definition of F to all trajectories as

F (ι) = F ({τ : ι is a part of τ}).
A minimal cut is a cut such that the sum of flows in the cut is minimized. According to the max-flow
min-cut theorem, this amount is equal to Z the total flow. Let C be the collection of all minimal cuts,
then for each minimal cut C ∈ C, let pC(ι) := F (ι) for all ι ∈ C, then pC(·) can be viewed as an
unnormalized distribution over C.

Let the terminating set Sf be the collection of nodes that directly link to sf . Note that C = {(s →
s′) : s′ = sf} is a minimal cut, so pC(·) induces a distribution over Sf . We denote it as pTF and its
induced probability distribution as PT (called the terminating probability):

∀s ∈ Sf , pTF (s) = F (s → sf), PT (s) =
pTF (s)∑

s′∈Sf pTF (s
′)

=
F (s → sf)

Z
.

The ultimate goal of training a GFlowNet is to match pTF with R, so that the forward policy draws
samples from PT = PR, where PR denotes the normalized probability distribution defined by R.

3.2 f -DIVERGENCE

The f -divergence is a general class of divergence measures (Liese & Vajda, 2006; Polyanskiy, 2019):

Df (p||q) =
∑
x∈X

q(x)f

(
p(x)

q(x)

)
+ f ′(∞)p ({x ∈ X : q(x) = 0}) ,

4

Published as a conference paper at ICLR 2025

where p and q are two probability distributions on a measurable space (X ,F), f : R++ → R
is a twice differentiable convex function with f(1) = f ′(1) = 0 , and f ′(∞) = limt→+∞

f(t)
t .

Hence, the Kullback-Leibler (KL) divergence (Zhu & Rohwer, 1995) DKL(p||q) and DKL(q||p)
correspond to Df (p||q) with f(t) = t log t − t + 1 and f(t) = t − log t − 1, respectively. When
f(t) = − tα

α(1−α) +
t

1−α + 1
α , the f -divergence corresponds to the α-divergence Dα(p||q) introduced

in (Zhu & Rohwer, 1995; Amari, 2012).

The f -divergence preserves the following nice properties of KL divergence, ensuring that they can
also serve as good optimization objectives.
Fact 3.1 (Liese & Vajda (2006)). Df (p||q) = 0 if and only if p = q.
Fact 3.2 (Liese & Vajda (2006)). Df (p||q) is convex with respect to either p or q.

The definition of Df (p||q) can be further extended to all twice differentiable functions f with
f(1) = f ′(1) = 0, termed pseudo f -divergence.

4 TRAINING GENERATIVE FLOW NETWORKS

In this section, we present our perspective on analyzing GFlowNet training algorithms in detail. In
Section 4.1, we provide a general framework with five customizable components to unify existing
training algorithms. In Section 4.2, we dive deep into the regression loss component, which has
been overlooked in existing research, and establish a rigorous connection between it and divergence
measures. In Section 4.3, we further show how to utilize this connection for designing and analyzing
objective functions.

4.1 A UNIFIED FRAMEWORK FOR GFLOWNET TRAINING ALGORITHMS

Consider the following general objective function for forward policy:

LO,p̂θ,µ,PB ,g =
∑
o∈O

µ(o)g

(
log

p̂B(o; θ)

p̂F (o; θ)

)
(1)

This formulation is defined by five key components. (i) The set of training objects O, which can
include states, transitions, partial trajectories, or complete trajectories. (ii) The parameterization
mapping p̂θ, which defines how the parameters of the flow network represent the forward flow p̂F and
the backward flow p̂B . (iii) The sampling and resampling weights µ, which influence how training
objects are sampled and weighted. (iv) The choice of backward policy PB , which can be either fixed
or learned. (v) The regression loss function g, ensuring that the forward and backward policies align
when minimized.

Table 1: Summary of existing GFlowNet training algorithms and techniques.

Design Component Algorithms

Training Objects O and
Parameterization Mapping p̂θ

FM-GFN (Bengio et al., 2021), DB-GFN (Bengio et al., 2023),
TB-GFN (Malkin et al., 2022), STB-GFN (Madan et al., 2023),
FL-GFN (Pan et al., 2023a), DAG-GFN (Deleu et al., 2022; Hu
et al., 2024)

Sampling/Resampling Weights µ
PRT (Shen et al., 2023), TS-GFN (Rector-Brooks et al., 2023),
LS-GFN (Kim et al., 2024d), QGFN (Lau et al., 2024), Genetic-
GFN (Kim et al., 2024a)

Backward Policy PB
GTB (Shen et al., 2023), ME-GFN (Mohammadpour et al., 2024),
PBP-GFN (Jang et al., 2024a)

Regression Loss g Ours

While most GFlowNets training objectives are not explicitly written in this form, Equation (1) unifies
all existing training objectives. Table 1 presents a categorization of existing algorithms according to
the components they specify.

In previous literature, g(t) = 1
2 t

2 has been the only choice for regression loss, and the term

g
(
log p̂B(o;θ)

p̂F (o;θ)

)
= 1

2

(
log p̂B(o;θ)

p̂F (o;θ)

)2

is usually referred to as the balance loss. It is specified by

5

Published as a conference paper at ICLR 2025

the training objects and parameterization mapping. Popular balance losses are flow-matching (FM)
loss, detailed-balance (DB) loss, trajectory-balance (TB) loss sub-trajectory-balance (STB) loss, and
their modified versions. For example, the objective function of on-policy TB loss with fixed uniform
PB can be written as

L =
∑
τ∈T

P̂F (τ ; θ)
1

2

(
log

p̂B(τ ; θ)

p̂F (τ ; θ)

)2

,

where for τ = (s0 = so, s1, s2, · · · , sT−1, sT = sf), we have

p̂F (τ ; θ) =Ẑ(θ)P̂F (τ ; θ) = Ẑ(θ)

T∏
t=1

P̂F (st|st−1; θ),

p̂B(τ ; θ) =R(sT−1)PB(τ) = R(sT−1)

T−1∏
t=1

PB(st−1|st) = R(sT−1)

T−1∏
t=1

1

indegree(st)
.

Please refer to Appendix A for the detailed correspondence of other algorithms under this unified
framework.

4.2 THE INFORMATION-THEORETIC INTERPRETATION OF TRAINING OBJECTIVES

Based on our proposed framework, We establish a novel connection between the g functions and the
f -divergences. The result is summarized in Theorem 4.1 below.
Theorem 4.1. Let θF be the parameters for forward policies. For each minimal cut C ∈ C, the
restrictions of both forward and backward flow functions on C can be viewed as unnormalized
distributions over it, denoted as p̂CF and p̂CB , respectively.

If there exists w : C → R+ such that µ(o) = p̂F (o)
∑

C∈C,o∈C w(C) for any o ∈ O, then

∇θFLO,p̂θ,µ,PB ,g = ∇θF

∑
C∈C

w(C)Df (p̂
C
B ||p̂CF), where f(t) = t

∫ t

1

g′(log s)

s2
ds. (2)

The theorem states that the expected gradient of the objective function equals the gradient of a
weighted sum of f -divergence over minimal cuts if the sampling and resampling weights µ on each
training object o equals the forward flow times the accumulated weights on minimal cuts consisting
of o. For example, w(C) = I[C = T] corresponds to TB GFlowNets using on-policy sampling. The
detailed proof of Theorem 4.1 is provided in Appendix B. We also provide a thorough discussion
about the interpretations of FM, DB, and subTB loss under this framework. Please see Appendix C
for details.

Note that when g(t) = 1
2 t

2, i.e., the popular squared loss, we obtain f(t) = t− log t− 1. Thus, Df

is the reverse KL divergence, recovering the results in Malkin et al. (2023). Compared to existing
work, Theorem 4.1 offers a general connection and applies to a wide range of algorithms shown in
Table 1. Below, we conclude this section with the following two remarks on the connections between
function g and f .
Remark 4.2. Note that f(1) = 0, f ′(1) = g′(0), and f ′′(t) = g′′(log t)

t2 . If g is twice differentiable,
then Df is an f -divergence if and only if g is convex and is minimized at zero point.

Remark 4.3. Solving for g from f(t) = t
∫ t

1
g′(log s)

s2 ds and g(0) = 0 gives g(t) = f(et)−
∫ et

1
f(s)
s ds.

4.3 DESIGNING NEW REGRESSION LOSSES

Equipped with the connection established in Theorem 4.1, we now show how one can build upon
it and design regression losses with two important properties: zero-forcing and zero-avoiding.
A zero-forcing objective leads to a conservative result, while a zero-avoiding objective offers a
diverse approximated distribution. As pointed out by previous studies (Minka et al., 2005; Go
et al., 2023), zero-forcing property encourages exploitation, while zero-avoiding property encourages
exploration. Therefore, a zero-avoiding loss may converge faster to a more diverse distribution, while
a zero-forcing one may converge to a distribution with a higher average reward.

To this end, we first study the effect of using different divergence measures as optimization objectives.

6

Published as a conference paper at ICLR 2025

Proposition 4.4 (Liese & Vajda (2006)). Denote f(0) = limt→0+ f(t), f ′(∞) = limt→+∞
f(t)
t ,

1. Suppose f(0) = ∞, then Df (p||q) = ∞ if p(x) = 0 and q(x) > 0 for some x.
2. Suppose f ′(∞) = ∞, then Df (p||q) = ∞ if p(x) > 0 and q(x) = 0 for some x.

In particular, Dα(p||q) for α ≤ 0, including reverse KL divergence, satisfies the first condition, while
Dα(p||q) for α ≥ 1, including forward KL divergence, satisfy the second condition. Proposition 4.4
leads to the following results of approximating a distribution by using f -divergence.
Proposition 4.5 (Liese & Vajda (2006)). Let S be a subset of the collection of distributions over X .
Let p̂S ∈ argminq∈S Df (p||q).

1. Zero-forcing: Suppose f(0) = ∞, then p̂S(x) = 0 if p(x) = 0.
2. Zero-avoiding: Suppose f ′(∞) = ∞, then p̂S(x) > 0 if p(x) > 0.

Proposition 4.5 suggests that when S does not cover the target distribution p, the best approximation
may vary according to the divergence chosen as the objective.

Since the objective functions for GFlowNets with varying regression losses are closely related to
different divergence measures, we similarly define their zero-forcing and zero-avoiding properties.
Definition 4.6. An objective function L for training GFlowNets is

1. Zero-forcing: if for any parameter space Θ and θ∗ = argminθ∈Θ L(θ),

∀s ∈ Sf : R(s) = 0 =⇒ P̂T (s; θ
∗) = 0,

2. Zero-avoiding: if for any parameter space Θ and θ∗ = argminθ∈Θ L(θ),

∀s ∈ Sf : R(s) > 0 =⇒ P̂T (s; θ
∗) > 0.

In such cases, we also say that the regression function g itself is zero-forcing or zero-avoiding.

We then have the following theorem regarding the zero-forcing and zero-avoiding objective functions
and regression losses of GFlowNets.
Theorem 4.7. Let L be an objective function for training GFlowNets, whose regression loss g
corresponds to Df according to Theorem 4.1. If Df is zero-forcing, then L and g are both zero-
forcing. If Df is zero-avoiding, then L and g are both zero-avoiding.

Table 2: Four representative g functions and their corresponding f -divergences. Quadratic loss
corresponds to reverse KL-divergence or the α-divergence with α → 0. Linex(1) corresponds to
forward KL-divergence or the α-divergence with α → 1. Linex(1/2) corresponds to Hellinger
distance (Hellinger, 1909) or the α-divergence with α = 0.5. Shifted-Cosh corresponds to an f -
divergence that is both zero-forcing and zero-avoiding.

Loss g(t) f(t) f(0) f ′(∞) Zero-forcing Zero-avoiding

Quadratic 1
2 t

2 t− log t− 1 ∞ 1 ✓
Linex(1) et − t− 1 t log t− t+ 1 1 ∞ ✓

Linex(1/2) 4e
t
2 − 2t− 4 2t− 4

√
t+ 2 2 2

Shifted-Cosh et + e−t − 2 t log t− t
2 + 1

2t ∞ ∞ ✓ ✓

According to Theorem 4.7, the quadratic regression loss g(t) = 1
2 t

2 is a zero-forcing regression loss
and focuses on exploitation. Combined with Remark 4.3 that enables us to determine a g from an
arbitrary Df , we can easily find regression losses with both, either or neither of the zero-forcing
and zero-avoiding properties. Since these two properties are finally rooted in f(0) and f ′(∞), our
framework allows us to directly design a desired g loss from a desired Df . This provides a systematic
and principled way of designing regression losses. For example, to obtain a zero-avoiding loss that
focuses on exploration, we can solve for g from f(t) = t log t− t− 1 the forward KL divergence,
which gives g(t) = et − t− 1 the Linex(1) function(Garg et al., 2023). We also design Linex(1/2)
and Shifted-Cosh. The former is neither zero-forcing nor zero-avoiding, while the latter is both zero-
forcing and zero-avoiding (see Table 2). In addition, we have also derived another five novel losses,
corresponding to the forward and backward χ2 distance, total variation, symmetric KL divergence,
and Jensen-Shannon divergence, respectively Please see Appendix F for details.

7

Published as a conference paper at ICLR 2025

Note that a convex function g with g(0) = g′(0) = 0 ensures the whole objective function is valid
in the sense that the target distribution is perfectly matched if and only if the objective function
is minimized, regardless of the choices of backward policy, training objects, parameterization,
and exploration strategies. We will also see that they preserve the zero-forcing and zero-avoiding
properties well from the empirical results in the following section.

5 EXPERIMENTS

In this section, we consider four representative g-functions (Table 2) and evaluate their performances
over Flow-matching GFlowNets, Trajectory-balance GFlowNets, Detailed-balance GFlowNets, and
Sub-trajectory-balance GFlowNets, across different choices of backward policies and sampling
strategies. We consider the following three popular benchmarks, hyper-grid, bit-sequence generation,
and molecule generation. Although the sampling and resampling weights µ may not fully meet the
conditions of Theorem 4.1, the effects of zero-forcing and zero-avoiding properties are significant,
demonstrating great compatibility with existing algorithms.

5.1 HYPER-GRID

We first consider the didactic environment hyper-grid introduced by Bengio et al. (2021). In this
setting, the non-terminal states are the cells of a D-dimensional hypercubic grid with side length H .
Each non-terminal state has a terminal copy. The initial state is at the coordinate x = (0, 0, · · · , 0).
For a non-terminal state, the allowed actions are to increase one of the coordinates by 1 without
exiting the grid and to move to the corresponding terminal state.

The reward of coordinate x = (x1, · · · , xD) is given according to

R(x) = R0 +R1

D∏
i=1

I
[∣∣∣xi

H
− 0.5

∣∣∣ > 0.25
]
+R2

D∏
i=1

I
[
0.3 <

∣∣∣xi

H
− 0.5

∣∣∣ < 0.4
]
,

where 0 < −R1 < R0 ≪ R2. Therefore, there are 2D reward modes near the corners of the
hypercube.

We conducted experiments in 4-dimensional and 5-dimensional grids with H = 20, R0 =
10−4, R1 = −9.9×10−5, R2 = 1−10−6. The backward policy is learned using the same objectives
as the forward policy. We use the forward policy to sample training objects. We plot the empirical L1

errors between PT and PR in Figure 3. Additional details can be found in Appendix E.1.

0 200k 400k 600k 800k
trajectories

10 6

10 5

L1
 d

ist
an

ce

4D-grids FM

0 200k 400k 600k 800k
trajectories

10 6

10 5

L1
 d

ist
an

ce

4D-grids TB

0 200k 400k 600k 800k
trajectories

10 6

10 5

L1
 d

ist
an

ce

4D-grids DB

0 200k 400k 600k 800k
trajectories

10 6

10 5

L1
 d

ist
an

ce

4D-grids STB

0 200k 400k 600k 800k
trajectories

10 7

10 6

L1
 d

ist
an

ce

5D-grids FM

0 200k 400k 600k 800k
trajectories

10 7

10 6

L1
 d

ist
an

ce

5D-grids TB

0 200k 400k 600k 800k
trajectories

10 7

10 6

L1
 d

ist
an

ce

5D-grids DB

0 200k 400k 600k 800k
trajectories

10 7

10 6

L1
 d

ist
an

ce

5D-grids STB

Quadratic (baseline) Linex(1) Linex(1/2) Shifted Cosh

Figure 3: Hyper-grid results: the empirical L1 distance between PT and PR.

As shown in Figure 3, the quadratic loss (baseline) converges the slowest among the four losses in
4D grids, and completely fails in 5D grids, while the other three losses remain robust in most of the
cases. This is because the quadratic loss has the poorest exploration ability. Despite the differences
in convergence speed, the L1 errors between PT and PR are almost the same at convergence when
using different regression functions.

8

Published as a conference paper at ICLR 2025

103 104 105

training steps

0

10

20

30

40

50

60

m

od
es

TB

103 104 105

training steps

0

10

20

30

40

50

60

m

od
es

DB

103 104 105

training steps

0

10

20

30

40

50

60

m

od
es

STB

Quadratic (baseline) Linex(1) Linex(1/2) Shifted Cosh

Figure 4: The number of modes found by the algorithm during training.

5.2 BIT-SEQUENCE GENERATION

In our second experimental setting, we study the bit-sequence generation task proposed by Malkin
et al. (2022) and Tiapkin et al. (2024). The goal is to generate binary strings of length n given a fixed
word length k | n. In this setup, an n-bit string is represented as a sequence of n/k k-bit words. The
generation process starts with a sequence of n/k special empty words. At each step, a valid action
replaces an empty word with any k-bit word. Terminal states are sequences with no empty words.
The reward is defined based on the minimal Hamming distance to any target mode in the given set
M ⊂ Zn

2 . Specifically, R(x) = exp {−minx′∈M d(x, x′)}.

In our experiments, we follow the setup in Tiapkin et al. (2024) where n = 120, k = 8, |M | = 60.
PB is fixed to be uniform during training. We use the ϵ-noisy forward policy with a random action
probability of 0.001 to sample training objects and the forward-looking style parameterizations for
DB and STB experiments. We evaluate the number of modes found during training (the number
of bit sequences in M such that a candidate within a distance ∆ = 30 has been generated) as well
as the Spearman Correlation between PT and PR over a test set, which has also been adopted by
Malkin et al. (2022), Madan et al. (2023) and Tiapkin et al. (2024). Additional details can be found
in Appendix E.2.

Table 3: The number of runs that find all modes within 250k steps, and the median of the steps before
they find all modes.

Quadratic (baseline) Linex(1) Linex(1/2) Shifted-Cosh

TB 1/5, – 5/5, 98.0k 5/5, 111.2k 4/5, 92.2k
DB 5/5, 13.4k 5/5, 10.8k 5/5, 11.7k 0/5, –
STB 4/5, 50.6k 5/5, 20.3k 5/5, 55.9k 5/5, 90.0k

Table 4: The Spearman correlation between PT and PR over a test set (the higher the better). The
failed runs that modal collapse happened are eliminated.

Quadratic (baseline) Linex(1) Linex(1/2) Shifted-Cosh

zero-forcing ✓ ✗ ✗ ✓

TB 0.8081(±0.0159) 0.7421(±0.0216) 0.7454(±0.0021) 0.8122(±0.0145)
DB 0.7907(±0.0175) 0.7464(±0.0107) 0.7580(±0.0132) 0.8213(±0.0094)
STB 0.8088(±0.0169) 0.7517(±0.0246) 0.7711(±0.0190) 0.8132(±0.0149)

As shown in Figure 4, the quadratic loss seems to find new modes faster than the other three, but it
always slows down and then is overtaken before finding all modes. As shown in Table 3, quadratic loss
fails to find all modes in one of the five STB runs, and four out of the five TB runs. On the contrary,
Linex(1) and Linex(1/2) succeed in finding all modes in all 15 runs with three different settings, and
Linex(1) is always faster. The performance of shifted-Cosh varies from different algorithms. As we
analyzed in Section 4.3, a zero-avoiding loss benefits exploration, while a zero-forcing loss does the
opposite. These results are consistent with our analysis in general.

In this environment, the state space is so large that the training objects can not fully cover the
whole space. Consequently, although the algorithms appear to converge, the distribution P̂T only
approximates PR rather than perfectly matching it. In such cases, zero-forcing losses have advantages

9

Published as a conference paper at ICLR 2025

on the qualities of samples compared to non-zero-forcing ones. As shown in Table 4, zero-forcing
losses (Quadratic and Shifted-Cosh) result in a higher correlation between PT and PR, meaning
that they fit the target distribution better within its support. Besides, we also observe that for
TB GFlowNets with quadratic loss, the forward policy sometimes collapses to fitting only a small
proportion of the modes in the target distribution, resulting in extremely low correlation. We eliminate
these runs when presenting Table 4.

5.3 MOLECULE GENERATION

3.4 3.6 3.8 4.0 4.2 4.4
average reward

0.32

0.34

0.36

0.38

0.40

0.42

0.44

av
er

ag
e

sim
ila

rit
y

FM

3.55 3.60 3.65 3.70 3.75 3.80
average reward

0.490

0.495

0.500

0.505

0.510

0.515

0.520

av
er

ag
e

sim
ila

rit
y

TB

3.0 3.1 3.2 3.3 3.4 3.5 3.6
average reward

0.42

0.44

0.46

0.48

0.50

0.52

av
er

ag
e

sim
ila

rit
y

DB

2.8 2.9 3.0 3.1 3.2
average reward

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

av
er

ag
e

sim
ila

rit
y

STB

7.0 7.2 7.4 7.6 7.8
average reward

0.45

0.50

0.55

0.60

0.65

0.70

av
er

ag
e

sim
ila

rit
y

FM

6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3
average reward

0.56

0.58

0.60

0.62

0.64

av
er

ag
e

sim
ila

rit
y

TB

6.4 6.6 6.8 7.0 7.2
average reward

0.52

0.54

0.56

0.58

0.60

av
er

ag
e

sim
ila

rit
y

DB

6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2
average reward

0.50

0.52

0.54

0.56

0.58

0.60

0.62

av
er

ag
e

sim
ila

rit
y

STB

Quadratic (baseline) Linex(1) Linex(1/2) Shifted Cosh

Top 50 Top 200 Top 1000

Figure 5: Molecule generation results. Top: Average reward and pair-wise similarities of all 200k
generated molecules during each training episode. The similarities are calculated among a randomly
chosen subset of 1000 molecules. Bottom: Average reward and pair-wise similarities of the top k
generated molecules during each training episode.

The goal of this task is to generate binders of the sEH (soluble epoxide hydrolase) protein by
sequentially joining ‘blocks’ from a fixed library to the partial molecular graph (Jin et al. (2018)).
The reward function is given by a pretrained proxy model given by Bengio et al. (2021), and then
adjusted by a reward exponent hyperparameter β, i.e., R(x) = R̃(x)β where R̃(x) is the output of
the proxy model. For DB, TB, and STB experiments, the backward policies are fixed to be uniform.
The training objects are sampled from the ϵ-noisy forward policy with a random action probability of
0.05. Additional details can be found in Appendix E.3.

It can be seen in Figure 5 that zero-forcing objectives (Quadractic and shifted-Cosh) have a higher
overall average reward, while zero-avoiding objectives (Linex(1) and Linex(1/2)) have lower overall
similarities, meaning that the samples are more diverse. However, things become different when
it comes to the top k molecules, but Linex(1/2), which is neither zero-forcing nor zero-avoiding,
demonstrates the best robustness among them.

6 CONCLUSION

In this work, we develop a principled and systematic approach for designing regression losses for effi-
cient GFlowNets training. Specifically, we rigorously prove that distinct regression losses correspond
to specific divergence measures, enabling us to design and analyze regression losses according to the
desired properties of the corresponding divergence measures. Based on our theoretical framework, we
designed three novel regression losses: Shifted-Cosh, Linex(1/2), and Linex(1). Through extensive
evaluation across three benchmarks: hyper-grid, bit-sequence generation, and molecule generation,
we show that our newly proposed losses are compatible with most existing training algorithms and
significantly improve the performance of the algorithms in terms of convergence speed, sample
diversity, and robustness.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

This work was supported by the National Natural Science Foundation of China Grants 52450016 and
52494974.

The authors thank Professor Yang Yuan for discussions.

REFERENCES

Shun-ichi Amari. Differential-geometrical methods in statistics, volume 28. Springer Science &
Business Media, 2012.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Lazar Atanackovic, Alexander Tong, Bo Wang, Leo J Lee, Yoshua Bengio, and Jason S Hartford.
Dyngfn: Towards bayesian inference of gene regulatory networks with gflownets. Advances in
Neural Information Processing Systems, 36, 2024.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. The Journal of Machine Learning Research, 24(1):10006–10060, 2023.

Leo Brunswic, Yinchuan Li, Yushun Xu, Yijun Feng, Shangling Jui, and Lizhuang Ma. A theory
of non-acyclic generative flow networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 11124–11131, 2024.

Yihang Chen and Lukas Mauch. Order-preserving gflownets. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=VXDPXuq4oG.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. In Uncertainty in
Artificial Intelligence, pp. 518–528. PMLR, 2022.

Tristan Deleu, Mizu Nishikawa-Toomey, Jithendaraa Subramanian, Nikolay Malkin, Laurent Charlin,
and Yoshua Bengio. Joint bayesian inference of graphical structure and parameters with a single
generative flow network. Advances in Neural Information Processing Systems, 36, 2024.

Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, and David Blei. Variational
inference via χ upper bound minimization. Advances in Neural Information Processing Systems,
30, 2017.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent RL
without entropy. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.
net/forum?id=SJ0Lde3tRL.

Pouya M Ghari, Alex Tseng, Gökcen Eraslan, Romain Lopez, Tommaso Biancalani, Gabriele Scalia,
and Ehsan Hajiramezanali. Generative flow networks assisted biological sequence editing. In
NeurIPS 2023 Generative AI and Biology (GenBio) Workshop, 2023.

Dongyoung Go, Tomasz Korbak, Germàn Kruszewski, Jos Rozen, Nahyeon Ryu, and Marc Dymet-
man. Aligning language models with preferences through f -divergence minimization. In Interna-
tional Conference on Machine Learning, pp. 11546–11583. PMLR, 2023.

Ernst Hellinger. Neue begründung der theorie quadratischer formen von unendlichvielen
veränderlichen. Journal für die reine und angewandte Mathematik, 1909(136):210–271, 1909.

11

https://openreview.net/forum?id=VXDPXuq4oG
https://openreview.net/forum?id=SJ0Lde3tRL
https://openreview.net/forum?id=SJ0Lde3tRL

Published as a conference paper at ICLR 2025

Edward J. Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. In The Twelfth In-
ternational Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=Ouj6p4ca60.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In International Conference on Machine Learning, pp.
9786–9801. PMLR, 2022.

Moksh Jain, Tristan Deleu, Jason Hartford, Cheng-Hao Liu, Alex Hernandez-Garcia, and Yoshua
Bengio. Gflownets for ai-driven scientific discovery. Digital Discovery, 2(3):557–577, 2023a.

Moksh Jain, Sharath Chandra Raparthy, Alex Hernández-Garcıa, Jarrid Rector-Brooks, Yoshua
Bengio, Santiago Miret, and Emmanuel Bengio. Multi-objective gflownets. In International
conference on machine learning, pp. 14631–14653. PMLR, 2023b.

Hyosoon Jang, Yunhui Jang, Minsu Kim, Jinkyoo Park, and Sungsoo Ahn. Pessimistic backward
policy for GFlownets. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024a. URL https://openreview.net/forum?id=L8Q21Qrjmd.

Hyosoon Jang, Minsu Kim, and Sungsoo Ahn. Learning energy decompositions for partial inference
in gflownets. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024b. URL https://openreview.net/
forum?id=P15CHILQlg.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

Hyeonah Kim, Minsu Kim, Sanghyeok Choi, and Jinkyoo Park. Genetic-guided GFlownets for sample
efficient molecular optimization. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024a. URL https://openreview.net/forum?id=B4q98aAZwt.

Minsu Kim, Sanghyeok Choi, Jiwoo Son, Hyeonah Kim, Jinkyoo Park, and Yoshua Bengio. Ant
colony sampling with gflownets for combinatorial optimization. arXiv preprint arXiv:2403.07041,
2024b.

Minsu Kim, Joohwan Ko, Taeyoung Yun, Dinghuai Zhang, Ling Pan, Woochang Kim, Jinkyoo
Park, Emmanuel Bengio, and Yoshua Bengio. Learning to scale logits for temperature-conditional
gflownets. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Aus-
tria, July 21-27, 2024. OpenReview.net, 2024c. URL https://openreview.net/forum?
id=GUEsK9xJny.

Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo Ahn,
and Jinkyoo Park. Local search gflownets. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024d. URL
https://openreview.net/forum?id=6cFcw1Rxww.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hernández-
Garcıa, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of continuous
generative flow networks. In International Conference on Machine Learning, pp. 18269–18300.
PMLR, 2023.

Elaine Lau, Stephen Zhewen Lu, Ling Pan, Doina Precup, and Emmanuel Bengio. QGFN: Con-
trollable greediness with action values. In ICML 2024 Workshop on Structured Probabilistic
Inference & Generative Modeling, 2024. URL https://openreview.net/forum?id=
hpBKv8kkOP.

Yingzhen Li and Richard E Turner. Rényi divergence variational inference. In Proceedings of the
30th International Conference on Neural Information Processing Systems, pp. 1081–1089, 2016.

Friedrich Liese and Igor Vajda. On divergences and informations in statistics and information theory.
IEEE Transactions on Information Theory, 52(10):4394–4412, 2006.

12

https://openreview.net/forum?id=Ouj6p4ca60
https://openreview.net/forum?id=L8Q21Qrjmd
https://openreview.net/forum?id=P15CHILQlg
https://openreview.net/forum?id=P15CHILQlg
https://openreview.net/forum?id=B4q98aAZwt
https://openreview.net/forum?id=GUEsK9xJny
https://openreview.net/forum?id=GUEsK9xJny
https://openreview.net/forum?id=6cFcw1Rxww
https://openreview.net/forum?id=hpBKv8kkOP
https://openreview.net/forum?id=hpBKv8kkOP

Published as a conference paper at ICLR 2025

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from
partial episodes for improved convergence and stability. In International Conference on Machine
Learning, pp. 23467–23483. PMLR, 2023.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. Advances in Neural Information Processing Systems, 35:
5955–5967, 2022.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J. Hu, Katie Everett, Dinghuai Zhang,
and Yoshua Bengio. Gflownets and variational inference, 2023. URL https://openreview.
net/forum?id=uKiE0VIluA-.

Tom Minka et al. Divergence measures and message passing. Technical report, Technical report,
Microsoft Research, 2005.

Sobhan Mohammadpour, Emmanuel Bengio, Emma Frejinger, and Pierre-Luc Bacon. Maximum
entropy gflownets with soft q-learning. In International Conference on Artificial Intelligence and
Statistics, pp. 2593–2601. PMLR, 2024.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. Advances in neural information processing systems, 29,
2016.

Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of gflownets with
local credit and incomplete trajectories. In International Conference on Machine Learning, pp.
26878–26890. PMLR, 2023a.

Ling Pan, Dinghuai Zhang, Aaron C. Courville, Longbo Huang, and Yoshua Bengio. Genera-
tive augmented flow networks. In The Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023b. URL
https://openreview.net/forum?id=urF_CBK5XC0.

Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, and Yoshua Bengio. Stochastic generative
flow networks. In Uncertainty in Artificial Intelligence, pp. 1628–1638. PMLR, 2023c.

Mohit Pandey, Gopeshh Subbaraj, and Emmanuel Bengio. GFlownet pretraining with inexpensive
rewards. In Neurips 2024 Workshop Foundation Models for Science: Progress, Opportunities, and
Challenges, 2024. URL https://openreview.net/forum?id=9cCAkMB4mA.

Yury Polyanskiy, 2019. URL: https://people.lids.mit.edu/yp/homepage/data/
LN_fdiv.pdf. Last visited on 2024/09/23.

Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath
Chandar, Nikolay Malkin, and Yoshua Bengio. Thompson sampling for improved exploration in
GFlownets. In ICML 2023 Workshop on Structured Probabilistic Inference & Generative Modeling,
2023. URL https://openreview.net/forum?id=qdRQ5ejeAL.

Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and
Tommaso Biancalani. Towards understanding and improving gflownet training. In International
Conference on Machine Learning, pp. 30956–30975. PMLR, 2023.

Tiago Silva, Eliezer de Souza da Silva, and Diego Mesquita. On divergence measures for training
GFlownets. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=N5H4z0Pzvn.

Zitao Song, Chao Yang, Chaojie Wang, Bo An, and Shuang Li. Latent logic tree extraction for event
sequence explanation from llms. In Forty-first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 202Fani4. URL https://
openreview.net/forum?id=pwfcwEqdUz.

Daniil Tiapkin, Nikita Morozov, Alexey Naumov, and Dmitry P Vetrov. Generative flow networks
as entropy-regularized rl. In International Conference on Artificial Intelligence and Statistics, pp.
4213–4221. PMLR, 2024.

13

https://openreview.net/forum?id=uKiE0VIluA-
https://openreview.net/forum?id=uKiE0VIluA-
https://openreview.net/forum?id=urF_CBK5XC0
https://openreview.net/forum?id=9cCAkMB4mA
https://people.lids.mit.edu/yp/homepage/data/LN_fdiv.pdf
https://people.lids.mit.edu/yp/homepage/data/LN_fdiv.pdf
https://openreview.net/forum?id=qdRQ5ejeAL
https://openreview.net/forum?id=N5H4z0Pzvn
https://openreview.net/forum?id=pwfcwEqdUz
https://openreview.net/forum?id=pwfcwEqdUz

Published as a conference paper at ICLR 2025

Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan,
Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, Alexandre Adam, Jarrid Rector-
Brooks, Yoshua Bengio, Glen Berseth, and Nikolay Malkin. Amortizing intractable inference in
diffusion models for vision, language, and control. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=gVTkMsaaGI.

Chaoqi Wang, Yibo Jiang, Chenghao Yang, Han Liu, and Yuxin Chen. Beyond reverse KL: generaliz-
ing direct preference optimization with diverse divergence constraints. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net, 2024. URL https://openreview.net/forum?id=2cRzmWXK9N.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilistic modeling. In International Conference
on Machine Learning, pp. 26412–26428. PMLR, 2022.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with gflownets. Advances in neural
information processing systems, 36:11952–11969, 2023.

Dinghuai Zhang, Ricky T. Q. Chen, Cheng-Hao Liu, Aaron C. Courville, and Yoshua Bengio. Diffu-
sion generative flow samplers: Improving learning signals through partial trajectory optimization.
In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024a. URL https://openreview.net/forum?id=
OIsahq1UYC.

Dinghuai Zhang, Ling Pan, Ricky T. Q. Chen, Aaron C. Courville, and Yoshua Bengio. Dis-
tributional gflownets with quantile flows. Trans. Mach. Learn. Res., 2024, 2024b. URL
https://openreview.net/forum?id=vFSsRYGpjW.

Mingtian Zhang, Thomas Bird, Raza Habib, Tianlin Xu, and David Barber. Variational f-divergence
minimization. arXiv preprint arXiv:1907.11891, 2019.

Huaiyu Zhu and Richard Rohwer. Information geometric measurements of general-
isation. 1995. URL https://research.aston.ac.uk/en/publications/
information-geometric-measurements-of-generalisation.

Yiheng Zhu, Jialu Wu, Chaowen Hu, Jiahuan Yan, Tingjun Hou, Jian Wu, et al. Sample-efficient
multi-objective molecular optimization with gflownets. Advances in Neural Information Processing
Systems, 36, 2024.

Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, and Christian A Naesseth. A
variational perspective on generative flow networks. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=AZ4GobeSLq.

14

https://openreview.net/forum?id=gVTkMsaaGI
https://openreview.net/forum?id=gVTkMsaaGI
https://openreview.net/forum?id=2cRzmWXK9N
https://openreview.net/forum?id=OIsahq1UYC
https://openreview.net/forum?id=OIsahq1UYC
https://openreview.net/forum?id=vFSsRYGpjW
https://research.aston.ac.uk/en/publications/information-geometric-measurements-of-generalisation
https://research.aston.ac.uk/en/publications/information-geometric-measurements-of-generalisation
https://openreview.net/forum?id=AZ4GobeSLq

Published as a conference paper at ICLR 2025

Appendix

A Unifying Training Algorithms of GFlowNets 16

A.1 Training Objects and Parameterization Mapping 16

A.2 Sampling and Resampling Weights . 18

A.3 Backward Policy . 18

B Theorem 4.1 and its Proof 19

C Interpretation of Theorem 4.1 for Different Kinds of Losses 20

C.1 Flow Matching Loss . 20

C.2 Detailed Balance Loss . 20

C.3 Sub-Trajectory Balance Loss . 21

D Proof of Theorem 4.7 21

E Experimental Details 21

E.1 Hyper-grid . 21

E.2 Bit-sequence Generation . 22

E.3 Molecule Generation . 22

F More Divergence-based Losses 22

15

Published as a conference paper at ICLR 2025

A UNIFYING TRAINING ALGORITHMS OF GFLOWNETS

An objective function for training GFlowNets is specified by five key components, the training objects
O, the parameterization mapping p̂θ, the sampling and resampling weights µ, the backward policy
PB and the regression loss g. Most existing algorithms specify only one to two of the former four
components.

A.1 TRAINING OBJECTS AND PARAMETERIZATION MAPPING

The choice of these two components are usually coupled since the parameters are mapped to the flow
functions defined on training objects. The choice of training objects include states, edges, partial
trajectories and complete trajectories, corresponding to Flow-Matching GFlownets (FM-GFN, Bengio
et al. 2021), Detailed-Balance GFlowNets (DB-GFN, Bengio et al. 2023), Sub-Trajectory-Balance
GFlowNets (STB-GFN, Madan et al. 2023) and Trajectory-Balance GFlowNets (TB-GFN, Malkin
et al. 2022), respectively. Detailed-Balance GFlowNets and Sub-Trajectory-Balance GFlowNets can
be parameterized in different ways, the variants of which are Forward-Looking GFlowNets (FL-GFN,
Pan et al. 2023a) and DAG GFlowNets (DAG-GFN, also called modified-DB or modified-STB, Deleu
et al. 2022; Hu et al. 2024). These algorithms can be summarized in Table 5.

Table 5: The training objects and parameterization mappings of different GFlowNet training algo-
rithms. Among the parameters, P̂B can be either fixed or learned.

Algorithm Training Objects Parameters Parameterization mapping

FM states F̂ (s → s′) Equation (3), (4)

DB transitions F̂ (s), P̂F (s
′|s) (, P̂B(s|s′)) Equation (5), (6)

FL-DB transitions F̃ (s), P̂F (s
′|s) (, P̂B(s|s′)) Equation (11), (12)

modified-DB transitions P̂F (s
′|s) (, P̂B(s|s′)) Equation (15), (16)

TB complete trajectories Ẑ, P̂F (s
′|s) (, P̂B(s|s′)) Equation (7), (8)

STB partial trajectories F̂ (s), P̂F (s
′|s) (, P̂B(s|s′)) Equation (9), (10)

FL-STB partial trajectories F̃ (s), P̂F (s
′|s) (, P̂B(s|s′)) Equation (13), (14)

modified-STB partial trajectories P̂F (s
′|s) (, P̂B(s|s′)) Equation (17), (18)

Flow-Matching GFlowNets (FM-GFN). An FM-GFN is parameterized by an edge-flow function
F̂ : E → R+. It uniquely determines a valid flow network if and only if the flow-matching
conditions hold:

∀s ∈ V \ {so, sf},
∑

(s′→s)∈E

F̂ (s′ → s) = R(s) +
∑

(s→s′′)∈E
s′′ ̸=sf

F̂ (s → s′′)

The flow-matching loss for state s is defined as

LFM (s) =
1

2

(
log

p̂B(s)

p̂F (s)

)2

where p̂F (s) =
∑

(s′→s)∈E

F̂ (s′ → s) (3)

p̂B(s) =R(s) +
∑

(s→s′′)∈E
s′′ ̸=sf

F̂ (s → s′′) (4)

Detailed-Balance GFlowNets (DB-GFN). A DB-GFN is parameterized by a state-flow function
F̂ : V \ {sf} → R+, a forward probability function P̂F : V \ {sf} → ∆(V) and a backward
probability function P̂B : V \ {s0, sf} → ∆(V). They uniquely determine a valid flow network if

16

Published as a conference paper at ICLR 2025

and only if the detailed balance conditions hold:

∀s ∈ Sf , F̂ (s)P̂F (sf |s) = R(s)

∀(s → s′) ∈ E, s′ ̸= sf , F̂ (s)P̂F (s
′|s) = F̂ (s′)P̂B(s|s′)

The detailed-balance loss for transition s → s′ is defined as

LDB(s → s′) =
1

2

(
log

p̂B(s → s′)

p̂F (s → s′)

)2

where p̂F (s → s′) =F̂ (s)P̂F (s
′|s) (5)

p̂B(s → s′) =

{
F̂ (s′)P̂B(s|s′) , s′ ̸= sf
R(s) , s′ = sf

(6)

Trajectory-Balance GFlowNets (TB-GFN). A TB-GFN is parameterized by a total flow function
Ẑ, a forward probability function P̂F : V \{sf} → ∆(V \{s0}) and a backward probability function
P̂B : V \ {s0} → ∆(V \ {sf}). They uniquely determine a GFlowNet if and only if the trajectory
balance conditions hold:

∀τ = (s0 = so, s1, · · · , sT−1, sT = sf), Ẑ

T=1∏
t=0

P̂F (st+1|st) = R(sT−1)

T−1∏
t=1

P̂B(st−1|st)

The trajectory-balance loss for complete trajectory τ = (s0 = so, s1, · · · , sT−1, sT = sf) is
defined as

LTB(τ) =
1

2

(
log

p̂B(τ)

p̂F (τ)

)2

where p̂F (τ) =Ẑ

T=1∏
t=0

P̂F (st+1|st) (7)

p̂B(τ) =R(sT−1)

T−1∏
t=1

P̂B(st−1|st) (8)

Sub-Trajectory-Balance GFlowNets (STB-GFN). An STB-GFN uses the same parameters as a
DB-GFN with an alternative loss, the sub-trajectory-balance loss. It is defined for partial trajectory
ι = (s0, s1, · · · , sT−1, sT) as

LSTB(ι) =
1

2

(
log

p̂B(ι)

p̂F (ι)

)2

where p̂F (ι) =F̂ (s0)

T=1∏
t=0

P̂F (st+1|st) (9)

p̂B(ι) =

{
F̂ (sT)

∏T
t=1 P̂B(st−1|st) , sT ̸= sf

R(sT−1)
∏T−1

t=1 P̂B(st−1|st) , sT = sf
(10)

Forward-looking GFlowNets (FL-GFN). FL-GFNs require the assumption that the reward func-
tion can be extended to the whole state space, instead of restricted to only terminal states. The
parameters of FL-GFN are quite similar to that of the original DB GFlowNets and STB GFlowNets,
including a forward-looking state-flow function F̃ : V \ {sf} → R+, a forward probability function
P̂F : V \ {sf} → ∆(V) and a backward probability function P̂B : V \ {s0, sf} → ∆(V). The only
difference is that the original state-flow function F̂ is replaced by the forward-looking version F̃ ,
following F̂ (s) = R(s)F̃ (s). The forward-looking detailed-balance loss and forward-looking

17

Published as a conference paper at ICLR 2025

sub-trajectory-balance loss can be obtained by substituting them with the original ones:

LFL-DB(s → s′) =
1

2

(
log

p̂B(s → s′)

p̂F (s → s′)

)2

where p̂F (s → s′) =R(s)F̃ (s)P̂F (s
′|s) (11)

p̂B(s → s′) =

{
R(s′)F̃ (s′)P̂B(s|s′), s′ ̸= sf
R(s), s′ = sf

(12)

LFL-STB(ι) =
1

2

(
log

p̂B(ι)

p̂F (ι)

)2

where p̂F (ι) =R(s0)F̃ (s0)

T=1∏
t=0

P̂F (st+1|st) (13)

p̂B(ι) =

{
R(sT)F̃ (sT)

∏T
t=1 P̂B(st−1|st), sT ̸= sf

R(sT−1)
∏T−1

t=1 P̂B(st−1|st), sT = sf
(14)

DAG GFlowNets (DAG-GFN). DAG-GFNs require that each state is terminated and has a non-zero
reward. Then according to the detailed-balance condition, F̂ (s) = R(s)

p̂F (sf |s) for all s. Therefore, the

flow network can be parameterized by only the forward probability function P̂F : V \ {sf} → ∆(V)

and the backward probability function P̂B : V \ {s0, sf} → ∆(V). The modified detailed-balance
loss and modified sub-trajectory-balance loss can be obtained by substituting them into the original
ones:

Lmodified-DB(s → s′) =
1

2

(
log

p̂B(s → s′)

p̂F (s → s′)

)2

where p̂F (s → s′) =
R(s)P̂F (s

′|s)
P̂F (sf |s)

(15)

p̂B(s → s′) =

{
R(s′)P̂B(s|s′)

P̂F (sf |s′)
, s′ ̸= sf

R(s) , s′ = sf
(16)

Lmodified-STB(ι) =
1

2

(
log

p̂B(ι)

p̂F (ι)

)2

where p̂F (ι) =
R(s0)

P̂F (sf |s0)

T=1∏
t=0

P̂F (st+1|st) (17)

p̂B(ι) =

{
R(sT)

P̂F (sf |sT)

∏T
t=1 P̂B(st−1|st) , sT ̸= sf

R(sT−1)
∏T−1

t=1 P̂B(st−1|st) , sT = sf
(18)

A.2 SAMPLING AND RESAMPLING WEIGHTS

There exist various strategies to sample training objects to enhance exploration and hence accelerate
convergence. The usual practice is to use the forward policy, the backward policy, a tempered or ϵ-
noisy version of them, an offline dataset, or a mixture of these strategies. Other choices include using
a reward prioritized replay buffer (Shen et al., 2023), applying Thompson sampling (Rector-Brooks
et al., 2023), local search (Kim et al., 2024d) or genetic search (Kim et al., 2024a) to the sampled
trajectories for extra samples, increasing greediness according to state-action value Q (Lau et al.,
2024), etc. The sampled objects may also be reweighed. For example, STB-GFN weights each partial
trajectory by a factor proportional to λl, where l is its length and λ is a hyper-parameter.

A.3 BACKWARD POLICY

The most common choice of PB is to either fix it to be uniform or simultaneously train it using the
same objective as the forward policy. Other criteria include matching a (possibly non-Markovian)

18

Published as a conference paper at ICLR 2025

prior (Shen et al., 2023), maximizing the entropy of the corresponding forward policy (Mohammad-
pour et al., 2024) and learning a pessimistic one that focuses on observed trajectories (Jang et al.,
2024a).

B THEOREM 4.1 AND ITS PROOF

Theorem B.1 (An extension of Theorem 4.1). Let θF and θB be the parameters for forward and
backward policies, respectively. For each minimal cut C ∈ C, the restrictions of both forward and
backward flow functions on C can be viewed as unnormalized distributions over it, denoted as p̂CF
and p̂CB , respectively.

If there exists w : C → R+ such that µ(o) = p̂F (o)
∑

C∈C,o∈C w(C) for any o ∈ O, then

∇θFLO,p̂θ,µ,PB ,g = ∇θF

∑
C∈C

w(C)Df1(p̂
C
B ||p̂CF),where f1(t) = t

∫ t

1

g′(log s)

s2
ds

∇θBLO,p̂θ,µ,PB ,g = ∇θB

∑
C∈C

w(C)Df2(p̂
C
B ||p̂CF),where f2(t) = g(log t)

If there exists w : C → R+ such that µ(o) = p̂B(o)
∑

C∈C,o∈C w(C) for any o ∈ O, then

∇θFLO,p̂θ,µ,PB ,g = ∇θF

∑
C∈C

w(C)Df3(p̂
C
B ||p̂CF),where f3(t) = tg(log t)

∇θBLO,p̂θ,µ,PB ,g = ∇θB

∑
C∈C

w(C)Df4(p̂
C
B ||p̂CF),where f4(t) =

∫ t

1

g′(log s)ds

Proof. We prove the theorem by deriving the correspondence. Specifically, assume µ(o) =
p̂F (o)

∑
C∈C,o∈C w(C). Then,

∇θF

∑
C∈C

w(C)Df1(p̂
C
B ||p̂CF) =

∑
C∈C

w(C)
∑
o∈C

∇θF

[
p̂CF (o)f1

(
p̂CB(o)

p̂CF (o)

)]

=
∑
C∈C

w(C)
∑
o∈C

[
f1

(
p̂CB(o)

p̂CF (o)

)
− p̂CB(o)

p̂CF (o)
f ′
1

(
p̂CB(o)

p̂CF (o)

)]
∇θF p̂

C
F (o)

=
∑
C∈C

w(C)
∑
o∈C

−g′
(
log

p̂CB(o)

p̂CF (o)

)
∇θF p̂

C
F (o)

=
∑
C∈C

w(C)
∑
o∈C

p̂CF (o)g
′
(
log

p̂CB(o)

p̂CF (o)

)(
− 1

p̂CF (o)

)
∇θF p̂

C
F (o)

=
∑
o∈O

µ(o)∇θF g

(
log

p̂CB(o)

p̂CF (o)

)
=∇θFLO,p̂θ,µ,PB ,g

∇θB

∑
C∈C

w(C)Df2(p̂
C
B ||p̂CF) =

∑
C∈C

w(C)
∑
o∈C

∇θB

[
p̂CF (o)f2

(
p̂CB(o)

p̂CF (o)

)]

=
∑
C∈C

w(C)
∑
o∈C

[
p̂CF (o)∇θBg

(
log

p̂CB(o)

p̂CF (o)

)]

=
∑
o∈O

µ(o)∇θBg

(
log

p̂CB(o)

p̂CF (o)

)
=∇θBLO,p̂θ,µ,PB ,g

In the second case, suppose µ(o) = p̂B(o)
∑

C∈C,o∈C w(C). Then,

19

Published as a conference paper at ICLR 2025

∇θF

∑
C∈C

w(C)Df3(p̂
C
B ||p̂CF) =

∑
C∈C

w(C)
∑
o∈C

∇θF

[
p̂CF (o)f3

(
p̂CB(o)

p̂CF (o)

)]

=
∑
C∈C

w(C)
∑
o∈C

[
f3

(
p̂CB(o)

p̂CF (o)

)
− p̂CB(o)

p̂CF (o)
f ′
3

(
p̂CB(o)

p̂CF (o)

)]
∇θF p̂

C
F (o)

=
∑
C∈C

w(C)
∑
o∈C

− p̂CB(o)

p̂CF (o)
g′
(
log

p̂CB(o)

p̂CF (o)

)
∇θF p̂

C
F (o)

=
∑
C∈C

w(C)
∑
o∈C

p̂CB(o)g
′
(
log

p̂CB(o)

p̂CF (o)

)(
− 1

p̂CF (o)

)
∇θF p̂

C
F (o)

=
∑
o∈O

µ(o)∇θF g

(
log

p̂CB(o)

p̂CF (o)

)
=∇θFLO,p̂θ,µ,PB ,g

∇θB

∑
C∈C

w(C)Df4(p̂
C
B ||p̂CF) =

∑
C∈C

w(C)
∑
o∈C

∇θB

[
p̂CF (o)f4

(
p̂CB(o)

p̂CF (o)

)]

=
∑
C∈C

w(C)
∑
o∈C

f ′
4

(
p̂CB(o)

p̂CF (o)

)
∇θB p̂

C
B(o)

=
∑
C∈C

w(C)
∑
o∈C

p̂CB(o)g
′
(
log

p̂CB(o)

p̂CF (o)

)
1

p̂CB(o)
∇θB p̂

C
B(o)

=
∑
o∈O

µ(o)∇θBg

(
log

p̂CB(o)

p̂CF (o)

)
=∇θBLO,p̂θ,µ,PB ,g

C INTERPRETATION OF THEOREM 4.1 FOR DIFFERENT KINDS OF LOSSES

C.1 FLOW MATCHING LOSS

For any s ∈ V , let l(s) be the length of the longest trajectory from so to s. For any (s → s′) ∈ E, if
l(s) + 1 < l(s′), then we insert l(s′)− l(s)− 1 virtual states on this edge, denoted as s(s→s′),l for
l(s) < l < l(s′), and define

p̂F (s(s→s′),l) = p̂B(s(s→s′),l) = F̂ (s → s′)

then these virtual states have no contribution to the total loss, thus we can assign to them arbitrary
weights.

Let V i be the collections of states in layer i, and let w(V i) = 1, then we have

µ(s) = p̂V
l(s)

F (s) = p̂F (s)

C.2 DETAILED BALANCE LOSS

For any s ∈ V , let l(s) be the length of the longest trajectory from so to s. For any (s → s′) ∈ E, if
l(s) + 1 < l(s′), then we insert l(s′)− l(s)− 1 virtual states on this edge, denoted as s(s→s′),l for
l(s) < l < l(s′), and define

p̂lF (s → s′) =p̂F (s → s′)

p̂lB(s → s′) =

{
p̂F (s → s′) , l < l(s′)

p̂B(s → s′) , l = l(s′)

20

Published as a conference paper at ICLR 2025

then these virtual transitions have no contribution to the total loss, thus we can assign to them arbitrary
weights.

Let Ei be the collections of edges from layer i to layer i+ 1, and let w(Ei) = 1, then we have

µ(s → s′) = p̂E
l(s)

F (s → s′) = p̂F (s → s′)

C.3 SUB-TRAJECTORY BALANCE LOSS

Assume that G is a graded DAG with L+ 1 layers. Suppose τ = (s0 = so, s1, · · · , sL = sf) is a
complete trajectory, we use τi:j = (si, si+1, · · · , sj) to denote a partial trajectory. Let T i:j be the
collections of trajectories from layer i to layer j, then

µ(ι) =
∑

τ :ι=τi:j

P̂F (τ)
λj−i∑

0≤i<j≤L λj−i

≈ λj−i∑
0≤i<j≤L λj−i

p̂T
i:j

F (ι)

Hence w(T i:j) = λj−i∑
0≤i<j≤L

and 0 otherwise.

D PROOF OF THEOREM 4.7

Theorem D.1. Let L be an objective function for training GFlowNets, whose regression loss g
corresponds to Df according to Theorem 4.1. If Df is zero-forcing, then L and g are both zero-
forcing. If Df is zero-avoiding, then L and g are both zero-avoiding.

Proof. Assume that Df is zero-forcing, and P̂T (s; θ
∗) > 0 for some terminating state s. Then there

exists a trajectory τ = (so, · · · , s, sf) such that P̂F (τ ; θ) > 0, thus

p̂CF (o) = p̂F (o) > 0

for any o ∈ τ, o ∈ C,w(C) > 0. Since Df is zero-forcing, p̂B(o) = p̂CB(o) > 0 for any o ∈ τ ,
meaning that P̂B(τ) > 0 and R(s) > 0. Thus, R(s) = 0 implies P̂T (s; θ) = 0 , so L is zero-forcing,
and then g is zero-forcing as well.

Similarly, assume that Df is zero-avoiding, and R(s) > 0 for some terminating state s. Then there
exists a trajectory τ = (so, · · · , s, sf) such that P̂B(τ) > 0, thus

p̂CB(o) = p̂B(o) > 0

for any o ∈ τ, o ∈ C,w(C) > 0. Since Df is zero-avoiding, p̂F (o) = p̂CF (o) > 0 for any o ∈ τ ,
meaning that P̂F (τ ; θ) > 0, so P̂T (s; θ) > 0. Thus, R(s) > 0 implies that P̂T (s; θ) > 0, so L is
zero-avoiding, and then g is zero-avoiding as well.

E EXPERIMENTAL DETAILS

E.1 HYPER-GRID

Our implementation of the baselines is based on Tiapkin et al. (2024). All models are parameterized
by an MLP with 2 hidden layers of 256 neurons. We train the model with Adam optimizer using a
batch size of 16 and a learning rate of 0.001. For the TB case, we use a larger learning rate of 0.1
for learnable total flow Ẑ. For STB parameter λ, we use the value of 0.9 following Tiapkin et al.
(2024) and Madan et al. (2023). We repeat each experiment 3 times using different random seeds. In
each run, we train the models until 800k trajectories have been collected, and the empirical sample
distribution is computed over the last 80k seen trajectories.

21

Published as a conference paper at ICLR 2025

E.2 BIT-SEQUENCE GENERATION

In this experiment, our implementation of the baselines is based on Tiapkin et al. (2024) and Pan et al.
(2023a). The model is a 3-layer Transformer with 64 hidden units and 8 attention heads per layer. We
train the model with Adam optimizer using a batch size of 16 and a learning rate of 0.001. For the
TB case, we use a larger learning rate of 0.002 for learnable total flow Ẑ. For STB parameter λ, we
use the value of 1.5. Following Tiapkin et al. (2024), we use a reward exponent of 2. To calculate the
Spearman Correlation, we use the same Monte-Carlo estimation for PT as Zhang et al. (2022) and
Tiapkin et al. (2024), namely

PT (x) ≈
1

N

N∑
i=1

PF (τ
i)

PB(τ i|x)

with N = 10. We repeat each experiment 5 times using different random seeds.

E.3 MOLECULE GENERATION

In the molecule generation experiment, our implementation of the baselines is based on Tiapkin et al.
(2024). We use Message Passing Neural Networks (MPNN) as the model architecture. We train the
model with Adam optimizer using a batch size of 4 and a learning rate of 0.0005. We use a reward
exponent of 4, and the STB parameter λ is set to 0.99. We repeat each experiment 4 times using
different random seeds. In each run, We train the models for 50000 steps, generating 200k molecules.

F MORE DIVERGENCE-BASED LOSSES

Apart from the four representative divergence-based losses in Section 4.3, we also derive another five
novel losses from some well-known divergence measures, including the forward and backward χ2

distance, total variation distance, symmetric KL divergence and Jensen-Shannon divergence (See
Table 6).

Table 6: Five well-known f -divergences and their corresponding regression losses.

Divergence f(t) g(t) Zero-forcing Zero-avoiding

Forward χ2 1
2 (t− 1)2 1

4

(
e2t − 2t− 1

)
✓

Reverse χ2 1
2

(
t+ 1

t − 2
)

e−t + t− 1 ✓

Total Variation 1
2 |t− 1| 1

2 |t|
Symmetric KL 1

2 (t− 1) log t 1
2

(
et + 1

t

2 − t− 1
)

✓ ✓

JS Divergence 1
2

(
t log t− (t+ 1) log

(
t+1
2

))
1
2

∫ t

0
log

(
1+ex

2

)
dx

χ2 distance . The χ2 distance between p and q is defined as

χ2(p||q) = 1

2

∑
x∈X

(p(x)− q(x))2

q(x)
(19)

It is a special case of α-divergence with α = 2, or f -divergence with f(t) = 1
2 (t− 1)2. According

to Theorem 4.1, we obtain the corresponding regression loss Linex(2): g(t) = 1
4

(
e2t − 2t− 1

)
.

By exchanging p and q in (19), we obtain the reverse χ2 distance, which is a special case of α-
divergence with α = −1, or f -divergence with f(t) = 1

2

(
t+ 1

t − 2
)
. The corresponding regression

loss Linex(-1): g(t) = e−t + t− 1.

The forward χ2 distance and Linex(2) are zero-avoiding, while the reverse χ2 and Linex(-1) distance
are zero-forcing.

22

Published as a conference paper at ICLR 2025

Total Variation. The total variation between p and q is defined as

TV (p||q) = 1

2

∑
x∈X

|p(x)− q(x)|

It corresponds to the f -divergence with f(t) = 1
2 |t− 1|, and the regression loss g(t) = 1

2 |t|. Since
f(0) = f ′(∞) = 1

2 , this loss function is neither zero-forcing nor zero-avoiding.

Symmetric KL Divergence. The symmetric KL divergence between p and q is defined as

DsKL(p||q) =
1

2
(DKL(p||q) +DKL(q||p))

=
1

2

∑
x∈X

(
p(x) log

p(x)

q(x)
+ q(x) log

q(x)

p(x)

)
It corresponds to the f -divergence with f(t) = 1

2 (t − 1) log t, and the regression loss g(t) =
1
2

(
et + 1

t

2 − t− 1
)

. Since f(0) = f ′(∞) = ∞, this loss function is both zero-forcing and
zero-avoiding.

Jensen-Shannon Divergence. The Jensen-Shannon divergence (JS divergence) between p and q is
defined as

DJS(p||q) =
1

2

(
DKL(p||

p+ q

2
) +DKL(q||

p+ q

2
)

)
=
1

2

∑
x∈X

(
p(x) log

2p(x)

p(x) + q(x)
+ q(x) log

2q(x)

p(x) + q(x)

)
It corresponds to the f -divergence with f(t) = 1

2

(
t log t− (t+ 1) log

(
t+1
2

))
, and the regression

loss g(t) = 1
2

∫ t

0
log

(
1+ex

2

)
dx. Since f(0) = f ′(∞) = 1

2 log 2, this loss function is neither
zero-forcing nor zero-avoiding.

We evaluate their performance on bit-sequence generation task using the same metrics (Please refer
to Section 5.2 and Appendix E.2 for details). It turns out that losses with the same zero-forcing or
zero-avoiding properties lead to similar behaviors.

Table 7: The number of runs that find all modes within 250k steps, and the median of the steps before
they find all modes.

TB DB STB

Reverse KL (baseline) 1/5, – 5/5, 13.4k 4/5, 50.6k
Reverse χ2 0/5, – 0/5, – 0/5, –

Forward KL 5/5, 98.0k 5/5, 10.8k 5/5, 20.3k
Forward χ2 5/5, 80.3k 5/5, 8.1k 5/5, 10.2k

Hellinger 5/5, 111.2k 5/5, 11.7k 5/5, 55.9k
Total Variation 1/5, – 5/5, 47.1k 2/5, –
Jensen-Shannon 4/5, 162.2k 5/5, 12.8k 3/5, 165.2k

Shifted-Cosh 4/5, 92.2k 0/5, – 5/5, 90.0k
Symmetric KL 4/5, 122.2k 5/5, 13.7k 5/5, 27.5k

23

Published as a conference paper at ICLR 2025

Table 8: The Spearman correlation between PT and PR over a test set (the higher the better). The
failed runs where modal collapse happened are eliminated.

TB DB STB

Reverse KL (baseline) 0.8081(±0.0159) 0.7907(±0.0175) 0.8088(±0.0169)
Reverse 0.8074(±0.0129) – 0.7899(±0.0166)

Forward KL 0.7421(±0.0216) 0.7464(±0.0107) 0.7517(±0.0246)
Forward χ2 0.7507(±0.0174) 0.7266(±0.0178) 0.7439(±0.0126)

Hellinger 0.7454(±0.0021) 0.7580(±0.0132) 0.7711(±0.0190)
Total Variation 0.7893(±0.0144) 0.7266(±0.0178) –
Jensen-Shannon 0.7852(±0.0256) 0.7542(±0.0046) 0.7640(±0.0213)

Shifted-Cosh 0.8122(±0.0145) 0.8213(±0.0094) 0.8132(±0.0149)
Symmetric KL 0.7908(±0.0235) 0.7630(±0.0097) 0.7886(±0.0227)

24

	Introduction
	Related Work
	Preliminaries of GFlowNets and f-Divergence
	GFlowNets
	f-Divergence

	Training Generative Flow Networks
	A Unified Framework for GFlowNet Training Algorithms
	The Information-Theoretic Interpretation of Training Objectives
	Designing New Regression Losses

	Experiments
	Hyper-grid
	Bit-sequence generation
	Molecule generation

	Conclusion
	Appendices
	Unifying Training Algorithms of GFlowNets
	Training Objects and Parameterization Mapping
	Sampling and Resampling Weights
	Backward Policy

	Theorem 4.1 and its Proof
	Interpretation of Theorem 4.1 for Different Kinds of Losses
	Flow Matching Loss
	Detailed Balance Loss
	Sub-Trajectory Balance Loss

	Proof of Theorem 4.7
	Experimental Details
	Hyper-grid
	Bit-sequence Generation
	Molecule Generation

	More Divergence-based Losses

