
Beyond Fine-Tuning:
Transferring Behavior in Reinforcement Learning

Vı́ctor Campos 1 Pablo Sprechmann 1 Steven Hansen 1 Andre Barreto 1 Steven Kapturowski 1 Alex Vitvitskyi 1

Adrià Puigdomènech Badia 1 Charles Blundell 1

Abstract
Designing agents that acquire knowledge au-
tonomously and use it to solve new tasks effi-
ciently is an important challenge in reinforcement
learning. Knowledge acquired during an unsu-
pervised pre-training phase is often transferred
by fine-tuning neural network weights once re-
wards are exposed, as is common practice in su-
pervised domains. Given the nature of the rein-
forcement learning problem, we argue that stan-
dard fine-tuning strategies alone are not enough
for efficient transfer in challenging domains. We
introduce Behavior Transfer (BT), a technique
that leverages pre-trained policies for exploration
and that is complementary to transferring neu-
ral network weights. Our experiments show that,
when combined with large-scale pre-training in
the absence of rewards, existing intrinsic moti-
vation objectives can lead to the emergence of
complex behaviors. These pre-trained policies
can then be leveraged by BT to discover better
solutions than without pre-training, and combin-
ing BT with standard fine-tuning strategies results
in additional benefits. The largest gains are gen-
erally observed in domains requiring structured
exploration, including settings where the behavior
of the pre-trained policies is misaligned with the
downstream task.

1. Introduction
Transfer in deep learning is often performed through param-
eter initialization followed by fine-tuning, a technique that
allows to leverage the power of deep networks in domains
where labelled data is scarce (Yosinski et al., 2014; Donahue

1Deepmind, London. Correspondence to: Vı́ctor Cam-
pos <camunez@deepmind.com>, Pablo Sprechmann <psprech-
mann@deepmind.com>.

Unsupervised Reinforcement Learning Workshop, 38 th Interna-
tional Conference on Machine Learning, PMLR 139, 2021. Copy-
right 2021 by the author(s).

et al., 2014; Zeiler & Fergus, 2014; Girshick et al., 2014;
Devlin et al., 2019). This builds on the intuition that the pre-
trained model will map inputs to a feature space where the
downstream task is easy to perform. When combined with
methods that can leverage massive amounts of unlabelled
data for pre-training, this transfer strategy has led to unprece-
dented results in domains like computer vision (Hénaff et al.,
2019; He et al., 2019) and natural language processing (De-
vlin et al., 2019; Radford et al., 2019). The success of these
approaches has led to an ever-growing interest in developing
techniques for pre-training large scale models on unlabelled
data (Brown et al., 2020; Chen et al., 2020; Grill et al.,
2020).

In the reinforcement learning (RL) context, unsupervised
methods that learn in the absence of reward have also gar-
nered much research attention (Gregor et al., 2016; Flo-
rensa et al., 2017; Pathak et al., 2017; Eysenbach et al.,
2019; Hazan et al., 2019). The benefits of unsupervised
pre-training are typically evaluated by their ability to en-
able efficient transfer to previously unseen reward func-
tions (Hansen et al., 2020). In spite of their different ap-
proaches to unsupervised RL, most of the top-performing
methods in this setting transfer knowledge through neural
network weights. Such approaches deal with the data ineffi-
ciency associated to training neural networks with gradient
descent, similarly to what is done in supervised learning,
e.g. by pre-training encoders that extract representations
from observations (Yarats et al., 2021). However, RL intro-
duces a challenge that is not present in supervised learning:
the agent is responsible for collecting the right data to learn
from. This introduces a second source of inefficiency from
which transfer approaches can also suffer if they rely on un-
structured exploration strategies after pre-training, as these
can lead to exponentially larger data requirements in com-
plex downstream environments (Osband et al., 2016b;a). To
address this problem, one could consider fine-tuning poli-
cies that produce meaningful behavior (Mutti et al., 2021;
Schwarzer et al., 2021), but this approach quickly disregards
the pre-trained behavior when learning in the downstream
task due to catastrophic forgetting.

In this work, we explicitly separate the transfer of behaviour

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

0 500 M 1 B 1.5 B 2 B
Environment frames

0

2.5 k

5 k

7.5 k

10 k

12.5 k
Montezuma's Revenge (sparse rewards)

0 500 M 1 B 1.5 B 2 B
Environment frames

0

100 k

200 k

300 k

400 k

500 k
Defender (dense rewards)

Without transfer
NGU (reward-free)

From scratch

With transfer
Fine-tuning NGU
BT(NGU)
BT(NGU) + NGU init

Figure 1. Comparison of transfer strategies on Montezuma’s Revenge and Defender after pre-training a policy with NGU (Puig-
domènech Badia et al., 2020b) in the absence of reward. The benefits of our proposed approach to leverage pre-trained behavior
for exploration, Behavior Transfer (BT), are complementary to the gains provided by pre-trained weight initialization followed by
fine-tuning.

and weights. We propose to make use of the pre-trained
behaviour itself (i.e., the pre-trained policy mapping from
observations to actions) in contrast to pre-trained neural
network weights for further fine-tuning. While pre-trained
behavior has been used before for exploitation (Barto &
Mahadevan, 2003; Sutton et al., 1999; Barreto et al., 2017;
2018), our approach employs pre-trained policies to aid
with exploration as well to collect experience that can be
leveraged via off-policy learning. This strategy accelerates
learning, as the agent is exposed to potentially useful expe-
rience earlier in training, without compromising the quality
of the discovered solution when the pre-trained behavior
is not aligned with the downstream task. We expose the
pre-trained behaviour to the downstream agent in two ways:
firstly, as an extra exploratory strategy that, when randomly
activated, persists for a number of steps, and secondly as
an additional pseudo-action for the learned value function
where the agent may elect to defer action selection to the
pre-trained policy instead of choosing itself. We call this
approach Behavior Transfer (BT).

Defining unsupervised RL objectives remains an open prob-
lem, and solutions are generally influenced by how the ac-
quired knowledge will be used for solving downstream tasks.
Instead of proposing yet another objective for unsupervised
pre-training, we turn to existing techniques for training poli-
cies in the absence of reward and make our choice based
on two general requirements. First, the objective should
scale gracefully with increased compute and data. This has
been key for the success of self-supervised approaches in
other domains (Brown et al., 2020; Kaplan et al., 2020),
and we argue that it is an important property for unsuper-
vised RL as well. Second, the pre-training stage should
return a policy that produces complex behavior that may be
leveraged in a subsequent transfer stage. The Never Give
Up (NGU) (Puigdomènech Badia et al., 2020b) intrinsic
reward meets both requirements, and our experiments show
that large-scale pre-training with this objective leads to state
of the art scores in the reward-free Atari benchmark.

Figure 1 exemplifies our main findings. We pre-train be-
haviour using the intrinsic NGU reward during a long un-
supervised phase without rewards. This gives rise to ex-
ploratory behaviors that seek to visit many different states

throughout an episode, and we then compare different strate-
gies for leveraging the acquired knowledge once rewards are
reinstated. While fine-tuning the pre-trained weights enables
faster learning, the exploratory behavior of the pre-trained
policy is quickly disregarded as it is exposed to rewards. On
the other hand, Behavior Transfer (BT) does not modify the
pre-trained policy while learning in the new task and is able
to achieve higher end scores thanks to better exploration.
These two strategies are not mutually exclusive, and BT also
benefits from the faster convergence provided by initializing
neural networks with pre-trained weights when these encode
useful information for solving the downstream task.

Our contributions can be summarized as follows. (1) We
propose Behavior Transfer (BT), a technique that lever-
ages pre-trained policies for exploration by treating them
as black boxes that are not modified during learning on
the downstream task. BT uses the pre-trained policy to
collect experience in two ways, namely randomly-triggered
temporally-extended exploration and one-step calls based on
value estimates. (2) Our experiments show that large-scale
unsupervised pre-training with existing intrinsic rewards can
produce meaningful behavior, achieving state of the art re-
sults in the reward-free Atari benchmark. These results sug-
gest that scale is key for unsupervised RL, akin to what has
been observed in supervised settings. (3) We provide exten-
sive empirical evidence demonstrating the benefits of lever-
aging pre-trained behavior via BT. Our approach obtains the
largest gains in hard exploration games, where it almost dou-
bles the median human normalized score achieved by our
strongest baseline. Furthermore, we show that BT is able to
leverage a single task-agnostic policy to solve multiple tasks
in the same environment and to achieve high performance
even when the pre-trained policies are misaligned with the
task being solved. (4) BT brings benefits to the table that
are complementary to those provided by reusing pre-trained
neural network weights, and we empirically show that com-
bining these two strategies can result in larger gains.

2. Preliminaries
The interaction between the agent and the environment is
modelled as a Markov Decission Process (MDP) (Puterman,

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

1994). An MDP is defined by the tuple (S,A, P, d0, R, γ)
where S and A are the state and action spaces, P (s′|s, a)
is the probability of transitioning from state s to s′ after
taking action a, d0(s) is the probability distribution over
initial states, R : S × A × S −→ R is the reward function,
and γ ∈ [0, 1) is the discount factor. The goal is to find
a policy π(a|s) that maximizes the expected return, Gt =∑∞
t=0 γ

tRt, where Rt = r(St, At, St+1). A principled
way to address this problem is to use methods that compute
action-value functions, Qπ(s, a) = Eπ [Gt|St = s,At =
a], where Eπ[·] denotes expectation over transitions induced
by π (Puterman, 1994).

We consider a setting where the agent is allowed to first learn
within an MDP without rewards, MR = (S,A, P, d0),
for a long period of time. The knowledge acquired dur-
ing the reward-free stage is later leveraged when maxi-
mizing reward in new MDPs that share the same under-
lying dynamics but have different reward functions,Mi =
(S,A, P, d0, Ri, γi). Interactions between the agent and the
environment are often assumed to incur a cost, but we will
consider this cost to be relevant only for transitions with re-
ward (Hansen et al., 2020). Even if the cost of unsupervised
pre-training becomes non-negligible, it can be amortized
when the acquired task-agnostic knowledge is leveraged to
solve multiple tasks efficiently (Devlin et al., 2019; Brown
et al., 2020). Indeed, we would expect this transfer setting
to become more relevant as the community moves towards
more complex environments, where one may want to train
agents to maximize multiple reward functions under con-
stant dynamics. In the limit, one could consider the real
world: it has constant or slowly changing dynamics, and
humans are able to leverage previously acquired skills to
quickly master new tasks.

3. Behavior Transfer
Transfer in supervised domains often exploits the fact that
related tasks might be solved using similar representations.
This practice deals with the data inefficiency of training
large neural networks with stochastic gradient descent. How-
ever, there is an additional source of data inefficiency when
training RL agents: unstructured exploration. Fine-tuning
a pre-trained exploratory policy arises as a potential strat-
egy for overcoming this problem, as the agent will observe
rich experience much earlier in training than when initial-
izing the policy randomly, but this approach suffers from
important limitations. Learning in the downstream task
can lead to catastrophically forgetting the pre-trained pol-
icy, thus prematurely disregarding its exploratory behavior.
Moreover, the same neural network architecture needs to be
used for both the pre-trained and the downstream policies,
which in practice also imposes a limitation on the type of
RL methods that can be employed in the adaptation stage

(for instance, if the pre-trained policy was trained using a
policy-based method, it might not be possible to fine-tune it
using a value-based approach).

Let us assume that we have access to a pre-trained policy
that exhibits exploratory behavior, and defer the discussion
on how to train this policy to Section 4. Following such a
policy might bring the agent to states that are unlikely to
be visited with unstructured exploration techniques such
as ε-greedy (Sutton & Barto, 2018). This property has the
potential of accelerating learning even when the behavior
of the pre-trained policy is not aligned with the downstream
task, as it will effectively shorten the path between other-
wise distant states (Liu & Brunskill, 2018). Leveraging
pre-trained policies for exploration differs from other ap-
proaches in the literature that use such policies directly for
exploitation, e.g. via zero-shot transfer (Eysenbach et al.,
2019), methods that define a higher-level policy that al-
ternates between the given policies (Barto & Mahadevan,
2003; Sutton et al., 1999), or within the framework of gener-
alized policy updates (Barreto et al., 2020). Exploring with
pre-trained policies can accelerate convergence by provid-
ing useful experience to the agent, which is possible even
when the pre-training and downstream tasks are misaligned.
However, strategies that directly use the pre-trained policies
for exploitation may result in sub-optimal solutions in such
scenario (Barreto et al., 2017).

We propose to leverage the behavior of pre-trained poli-
cies during transfer to aid with exploration. An explicit
distinction between behavior and representation is made
by considering pre-trained policies as black boxes that take
observations and return actions. This strategy is agnostic
to how the pre-trained behavior is encoded and is not re-
stricted to learned policies. We rely on off-policy learning
methods during transfer to leverage the behavior of a pre-
trained policy πp(a|s). We keep πp fixed during transfer,
which prevents catastrophic forgetting of the original behav-
ior when it is parameterized by a neural network (i.e., we
instantiate and train a new policy with its own set of parame-
ters). We propose Behavior Transfer (BT), which leverages
two complementary strategies to achieve this. Since BT is
agnostic to the method used to pre-train policies, BT (πp)
refers to behavior being transferred from policy πp. We for-
malize BT in the context of value-based Q-learning agents,
although similar derivations are in principle possible for
alternative off-policy learning methods. Pseudo-code for
BT is provided in Algorithm 1.

Temporally-extended exploration. We draw inspiration
from Lévy flights (Viswanathan et al., 1996), a class of eco-
logical models for animal foraging, where a fixed direction
is followed for a duration sampled from a heavy-tailed dis-
tribution. This principle was implemented in the context of
exploration in RL by εz-greedy (Dabney et al., 2021), which

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

encodes the notion of direction in the environment via ex-
ploration options that repeat the same action throughout the
entire flight. Since πp is more likely to encode a meaningful
notion of direction in complex environments than action
repeats, we propose a variant of εz-greedy where πp is used
as the exploration option. An exploratory flight might be
started at any step with some probability. The duration for
the flight is sampled from a heavy-tailed distribution (Zeta
with µ = 2 in all our experiments), and control is handed
over to πp during the complete flight. When not in a flight,
actions are sampled from the behavior policy obtained while
maximizing the task reward (e.g. an ε-greedy derived from
the estimated Q values).

Extra action. The previous approach switches to πp during
experience collection blindly, and we now consider an
alternative strategy for triggering these switches based on
value. This can be easily implemented through an extra
action which samples an action from πp, which also allows
the agent to use the pre-trained policy at test time if deemed
beneficial. More formally, this amounts to training a policy
over an expanded action set A+ = A ∪ {a+}, where a+
is resolved by sampling an action from πp, a′ ∼ πp(s)
(with a′ ∈ A). The additional action can be seen as an
option that can be initiated from any state and always
terminates after a single step. Note that selecting the option
will lead to the same outcome as if the agent had selected
a′ as a primitive action, and we take advantage of this
observation by using the return of following the option
as target to fit both Q(s, πp(s)) and Q(s, a′). Intuitively,
this approach induces a bias that favours actions selected
by πp, accelerating the collection of rewarding transitions
when the pre-trained policy is somewhat aligned with the
downstream task. Otherwise, the agent can learn to ignore
πp as training progresses by selecting other actions.

4. Reward-free pre-training
It is a common practice to derive objectives for proxy tasks
in order to drive learning in the absence of reward func-
tions, and there exists a plethora of different approaches
in the literature. Model-based approaches can learn world
models from unsupervised interaction (Ha & Schmidhu-
ber, 2018). However, the diversity of the training data will
impact the accuracy of the model (Sekar et al., 2020) and
deploying this type of approach in visually complex do-
mains like Atari remains an open problem (Hafner et al.,
2019). Unsupervised RL has also been explored through
the lens of empowerment (Salge et al., 2014; Mohamed
& Rezende, 2015), which studies agents that aim to dis-
cover intrinsic options (Gregor et al., 2016; Eysenbach et al.,
2019). While these options can be leveraged by hierarchical
agents (Florensa et al., 2017) or integrated within the uni-
versal successor features framework (Barreto et al., 2017;

Algorithm 1: Experience collection in BT
Input: Action set, A; additional action, a+;

extended action set, A+ = A ∪ {a+};
pre-trained policy, πp; Q-value estimate for
the current policy, Qπ(s, a)∀a ∈ A+;
probability of taking an exploratory action,
ε; probability of starting a flight, εlevy; flight
length distribution, D(N)

while True do
n←− 0 // flight length
while episode not ended do

Observe state s
if n == 0 and random() ≤ εlevy then
n ∼ D(N) // sample length

if n > 0 then
n←− n− 1
a ∼ πp(s)

else
if random() ≤ ε then
a ∼ Uniform(A+) else
a←− argmaxa′∈A+ [Qπ(s, a′)]
if a == a+ then a ∼ πp(s)

end
Take action a

end
end

2018; Borsa et al., 2019; Hansen et al., 2020), their poten-
tial lack of coverage generally limits their applicability to
complex downstream tasks (Campos et al., 2020). An al-
ternative objective is that of exploring the environment by
finding policies that induce maximally entropic state distri-
butions (Hazan et al., 2019; Lee et al., 2019), although this
might become extremely inefficient in high-dimensional
state spaces without proper priors (Liu & Abbeel, 2021;
Yarats et al., 2021).

Recall that our goal is to devise a pre-training objective
that can help reduce the amount of interaction needed by
the agent to collect relevant experience when learning in
a downstream task. We argue that such objective needs to
meet two requirements. First, as suggested by results in
other domains (Brown et al., 2020; Kaplan et al., 2020),
it should scale gracefully as the amount of compute and
experience used for pre-training are increased. This con-
trasts with the training regimes used in most unsupervised
RL approaches, which use a relatively small amount of ex-
perience (Hansen et al., 2020; Liu & Abbeel, 2021; Yarats
et al., 2021) when compared to distributed agents that do
make use of rewards (Horgan et al., 2018; Espeholt et al.,
2018; Kapturowski et al., 2019). Second, it must encourage
the emergence of complex behaviors such as navigation or
manipulation skills. It has been argued that exploring the

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

environment efficiently will serve as a proxy for developing
such behaviors (Kearns & Singh, 2002), and exploration
bonuses have been shown to produce meaningful behavior
in the absence of reward (Pathak et al., 2017; Burda et al.,
2018a). However, many exploration bonuses vanish over
the course of training and thus may not be well-suited for a
long unsupervised pre-training phase. It can be shown that
many intrinsic rewards aim at maximizing the entropy of all
states visited during training, and so the final policy does not
necessarily exhibit exploratory behavior (Lee et al., 2019).

We propose to use Never Give Up (NGU) (Puig-
domènech Badia et al., 2020b) as a means for training ex-
ploratory policies in an unsupervised setting. The NGU
intrinsic reward proposes a curiosity-driven approach for
training persistent exploratory policies which combines per-
episode and life-long novelty. The per-episode novelty,
repisodic
t , rapidly vanishes over the course of an episode, and

it is designed to encourage self-avoiding trajectories. It
is computed by comparing a representation of the current
observation, f(st), to those of all the observations visited
in the current episode, M = {f(s0), f(s1), . . . , f(st−1)},
where f : S → Rp is an embedding function trained us-
ing a self-supervised inverse dynamics model (Pathak et al.,
2017). Such a mapping concentrates on the controllable as-
pects of the environment, ignoring all the variability present
in the observation that is not affected by the action taken
by the agent. The life-long novelty, αt, slowly vanishes
throughout training, and it is computed by using Random
Network Distillation (RND) (Burda et al., 2018b). With this,
the intrinsic reward rNGU

t is defined as follows:

rNGU
t = repisodic

t ·min {max {αt, 1} , L} ,

repisodic
t =

1√∑
f(si)∈Nk

K(f(st), f(si)) + c

(1)

where L is a fixed maximum reward scaling, Nk is the set
containing the k-nearest neighbors of f(st) inM , c is a con-
stant andK : Rp×Rp → R+ is a kernel function satisfying
K(x, x) = 1 (which can be thought of as approximating
pseudo-counts (Puigdomènech Badia et al., 2020b)). The
episodic component of the reward in Equation 1 is reset by
emptying M with each episode, thus the NGU reward does
not vanish throughout the training process. This makes it
suitable for driving learning in task-agnostic settings.

5. Experiments
Agents are evaluated in the Atari suite (Bellemare et al.,
2013), a benchmark that presents a variety of challenges and
that is a common test ground for RL agents with unsuper-
vised pre-training (Hansen et al., 2020; Liu & Abbeel, 2021;
Schwarzer et al., 2021). Experiments are run using the dis-
tributed R2D2 agent (Kapturowski et al., 2019) with 256

CPU actors and a single GPU learner. Policies use the same
Q-Network architecture as Agent57 (Puigdomènech Badia
et al., 2020a), which is composed by a convolutional torso
followed by an LSTM (Hochreiter & Schmidhuber, 1997)
and a dueling head (Wang et al., 2016). Hyperparameters
and a detailed description of the full distributed setting are
provided in the supplementary material. All reported results
are the average over three random seeds.

Reward-free learning. The amount of task reward col-
lected by unsupervised policies is often used as a proxy to
measure their quality (Eysenbach et al., 2019). While the
actual utility of these policies will not be revealed until they
are leveraged for transfer, this proxy lets us evaluate whether
the discovered behavior changes as longer pre-training bud-
gets are allowed. We compare unsupervised NGU policies
against VISR (Hansen et al., 2020) and APT (Liu & Abbeel,
2021), which utilize a small amount of supervised interac-
tion to adapt the pre-trained policies. We also consider two
additional unsupervised baselines: (i) a constant positive re-
ward at each timestep that favours long episodes, which cor-
relate with high scores in some games (Burda et al., 2018a),
and (ii) RND (Burda et al., 2018b), which rewards life-long
novelty. Note that the RND reward vanishes, but we include
it in our analysis because it was previously used by Burda
et al. (2018a) in this setting and implementation choices
such as reward normalization may prevent it from fading
in practice. Figure 2 (left) shows how the zero-shot trans-
fer performance of unsupervised policies evolves during a
long pre-training phase. NGU reaches the highest scores,
but both NGU and RND eventually outperform VISR and
APT even though these used supervised interaction. In
Table 2 of Appendix C we show that unsupervised NGU
policies largely outperform several other baselines using the
standard pre-training and adaptation setting. These results
highlight the importance of large-scale unsupervised pre-
training in RL, similarly to the trend observed in supervised
domains (Brown et al., 2020).

Transfer setting. Transfer approaches are typically eval-
uated in the Atari benchmark with a budget of 100k RL
interactions with reward (400k frames), but we propose to
allow a longer adaptation phase. Randomly initialized net-
works tend to overfit in these very low data regimes without
strong regularization (Kostrikov et al., 2021), and we are
interested in studying the impact of leveraging behavior
both in isolation and combined with transfer via pre-trained
weights. Moreover, since the pre-trained policies are already
competent in the downstream tasks, 100k interactions are
exhausted after few episodes and may be insufficient for
improving performance. For these reasons, we provide re-
sults with up to 1.25B RL steps of supervised interaction
(5B frames). This allows evaluating both convergence speed
and asymptotic performance, while still being a relatively
small budget for these distributed agents with hundreds of

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

0 2 B 4 B 6 B 8 B 10 B 12 B 14 B 16 B
Unsupervised environment frames

0

20

40

60

80

100

Hu
m

an
 n

or
m

al
ize

d
sc

or
e

Atari-57: Median

0

5k

10k

15k
Montezuma's Revenge

1.28 B 3.84 B 6.4 B 8.94 B
Unsupervised environment frames

21

0

21
Pong

Without transfer
NGU @0
RND @0
Pos Reward @0

With transfer
GPI VISR @400k
APT @400k
R2D2 + BT(NGU) @5B

Figure 2. Performance as a function of the pre-training budget. @N represents the number of frames with reward utilized for transfer.
(Left) Median human normalized score across the 57 games in the Atari suite. We observe the emergence of useful behavior when
optimizing an intrinsic reward during a long unsupervised pre-training of 16B frames, which contrasts with the shorter pre-training of
1B frames in previous works (Hansen et al., 2020; Liu & Abbeel, 2021). (Right) Scores in the games of Montezuma’s Revenge (sparse
rewards) and Pong (dense reward), before and after transfer, as a function of the pre-training budget. A longer pre-training benefits transfer
in hard exploration games even if the zero-shot transfer score of the unsupervised policies does not increase.

actors (Puigdomènech Badia et al., 2020a).

Transfer via behavior. We start by studying the impact
of leveraging behavior in isolation, i.e. without transfer-
ring pre-trained weights, when learning in downstream
tasks. We compare BT against two baselines that do
not use pre-trained behavior, namely the standard R2D2
agent (Kapturowski et al., 2019) that uses ε-greedy policies
for exploration (Sutton & Barto, 2018), as well as a variant
of R2D2 with εz-greedy exploration (Dabney et al., 2021).
Figure 3 shows that BT is superior to both baselines for any
amount of environment interaction with rewards, converging
faster early in training and also obtaining higher asymptotic
performance. These results also demonstrate the generality
of the proposed approach, as it is able to benefit from both
RND and NGU policies. Note that BT performs particularly
well in the set of six hard exploration games1 defined by
Bellemare et al. (2016), which is aligned with our intuition
that reusing behavior helps overcoming the inefficiency asso-
ciated to unstructured exploration. Figure 2 (right) confirms
that a long pre-training phase is especially important in hard
exploration games such as Montezuma’s Revenge, even it
they do not translate into higher zero-shot transfer scores, as
it produces more exploratory behavior. On the other hand,
the performance after transfer is independent of the amount
of pre-training in dense reward games like Pong, where
unstructured exploration is enough to reach optimal scores.

Ablation studies. In order to gain insight on each of
the components in BT, we run experiments on a subset
of 12 games2 requiring different amounts of exploration
and featuring both dense and sparse rewards. BT(πNGU)
achieves a median score of 368 in this subset, which com-
pares favorably to the 196 median score of R2D2 with ε-
greedy exploration. Removing either the extra action or the

1gravitar, montezuma revenge, pitfall,
private eye, solaris, venture

2Obtained by combining games used to tune hyperparam-
eters in (Hansen et al., 2020) with games where εz-greedy
provides clear gains over ε-greedy as per (Dabney et al.,
2021): asterix, bank heist, frostbite, gravitar,
jamesbond, montezuma revenge, ms pacman, pong,
private eye, space invaders, tennis, up n down.

temporally-extended exploration reduces the median score
of BT(πNGU) to 224. These results suggest that the gains
provided by both strategies are complementary, and both are
responsible for the strong performance of BT. To provide
further insight about the benefits of BT, Figure 4 reports
the fraction of steps per episode in which the extra action is
selected by the greedy policy. It hints at the emergence of
a schedule over the usage of the pre-trained policy, which
increases early in training and decays afterwards. We hy-
pothesize that this is due to the fact that the unsupervised
policies obtain large episodic returns, but their behavior is
suboptimal when maximizing discounted rewards. These
policies take many exploratory actions in between rewards,
and so the agent eventually figures out more efficient strate-
gies for reaching rewarding states by using primitive actions.

Transfer to multiple tasks. An appealing property of task-
agnostic knowledge is that it can be leveraged to solve mul-
tiple tasks. In the RL setting, this can be evaluated by
leveraging a single task-agnostic policy for solving multi-
ple tasks (i.e. reward functions) in the same environment.
We evaluate whether the unsupervised NGU policies can
be useful beyond the standard Atari tasks by creating two
alternative versions of Ms Pacman and Hero with differ-
ent levels of difficulty. The goal in the modified version
of Ms Pacman is to eat vulnerable ghosts, with pac-dots
giving 0 (easy version) or −10 (hard version) points. In the
modified version of Hero, saving miners gives a fixed return
of 1000 points and dynamiting walls gives either 0 (easy
version) or −300 (hard version) points. The rest of rewards
are removed, e.g. eating fruit in Ms Pacman or the bonus for
unused power units in Hero. Note that even in the easy ver-
sion of the games exploration is harder than in their original
counterparts, as there are no small rewards guiding the agent
towards its goals. Exploration is even more challenging in
the hard version of the games, as the intermediate rewards
work as a deceptive signal that takes the agent away from
its actual goal. In this case, finding rewarding behaviors
requires a stronger commitment to an exploration strategy.
Unsupervised NGU policies often achieve very low or even
negative rewards in this setting, which contrasts with the
strong performance they showed when evaluated under the

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

0 1 B 2 B 3 B 4 B 5 B
Environment frames

0

100

200

300

400

500

600

Hu
m

an
 n

or
m

al
ize

d
sc

or
e Atari-57: median

0 1 B 2 B 3 B 4 B 5 B
Environment frames

0
25
50
75

100
125
150
175
200

Hard exploration games: median
Without rewards

NGU
RND

With rewards
R2D2
R2D2 + z-greedy
R2D2 + BT(NGU)
R2D2 + BT(RND)

Figure 3. Median human normalized scores for R2D2-based agents trained from scratch. (Left) Full Atari suite. (Right) Subset of hard
exploration games.

0 1 B 2 B 3 B 4 B 5 B
Environment frames

0.0

0.2

0.4

0.6

0.8

1.0

Ex
tra

 a
ct

io
n

us
ag

e

asterix
ms_pacman
bank_heist
pong
montezuma_revenge

frostbite
gravitar
jamesbond
private_eye
space_invaders1 B 1.5 B 2 B 2.5 B 3 B 3.5 B 4 B 4.5 B 5 B

0.00

0.05

0.10

Figure 4. Usage of the extra action in BT(πNGU), computed as the fraction of steps within an episode in which it is selected by the agent.
The usage peaks early in training and slowly decreases afterwards as the new policy becomes stronger at the task.

standard game reward. Figure 5 shows that leveraging the
behavior of pre-trained exploration policies provides impor-
tant gains even in this adversarial scenario. These results
suggest that the strong performance observed under the stan-
dard game rewards is not due to an alignment between the
NGU reward and the game goals, but due to an efficient
usage of pre-trained exploration policies.

Combining pre-trained behavior and weights. Our last
batch of experiments focuses on studying transfer via pre-
trained weights and its compatibility with BT. Policies are
composed of a convolutional torso, an LSTM, and a dueling
head. We consider two initialization strategies: a partial
initialization approach that loads the torso and the LSTM,
but initializes the head randomly; and a full initialization
scheme where all weights are loaded. The former can be
understood as transferring learned representations (Yarats
et al., 2021), but deferring exploration to a random policy.
On the other hand, the full initialization approach can
be seen as directly transferring the policy and is usually
referred to as fine-tuning the pre-trained policy (Mutti
et al., 2021; Liu & Abbeel, 2021; Schwarzer et al., 2021).
Note that these approaches only change how weights are
initialized before training. As in previous experiments, all
parameters in the new policy are trained and πp is kept fixed
when using BT. Figure 6 (top) compares agents with and
without BT for different amounts of transfer via weights on
the Atari benchmark. Loading pre-trained weights results in
faster learning early in training, both with and without BT.
The largest gains are observed in dense reward games, which
translates into higher median scores across the full suite be-
cause most games belong to this category. Weights alone are
not enough in hard exploration games, where leveraging the
pre-trained policy via BT provides clear benefits. Perhaps
surprisingly, we observe that transferring representations

outperforms fine-tuning the pre-trained policy, and we
hypothesize that the former is more robust to misalignments
between the pre-trained policy and the downstream task.
This intuition is further supported by the experiments on
games with modified reward functions reported in Fig-
ure 6 (middle & bottom), where the faster learning provided
by pre-trained weights often comes at the cost of lower end
scores. On the other hand, BT is crucial in tasks with sparse
and deceptive rewards and also benefits from pre-trained
weights in tasks where positive transfer is observed.

6. Related work
Our work uses the experimental methodology presented by
Hansen et al. (2020). Whereas that work only considered
a fast, simplified adaptation process that limited the final
performance on the downstream task, we focus on the more
general case of using a previously trained policy to aid in
solving the full RL problem. Hansen et al. (2020) use suc-
cessor features to identify which of the pre-trained tasks
best matches the true reward structure, which has previously
been shown to work well for multi-task transfer (Barreto
et al., 2018). Bagot et al. (2020) augments an agent with the
ability to utilize another policy, which is learned in tandem
based on an intrinsic reward function. This promising direc-
tion is complementary to our work, as it handles the case
wherein there is no unsupervised pre-training phase.

Gupta et al. (2018) provides an alternative method to meta-
learn a solver for reinforcement learning problems from un-
supervised reward functions. This method utilizes gradient-
based meta-learning (Finn et al., 2017), which makes the
adaptation process standard reinforcement learning updates.
This means that even if the downstream reward is far out-
side of the training distribution, final performance would

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

0

5 k

10 k

MsPacman

0

5 k

10 k
MsPacman: eating ghosts (easy)

0

5 k

10 k
MsPacman: eating ghosts (hard)

Without rewards
NGU (reward-free)

With rewards
R2D2
R2D2 + z-greedy
R2D2 + BT(NGU)

0 1 B 2 B 3 B 4 B 5 B
0

20 k

40 k

Hero

0 1 B 2 B 3 B 4 B 5 B
0

2 k

4 k

Hero: rescuing miners (easy)

0 1 B 2 B 3 B 4 B 5 B

0

2 k

4 k

Hero: rescuing miners (hard)

Figure 5. Scores in Atari games with modified reward functions. We train a single task-agnostic policy per environment, and leverage it to
solve three different tasks: the standard game reward, a task with sparse rewards (easy), and a variant of the same task with deceptive
rewards (hard).

0 1 B 2 B 3 B 4 B 5 B
0

200

400

600

Atari-57: median HNS

0 1 B 2 B 3 B 4 B 5 B
0

100

200
Hard exploration games: median HNS

R2D2
From scratch
Partial NGU init
Full NGU init

R2D2 + BT(NGU)
From scratch
Partial NGU init
Full NGU init

0 1 B 2 B 3 B 4 B 5 B
0

5 k

10 k

15 k
MsPacman

0 1 B 2 B 3 B 4 B 5 B
0

5 k

10 k
MsPacman: eating ghosts (easy)

0 1 B 2 B 3 B 4 B 5 B
0

5 k

10 k
MsPacman: eating ghosts (hard)

0 1 B 2 B 3 B 4 B 5 B
Environment frames

0

20 k

40 k

Hero

0 1 B 2 B 3 B 4 B 5 B
Environment frames

0

2 k

4 k

Hero: rescuing miners (easy)

0 1 B 2 B 3 B 4 B 5 B
Environment frames

0

2 k

4 k

Hero: rescuing miners (hard)

Figure 6. Performance of R2D2-based agents with different amounts of transfer via weights. Policies are composed of a CNN encoder
followed by an LSTM and a dueling head. We compare training from scratch, loading all weights (Full πNGU init) or all weights except
those in the dueling head (Partial πNGU init). (Top) Median human normalized scores (HNS) in the full Atari suite (left) and the subset of
hard exploration games (right). (Middle & Bottom) Games with modified reward functions as in Figure 5.

not necessarily be affected. However, these methods are
hard to scale to the larger networks considered here, and
followup work (Jabri et al., 2019) changed to memory-based
meta-learning (Duan et al., 2016) which relies on informa-
tion about rewards staying in the recurrent state. This makes
it unsuitable to the sort of hard exploration problem our
method excels at. Recent work has shown success in trans-
ferring representations learned in an unsupervised setting
to reinforcement learning tasks (Stooke et al., 2020). Our
representation transfer experiments suggest that this might
handicap final performance, but the possibility also exists
that different unsupervised objectives should be used for
representation transfer and policy transfer.

7. Discussion
We studied the problem of transferring pre-trained behav-
ior for exploration in reinforcement learning, an approach
that is complementary to the common practice of trans-
ferring neural network weights. Our proposed approach,
Behavior Transfer (BT), relies on the pre-trained policy for
collecting experience in two different ways: (i) through
temporally-extended exploration, which can be triggered
with some probability at any step, and (ii) via one-step calls
to the pre-trained policy based on value estimates. BT re-

sults in strong transfer performance when combined with
exploratory policies pre-trained in the absence of reward,
with the most important gains being observed in hard ex-
ploration tasks. These benefits are not due to an alignment
between our pre-training and downstream tasks, as we also
observed positive transfer in games where the pre-trained
policy obtained low scores. In order to provide further evi-
dence for this claim, we designed alternative tasks for Atari
games involving hard exploration and deceptive rewards.
Our transfer strategy outperformed all considered baselines
in these settings, even when the pre-trained policy obtained
very low or even negative scores, demonstrating the gener-
ality of the method. Besides disambiguating the role of the
alignment between pre-training and downstream tasks, these
experiments demonstrate the utility of a single task-agnostic
policy for solving multiple tasks in the same environment.
Finally, we also demonstrated that BT can be combined with
transfer via neural network weights to provide further gains.
Our experimental results highlight the importance of scale
when training RL agents in reward-free settings, which is
one of the key factors behind the recent success of unsuper-
vised approaches in other domains. This contrasts with the
small budgets considered for reward-free RL in previous
works and motivates further research in unsupervised RL
approaches that scale with increased data and compute. We

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

argue that scale is one of the missing components in reward-
free RL, and it will be a necessary condition to unfold its
full potential.

References
Bagot, L., Mets, K., and Latré, S. Learning intrinsically

motivated options to stimulate policy exploration. In
ICML Workshop on LifeLong Learning, 2020.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T.,
van Hasselt, H. P., and Silver, D. Successor features for
transfer in reinforcement learning. In NeurIPS, 2017.

Barreto, A., Borsa, D., Quan, J., Schaul, T., Silver, D.,
Hessel, M., Mankowitz, D., Zidek, A., and Munos, R.
Transfer in deep reinforcement learning using successor
features and generalised policy improvement. In ICML,
2018.

Barreto, A., Hou, S., Borsa, D., Silver, D., and Precup, D.
Fast reinforcement learning with generalized policy up-
dates. Proceedings of the National Academy of Sciences,
2020.

Barto, A. G. and Mahadevan, S. Recent advances in hier-
archical reinforcement learning. Discrete event dynamic
systems, 2003.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Sax-
ton, D., and Munos, R. Unifying count-based exploration
and intrinsic motivation. In NeurIPS, 2016.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 2013.

Borsa, D., Barreto, A., Quan, J., Mankowitz, D., Munos,
R., van Hasselt, H., Silver, D., and Schaul, T. Universal
successor features approximators. In ICLR, 2019.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T.,
and Efros, A. A. Large-scale study of curiosity-driven
learning. arXiv preprint arXiv:1808.04355, 2018a.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Ex-
ploration by random network distillation. arXiv preprint
arXiv:1810.12894, 2018b.

Campos, V., Trott, A., Xiong, C., Socher, R., Giro-i Nieto,
X., and Torres, J. Explore, discover and learn: Unsuper-
vised discovery of state-covering skills. In ICML, 2020.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In ICML, 2020.

Dabney, W., Ostrovski, G., and Barreto, A. Temporally-
extended ε-greedy exploration. In ICLR, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In NAACL, 2019.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N.,
Tzeng, E., and Darrell, T. Decaf: A deep convolutional
activation feature for generic visual recognition. In ICML,
2014.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. RL2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V.,
Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I.,
et al. IMPALA: Scalable distributed deep-RL with im-
portance weighted actor-learner architectures. In ICML,
2018.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In ICLR, 2019.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. arXiv
preprint arXiv:1703.03400, 2017.

Florensa, C., Duan, Y., and Abbeel, P. Stochastic neural net-
works for hierarchical reinforcement learning. In ICLR,
2017.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich
feature hierarchies for accurate object detection and se-
mantic segmentation. In CVPR, 2014.

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
intrinsic control. arXiv preprint arXiv:1611.07507, 2016.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond,
P. H., Buchatskaya, E., Doersch, C., Pires, B. A., Guo,
Z. D., Azar, M. G., et al. Bootstrap your own latent: A
new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020.

Gupta, A., Eysenbach, B., Finn, C., and Levine, S. Unsu-
pervised meta-learning for reinforcement learning. arXiv
preprint arXiv:1806.04640, 2018.

Ha, D. and Schmidhuber, J. Recurrent world models facili-
tate policy evolution. In NeurIPS, 2018.

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream
to control: Learning behaviors by latent imagination. In
ICLR, 2019.

Hansen, S., Dabney, W., Barreto, A., Van de Wiele, T.,
Warde-Farley, D., and Mnih, V. Fast task inference with
variational intrinsic successor features. In ICLR, 2020.

Hazan, E., Kakade, S. M., Singh, K., and Van Soest, A. Prov-
ably efficient maximum entropy exploration. In ICML,
2019.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. arXiv preprint arXiv:1911.05722, 2019.

Hénaff, O. J., Razavi, A., Doersch, C., Eslami, S., and Oord,
A. v. d. Data-efficient image recognition with contrastive
predictive coding. arXiv preprint arXiv:1905.09272,
2019.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 1997.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel,
M., Van Hasselt, H., and Silver, D. Distributed priori-
tized experience replay. arXiv preprint arXiv:1803.00933,
2018.

Jabri, A., Hsu, K., Gupta, A., Eysenbach, B., Levine, S.,
and Finn, C. Unsupervised curricula for visual meta-
reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, pp. 10519–10531, 2019.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., et al. Model-based reinforce-
ment learning for atari. arXiv preprint arXiv:1903.00374,
2019.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and
Dabney, W. Recurrent experience replay in distributed
reinforcement learning. In ICLR, 2019.

Kearns, M. and Singh, S. Near-optimal reinforcement learn-
ing in polynomial time. Machine learning, 2002.

Kostrikov, I., Yarats, D., and Fergus, R. Image augmentation
is all you need: Regularizing deep reinforcement learning
from pixels. In ICLR, 2021.

Lee, L., Eysenbach, B., Parisotto, E., Xing, E., Levine,
S., and Salakhutdinov, R. Efficient exploration via state
marginal matching. arXiv preprint arXiv:1906.05274,
2019.

Liu, H. and Abbeel, P. Behavior from the void:
Unsupervised active pre-training. arXiv preprint
arXiv:2103.04551, 2021.

Liu, Y. and Brunskill, E. When simple exploration is sample
efficient: Identifying sufficient conditions for random
exploration to yield pac rl algorithms. arXiv preprint
arXiv:1805.09045, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 2015.

Mohamed, S. and Rezende, D. J. Variational information
maximisation for intrinsically motivated reinforcement
learning. In NeurIPS, 2015.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,
M. Safe and efficient off-policy reinforcement learning.
In NeurIPS, 2016.

Mutti, M., Pratissoli, L., and Restelli, M. Task-agnostic
exploration via policy gradient of a non-parametric state
entropy estimate. In AAAI, 2021.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B.
Deep exploration via bootstrapped dqn. arXiv preprint
arXiv:1602.04621, 2016a.

Osband, I., Van Roy, B., and Wen, Z. Generalization and
exploration via randomized value functions. In ICML,
2016b.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In ICML, 2017.

Peng, J. and Williams, R. J. Incremental multi-step q-
learning. In Machine Learning Proceedings 1994. El-
sevier, 1994.

Puigdomènech Badia, A., Piot, B., Kapturowski, S., Sprech-
mann, P., Vitvitskyi, A., Guo, D., and Blundell, C.
Agent57: Outperforming the atari human benchmark.
In ICML, 2020a.

Puigdomènech Badia, A., Sprechmann, P., Vitvitskyi, A.,
Guo, D., Piot, B., Kapturowski, S., Tieleman, O., Ar-
jovsky, M., Pritzel, A., Bolt, A., et al. Never give up:
Learning directed exploration strategies. In ICLR, 2020b.

Puterman, M. L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
Inc., 1994.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. OpenAI Blog, 2019.

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

Salge, C., Glackin, C., and Polani, D. Empowerment – an
introduction. In Guided Self-Organization: Inception.
Springer, 2014.

Schwarzer, M., Rajkumar, N., Noukhovitch, M., Anand, A.,
Charlin, L., Hjelm, R. D., Bachman, P., and Courville,
A. Pretraining reward-free representations for data-
efficient reinforcement learning. In Self-Supervision
for Reinforcement Learning Workshop - ICLR 2021,
2021. URL https://openreview.net/forum?
id=o5z9Le5drua.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D.,
and Pathak, D. Planning to explore via self-supervised
world models. In ICML, 2020.

Stooke, A., Lee, K., Abbeel, P., and Laskin, M. Decou-
pling representation learning from reinforcement learning.
arXiv preprint arXiv:2009.08319, 2020.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 1999.

Viswanathan, G. M., Afanasyev, V., Buldyrev, S., Murphy,
E., Prince, P., and Stanley, H. E. Lévy flight search
patterns of wandering albatrosses. Nature, 1996.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M.,
and Freitas, N. Dueling network architectures for deep
reinforcement learning. In ICML, 2016.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Reinforce-
ment learning with prototypical representations. In ICML,
2021.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How
transferable are features in deep neural networks? arXiv
preprint arXiv:1411.1792, 2014.

Zeiler, M. D. and Fergus, R. Visualizing and understanding
convolutional networks. In ECCV, 2014.

https://openreview.net/forum?id=o5z9Le5drua
https://openreview.net/forum?id=o5z9Le5drua

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

A. Pseudo-code
Algorithm 2 provides pseudo-code for the flight logic that controls how the pre-trained policy is used for temporally-extended
exploration. At each step, a flight is started with probability εlevy. The duration of the flight is sampled from a heavy-tailed
distribution, D(N), similarly to εz-greedy (c.f. Appendix B for more details). When not in a flight, the exploitative policy
that maximizes the extrinsic reward is derived from the estimated Q-values using the ε-greedy operator. This ensures that all
state-action pairs will be visited given enough time, as exploring only with πp does not guarantee such property.

Algorithm 3 provides pseudo-code for the actor logic when using the augmented action set, A+ = A ∪ {πp(s)}. It derives
an ε-greedy policy over |A|+ 1 actions, where the (|A|+ 1)-th action is resolved by sampling from πp(s).

Algorithm 2: Experience collection pseudo-code for BT with temporally-extended exploration
Input: Action set A
Input: Q-value estimate for the current policy, Qπ(s, a)∀a ∈ A
Input: Pre-trained policy, πp
Input: Probability of starting a flight, εlevy
Input: Flight length distribution, D(N)
while True do

n←− 0 // flight length
while episode not ended do

Observe state s
if n == 0 and random() ≤ εlevy then

n ∼ D(N) // sample from distribution over lengths
end
if n > 0 then

n←− n− 1
a ∼ πp(s)

else
a ∼ ε-greedy[Qπ(s, a)]

end
Take action a

end
end

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

Algorithm 3: Experience collection pseudo-code for BT with an extra action
Input: Action set A
Input: Additional action, a+
Input: Extended action set, A+ = A ∪ {a+}
Input: Pre-trained policy, πp
Input: Q-value estimate for the current policy, Qπ(s, a)∀a ∈ A+

Input: Probability of taking an exploratory action, ε
while True do

while episode not ended do
Observe state s
if random() ≤ ε then

a ∼ Uniform(A+)
else

a←− argmaxa′∈A+ [Qπ(s, a′)]
end
if a == a+ then

a ∼ πp(s)
end
Take action a

end
end

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

B. Hyperparameters
All policies use the same Q-Network architecture as Agent57 (Puigdomènech Badia et al., 2020a), which is composed by a
convolutional torso followed by an LSTM (Hochreiter & Schmidhuber, 1997) and a dueling head (Wang et al., 2016). When
leveraging the behavior of the pre-trained policy to solve new tasks, we instantiate a new network with independent weights
(c.f. Figure 7). One can initialize some of the components of the new network using pre-trained weights without tying their
values (as in common fine-tuning approaches).

CNNi

LSTMeLSTMi

HeadeHeadi

Qe(s,a)Qi(s,a)

CNNe

Pre-trained policy New policy

Trainable

Frozen

Figure 7. Q-Network architecture for the reinforcement learning stage. The networks use independent sets of parameters, and the weights
of the pre-trained policy are kept fixed to preserve the learned behavior.

Table 1 summarizes the main hyperparameters of our method. The pre-trained policies were optimized using Retrace (Munos
et al., 2016). Learning with rewards was performed with Peng’s Q(λ) (Peng & Williams, 1994) instead, which we found to
be much more data efficient in our experiments. The reason for this difference is that the benefits of Q(λ) were observed
once unsupervised policies had been trained on all Atari games.

It should be noted that our εz-greedy baseline under-performs relative to Dabney et al. (2021). This is due to our
hyper-parameters and setting being derived from Puigdomènech Badia et al. (2020b), which adopts the standard Atari
pre-processing (e.g. gray scale images and frame stacking). In contrast, Dabney et al. (2021) use color images, no frame
stacking, a larger neural network and different hyper-parameters (e.g. smaller replay buffer). Studying if the performance of
NGU, RND and BT is preserved in this setting is an important direction for future work. We suspect that improving the
performance of our εz-greedy ablation will also improve our method, since exploration flights are central to both.

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

Table 1. Hyperparameter values used in R2D2-based agents. The rest of hyperparameters use the values reported by Kapturowski et al.
(2019).

Hyperparameter Value

Number of actors 256
Actor parameter update interval 400 environment steps

Sequence length 160 (without burn-in)
Replay buffer size 12.5× 104 part-overlapping sequences
Priority exponent 0.9

Importance sampling exponent 0

Learning rule (downstream tasks) Q(λ), λ = 0.7
Learning rule (NGU pre-training) Retrace(λ), λ = 0.95

Discount (downstream tasks) 0.99
Discount (NGU pre-training) 0.99

Minibatch size 64
Optimizer Adam

Optimizer settings ε = 10−4, β1 = 0.9, β2 = 0.999
Learning rate 2× 10−4

Target network update interval 1500 updates

εlevy distribution Log-Uniform[0, 0.1]
Flight length distribution Zeta with µ = 2

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

C. Extended reward-free RL results
We compare the results of our unsupervised pre-training stage against other unsupervised approaches, standard RL algorithms
in the low-data regime and methods that perform unsupervised pre-training followed by an adaptation stage. Since the
considered intrinsic rewards are non-negative, we consider a baseline where the agent obtains a constant positive reward
at each step in order to measure the performance of policies that seek to stay alive for as long as possible. Results for
this baseline were already considered by Hansen et al. (2020) (Pos Reward NSQ), but we run our own version of this
baseline using the distributed setting and longer pre-training of 16B frames considered in our experiments (Pos Reward
R2D2). Table 2 shows that unsupervised RND and NGU outperform all baselines by a large margin, confirming the intuition
that exploration is a good pre-training objective for the Atari benchmark. These results suggest that there is a strong
correlation between exploration and the goals established by game designers (Burda et al., 2018a). In spite of the strong
results, it is worth noting that unsupervised RND and NGU achieve lower scores than random policies in some games, and
can be quite inefficient at collecting rewards in some environments (e.g. they needs long episodes to obtain high scores).
These observations motivate the development of techniques to leverage these pre-trained policies without compromising
performance even when there exists a misalignment between objectives.

Table 2. Atari Suite comparisons, adapted from Hansen et al. (2020) and Liu & Abbeel (2021). @N represents the amount of RL
interaction with reward utilized, with four frames observed at each iteration. Mdn and M are median and mean human normalized scores,
respectively; > 0 is the number of games with better than random performance; and > H is the number of games with human-level
performance as defined in Mnih et al. (2015). Top: unsupervised learning only. Mid: data-limited RL. Bottom: RL with unsupervised
pre-training.

26 Game Subset 47 Game Subset Full 57 Games
Kaiser et al. (2019) Burda et al. (2018a) Mnih et al. (2015)

Algorithm Mdn M >0 >H Mdn M >0 >H Mdn M >0 >H

IDF Curiosity @0 – – – – 8.46 24.51 34 5 – – – –
RF Curiosity @0 – – – – 7.32 29.03 36 6 – – – –
Pos Reward NSQ @0 2.18 50.33 14 5 0.69 57.65 26 8 0.29 41.19 28 8
Pos Reward R2D2 @0 9.44 59.55 21 4 14.16 57.53 39 5 3.46 45.23 46 5
Q-DIAYN-5 @0 0.17 −3.60 13 0 0.33 −1.23 25 2 0.34 −2.18 30 2
Q-DIAYN-50 @0 −1.65 −21.77 4 0 −1.69 −16.26 8 0 −3.16 −20.31 9 0
VISR @0 5.60 81.65 19 5 4.04 58.47 35 7 3.77 49.66 40 7
RND@0 48.35 334.65 23 8 41.28 259.43 40 14 40.86 243.01 47 16
NGU @0 80.92 494.54 25 12 96.10 310.27 45 23 81.72 320.06 52 27

SimPLe @100k 9.79 36.20 26 4 – – – – – – – –
DQN @10M 27.80 52.95 25 7 9.91 28.07 41 7 8.61 27.55 48 7
DQN @200M 100.76 267.51 26 13 – – – – 80.81 239.29 46 20
Rainbow @100k 2.23 10.12 25 1 – – – – – – – –
PPO @500k 20.93 43.74 25 7 – – – – – – – –
NSQ @10M 8.20 33.80 22 3 7.29 29.47 37 4 6.80 28.51 43 5
SPR @100k 41.50 70.40 – 7 – – – – – – – –
CURL @100k 17.50 38.10 – 2 – – – – – – – –
DrQ @100k 28.42 35.70 – 2 – – – – – – – –

Q-DIAYN-5 @100k 0.01 16.94 13 2 1.31 19.64 28 6 1.55 16.65 33 6
Q-DIAYN-50 @100k −1.64 −27.88 3 0 −1.66 −16.74 8 0 −2.53 −24.13 9 0
RF VISR @100k 7.24 58.23 20 6 3.81 42.60 33 9 2.16 35.29 39 9
VISR @100k 9.50 128.07 21 7 9.42 121.08 35 11 6.81 102.31 40 11
GPI RF VISR @100k 5.55 58.77 20 5 4.24 48.38 34 9 3.60 40.01 40 10
GPI VISR @100k 6.59 111.23 22 7 11.70 129.76 38 12 8.99 109.16 44 12
MEPOL @100k 0.34 17.94 – 2 – – – – – – – –
APT @100k 47.50 69.55 – 7 – – – – 33.41 47.73 – 12

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

D. Extended Atari-57 results

Table 3. Atari Suite comparisons for R2D2-based agents. @N represents the amount of frames with reward utilized, with four frames
observed per RL interaction. Mdn, M and CM are median, mean and mean capped human normalized scores, respectively.

Full 57 Games Hard Exploration

Algorithm Mdn M CM Mdn M CM

R2D2 @1B 229.75 864.69 84.56 31.07 39.40 34.75
R2D2 + εz-greedy @1B 204.52 578.73 85.11 42.55 53.90 46.21
R2D2 + BT(πNGU) @1B 273.49 1517.13 86.38 100.89 94.20 63.95
R2D2 + BT(πRND) @1B 280.04 1396.78 87.43 93.52 86.75 67.40

R2D2 @5B 490.12 1742.92 90.37 32.49 67.41 44.74
R2D2 + εz-greedy @5B 418.41 1275.86 92.49 103.62 95.46 67.85
R2D2 + BT(πNGU) @5B 538.50 2262.21 93.31 193.15 160.02 76.92
R2D2 + BT(πRND) @5B 571.57 2304.19 92.03 144.78 123.38 76.93

Table 4. Atari Suite comparisons with rewards for R2D2-based agents with different amounts of transfer via weights at 5B training frames.
Policies are composed of a CNN encoder followed by an LSTM and a dueling head. We compare training from scratch, loading all
weights (Full πNGU init) or all weights except those in the dueling head (Partial πNGU init). Mdn, M and CM are median, mean and mean
capped human normalized scores, respectively. (Top) Without BT. (Bottom) With BT(πNGU).

Full 57 Games Hard Exploration

Algorithm Mdn M CM Mdn M CM

R2D2, from scratch 490.12 1742.92 90.37 32.49 67.41 44.74
R2D2, partial πNGU init 668.80 2020.81 93.00 109.33 123.40 67.18
R2D2, full πNGU init 507.58 2359.25 89.91 104.98 101.52 66.20

R2D2 + BT(πNGU), from scratch 538.50 2262.21 93.31 193.15 160.02 76.92
R2D2 + BT(πNGU), partial πNGU init 626.34 1966.83 94.07 200.32 164.54 76.93
R2D2 + BT(πNGU), full πNGU init 529.78 2467.02 92.79 168.18 137.65 76.93

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

Table 5. Human normalized scores after 5B frames with rewards for R2D2-based agents at different percentiles. Note that the 50th
percentile corresponds to the median score across the 57 games. We compare training from scratch, loading all weights (Full πNGU init)
or all weights except those in the dueling head (Partial πNGU init).

Percentile

Method 50th 40th 20th 10th 5th

R2D2, from scratch 490.12 220.97 132.77 92.31 25.57
R2D2 + BT(πNGU), from scratch 538.50 316.30 163.20 104.41 65.17
R2D2 + BT(πRND), from scratch 571.57 279.97 133.61 87.05 54.27

R2D2, partial πNGU init 668.80 434.02 164.62 105.08 53.59
R2D2 + BT(πNGU), partial πNGU init 626.34 489.14 171.69 113.92 93.52

R2D2, full πNGU init 507.58 293.54 137.79 59.72 41.06
R2D2 + BT(πNGU), full πNGU init 529.78 384.39 163.55 123.56 51.98

0 20 M 40 M 60 M 80 M 100 M
Environment frames

0

20

40

60

80

100

120

140

Hu
m

an
 n

or
m

al
ize

d
sc

or
e Atari-57: median

0 20 M 40 M 60 M 80 M 100 M
Environment frames

0
5

10
15
20
25
30
35
40

Hard exploration games: median
R2D2

From scratch
Partial NGU init
Full NGU init

R2D2 + BT(NGU)
From scratch
Partial NGU init
Full NGU init

Figure 8. Median human normalized scores for R2D2-based agents with different amounts of transfer via weights during the first 100M
frames of training. Policies are composed of a CNN encoder followed by an LSTM and a dueling head. We compare training from scratch,
loading the CNN and the LSTM (Partial πNGU init), and loading all weights including the dueling head (Full πNGU init). (Left) Full
Atari suite. (Right) Subset of hard exploration games.

E. Alternative reward functions
MsPacman: eating ghosts

• Pac-dots: 0 points (easy) or -10 points (hard)

• Eating vulnerable ghosts:

– #1 in succession: 200 points
– #2 in succession: 400 points
– #3 in succession: 800 points
– #4 in succession: 1600 points

• Other actions: 0 points

Hero: rescuing miners

• Dynamiting walls: 0 points (easy) or -300 points (hard)

• Rescuing a miner: 1000 points

• Other actions: 0 points

F. Distributed setting
All experiments are run using a distributed setting. The evaluation we do is also identical to the one done in R2D2
(Kapturowski et al., 2019): parallel evaluation workers, which share weights with actors and learners, run the Q-network

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

against the environment. This worker and all the actor workers are the two types of workers that draw samples from the
environment. For Atari, we apply the standard DQN pre-processing, as used in R2D2. The next subsections describe how
actors, evaluators, and learner are run in each stage.

F.1. Unsupervised stage

The computation of the intrinsic NGU reward, rNGU
t , follows the method described in Puigdomènech Badia et al. (2020b,

Appendix A.1). In particular, we use the version that combines episodic intrinsic rewards with the intrinsic reward from
Random Network Distillation (RND) (Burda et al., 2018b).

We now describe the distributed setup used for NGU, which is largely the same as the one used for RND. Note that RND
can be recovered by removing the components needed for the episodic reward.

LEARNER

• Sample from the replay buffer a sequence of intrinsic rewards rNGU
t , observations x and actions a.

• Use Q-network to learn from (rNGU
t , x, a) with Retrace (Munos et al., 2016) using the same procedure as in R2D2.

• Use last 5 frames of the sampled sequences to train the action prediction network in NGU. This means that, for every
batch of sequences, all time steps are used to train the RL loss, whereas only 5 time steps per sequence are used to
optimize the action prediction loss.

• Use last 5 frames of the sampled sequences to train the predictor of RND.

ACTOR

• Obtain xt and rNGU
t−1 .

• With these inputs, compute forward pass of R2D2 to obtain at.

• With xt, compute rNGU
t using the embedding network in NGU.

• Insert xt, at and rNGU
t in the replay buffer.

• Step on the environment with at.

EVALUATOR

• Obtain xt and rNGU
t−1 .

• With these inputs, compute forward pass of R2D2 to obtain at.

• With xt, compute rNGU
t using the embedding network in NGU.

• Step on the environment with at.

DISTRIBUTED TRAINING

As in R2D2, we train the agent with a single GPU-based learner and a fixed discount factor γ. All actors collect experience
using the same policy, but with a different value of ε. This differs from the original NGU agent, where each actor runs a
policy with a different degree of exploratory behavior and discount factor.

In the replay buffer, we store fixed-length sequences of (x, a, r) tuples. These sequences never cross episode boundaries.
Given a single batch of trajectories we unroll both online and target networks on the same sequence of states to generate
value estimates. We use prioritized experience replay with the same prioritization scheme proposed in (Kapturowski et al.,
2019).

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

F.2. Transfer with BT

LEARNER

• Sample from the replay buffer a sequence of extrinsic rewards rt, observations x and actions a.

• (expanded action set) Duplicate transitions collected with πp and relabel the duplicates with the primitive action taken
by πp when acting.

• Use Q-network to learn from (rt, x, a) with Peng’s Q(λ) (Peng & Williams, 1994) using the same procedure as in
R2D2.

ACTOR

• (once per episode) Sample εlevy.

• Obtain xt.

• If not on a flight, start one with probability εlevy.

• If on a flight, compute forward pass with πp to obtain at. Otherwise, compute forward pass of R2D2 to obtain at. If
at = |A|+ 1, at ← πp(x).

• Insert xt, at and rt in the replay buffer.

• Step on the environment with at.

EVALUATOR

• Obtain xt.

• Compute forward pass of R2D2 to obtain at. If at = |A|+ 1, at ← πp(x).

• Step on the environment with at.

DISTRIBUTED TRAINING

As in R2D2, we train the agent with a single GPU-based learner and a fixed discount factor γ. All actors collect experience
using the same policy, but with a different value of ε.

In the replay buffer, we store fixed-length sequences of (x, a, r) tuples. These sequences never cross episode boundaries.
Given a single batch of trajectories we unroll both online and target networks on the same sequence of states to generate
value estimates. We use prioritized experience replay with the same prioritization scheme proposed in (Kapturowski et al.,
2019).

G. Intrinsic rewards
G.1. Random Network Distillation

The RND (Burda et al., 2018b) intrinsic reward is computed by introducing a random, untrained convolutional network
g : S → Rd, and training a network ĝ : S → Rd to predict the outputs of g on all the observations that are seen during
training by minimizing the prediction error errRND(st) = ||ĝ(st; θ) − g(st)||2 with respect to θ. The intuition is that the
prediction error will be large on states that have been visited less frequently by the agent. The dimensionality of the random
embedding, d, is a hyperparameter of the algorithm.

The RND intrinsic reward is obtained by normalising the prediction error. In this work, we use a slightly different
normalization from that reported in (Burda et al., 2018b). The RND reward at time t is given by

rRND
t =

errRND(st)

σe
(2)

where σe is the running standard deviation of errRND(st).

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

G.2. Never Give Up

The NGU intrinsic reward modulates an episodic intrinsic reward, repisodic
t , with a life long signal αt:

rNGU
t = repisodic

t ·min {max {αt, 1} , L} , (3)

where L is a fixed maximum reward scaling. The life-long novelty signal is computed using RND with the normalisation:

αt =
errRND(st)− µe

σe
(4)

where errRND(xt) is the prediction error described in Appendix G.1, and µe and σe are its running mean and standard
deviation, respectively. The episodic intrinsic reward at time t is computed according to formula:

repisodic
t =

1√∑
f(si)∈Nk

K(f(st), f(si)) + c
(5)

where Nk is the set containing the k-nearest neighbors of f(st) in M , c is a constant and K : Rp × Rp → R+ is a kernel
function satisfying K(x, x) = 1 (which can be thought of as approximating pseudo-counts (Puigdomènech Badia et al.,
2020b)). Algorithm 4 shows a detailed description of how the episodic intrinsic reward is computed. Below we describe the
different components used in Algorithm 4:

• M : episodic memory containing at time t the previous embeddings {f(s0), f(s1), . . . , f(st−1)}. This memory starts
empty at each episode

• k: number of nearest neighbours

• Nk = {f(si)}ki=1: set of k-nearest neighbours of f(st) in the memory M ; we call Nk[i] = f(si) ∈ Nk for ease of
notation

• K: kernel defined as K(x, y) = ε
d2(x,y)

d2m
+ε

where ε is a small constant, d is the Euclidean distance and d2m is a running

average of the squared Euclidean distance of the k-nearest neighbors

• c: pseudo-counts constant

• ξ: cluster distance

• sm: maximum similarity

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

Algorithm 4: Computation of the episodic intrinsic reward at time t: repisodic
t .

Input :M ; k; f(st); c; ε; ξ; sm; d2m
Output :repisodic

t

Compute the k-nearest neighbours of f(st) in M and store them in a list Nk
Create a list of floats dk of size k
/* The list dk will contain the distances between the embedding f(st) and its

neighbours Nk. */
for i ∈ {1, . . . , k} do

dk[i]← d2(f(st), Nk[i])
end
Update the moving average d2m with the list of distances dk
/* Normalize the distances dk with the updated moving average d2m. */

dn ← dk
d2m

/* Cluster the normalized distances dn i.e. they become 0 if too small and
0k is a list of k zeros. */

dn ← max(dn − ξ, 0k)
/* Compute the Kernel values between the embedding f(st) and its neighbours

Nk. */
Kv ← ε

dn+ε

/* Compute the similarity between the embedding f(st) and its neighbours Nk.

*/

s←
√∑k

i=1Kv[i] + c

/* Compute the episodic intrinsic reward at time t: rit. */
if s > sm then

repisodic
t ← 0

else
repisodic
t ← 1/s

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

H. Scores per game

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

Table 6. Results per game for R2D2-based agents at 5B training frames.
Game R2D2 R2D2 + εz-greedy R2D2 + BT(πNGU) R2D2 + BT(πRND)

alien 10831.17± 2114.29 14634.02± 1109.15 15657.57± 1717.96 12844.24± 1447.72
amidar 11761.67± 1560.86 6784.28± 718.05 10394.96± 891.60 7730.43± 670.76
assault 15940.72± 3531.69 9177.28± 2170.26 15060.31± 740.63 11533.24± 809.49
asterix 472812.21± 222663.81 374966.62± 135810.51 630663.91± 82753.46 468724.08± 120822.86
asteroids 45716.28± 3642.38 147005.85± 44313.45 31957.42± 15540.09 37455.64± 9263.04
atlantis 1514724.43± 10941.36 1132188.04± 43551.36 1491384.23± 5978.05 1545954.35± 9001.60
bank heist 965.63± 133.72 1058.75± 135.46 13913.32± 3529.15 82132.27± 101709.64
battle zone 292553.41± 18196.77 312367.76± 43554.18 258533.57± 22865.64 285925.87± 44912.86
beam rider 18472.45± 1977.78 22403.95± 1596.92 16301.02± 1853.73 15619.99± 2048.77
berzerk 12343.83± 3331.54 3846.56± 1723.24 8359.80± 201.10 14687.68± 401.76
bowling 141.64± 4.52 156.32± 8.11 174.27± 0.10 196.01± 57.42
boxing 99.96± 0.03 99.94± 0.06 100.00± 0.00 99.98± 0.03
breakout 432.65± 27.35 393.19± 35.12 441.21± 15.08 429.38± 15.52
centipede 189502.66± 31388.08 358841.20± 73578.20 178635.17± 17227.15 196880.46± 24278.18
chopper command 611393.11± 65206.69 697655.53± 215090.74 573055.88± 75343.57 797052.58± 52012.04
crazy climber 229992.57± 17738.33 212001.76± 1853.07 226821.26± 3608.19 198736.17± 7631.83
defender 547238.15± 2579.38 516521.06± 11969.59 540124.74± 4488.40 524003.44± 1316.59
demon attack 143662.42± 88.16 141352.18± 3848.73 143762.91± 106.75 143578.47± 25.05
double dunk 23.99± 0.02 23.88± 0.06 23.85± 0.15 23.93± 0.05
enduro 2358.37± 3.32 2359.08± 1.03 2361.56± 1.03 2350.39± 8.42
fishing derby 12.80± 77.79 64.74± 0.59 52.58± 0.32 62.11± 5.59
freeway 33.87± 0.08 33.77± 0.03 33.79± 0.08 33.79± 0.07
frostbite 9287.24± 167.11 8504.41± 940.72 17692.42± 2871.83 9419.45± 188.92
gopher 117398.58± 2485.82 84140.40± 12919.83 113716.78± 3966.91 94670.35± 2285.63
gravitar 6123.08± 103.19 5798.68± 735.59 8373.70± 1260.75 7428.57± 2459.91
hero 46048.07± 6970.26 39700.22± 4379.84 40825.09± 3736.25 42959.86± 7950.56
ice hockey 32.43± 30.64 30.65± 28.17 60.36± 4.94 57.96± 0.90
jamesbond 6056.14± 1643.52 3843.92± 118.35 1484.87± 489.66 2870.03± 907.76
kangaroo 14672.37± 187.16 14730.99± 114.20 15965.79± 36.61 15128.66± 188.17
krull 10081.04± 594.10 10171.52± 399.81 406596.00± 55547.76 316960.78± 217091.10
kung fu master 200721.64± 2265.35 171591.29± 8516.87 196638.89± 456.09 610699.23± 60053.99
montezuma revenge 1478.38± 1114.20 1467.77± 1104.72 12086.71± 1217.76 6266.67± 471.40
ms pacman 11212.85± 103.23 7511.39± 406.77 10996.90± 262.74 10656.00± 356.46
name this game 32138.12± 2156.95 37343.04± 1917.73 30252.11± 884.84 28746.14± 1798.77
phoenix 712101.72± 62738.09 80611.18± 25316.56 553429.34± 24278.55 283686.99± 172323.63
pitfall −0.19± 0.15 −12.34± 4.20 −0.39± 0.39 −0.03± 0.04
pong 20.93± 0.01 20.49± 0.10 20.90± 0.01 20.94± 0.01
private eye 23592.22± 11876.55 50770.82± 14984.92 40435.54± 51.04 40480.67± 38.23
qbert 24343.75± 1904.89 16975.13± 1332.44 16057.31± 318.87 10990.08± 7241.50
riverraid 32325.07± 1185.15 30582.53± 638.47 28550.32± 2298.03 30566.86± 1764.50
road runner 423191.07± 53071.15 88890.04± 24971.18 251261.09± 31741.38 248661.22± 19416.63
robotank 97.23± 1.22 108.92± 4.79 98.45± 2.85 100.57± 6.32
seaquest 188771.84± 20759.57 175745.09± 120718.82 86605.86± 55065.85 38185.98± 22949.18
skiing −29854.11± 85.79 −30060.81± 142.32 −30121.95± 70.62 −29589.38± 69.40
solaris 17741.02± 5340.46 16127.73± 2975.20 24366.59± 4868.05 18727.45± 4806.17
space invaders 3621.76± 5.81 3547.78± 35.31 30609.21± 7141.11 46704.49± 7017.79
star gunner 223536.63± 48548.34 179698.69± 12194.36 171294.31± 23185.79 156691.39± 16704.19
surround 8.24± 0.48 1.48± 8.12 5.86± 1.44 −3.62± 4.79
tennis 7.99± 22.56 7.98± 22.51 23.96± 0.01 7.97± 22.56
time pilot 139931.67± 70521.78 71768.84± 2933.22 44936.87± 137.49 77711.97± 4735.53
tutankham 324.02± 4.26 311.65± 8.62 420.36± 30.13 357.26± 14.22
up n down 529363.05± 16813.20 394984.70± 34313.42 562739.02± 8527.59 585355.01± 4718.67
venture 0.00± 0.00 1833.85± 43.73 2110.64± 55.39 1910.15± 13.98
video pinball 454023.46± 377076.03 107071.98± 67142.18 463141.28± 426927.92 646671.78± 403584.41
wizard of wor 40833.65± 4776.81 38275.31± 4177.41 30453.12± 2470.20 30399.63± 2345.83
yars revenge 279765.86± 27370.20 250483.70± 54593.32 280333.48± 69704.31 200850.59± 72885.67
zaxxon 56059.14± 3217.77 66099.28± 8520.19 67611.78± 6226.04 59926.08± 5834.47

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

Table 7. Results per game for R2D2 agents with different amounts of transfer via weights at 5B training frames. Policies are composed of
a CNN encoder followed by an LSTM and a dueling head. We compare training from scratch, loading all weights (Full πNGU init) or all
weights except those in the dueling head (Partial πNGU init).

Game From scratch Partial πNGU init Full πNGU init

alien 10831.17± 2114.29 27299.78± 5730.57 18027.35± 6731.75
amidar 11761.67± 1560.86 13647.09± 3380.90 3518.30± 2353.96
assault 15940.72± 3531.69 14653.32± 2047.43 12533.61± 1001.68
asterix 472812.21± 222663.81 789344.47± 80638.00 676662.54± 8536.94
asteroids 45716.28± 3642.38 73298.12± 22688.38 23127.43± 5425.84
atlantis 1514724.43± 10941.36 1537659.81± 7693.86 1556234.51± 9709.74
bank heist 965.63± 133.72 1841.77± 52.75 5816.24± 3137.60
battle zone 292553.41± 18196.77 301715.60± 12875.97 248939.89± 31788.00
beam rider 18472.45± 1977.78 16179.19± 4179.36 11040.66± 799.77
berzerk 12343.83± 3331.54 16888.63± 2330.72 25465.10± 9886.89
bowling 141.64± 4.52 170.36± 16.55 180.78± 2.94
boxing 99.96± 0.03 99.97± 0.05 99.94± 0.07
breakout 432.65± 27.35 520.19± 64.65 487.51± 49.14
centipede 189502.66± 31388.08 528000.27± 10403.62 500534.38± 9267.05
chopper command 611393.11± 65206.69 937637.69± 57836.24 764150.71± 44756.44
crazy climber 229992.57± 17738.33 275735.70± 15244.51 246498.24± 12319.58
defender 547238.15± 2579.38 534656.86± 2880.53 523660.11± 2604.26
demon attack 143662.42± 88.16 143592.16± 77.27 143574.75± 69.35
double dunk 23.99± 0.02 23.99± 0.02 23.83± 0.06
enduro 2358.37± 3.32 2359.39± 8.12 2353.16± 1.30
fishing derby 12.80± 77.79 68.70± 2.46 59.22± 2.55
freeway 33.87± 0.08 33.83± 0.06 33.79± 0.04
frostbite 9287.24± 167.11 161595.33± 32917.44 10307.96± 1087.09
gopher 117398.58± 2485.82 113094.41± 4837.16 102781.75± 9613.77
gravitar 6123.08± 103.19 7090.19± 1359.52 5174.90± 544.76
hero 46048.07± 6970.26 43982.29± 4124.79 40628.07± 4008.99
ice hockey 32.43± 30.64 69.57± 1.18 47.67± 10.59
jamesbond 6056.14± 1643.52 6109.60± 1643.75 3979.12± 1233.92
kangaroo 14672.37± 187.16 14863.32± 259.85 15192.97± 832.48
krull 10081.04± 594.10 11806.49± 580.05 372307.71± 161921.43
kung fu master 200721.64± 2265.35 200305.15± 5711.26 207401.69± 1755.69
montezuma revenge 1478.38± 1114.20 2666.30± 235.18 2500.00± 0.00
ms pacman 11212.85± 103.23 11795.03± 640.73 11509.67± 563.98
name this game 32138.12± 2156.95 33811.87± 2091.30 29242.89± 1113.73
phoenix 712101.72± 62738.09 812093.31± 42328.98 801952.54± 33211.40
pitfall −0.19± 0.15 −1.43± 1.17 −0.61± 0.60
pong 20.93± 0.01 20.96± 0.01 20.79± 0.13
private eye 23592.22± 11876.55 30345.57± 10971.52 28653.02± 9512.72
qbert 24343.75± 1904.89 40943.28± 16722.72 62018.46± 34865.08
riverraid 32325.07± 1185.15 35995.19± 825.70 35845.18± 3486.49
road runner 423191.07± 53071.15 311557.84± 59675.36 279988.24± 58503.61
robotank 97.23± 1.22 111.78± 4.63 91.93± 2.09
seaquest 188771.84± 20759.57 629817.31± 145648.54 31735.24± 31257.98
skiing −29854.11± 85.79 −29550.10± 495.22 −29981.62± 564.13
solaris 17741.02± 5340.46 29751.08± 2076.41 22269.53± 6584.51
space invaders 3621.76± 5.81 41357.74± 8968.52 42695.22± 7148.08
star gunner 223536.63± 48548.34 212821.27± 19723.78 129058.91± 11260.80
surround 8.24± 0.48 6.86± 0.27 −3.29± 8.36
tennis 7.99± 22.56 23.93± 0.02 23.74± 0.16
time pilot 139931.67± 70521.78 65101.20± 7622.18 49957.68± 602.83
tutankham 324.02± 4.26 333.37± 10.62 312.19± 4.32
up n down 529363.05± 16813.20 572472.73± 4512.30 595047.70± 1976.45
venture 0.00± 0.00 1930.36± 32.97 1958.13± 48.98
video pinball 454023.46± 377076.03 113036.77± 3633.15 108849.58± 4753.59
wizard of wor 40833.65± 4776.81 46931.25± 1708.52 19100.00± 1930.29
yars revenge 279765.86± 27370.20 284565.01± 29764.09 294877.82± 52551.36
zaxxon 56059.14± 3217.77 77649.92± 15901.03 75850.01± 10805.13

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

Table 8. Results per game for R2D2+BT(πNGU) agents with different amounts of transfer via weights at 5B training frames. Policies are
composed of a CNN encoder followed by an LSTM and a dueling head. We compare training from scratch, loading all weights (Full
πNGU init) or all weights except those in the dueling head (Partial πNGU init).

Game From scratch Partial πNGU init Full πNGU init

alien 15657.57± 1717.96 35441.47± 3848.23 32822.74± 3181.51
amidar 10394.96± 891.60 11564.75± 1726.50 8185.74± 346.35
assault 15060.31± 740.63 12617.35± 3267.80 12992.70± 2783.13
asterix 630663.91± 82753.46 731452.01± 71621.96 815753.95± 91022.04
asteroids 31957.42± 15540.09 53916.46± 12925.49 77368.55± 17900.09
atlantis 1491384.23± 5978.05 1512404.85± 10047.26 1544673.15± 5590.54
bank heist 13913.32± 3529.15 11674.48± 1694.59 8565.69± 4070.27
battle zone 258533.57± 22865.64 321572.13± 32083.18 206177.95± 27251.07
beam rider 16301.02± 1853.73 17465.26± 4954.96 21680.37± 5991.66
berzerk 8359.80± 201.10 15824.26± 5556.26 16161.60± 2848.82
bowling 174.27± 0.10 229.04± 6.36 201.86± 25.21
boxing 100.00± 0.00 99.99± 0.01 99.83± 0.12
breakout 441.21± 15.08 469.52± 31.70 474.30± 37.00
centipede 178635.17± 17227.15 362169.27± 43577.84 525652.45± 19649.69
chopper command 573055.88± 75343.57 766193.62± 109233.61 860939.78± 116076.87
crazy climber 226821.26± 3608.19 224084.35± 7322.03 256189.16± 21605.50
defender 540124.74± 4488.40 525077.01± 6084.08 503190.45± 32182.12
demon attack 143762.91± 106.75 143537.16± 139.44 143554.33± 63.61
double dunk 23.85± 0.15 23.90± 0.07 23.81± 0.11
enduro 2361.56± 1.03 2352.77± 4.01 2353.81± 3.50
fishing derby 52.58± 0.32 64.20± 2.52 52.53± 1.24
freeway 33.79± 0.08 33.69± 0.13 33.57± 0.09
frostbite 17692.42± 2871.83 20847.02± 15492.47 19716.28± 13424.59
gopher 113716.78± 3966.91 105370.92± 12883.78 101383.00± 7891.20
gravitar 8373.70± 1260.75 8358.32± 1022.94 6104.39± 1215.73
hero 40825.09± 3736.25 45837.71± 194.61 43076.13± 4119.55
ice hockey 60.36± 4.94 66.97± 0.72 30.15± 4.43
jamesbond 1484.87± 489.66 1137.12± 89.95 4119.56± 490.29
kangaroo 15965.79± 36.61 15862.51± 234.05 15855.24± 224.30
krull 406596.00± 55547.76 154118.68± 179080.83 350784.05± 205164.12
kung fu master 196638.89± 456.09 193105.00± 5378.00 195990.25± 4969.60
montezuma revenge 12086.71± 1217.76 12714.19± 824.60 11472.65± 629.87
ms pacman 10996.90± 262.74 11337.68± 1176.17 10770.08± 1005.72
name this game 30252.11± 884.84 30656.34± 373.97 28103.24± 2023.96
phoenix 553429.34± 24278.55 510548.66± 236677.91 805269.57± 37169.21
pitfall −0.39± 0.39 −0.44± 0.32 −0.01± 0.02
pong 20.90± 0.01 20.93± 0.02 20.19± 0.93
private eye 40435.54± 51.04 40472.03± 39.10 40448.67± 40.02
qbert 16057.31± 318.87 15983.72± 888.74 17954.73± 302.05
riverraid 28550.32± 2298.03 34591.91± 831.68 34268.13± 149.84
road runner 251261.09± 31741.38 307342.61± 41017.79 308258.62± 84372.17
robotank 98.45± 2.85 103.82± 2.98 90.17± 8.09
seaquest 86605.86± 55065.85 259408.14± 144362.40 88376.19± 105086.08
skiing −30121.95± 70.62 −29786.38± 401.06 −29878.47± 289.38
solaris 24366.59± 4868.05 24111.78± 2745.89 19355.27± 4102.09
space invaders 30609.21± 7141.11 43675.67± 6763.52 51318.54± 4277.08
star gunner 171294.31± 23185.79 138390.23± 6320.24 135606.16± 8098.51
surround 5.86± 1.44 6.89± 1.03 −5.48± 0.88
tennis 23.96± 0.01 23.97± 0.01 23.86± 0.06
time pilot 44936.87± 137.49 65721.81± 3213.79 53053.12± 4275.77
tutankham 420.36± 30.13 385.05± 5.02 342.17± 4.79
up n down 562739.02± 8527.59 581518.52± 5198.05 582923.55± 2849.01
venture 2110.64± 55.39 2308.26± 14.97 2054.24± 65.41
video pinball 463141.28± 426927.92 133315.36± 70576.86 640269.38± 330619.65
wizard of wor 30453.12± 2470.20 34648.51± 4182.32 26076.64± 2060.62
yars revenge 280333.48± 69704.31 320777.97± 64750.83 267861.48± 81193.44
zaxxon 67611.78± 6226.04 75165.80± 4030.42 82868.90± 10160.99

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

Table 9. Final scores per game in our ablation study after 5B frames. We consider versions of BT(πNGU) where the pre-trained policy is
used for temporally-extended exploitation (flights), as an extra action (action), or both.

Game R2D2 R2D2 + BT(πNGU) (flights) R2D2 + BT(πNGU) (action) R2D2 + BT(πNGU)

asterix 472812.21± 222663.81 630663.91± 82753.46 512869.97± 109039.77 618352.67± 103940.46
bank heist 965.63± 133.72 13913.32± 3529.15 11052.82± 6848.39 12424.39± 1443.95
frostbite 9287.24± 167.11 9114.77± 511.31 10506.15± 3653.44 17692.42± 2871.83
gravitar 6123.08± 103.19 6308.62± 78.84 7228.15± 1842.07 8373.70± 1260.75
jamesbond 6056.14± 1643.52 1615.21± 602.84 3962.10± 798.68 1484.87± 489.66
montezuma revenge 1478.38± 1114.20 11152.10± 664.82 6433.33± 372.68 13265.91± 372.02
ms pacman 11212.85± 103.23 10996.90± 262.74 10648.85± 796.10 10839.60± 445.00
pong 20.93± 0.01 20.90± 0.01 20.94± 0.04 20.88± 0.02
private eye 23592.22± 11876.55 40492.85± 27.35 37029.10± 2437.54 40435.54± 51.04
space invaders 3621.76± 5.81 30671.58± 4418.89 3597.41± 21.06 30609.21± 7141.11
tennis 7.99± 22.56 8.00± 22.54 −7.15± 22.00 23.96± 0.01
up n down 529363.05± 16813.20 562739.02± 8527.59 550665.39± 1852.05 566938.61± 2428.52

Table 10. Final scores per task in Atari games with modified reward functions. We report training results for the standard game reward, a
variant with sparse rewards (easy), and a task with deceptive rewards (hard). Despite the pre-trained policy might obtain low or even
negative scores in some of the tasks, committing to its exploratory behavior eventually lets the agent discover strategies that lead to high
returns.

Game R2D2 R2D2 + εz-greedy Fine-tuning πNGU πNGU R2D2 + BT(πNGU)

Ms Pacman: original 11407± 122 8099± 868 8359± 2117 1360 10984± 665
Ms Pacman: ghosts (easy) 8375± 577 4322± 932 8356± 551 146 8789± 651
Ms Pacman: ghosts (hard) 2836± 26 4018± 1025 1891± 1342 −898 7868± 1085

Hero: original 43762± 4918 39018± 3262 46848± 1199 9298 42675± 3905
Hero: miners (easy) 3000± 0 3000± 0 3000± 0 1351 4665± 470
Hero: miners (hard) 2677± 23 2155± 95 700± 0 −1473 3547± 122

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

I. Learning curves

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

Figure 9. Training curves in all 57 Atari games for R2D2-based agents. Shading shows maximum and minimum over 3 runs, while dark
lines indicate the mean.

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

Figure 10. Training curves in all 57 Atari games for R2D2-based agents with different amounts of transfer via weights. Policies are
composed of a CNN encoder followed by an LSTM and a dueling head. We compare training from scratch, loading all weights (Full
πNGU init) or all weights except those in the dueling head (Partial πNGU init). Shading with maximum and minimum over runs is not
shown for clarity, but all plots report the mean over 3 seeds.

Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning

Figure 11. Training curves for ablation experiments. Shading shows maximum and minimum over 3 runs, while dark lines indicate the
mean. Both ablations of BT offer benefits over the baseline, but in different sets of games. Combining them retains the best of both
methods, and boosts performance even further in some games.

