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ABSTRACT

Training deep neural networks (DNN) with noisy labels is challenging since DNN
can easily memorize inaccurate labels, leading to poor generalization ability. Re-
cently, the meta-learning based label correction strategy is widely adopted to tackle
this problem via identifying and correcting potential noisy labels with the help
of a small set of clean validation data. Although training with purified labels can
effectively improve performance, solving the meta-learning problem inevitably
involves a nested loop of bi-level optimization between model weights and hyper-
parameters (i.e., label distribution). As compromise, previous methods resort to
a coupled learning process with alternating update. In this paper, we empirically
find such simultaneous optimization over both model weights and label distribution
can not achieve an optimal routine, consequently limiting the representation ability
of backbone and accuracy of corrected labels. From this observation, a novel
multi-stage label purifier named DMLP is proposed. DMLP decouples the label
correction process into label-free representation learning and a simple meta label
purifier, In this way, DMLP can focus on extracting discriminative feature and
label correction in two distinctive stages. DMLP is a plug-and-play label purifier,
the purified labels can be directly reused in naive end-to-end network retraining
or other robust learning methods, where state-of-the-art results are obtained on
several synthetic and real-world noisy datasets, especially under high noise levels.

1 INTRODUCTION

Deep learning has achieved significant progress on various recognition tasks. The key to its success is
the availability of large-scale datasets with reliable annotations. Collecting such datasets, however, is
time-consuming and expensive. Easy ways to obtain labeled data, such as web crawling (Xiao et al.,
2015a), inevitably yield samples with noisy labels, which is not appropriate to be directly utilized to
train DNN since these complex models are vulnerable to memorize noisy labels (Arpit et al., 2017).

Towards this problem, numerous Learning with Noisy Label (LNL) approaches were proposed.
Classical LNL methods focus on identifying the noisy samples and reducing their effect on parameter
updates by abandoning (Han et al., 2018) or assigning smaller importance. However, when it comes to
extremely noisy and complex scenarios, such scheme struggles since there is no sufficient clean data
to train a discriminative classifier. Therefore, label correction approaches are proposed to augment
clean training samples by revising noisy labels to underlying correct ones. Among them, meta-
learning based approaches (Ren et al., 2018; Li et al., 2019; Wu et al., 2021) achieve state-of-the-art
performance via resorting to a small clean validation set and taking noisy labels as hyper-parameters,
which provides sound guidance toward underlying label distribution of clean samples. However, such
meta purification inevitably involves a nested bi-level optimization problem on both model weight
and hyper-parameters (shown as Fig. 1 (a)), which is computationally infeasible. As a compromise,
the alternating update between model weights and hyper-parameters is adopted to optimize the
objective (Ren et al., 2018; Li et al., 2019; Wu et al., 2021), resulting in a coupled solution for both
representation learning and label purification.

Empirical observation. Intuitively, alternate optimization over a large search space (model weight
and hyper-parameters) may lead to sub-optimal solutions. To investigate how such approximation
affects results in robust learning, we conduct empirical analysis on CIFAR-10 with recent label
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Figure 1: The comparison between (a) traditional coupled alternating update to solve meta label purification
problem, and (b) the proposed DMLP method that decouples the label purification process into representation
learning and a simple non-nested meta label purifier.

Figure 2: The corrected label accuracy (a) and linear probe accuracy of representations (b) between cou-
pled (Zheng et al., 2021) and decoupled label correction schemes during training under 50% and 90% symmetric
label noise on CIFAR-10. (c) investigates the effect of representation learning on ‘Ori’-original coupled network
training from scratch, ‘SimCLR-Coupled’-initialization with stronger self-supervised pretrained weights and
‘SimCLR-Decoupled’-further fix the pretrained backbone during label purification.

purification methods MLC (Zheng et al., 2021) and MSLC (Wu et al., 2021), which consist of a deep
model and a meta label correction network, and make observation as Fig. 2.

• Coupled optimization hinders quality of corrected labels. We first compare the Coupled meta
corrector MLC with its extremely Decoupled variant where the model weights are first optimized for
70 epochs with noisy labels and get fixed, then labels are purified with the guidance of validation set.
We adopt the accuracy of corrected label to measure the performance of purification. From Fig. 2 (a),
we can clearly observe that compared with Decoupled counterpart, joint optimization yields inferior
correction performance, and these miscorrection will reversely affect the representation learning in
coupled optimization.

• Coupled optimization hinders representation ability. We investigate the representation quality
by evaluating the linear prob accuracy (Chen et al.) of extracted feature in Fig. 2 (b). We find the
representation quality of Coupled training is much worse at the beginning, which leads to slow and
unstable representation learning in the later stage. To further investigate the effect on representation
learning, we also resort to a well pretrained backbone with self-supervised learning (Chen et al.,
2020) as initialization, recent effort (Zheltonozhskii et al., 2022) shows pretrained representation is
substantially helpful for LNL framework. However, we find this conclusion does not strictly hold for
coupled meta label correctors. As shown in Fig. 2 (c). We observe the pretrained model only brings
marginal improvement if model weights optimization is still coupled with hyper-parameters. In
contrast, when the weight of backbone is fixed and decoupled from the purification, the improvement
becomes more significant.

Decoupled Meta Purification. From the observation above, we find the decoupling between
model weights and hyperparameters of meta correctors is essential to label purification and final
results. Therefore, in this paper, we aim at detaching the meta label purification from representation
learning and designing a simple meta label purifier which is more friendly for decoupled optimization
of label distribution than existing complex meta networks (Zheng et al., 2021; Wu et al., 2021).
Hence we propose a general multi-stage label correction strategy, named Decoupled Meta Label
Purifier (DMLP). The core of DMLP is a meta-learning based label purifier, however, to avoid solving
the bi-level optimization with a coupled solution, DMLP decouples this process into self-supervised
representation learning and a linear meta-learner to fit underlying correct label distribution (illustrated
as Fig. 1 (b)), thus simplifies the label purification stage as a single-level optimization problem. The
simple meta-learner is carefully designed with two mutually reinforcing correcting processes, named
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intrinsic primary correction (IPC) and extrinsic auxiliary correction (EAC) respectively. IPC plays
the role of purifying labels in a global sense at a steady pace, while EAC targets at accelerating the
purification process via looking ahead (i.e., training with) the updated labels from IPC. The two
processes can enhance the ability of each other and form a positive loop of label correction. Our
DMLP framework is flexible for application, the purified labels can either be directly applied for naive
end-to-end network retraining, or exploited to boost the performance of existing LNL frameworks.
Extensive experiments conducted on mainstream benchmarks, including synthetic (noisy versions of
CIFAR) and real-world (Clothing1M) datasets, demonstrate the superiority of DMLP. In a nutshell,
the key contributions of this paper include:

•We analyze the necessity of decoupled optimization for label correction in robust learning, based
on which we propose DMLP, a flexible and novel multi-stage label purifier that solves bi-level meta-
learning problem with a decoupled manner, which consists of representation learning and non-nested
meta label purification;

• In DMLP, a novel non-nested meta label purifier equipped with two correctors, IPC and EAC is
proposed. IPC is a global and steady corrector, while EAC accelerates the correction process via
training with the updated labels from IPC. The two processes form a positive training loop to learn
more accurate label distribution;

• Deep models trained with purified labels from DMLP achieve state-of-the-art results on several
synthetic and real-world noisy datasets across various types and levels of label noise, especially under
high noise levels. Extensive ablation studies are provided to verify the effectiveness.

2 RELATED WORKS

The existing LNL approaches that are related to our work can be coarsely categorized into two groups:
noisy sample detection and label correction.
Noisy sample detection methods aim to identify and reduce the importance of suspicious false-
labeled samples during training. The detected noisy samples are abandoned (Han et al., 2018; Pleiss
et al., 2020), assigned with smaller weights via a sample re-weight training scheme (Liu & Tao,
2015), or used to formulate a semi-supervised learning problem by throwing away the labels while
keeping the unlabeled data (Li et al., 2020; Zhang & Yao, 2020). These methods show robustness
under certain noise levels, but struggle when it comes to extremely noisy and complex scenarios since
there is no sufficient clean data to train a discriminative classifier.
Label correction approaches attempt to augment the training set by finding and correcting noisy
labels to their underlying true ones. To do so, some works (Patrini et al., 2017) try to estimate the
noise transition matrix. However, these methods usually assume that the noise type is class-dependent,
which may be inappropriate for more complex noise settings, such as real-world noisy datasets (Xiao
et al., 2015a). Some other works resort to exploiting the prediction of the network, both soft (Reed
et al., 2015; Han et al., 2019; Yi & Wu, 2019; Arazo et al., 2019) and hard (Tanaka et al., 2018; Song
et al., 2019) label correction schemes are designed. However, the predictions of over-parameterized
backbone network can be unreliable since it tends to fluctuate during training in the presence of
false-labeled data (Zhang & Yao, 2020). Another line of works utilize robust representations learned
via unsupervised contrastive learning methods (Zhang & Yao, 2020; Li et al., 2021; Ghosh & Lan,
2021; Zheltonozhskii et al., 2022) to eliminate the interference of noisy labels, which provides a
reliable initialization of deep models. Recently, meta-learning based methods (Ren et al., 2018; Li
et al., 2019; Wu et al., 2021; Zheng et al., 2021) show great potential towards LNL problems with the
help of a small clean validation set to provide sound guidance toward underlying label distribution of
clean sample. However, these approaches involves a bi-level optimization problem on model weights
and hyper-parameters, which is too computationally expensive to optimize. As a compromise, the
one-step approximation is commonly adopted (Wu et al., 2021; Zheng et al., 2021) to convert the
nested objective into a coupled update procedure between model weights and hyper-parameters,
leading to sub-optimal performance.

Accordingly, DMLP belongs to the label correction group via meta-learning strategy, but unlike
previous meta-learning based methods, the learning process on model weights and labels are decou-
pled into individual stages within DMLP. Together with the proposed non-nested meta-label purifier,
DMLP yields more accurate labels than coupled label correction methods (Wu et al., 2021; Zheng
et al., 2021) and further set the new state-of-the-art on CIFAR and Clothing1M.
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Figure 3: The overall framework of DMLP. (a) Decoupled meta label purification (Sec. 3.2). (b) The purified
labels can be applied in normal network retraining (CE) or other LNL loss (Sec. 3.3).

3 METHOD

3.1 DECOUPLED SOLUTION TO META LABEL PURIFICATION

For convenience, notations within DMLP are clarified first. The noisy training dataset is denoted
as Dt = {(xi, yi)|1 ≤ i ≤ Nt}, where xi ∈ RH×W×3, yi ∈ {0, 1}c are the image and corrupted
label of the i-th instance, c is the class number. Similarly, the clean validation dataset is denoted
as Dv = {(xi, yi)|1 ≤ i ≤ Nv}. N denotes the dataset size, and Nv ≪ Nt. The subscripts t, v
represent the data is from training set, validation set.

Typical meta-learning based purification requires solving a bi-level optimization problem on both
model weights and hyper-parameters with objective:

min
θα

E(xv,yv)∈Dv
Lval(xv, yv;w

∗(θα))

s.t. w∗(θα) = argmin
w

E(xt,yt)∈Dt
Ltrain(xt, yt;w, θα)

(1)

where w and θα denote the model weights and the meta hyper-parameters respectively. In the
classical label purification pipeline, θα is reparameterized as a function of noisy label distribution, i.e.
θα = g(yt). Lval and Ltrain are the loss function on different datasets. Since both loss terms are not
analytical and involve complicated forward pass of DNN, solving the nested optimization objective
is computationally expensive. Meanwhile, alternating one-step approximation (Ren et al., 2018; Wu
et al., 2021) cannot guarantee that the optimization direction is optimal due to coupled update.

In contrast, in order to avoid coupled optimization over the large searching space of network parame-
ters w, we reformulate the meta-learning objective in DMLP as:

min
yt

E(xv,yv)∈Dv
Lval(fv, yv;w

∗(yt))

s.t. w∗(yt) = argmin
w

E(xt,yt)∈Dt
Ltrain(ft, yt;w)

ft = G(xt; θ
∗
G), fv = G(xv; θ

∗
G)

(2)

where a pretrained feature extractor G : RH×W×3 → Rd is designed to extract d-dimensional
representation f . These extracted features are utilized in a contrastive learning framework (Chen
et al., 2020; Chen et al.) to update the parameters θG. Subsequently, the established feature extractor
f = G(x; θ∗G) can learn a noise-agnostic descriptor of images, which is also highly separable in high
dimensional feature space (Zhang & Yao, 2020). In this manner, we detach representation learning
from noisy label correction, while keeping strong separability of features.

Further, since the feature is representative and separable, the loss term can be formulated with simple
estimation risk function (e.g. linear discrimination) instead of complex DNN forward pass, making it
possible to solve the meta-purification problem of Eq. (2) in a non-nested manner with an analytical
solution, which will be introduced in Sec. 3.2.

3.2 NON-NESTED META LABEL PURIFIER

To solve the purification problem of Eq. (2), we propose two mutually reinforced solutions to seek
purified training labels as shown in Fig. 3, the intrinsic primary correction (IPC) and extrinsic
auxiliary correction (EAC) processes.
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• Intrinsic Primary Correction. IPC aims at performing global-wise label purification at a slow and
steady pace. Specifically, as shown in Fig. 3 (b), a batch of b training data is gathered into matrix:

Ft = [ft,1, ft,2, · · · , ft,b]T , Yt = [yt,1, yt,2, · · · , yt,b]T . (3)

Since the feature descriptors are representative, we assume there exists a simple linear estimation
transform w ∈ Rd×c, which accurately regresses the feature descriptor of a sample to the one-hot
form belonging to its semantic label:

min
w
Ltrain(Ft, Yt;w) = ∥Yt − Ftw∥2 . (4)

By solving the linear regression problem of Eq. (4) through least square method, we can obtain its
closed-form solution w∗(Yt) on the training batch and derive its optimal linear prediction on samples
fv,i from validation set Dv:

y′v,i(Yt) = w∗(Yt)
T fv,i = Y T

t Ft

(
Ft

TFt

)−1
fv,i. (5)

To ensure inverse is feasible, we will add a small unit diagonal matrix to FT
t Ft if the inverse

calculation fails at first. Intuitively, the discrepancy between the predicted results and the ground
truth labels of Dv can be due to the potential noise in Yt, therefore we take the prediction discrepancy
as objective for label purification:

Lval(Yt) =
1

Nv

Nv∑
i=1

||y′v,i(Yt)− yv,i||2 +H(y′v,i(Yt)), (6)

where H(·) represents the entropy of input distribution as a regularization term to sharpen the
predicted label distribution, similar to Yi & Wu (2019). With Eq(5,6), the validation loss can be
expressed analytically by training labels Yt in a batch, thus the noisy labels are corrected steadily
with correction rate ηI by the gradient from Eq. (6), in implementation, a softmax function is applied
to ensures the label vector sums to one:

Yt
p+1 := Yt

p − ηI∇(Lval(Y
p
t )). (7)

• Extrinsic Auxiliary Correction. To accelerate the label correction process, an external correction
process is further proposed. Specifically, an accompanied linear classifier C(·;wc) is trained together
with the updated labels from IPC:

Lc(wc) = Lce(C(ft;wc), y
′
t) +H(C(ft;wc)), (8)

where y′t is the updated training labels, and Lce denotes the cross entropy loss function. Since the
accompanied classifier is intrinsically robust to noisy labels in y′t, it can quickly achieve relatively
high correction accuracy. With this intuition, the predicted results of the classifier are used to update
noisy labels periodically in a momentum manner:

Y p+1
t := (1− ηE)Y

p
t + ηEC(Ft;wc) if p = nT, (9)

where T and ηE are the period and momentum for update. In a global sense, after T iterations of
training, EAC can quickly achieve locally optimal label estimation by mimic of gradually updated
labels from IPC, which reversely facilitates the label correction of IPC by providing cleaner training
labels. Subsequently, IPC and EAC form a positive loop and mutually improve the performance.

3.3 APPLICATION OF DMLP

The DMLP is a flexible label purifier, the corrected training labels y∗t can be applied in different ways
in robust learning scenarios, as shown in Fig. 3.

• Naive classification network with DMLP. In a simple and direct manner, we can take the purified
labels to retrain the whole network with simple cross-entropy loss (CE), here we term this simple
application as DMLP-Naive.

• LNL framework boosted by DMLP. Considering that there may still be a small number of noisy
or miscorrected labels after purification, another effective way to apply DMLP is to take the purified
labels as new training samples for the existing LNL framework. In this work, four classic frameworks
are adopted, including DivideMix (Li et al., 2020), ELR+ (Liu et al., 2020), CDR (Xia et al., 2021)
and Co-teaching (Han et al., 2018) . The boosted LNL methods are denoted with prefix of “DMLP-”
(DMLP-DivideMix, DMLP-ELR+, etc.)
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Table 1: Comparison with state-of-the-art methods on CIFAR-10/100 datasets with symmetric noise. “CE” is
the standard ConvNet trained with Cross-Entropy loss in an end-to-end manner. “Classifier” means adopts the
pre-trained SimCLR features to re-train a linear classifier. “Val” denotes using a small clean validation set.
DivideMix* denotes training DivideMix with the same validation set as additional data.

Dataset CIFAR-10 CIFAR-100
Method Val Noise ratio 20% 50% 80% 90% 20% 50% 80% 90%

Cross-Entropy (CE) Best 86.8 79.4 62.9 42.7 62.0 46.7 19.9 10.1
% Last 82.7 57.9 26.1 16.8 61.8 37.3 8.8 3.5

Co-teaching+ (Yu et al., 2019) Best 89.5 85.7 67.4 47.9 65.6 51.8 27.9 13.7
% Last 88.2 84.1 45.5 30.1 64.1 45.3 15.5 8.8

PENCIL (Yi & Wu, 2019) Best 92.4 89.1 77.5 58.9 69.4 57.5 31.1 15.3
% Last 92.0 88.7 76.5 58.2 68.1 56.4 20.7 8.8

REED (Zhang & Yao, 2020) Best 95.8 95.6 94.3 93.6 76.7 73.0 66.9 59.6
% Last 95.7 95.4 94.1 93.5 76.5 72.2 66.5 59.4

RRL (Li et al., 2021) Best 95.9 94.5 - - 79.4 75.0 - -
% Last 95.6 94.1 - - 79.0 74.5 - -

Sel-CL+ (Li et al., 2022) Best 95.5 93.9 89.2 81.9 76.5 72.4 59.6 48.8
% Last 95.1 93.3 88.7 81.6 76.1 72.0 59.2 48.6

MOIT+ (Ortego et al., 2021) Best 94.1 91.8 81.1 74.7 75.9 70.6 47.6 41.8
% Last 93.8 91.3 80.6 74.0 75.2 70.1 46.9 41.2

C2D (Zheltonozhskii et al., 2022) Best 96.3 95.2 94.4 93.5 78.6 76.4 67.7 58.7
% Last 96.2 95.1 94.1 93.4 78.3 76.0 67.4 58.4

DivideMix (Li et al., 2020) Best 96.1 94.6 93.2 76.0 77.3 74.6 60.2 31.5
% Last 95.7 94.4 92.9 75.4 76.9 74.2 59.6 31.0

Meta-Learning (Li et al., 2019) Best 92.9 89.3 77.4 58.7 68.5 59.2 42.4 19.5
" Last 92.0 88.8 76.1 58.3 67.7 58.0 40.1 14.3

MLC (Zheng et al., 2021) Best 92.6 88.1 77.4 67.9 66.8 52.7 21.8 15.0
" Last 91.8 87.5 77.1 67.0 66.5 52.4 18.9 14.2

MSLC (Wu et al., 2021) Best 93.4 89.9 69.8 56.1 72.5 65.4 24.3 16.7
" Last 93.3 89.4 68.8 55.2 72.0 64.9 20.5 14.6

DivideMix* (Li et al., 2020) Best 96.1 94.9 93.6 77.3 77.7 74.8 60.7 32.5
" Last 95.9 94.6 93.0 76.5 77.1 74.3 60.5 32.2

DMLP-Naive Best 94.7 94.2 93.5 92.8 72.7 68.0 63.5 61.3
" Last 94.2 94.0 93.2 92.0 72.3 67.4 63.2 60.9

DMLP-DivideMix Best 96.3 95.8 94.5 94.3 79.9 76.8 68.6 65.8
" Last 96.2 95.6 94.3 94.0 79.4 76.1 68.5 65.4

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

CIFAR-10/100. For the self-supervised pre-training stage, we adopt the popular SimCLR algo-
rithm (Chen et al., 2020) with ResNet as the backbone network. Classifiers in meta-learner are trained
for 100 epochs with the Adam optimizer. For the final DivideMix algorithm, ResNet18 is adopted
for a fair comparison. ηI and ηE are set as 0.01 and 1.0 respectively. To ensure fair evaluation, we
only randomly separate 1,000 images as the clean set for both CIFAR-10/100 (Krizhevsky et al.,
2009), leaving the rest as training samples. We strictly follow the protocol in (Han et al., 2018)
to generate noise. Specifically, symmetric noise is generated by replacing labels with one of the
other classes uniformly, while the labels in asymmetric noise are disturbed to their similar classes to
simulate label noise in real-world scenarios. Our experiments are conducted under different noisy
rates: π ∈ {20%, 50%, 80%, 90%} for symmetric and π ∈ {20%, 40%} for asymmetric noises.
Clothing1M. For the first stage on the Clothing1M (Xiao et al., 2015b), the ResNet50 is trained
with the official MoCo-v2 (Chen et al.) to fully leverage its advantages on large-scale datasets.
Afterward, the meta-learner is trained for 50 epochs.For DMLP-Mix, ResNet50 is adopted and
initialized with weights from previous stages and trained for 80 epochs. More details can be found in
the supplementary materials.

4.2 EXPERIMENTAL RESULTS

• Comparison with state-of-the-art methods. We compare our method with multiple recent
competing methods on CIFAR-10/100 under various noisy settings (detailed descriptions of these
methods are provided in the supplementary materials). Both test accuracy of the best and last epoch
are reported. As shown in Table 1, the simple DMLP-Naive can already achieve competitive results
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Table 2: Evaluation with asymmetric noise on CIFAR-
10. “Val” denotes the method exploits a small clean
validation set.

Method Noisy ratio
Val 20% 40%

Joint-Optim(Tanaka et al., 2018) % 92.8 91.7
PENCIL (Yi & Wu, 2019) % 92.4 91.2
M-correction (Arazo et al., 2019) % - 86.3
Iterative-CV (Chen et al., 2019) % - 88.0
DivideMix (Li et al., 2020) % 93.4 93.4
REED (Zhang & Yao, 2020) % 95.0 92.3
C2D (Zheltonozhskii et al., 2022) % 93.8 93.4
Sel-CL+ (Li et al., 2022) % 95.2 93.4
GCE (Ghosh & Lan, 2021) % 87.3 78.1
RRL (Li et al., 2021) % - 92.4

Zhang, et al. (Zhang et al., 2020) " 92.7 90.2
Meta-Learning (Li et al., 2019) " - 88.6
MSLC (Wu et al., 2021) " 94.4 91.6

DMLP-Naive " 94.6 93.9
DMLP-DivideMix " 95.2 95.0

Table 3: Top-1 testing accuracy on Clothing-1M.
“Val” denotes using the validation provided by (Xiao
et al., 2015a).

Method Val Top-1

PENCIL (Yi & Wu, 2019) % 73.49
DivideMix (Li et al., 2020) % 74.76
RRL (Li et al., 2021) % 74.90
GCE (Ghosh & Lan, 2021) % 73.30
C2D (Zheltonozhskii et al., 2022) % 74.30
REED (Zhang & Yao, 2020) % 75.81

Meta-Learning (Li et al., 2019) " 73.47
Self-Learning (Han et al., 2019) " 76.44
MLC (Zheng et al., 2021) " 75.78
MSLC (Wu et al., 2021) " 74.02
Meta-Cleaner (Zhang et al., 2019) " 72.50
Meta-Weight (Shu et al., 2019) " 73.72
FaMUS (Xu et al., 2021) " 74.40
MSLG (Algan & Ulusoy, 2021) " 76.02

DMLP-Naive " 77.77
DMLP-DivideMix " 78.23

Table 4: Comparison between the LNL methods and their DMLP applications with symmetric noise on CIFAR-
10/100. Specifically, the 9-layer CNN is adopted as the backbone network of Co-teaching.

Dataset CIFAR-10 CIFAR-100
Method/Noise ratio 20% 50% 80% 90% 20% 50% 80% 90%

Co-teaching (Han et al., 2018) Best 82.6 73.0 24.0 14.6 50.5 38.2 11.8 4.9
Last 81.9 72.6 23.5 11.7 50.3 38.0 11.3 4.3

DMLP-Co-teaching Best 85.8 85.8 85.4 84.6 51.2 49.8 48.1 45.3
Last 85.6 85.6 85.3 84.5 51.0 49.3 47.8 45.1

CDR (Xia et al., 2021) Best 90.4 85.0 47.2 12.3 63.3 39.5 29.2 8.0
Last 82.7 49.4 16.6 10.1 62.9 39.5 9.7 4.5

DMLP-CDR Best 91.4 91.2 91.2 90.2 69.2 64.8 61.4 58.5
Last 91.2 90.8 90.6 89.3 68.3 64.3 61.1 57.9

ELR+ (Liu et al., 2020) Best 94.6 93.8 91.1 75.2 77.5 72.4 58.2 30.8
Last 94.4 93.7 90.5 73.5 76.2 72.2 56.8 30.6

DMLP-ELR+ Best 94.9 94.1 93.0 92.5 77.8 73.6 63.9 60.5
Last 94.6 94.0 92.7 92.1 77.1 73.4 63.6 60.5

to most methods, the superiority is more obvious in extremely noisy cases, further, the DMLP-
DivideMix achieves state-of-the-art performance across all the settings. It is worth noting that directly
utilizing the validation data to train DivideMix (i.e., DivideMix*) only brings marginal improvement,
while when equipped with the purified labels by DMLP, significant improvements are obtained,
indicating that DMLP is effective in terms of utilizing validation set towards LNL problem. On the
other hand, though there exist other meta-learning methods utilizing validation set (Li et al., 2019;
Wu et al., 2021; Zheng et al., 2021), DMLP shows great advantages over them. It is also noticeable
that compared with the original DivideMix, the purified version of DMLP-DivideMix achieves better
results by a large margin, indicating that the purified label from our approach is more friendly to
boost LNL frameworks. Table 2 shows comparison with the recent methods on asymmetric noisy
CIFAR-10 dataset. DMLP-DivideMix outperforms REED by 0.2% and 2.7% under different noisy
ratios and obtains greater improvements over the rest methods, demonstrating the ability of DMLP in
handling harder semantic-related noise. Finally, DMLP-based methods suffer less from increasing
noisy ratio than other competitors, indicating its robustness to variant noisy levels.

In addition to artificial noise, we also evaluate DMLP on the large-scale real-world noisy dataset
Clothing1M. As shown in Table 3, simple DMLP-Naive can outperform all other methods by a large
margin, and DMLP-DivideMix further improves the accuracy by about 0.46%. The results indicate
that DMLP is more suitable for noise from real-world situations.
• Label correction accuracy. Fig. 4 compares the label accuracy after correction in our meta-learner
against coupled purifiers MLC and MSLC on CIFAR-10. Specifically, the one-hot form of the
corrected pseudo-labels is compared with the ground truth for evaluation. As Fig. 4 shows, labels
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Table 5: Ablation study for the effectiveness of IPC and EAC in DMLP-Naive on CIFAR-10.

Component CIFAR-10 Clothing1MIPC EAC 20% 50% 80% 90%

✗ ✓
Best 93.7 93.3 91.1 67.4 76.5
Last 93.0 92.9 90.6 66.5 76.1

✓ ✗
Best 87.8 85.7 79.9 76.0 76.8
Last 87.2 85.5 79.4 75.4 76.5

✓ ✓
Best 94.7 94.2 93.5 92.8 77.7
Last 94.2 94.0 93.2 92.0 77.6

Figure 4: Comparison of corrected label accuracy curve under symmetric-20% (left), symmetric-80% (middle)
noise settings on CIFAR-10. And investigation of the validation set size on Clothing1M (right).

can be rapidly corrected to accuracy over 92% in low noise cases. For severe label noise, DMLP can
still steadily improve label accuracy similar to low-noise settings. And the overall corrected label
accuracy within DMLP is superior against other competitors across all noise settings (More detailed
experimental results can be found in the supplementary material).

• Generality of DMLP. To validate the generalization ability of DMLP, other than DivideMix,
another 3 popular LNL methods, ELR+ (Liu et al., 2020), Co-teaching (Han et al., 2018), and
CDR (Xia et al., 2021) are further adopted to work collaboratively with purified labels of DMLP. As
show in Table 4, all the applications of DMLP perform consistently better over their corresponding
baselines, especially under high-level noise cases. It is worth noting that since CDR highly relies
on the early stopping technique, it suffers from a severe memorization effect in the training process,
leading to a discrepancy between best results and last performance. In contrast, when training CDR
with our purified labels, this discrepancy almost disappears, demonstrating the labels output by
DMLP have a better quality to suppress the memorization effect, thus alleviating the reliance on early
stopping. More detailed experimental results can be found in the supplementary materials. Therefore,
the results indicate that the purified labels of DMLP are friendly to boost LNL frameworks.

4.3 ABLATION STUDIES

• Component analysis. We explore the influence of IPC and EAC on the performance of DMLP-
Naive in Table 5, when EAC is excluded, the optimization results w∗(Yt) in Eq. (5) are applied
as a linear classifier. It is observed that EAC performs well in low noise cases due to its intrinsic
robustness, as the noise ratio increases, the performance drops rapidly. On the other hand, IPC is
more robust to high-level noise, but there exists a large gap compared with the full DMLP pipeline
due to its slow optimization process. In contrast, when IPC and EAC work collaboratively, DMLP
can achieve optimal results.

• Comparison against other coupled purifiers with pretraining. To solely evaluate the influence
of decoupled purification, we train two coupled meta label correction methods MLC and MSLC
with the same self-supervised pretrained weights and apply their corrected labels to naive training
or DivideMix for fair comparisons. As shown in Table. 6, though self-supervised weights can
marginally boost the performance of coupled label correctors, there still exists a large gap between
their performance and DMLP, especially for high noisy cases. Moreover, when further applying
the corrected labels to mainstream LNL framework DivideMix, our method can also consistently
outperform coupled counterparts across all the noisy cases, demonstrating our corrected labels are of
higher quality. Therefore, all these comparison verify that the improvement mainly attributes to
our decoupled label correction strategy instead of self-supervised pretraining.

8
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Table 6: Comparison with coupled meta label correc-
tion methods MLC (Zheng et al., 2021) and MSLC (Wu
et al., 2021). "*" denotes training with SimCLR pre-
trained ResNet-18.

Method Noisy ratio
20% 50% 80% 90%

MLC* Best 91.8 86.2 77.6 72.9
Last 91.6 85.9 77.5 72.6

MSLC* Best 92.0 87.7 78.0 67.8
Last 92.0 87.5 77.9 67.3

DMLP-Naive* Best 94.0 93.7 93.1 92.3
Last 93.9 93.4 92.9 91.9

MLC*-DivideMix Best 95.3 94.0 93.0 86.6
Last 95.0 93.6 92.7 86.5

MSLC*-DivideMix Best 95.7 94.9 93.8 83.0
Last 95.5 94.8 93.1 82.8

DMLP*-DivideMix Best 96.3 95.6 94.1 93.8
Last 96.0 95.2 94.0 93.6

Table 7: Ablation study for adopting different
features in DMLP-Naive on CIFAR-10, where
"R18/50" denote "ResNet-18/50" and "M/S" rep-
resent "MoCo/SimCLR".

Feature Source Noisy ratio
20% 50% 80% 90%

R18 (M) Best 93.8 93.3 92.2 90.4
Last 93.7 92.7 92.1 90.0

R18 (S) Best 94.0 93.7 93.1 92.3
Last 93.9 93.4 92.9 91.9

R50 (S) Best 94.7 94.2 93.5 92.8
Last 94.2 94.0 93.2 92.0

Table 8: Results of recent semi-supervised meth-
ods and DMLP-DivideMix on CIFAR-10.

Mean
Teacher

Mix
Match

Fix
Match UDA Ours

Acc 83.0 87.9 88.1 88.2 91.7

• Effect of different feature representation for purification. The quality of features plays a crucial
role in the label correction process of DMLP since the distribution of learned features is closely related
to the rationality behind the linear estimation assumption in high-dimensional space. Therefore,
we study the influence of different features on performance. Specifically, two types of features are
investigated, including features from the ResNet-18/50 which load the self-supervised pre-trained
weights. As the results in Table 7 show, the features from the ResNet-18 lead to slightly poor
performance, while it brings performance improvements when using features from self-supervised
ResNet-50. This observation indicates that although feature representation of higher quality benefits
the purification results, DMLP is not very sensitive to the representation ability of input feature.

• Effect of validation size. We examine how the number of validation set affect the performance.
Specifically, validation sizes from 10% to 100% of the whole validation set are evaluated on Cloth-
ing1M for DMLP-Naive. As shown in Fig. 4, DMLP-Naive achieves similar performance regardless
of the validation size Nv , demonstrating the performance of DMLP is not sensitive to the number of
images. It is worth noting that even using only 10% of the validation set (around 0.1% of training
data), DMLP-Naive still achieves high accuracy and outperforms most methods in Table.3, indicating
that the effectiveness of DMLP is not heavily relied on validation size.

• Performance under extremely noisy setting. In an extremely noisy scenario where all labels in
the training set are unreliable except the given validation set, the LNL problem is converted into a
partially-labeled semi-supervised learning problem, therefore we further compare DMLP-DivideMix
with state-of-the-art semi-supervised learning methods in the 100% symmetric noise case, including
MeanTeacher (Tarvainen & Valpola, 2017), MixMatch (Berthelot et al., 2019), FixMatch (Sohn et al.,
2020), UDA (Xie et al., 2020). From the results in Table 8, DMLP-DivideMix performs optimally
among all methods when using the validation set as labeled training samples, indicating that the
proposed method is suitable for broader applications.

5 CONCLUSION

In this paper, we propose a flexible and novel multi-stage robust learning approach termed as DMLP.
The core of DMLP is a carefully-designed meta-learning based label purifier, which decouples
the complex bi-level optimization problem into representation and label distribution learning, thus
helping the meta-learner focus on correcting noisy labels in a faster and more precise manner even
under extremely noisy scenarios. Further, DMLP can be applied either for direct inference on noisy
data or assistance of existing LNL methods to boost performance. Extensive experiments conducted
on several synthetic and real-world noisy datasets verify the superiority of the proposed method.
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A APPENDIX

A.1 ALGORITHM DETAILS

In this appendix, we provide material that could not be included in the main manuscript due to space
constraints. First, Section A.1 presents the detailed algorithm of the proposed method. Section A.2
provides insights about how IPC works from the perspective of label aggregation. Finally, Section A.3
presents additional experimental results of DMLP.

Algorithm 1 delineates the proposed DMLP in detail, where the equation labels are consistent with
the main text of the paper. Firstly, the feature extractor G(·; θG) is pre-trained via a self-supervised
learning stage. IPC (Line 5-9) and EAC (Line 12-16) are two mutually reinforcing label correcting
processes of DMLP. After m iterations of optimization, the purified labels Yt

∗ are obtained. Finally,
the well-trained classifier C(·;wc) can directly infer on test data or re-train a LNL framework with
Yt

∗ to further boost performance.

A.2 DETAILED INTERPRETATION OF IPC

In this section we further discuss how our IPC utilizes the decoupled feature representation to model
the risk resulted from label noises from the perspective of label aggregation. In the main part of our
paper, the IPC process seeks to predict the labels of validation samples via its optimally estimated
linear estimator as

y′v,i(Yt) = Y T
t Ft(F

T
t Ft)

−1fv,i. (10)

Since the representation features are normalized after self-supervised training, thus (FT
t Ft)

−1 can be
interpreted as the inversed covariance matrix of distribution from training data, and the estimated
covariance matrix maps the feature of validation data into the observation space of training data

f ′v,i = (FT
t Ft)

−1fv,i. (11)

With the definition of Eq. (11), the term of matrix multiplication in Eq. (10) can be interpreted as a
similarity matrix

α = Ft

[
(FT

t Ft)
−1fv,i

]
= Ftf

′
v,i, (12)

each entry of vector α ∈ Rb represents the similarity between f ′
v,i and each training sample of Ft.

Finally, the output prediction on validation data can be regarded as the attentive aggregation over all
labels in a training batch

y′v,i(Yt) = Y T
t α. (13)

Ideally, since the self-supervised training process is trained without noisy labels in a contrastive
manner, the feature distribution intrinsically forms a cluster-like manifold, i.e. samples with the same
semantic label are closer in feature space

fTt,jf
′
v,i > fTt,kf

′
v,i when yv,i = yt,j , yv,i ̸= yt,k. (14)

Consequently, when a training sample in Ft is more similar to the validation sample, its semantic
label will contribute more to prediction y′v,i(Yt) and vice versa. Therefore, when penalizing on the
discrepancy between y′v,i(Yt) and yv,i, we put more penalty on training samples with similar feature
distribution but different labels from (xv,i, yv,i), which is more likely to be noisy samples.

A.3 EXPERIMENTAL DETAILS

A.3.1 EXPERIMENTAL SETTINGS

For the CIFAR10/100 dataset, most parameters of the SimCLR (Chen et al., 2020) algorithm are
set as suggested in the original implementation. The classifier C(·;wc) is trained with a learning
rate of 0.005 and batch size of 500, while the batch size for the label purifier in IPC is set to 7,000.
The classifier and the purifier are both trained with the Adam optimizer. For DMLP-Mix, all the
hyper-parameters of DivideMix are set as the authors suggested. As for the real-world Clothing1M
dataset, we follow the original protocol to split the training and testing sets. The given validation set

12



Under review as a conference paper at ICLR 2023

Algorithm 1 The workflow of DMLP.

Input: Noisy training set Dt, clean validation set Dv , feature extractor G(·; θG), classifier C(·;wc),
batch size b, max iterations m, period for regular label substitution T .

Procedure:
1: Self-supervised training for G(·; θG)
2: Generate features f by Eq. (2)
3: for i = 1 to m do
4: /*IPC starts*/
5: {Ft, Yt}← SampleMiniBatch(f,Dt,b)
6: Calculate closed-form solution w∗(Yt) by Eq. (5)
7: Predict validation set labels y′v by Eq. (5)
8: Calculate label purification loss Lval(Yt) by Eq. (6).
9: Update training labels Yt in backward process by Eq. (7).

10:
11: /*EAC starts*/
12: Calculate loss for the classifier C(·;wc) by Eq. (8)
13: Update classifier parameter wc in backward process.
14: if i = nT then
15: Update training labels Yt by Eq. (9)
16: end if
17: end for
Output: The purified labels Yt

∗.

is utilized for meta-learning. The batch sizes for the classifier and the label purifier in IPC are set to
500 and 10,000 respectively. The learning rate for the former is set to 0.03 while for the latter is 0.02.
Similar to the setting on CIFAR-10/100, the Adam optimizer is also adopted.

A.3.2 DETAILS OF COMPARED METHODS

As discussed in manuscript, DMLP is compared with most recent relevant works. Specifically,
the competing works can be coarsely categorized into two group, noisy sample detection and
label correction. The former usually identifying and reducing the importance of suspicious false-
labeled samples during training, either by directly selecting the clean samples out of training set
(Co-teaching (Han et al., 2018), Co-teaching+ (Yu et al., 2019), Iterative-CV (Chen et al., 2019),
Sel-CL+ (Li et al., 2022), ELR+ (Liu et al., 2020), C2D (Zheltonozhskii et al., 2022), DivideMix (Li
et al., 2020), REED (Zhang & Yao, 2020), MOIT+ (Ortego et al., 2021)) or adjusting the soft weight
of each training sample (RRL (Li et al., 2021), M-correction (Arazo et al., 2019), GCE (Ghosh &
Lan, 2021), CDR (Xia et al., 2021)). The latter aims to correct the corrupted labels and augment
the training data. Typical paradigms are correction-by-prediction, i.e., utilizing the prediction of
deep model to correct labels, including Joint-Optim(Tanaka et al., 2018), PENCIL (Yi & Wu, 2019),
Self-Learning (Han et al., 2019). Others resort to a small set of clean validation set with meta-learning
training strategies, i.e., Meta-Learning (Li et al., 2019), MLC (Zheng et al., 2021), MSLC (Wu et al.,
2021), Meta-Cleaner (Zhang et al., 2019), Meta-Weight (Shu et al., 2019), FaMUS (Xu et al., 2021),
MSLG (Algan & Ulusoy, 2021), Zhang, et al. (Zhang et al., 2020).

A.3.3 MORE APPLICATIONS OF DMLP

As mentioned in the manuscript, DMLP can be applied to work collaboratively with the existing
LNL framework to boost performance. To further verify the effectiveness of DMLP, we also plot the
accuracy curve of the proposed DMLP and its baseline methods in Fig. 8-13. It is observed that all
the applications of DMLP perform consistently better over their corresponding baselines throughout
the training process, especially under high-level noise cases.

A.3.4 DETAILS OF EXPERIMENTAL RESULT

• Detailed Comparison with Coupled Methods. In the manuscript we compare DMLP against
coupled meta label correction methods MLC (Zheng et al., 2021) and MSLC (Wu et al., 2021)
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Figure 5: Comparison with two state-of-the-art coupled optimization based meta label correction methods
MLC (Zheng et al., 2021) and MSLC (Wu et al., 2021) on corrected label accuracy and linear evaluation
accuracy.

Table 9: Investigation on the influence of meta-purification on CIFAR-10.

Method Noisy ratio
20% 50% 80% 90%

SimCLR-DivideMix Best 92.2 91.2 92.1 85.7
Last 82.8 81.3 77.0 10.9

DMLP-DivideMix Best 96.3 95.8 94.5 94.3
Last 96.2 95.6 94.3 94.0

with same self-supervised pretrained weights. Here we provide more detailed comparison results
with the original implemented MLC and MSLC in terms of corrected label accuracy and backbone
quality (revealed by linear evaluation accuracy). As shown in Fig. 5, by simplifying the complex
coupled meta-learning process into individual representation learning and non-nested meta label
purification, DMLP can achieve superior performance to these methods in the sense of purified label
accuracy and meanwhile obtain representations of better quality, which further verifies our empirical
findings of Fig. 1 in the manuscript.

• Detailed Comparison with Decoupled Baselines. The proposed non-nested meta label purifier
plays a crucial role in DMLP. To fairly verify its superiority to existing label correction methods, we
train MLC and MSLC in a decoupled way where their backbone is fixed with SimCLR self-supervised
weights as in DMLP. As shown in Table 10, decoupled training scheme can largely boosts their
performance, which is also in line with our empirical findings in Fig. 1 of the manuscript. Besides,
it can be obviously observed that DMLP-Naive shows great advantage over the decoupled MLC
and MSLC across all the settings especially under high noise, demonstrating the effectiveness of the
non-nested meta label purifier.

• Effect of the Meta-purification on DMLP-DivideMix. We further investigate the effect of the
non-nested meta label purifier on the afterward LNL framework in DMLP-DivideMix setting. To
do this, we initialize a model with SimCLR and apply DivideMix to train the model as our baseline.
According to the results in Table 9, the accuracy suffers from a significant performance drop when
removing the non-nested meta label purifier from our pipeline (i.e, SimCLR-DivideMix), especially
for severe label noise cases, this can be attributed to the DNN inevitably gradually memorizes the
noisy labels when updating the backbone and classifier simultaneously. In contrast, in DMLP-
DivideMix, labels purified by the meta-learner yield higher accuracy, guiding the afterward LNL
framework to learn more robust and discriminative decision boundaries.

• Detailed Comparison on the label accuracy. In addition to the comparison of 50% and 90%
noise between MLC, MSLC and DMLP on the CIFAR-10 in the manuscript, we also visualize the
label accuracy curves for 20% and 90% noise. As shown in Fig. 6, DMLP consistently shows great
superiority over MLC and MSLC throughout the training process. Moreover, Fig.7 shows corrected
label accuracy curve of DMLP under symmetric and asymmetric noise settings on CIFAR-10, which
demonstrates that high quality labels can be generated by DMLP across all noisy settings.
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Table 10: Comparison with MLC and MSLC on CIFAR-10/100. "†" denotes training with fixed self-supervised
pretrained ResNet-18. "*" denotes training with self-supervised pretrained ResNet-18.

Dataset CIFAR-10 CIFAR-100
Method Noise ratio 20% 50% 80% 90% 20% 50% 80% 90%

MLC∗ (Zhenget al., 2021)
Best 91.8 86.2 77.6 72.9 62.2 53.8 46.5 39.6
Last 91.6 85.9 77.5 72.6 61.6 53.0 46.2 39.2

MSLC∗ (Wuet al., 2021)
Best 92.0 87.7 78.0 67.8 70.8 64.1 36.4 19.8
Last 92.0 87.5 77.9 67.3 70.2 63.8 34.3 18.7

MLC† (Zhenget al., 2021)
Best 92.0 90.2 89.0 88.9 65.9 59.4 54.4 54.2
Last 91.6 89.4 88.5 88.1 65.2 59.2 54.1 54.0

MSLC† (Wuet al., 2021)
Best 92.1 90.4 87.3 84.7 71.7 64.7 53.3 46.8
Last 92.0 90.0 87.2 84.2 71.6 64.4 53.0 46.4

DMLP-Naive Best 94.7 94.2 93.5 92.8 72.7 68.0 63.5 61.3
Last 94.2 94.0 93.2 92.0 72.3 67.4 63.2 60.9

Table 11: Comparison between DMLP-EAC, DMLP-Naive and DMLP-DivideMix on CIFAR-10/100 and
Clothing1M datasets. "‡" denotes reproduced results.

Dataset CIFAR-10 CIFAR-100 Clothing1MMethod Noise ratio 20% 50% 80% 90% 20% 50% 80% 90%

REED(no stage-3)‡
Best 89.1 88.6 87.3 85.1 62.6 61.5 58.4 53.2 46.05
Last 88.9 88.5 87.0 84.9 62.5 61.4 58.2 52.9 45.81

DMLP-EAC Best 91.3 91.0 90.3 89.3 65.7 64.1 60.2 57.6 77.31
Last 91.2 90.7 90.2 89.2 65.5 63.8 60.1 57.5 77.31

DMLP-Naive Best 94.7 94.2 93.5 92.8 72.7 68.0 63.5 61.3 77.77
Last 94.2 94.0 93.2 92.0 72.3 67.4 63.2 60.9 77.70

DMLP-DivideMix Best 96.3 95.8 94.5 94.3 79.9 76.8 68.6 65.8 78.23
Last 96.2 95.6 94.3 94.0 79.4 76.1 68.5 65.4 78.23

Figure 6: Comparison of corrected label accuracy curve under symmetric-50% (left), symmetric-90% (middle)
noise settings on CIFAR-10.

A.3.5 EAC AS CLASSIFIER

Besides DMLP-Naive, we can also take the well-trained linear classifier C(·;wc) in the non-nested
meta label purifier for the test set prediction, this is termed as DMLP-EAC. As shown in Table. 11,
though DMLP-EAC is only an individual linear classifier, it can also perform well especially under
high noisy settings on CIFAR-10/100. Moreover, DMLP-EAC can already outperform most of
state-of-the-art LNL methods by a considerable margin and achieve comparable performance to
DMLP-Naive on the Clothing1M dataset, which further demonstrates that DMLP is more suitable
to tackle with real-world noise. Finally, Table. 11 shows the comparison between DMLP-EAC and
REED (no stage-3) (Zhang & Yao, 2020), which simply trains a linear classifier on well-established
representations without extra operations. Though REED (no stage-3) achieves overall good results,
DMLP-EAC can still obtain consistent performance gains over this baseline under all noise settings,
especially on the high noise level.
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Figure 7: Corrected label accuracy curve of DMLP under symmetric (left), asymmetric (middle) noise settings
on CIFAR-10.

Figure 8: Accuracy curve of DMLP-DivideMix and DivideMix on CIFAR-10 under different noise settings.

Figure 9: Accuracy curve of DMLP-DivideMix and DivideMix on CIFAR-100 under different noise settings.
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Figure 10: Accuracy curve of DMLP-CDR and CDR on CIFAR-10 under different noise settings.

Figure 11: Accuracy curve of of DMLP-CDR and CDR on CIFAR-100 under different noise settings.
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Figure 12: Accuracy curve of DMLP-Co-teaching and Co-teaching on CIFAR-10 under different noise settings.

Figure 13: Accuracy curve of of DMLP-Co-teaching and Co-teaching on CIFAR-100 under different noise
settings.
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