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ABSTRACT

Embodied action planning is a core challenge in robotics, requiring models to gen-
erate precise actions from visual observations and language instructions. While
video generation world models are promising, their reliance on pixel-level re-
construction often introduces visual redundancies that hinder action decoding
and generalization. Latent world models offer a compact, motion-aware repre-
sentation, but overlook the fine-grained details critical for precise manipulation.
To overcome these limitations, we propose MoWM, a mixture-of-world-model
framework that fuses representations from hybrid world models for embodied
action planning. Our approach uses motion-aware representations from a latent
model as a high-level prior, which guides the extraction of fine-grained visual fea-
tures from the pixel-space model. This design allows MoWM to highlight the
informative visual details needed for action decoding. Extensive evaluations on
the CALVIN benchmark demonstrate that our method achieves state-of-the-art
task success rates and superior generalization. We also provide a comprehensive
analysis of the strengths of each feature space, offering valuable insights for future
research in embodied planning.

1 INTRODUCTION

Embodied action planning represents a core research direction in embodied intelligence, aiming to
enable robots to generate precise executable actions from environmental observations and language
instructions (Ma et al., 2024; Fung et al., 2025). Early methods primarily relied on imitation learn-
ing (IL) (Jang et al., 2022; Chi et al., 2023) from expert demonstration trajectories; however, such
approaches often exhibit limited generalization and struggle to adapt to novel scenarios. With recent
advances in large models, Vision-Language-Action (VLA) models (Kim et al., 2024; Black et al.,
2024; Cheang et al., 2025) have emerged as a promising alternative, offering enhanced capabili-
ties in complex task understanding. Despite these improvements, their training paradigm remains
fundamentally based on imitation learning and relies on high-quality demonstration data and faces
challenges in achieving broad generalization. In parallel, another line of research explores video-
based world models (Hu et al., 2024; Feng et al., 2025; Liao et al., 2025) for action planning. This
paradigm involves pre-training a world model on large-scale video datasets to learn general physical
dynamics, followed by establishing a mapping between visual observations and robot actions. This
approach offers greater data efficiency and is expected to have potential for cross-domain general-
ization acquired from rich video dynamics learning.

Despite its promise, a key limitation of current world model-based embodied planning lies in the
visual representation learning. These models typically rely on features from diffusion-based video
generation models (Blattmann et al., 2023; Yang et al., 2024; Wan et al., 2025) pre-trained with pixel-
level reconstruction objectives. Such objectives emphasize detailed pixel recovery, yet many robotic
tasks do not require perfect reconstruction of all visual elements (Assran et al., 2025). Uniformly
encoding all pixels may introduce irrelevant signals that hinder action decoding, complicate the
learning of vision-action mappings, and hurt generalization due to overfitting to some task-irrelevant
visual details. Alternatively, another line of research explores latent world models (Assran et al.,
2025; Zhou et al., 2024; Baldassarre et al., 2025), which learn state transitions in a compressed
feature space rather than reconstructing raw pixels. These models employ an encoder to project
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video sequences into a compact latent representation and a predictor to model dynamics in this
space. By focusing on learning motion-aware representations, such methods are more suitable for
guiding global action planning. However, they may overlook fine-grained visual details, potentially
leading to inaccuracies in tasks requiring dense object interaction.

To address the redundancy of visual representations in video world models, we propose MoWM, a
hybrid world model framework for effective embodied planning. Our motivation is to leverage the
latent world modeling features as a high-level prior to guide the extraction of fine-grained visual
knowledge from the pixel space. This not only eliminates redundant low-level visual information
but also avoids the loss of crucial details when using coarse-grained latent features alone. To be
specific, our method consists of two stages. In the first stage, we individually train a pixel world
model based on video diffusion and a latent world model on embodied manipulation data. Both
models are trained to predict future states in their respective spaces conditioned on text instructions.
In the second stage, we combine the two world models. The latent world model’s representations are
used to modulate the pixel world model’s representations, yielding a fused motion-aware low-level
visual representation. In this way, we can direct attention to the visual information most relevant to
action decoding, which is then fed into an inverse dynamics model for end-to-end action decoding.

We evaluate our approach on the standard embodied manipulation benchmarks CALVIN (Mees
et al., 2022), comparing it against imitation learning-based, VLA-based and world model-based
action planning methods. Experimental results demonstrate that our proposed MoWM achieves
state-of-the-art performance in task success rates, highlighting the significant potential of hybrid
world modeling for embodied action planning. Furthermore, we provide an in-depth analysis of the
pixel-level and latent-level visual features during action planning, offering practical guidance for
model selection in real-world applications.

The main contributions of this work are summarized as follows:

• We propose MoWM, a hybrid world model architecture for embodied action planning, which in-
tegrates the motion-aware advantages of a latent world model with the low-level detail generation
capabilities of a pixel space world model.

• We explored the interactions of visual features from both pixel and latent space world models. We
propose an innovative fusion scheme and offer a comprehensive analysis of its effectiveness.

• Extensive experimental results demonstrate the superiority of our proposed method in both task
success rate and generalization to unseen scenarios in embodied action planning.

2 RELATED WORKS

2.1 VISION-LANGUAGE-ACTION MODELS FOR EMBODIED PLANNING

Vision-Language-Action (VLA) models, which use a large language model backbone enhanced
with a vision encoder and an action decoder to predict executable robot actions based on the text
instruction, current observation and robot state. Representatively, Pi0 (Black et al., 2024) uses a pre-
trained VLM as its foundation and adds an action expert to map VLM tokens to the action space,
which is trained with a flow matching objective. Octo (Team et al., 2024) employs a transformer-
based LLM to deal with interleaved language, visual observation and action tokens, enabling it to
flexibly adapt to new observations and action types. More recent works have focused on improving
the complex planning and reasoning ability of VLAs (Zhao et al., 2025; Intelligence et al., 2025;
Huang et al., 2025). For example, CoT-VLA (Zhao et al., 2025) introduces intermediate thinking
steps such as goal state prediction to enhance action planning. Despite these advancements, VLA
models face several limitations. The high cost of collecting teleoperation data makes it difficult
to cover a wide range of tasks and diverse scenarios, leading to poor generalization beyond the
training environment. Furthermore, their reliance on imitation learning limits their ability to perform
counterfactual reasoning or handle complex tasks.

2.2 WORLD MODELS FOR EMBODIED ACTION PLANNING

To mitigate the reliance of imitation learning on high-quality interaction data, recent research has
explored the paradigm of embodied action planning based on world models (Hu et al., 2024; Liao
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Figure 1: Overall framework of MoWM. In the first stage, we independently train a pixel-space
and a latent-space world model driven by text and an initial frame. In the second stage, we freeze
the world models, perform latent-to-pixel feature modulation, and then end-to-end train an action
denoising network for action planning.

et al., 2025; Feng et al., 2025; Chi et al., 2025; Shang et al., 2025). World models are trained
in an unsupervised manner on large-scale video data to learn universal dynamics for downstream
tasks (Ding et al., 2024). In embodied action planning, two primary approaches have emerged: the
first maps predicted future state sequences to action sequences via an inverse dynamics model in
an end-to-end manner (Hu et al., 2024; Feng et al., 2025), which often requires additional adapta-
tion and fine-tuning for specific robot embodiments. The second approach leverages a pre-trained
action-conditioned world model to sample multiple action trajectories, evaluate the resulting states,
and select the trajectory that maximizes a reward function (Assran et al., 2025; Bar et al., 2025).
While more straightforward, this sampling-based method suffers from computational inefficiency
and inferior accuracy compared to end-to-end learning. Accordingly, our work adopts the former
paradigm and introduces a dedicated action decoder to infer actions from future state predictions
generated by the world model.

3 METHODOLOGY

World models pre-trained on large-scale video data exhibit remarkable capabilities in predicting
future dynamics, where the forecasted states inherently encapsulate rich action-oriented informa-
tion. This enables such models to serve as powerful priors for guiding action planning. Current
approaches in this paradigm primarily leverage video diffusion models as world models (Feng et al.,
2025; Hu et al., 2024), extracting intermediate features that capture fine-grained low-level visual de-
tails. However, these features often contain substantial noise and irrelevant information (e.g., static
background elements), which may hinder action decoding. To address this, we propose modulating
the low-level features from pixel-based world models with a latent-space world model specifically
designed to learn global temporal dynamics. This hybrid integration enhances action-relevant sig-
nals while preserving necessary visual details. The whole framework is illustrated in Figure 1. In
this section, we first introduce the pre-training of hybrid world models in Section 3.1, followed by
their integration into an end-to-end embodied action planning framework in Section 3.2.

3.1 INSTRUCTION-CONDITIONED TRAINING OF HYBRID WORLD MODELS

Effective embodied action planning requires a world model capable of predicting future states from
an initial observation based on a natural language instruction. We formalize this core capability as
text instruction-conditioned future state prediction and approach it by pre-training two complemen-
tary world models: one operating in pixel space and the other in a compressed latent space, both
incorporating textual conditioning.
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For the pixel-space world model, we leverage Stable Video Diffusion (SVD) (Blattmann et al., 2023)
as the base model, following the practice in VPP (Hu et al., 2024). This model is initially pre-trained
on generic video data and subsequently fine-tuned on embodied domain datasets to enable embodied
instruction-following capabilities. We further inject text conditioning via cross-attention to guide
the generation process. The model’s primary task is to generate a future video sequence, denoted
as {xt}Tt=1 ∈ RT×H×W×3, given an initial frame x0 ∈ RH×W×3 and a language instruction l.
This is achieved by iteratively denoising a sequence of noisy latents, {zt}Tt=1 ∈ RT×C×h×w, while
conditioning on the encoded initial frame and text. The core diffusion process is to learn a denoising
function ϵθ that predicts the noise ϵ ∈ RC×h×w added to the latent representation at each time step.
The objective is to minimize the following loss:

LPixel-WM = Et,x0,l,ϵ[||ϵ− ϵθ(zt, x0, l, t)||22], (1)

where zt ∈ RC×h×w is the noisy latent representation of a future frame xt, and the denoiser ϵθ is
parameterized by θ. Here, H,W are the height and width of the video frames, while h,w,C are the
height, width, and channel count of the latent space representations.

For the latent-space world model, we first leverage a pre-trained encoder E(·) implemented with
the ViT-g from V-JEPA 2 (Assran et al., 2025), which tokenizes each video frame xi ∈ RH×W×3

into a sequence of visual tokens si ∈ RNs×D. We then introduce a transformer-based latent world
model F (·) designed to forecast future states within this latent space. The model is composed of a
series of transformer blocks, where each block includes an attention layer and a SwiGLU-activated
feed-forward network (FFN). The input to the model comprises the encoded text instruction tokens
c ∈ RNc×D and state tokens from current and past frames {sj}j≤k, which are concatenated and
processed to predict the next state token ŝk+1 ∈ RNs×D. The model is trained using a teacher-
forcing strategy with an L1 loss:

LLatent-WM = Ek,c,s [||F (c, {sj}j≤k)− sk+1||1] . (2)

This model is trained on the same embodied datasets, enabling it to anticipate world state transitions
from language instructions directly in the latent space.

3.2 END-TO-END ACTION PLANNING VIA MIXTURE-OF-WORLD MODELS

Following the training of our pixel-space world model G(·) and latent-space world model F (·), we
exploit their predictive capabilities to guide action generation. A key insight is to use the motion
awareness captured by the latent world model’s representations to modulate and enhance the features
extracted by the pixel-space world model.

Our framework takes an initial frame x0 ∈ RH×W×3 and a language instruction l as input. Both
world models perform a single forward pass to generate a sequence of features for T future time
steps. For the pixel-space world model, we adopt a single-step denoising process inspired by
VPP (Hu et al., 2024) to efficiently generate a rich, multi-scale visual representation. Specifi-
cally, we extract feature tensors {Vi}ni=1 from n distinct upsampling layers of the U-Net. Each
tensor Vi ∈ RT×hi×wi×Ci is a different scale. We then apply a bilinear upsampling operation
Uh,w(·) to each tensor to unify their spatial dimensions to (h,w). Finally, these upsampled fea-
tures are concatenated channel-wise to form a single, aggregated low-level visual feature tensor
Φpixel ∈ RT×Ns×Clow :

Φpixel = Concat (Uh,w(V1), . . . ,Uh,w(Vn)) , (3)

where Clow =
∑n

i=1 Ci andNs = h×w. This allows us to capture diverse visual information at dif-
ferent resolutions within a single feature tensor, which is then used as the low-level feature for subse-
quent action decoding. For the latent-space world model, its state transitions are inherently modeled
in the latent space. Thus, we directly extract its output feature sequence Φlatent ∈ RT×Ns×Clatent . To
align both feature streams for fusion, we apply a linear projection to map them to a shared embed-
ding dimension D. The aligned feature tensors, Φ′

pixel ∈ RT×Ns×D and Φ′
latent ∈ RT×Ns×D, are

denoted as:

Φ′
pixel = WpixelΦpixel, Φ′

latent = WlatentΦlatent, (4)
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where Wpixel and Wlatent are distinct learned projections.

After obtaining hybrid features from the two world models, we perform feature fusion by first con-
catenating the motion-aware latent features Φ′

latent and the low-level pixel features Φ′
pixel. This con-

catenated representation is then passed through a linear projection layer, yielding the fused feature
representation Φfused ∈ RT×Ns×D, which is subsequently used by the action planning module. The
fusion process is defined as:

Φfused = LinearProjection
(
Concat(Φ′

latent,Φ
′
pixel)

)
. (5)

The final aggregated feature for action decoding is generated through a learnable residual mecha-
nism, which integrates the fused feature with the low-level pixel feature. This design enables the
model to preserve fine-grained visual details while benefiting from the high-level semantic context
captured by the fused representation. The final output visual feature is expressed as:

Φfinal = WgateΦfused +Φ′
pixel, (6)

where Wgate is a learnable gating matrix.

After obtaining the visual feature of future states, we adopt a Diffusion Policy (Chi et al., 2023)
as the action decoding module. The fused feature Φfused serves as the condition to guide the multi-
step denoising of an initially noisy action vector. The denoiser ϵθ progressively refines a noisy action
vector at ∼ N (0, I) based on the fused features to produce the final predicted action. The denoising
loss function is denoted as follows:

Ldenoise(ψ) = Ea0,ϵ,k

[
||ϵ− ϵθ(at,Φfinal, t)||22

]
. (7)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our model and baselines on the CALVIN dataset (Mees et al., 2022), a bench-
mark designed for long-horizon, language-conditioned robot manipulation tasks. The evaluation
focuses on onboard operation with a 7-DOF Franka Emika Panda robot arm. Following established
settings (Wu et al., 2023; Hu et al., 2024), we exclusively train our model on data with language
instructions and evaluate its generalization ability in the ABC→D split. In this setup, the model
is trained on a combination of three scenes (A, B, and C) and tested on an unseen scene (D). This
specific task configuration effectively assesses the model’s capacity for robust action planning and
its ability to generalize to novel environments.

Baselines. We compare our approach against three representative categories of embodied action
planning models: imitation learning-based methods, VLA-based methods and world model-based
methods. All models are fine-tuned on the used dataset for fair comparisons. Details of baselines
are introduced as follows:

• RT-1 (Brohan et al., 2022): This method utilizes a Transformer to map observation images and
language instructions to discrete robot actions, trained on expert trajectories based on imitation
learning.

• Diffusion Policy (Chi et al., 2023): This method learns to denoise action vectors using a diffu-
sion model, with visual observations and poses injected via cross-attention for end-to-end action
prediction.

• 3D Diffusor Actor (Ke et al., 2024): This model integrates 3D scene perception and language
instructions for action diffusion denoising.

• RoboFlamingo (Li et al., 2023): This method pre-trains a VLM for visual-language understand-
ing and then fine-tunes it with an action head for action prediction.

• 3D-VLA (Zhen et al., 2024): This model employs a series of 3D perception and generation aux-
iliary tasks during training to enhance VLA’s perception, reasoning, and generation performance
in embodied scenarios.

• OpenVLA (Kim et al., 2024): This model integrates DINO and SigLIP visual features into a
pre-trained LLM, trained on a large-scale dataset of real-world robot manipulation trajectories.
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Table 1: Comparison of various embodied action planning methods on the CALVIN dataset. We
report the i-th task success rate and the average length (in steps) of successful tasks.

Category Method ith Task Success Rate
1 2 3 4 5 Avg. Len ↑

RT-1 0.533 0.222 0.094 0.038 0.013 0.90
Imitation learning-based Diffusion Policy 0.402 0.123 0.026 0.008 0.000 0.56

3D Diffusor Actor 0.922 0.787 0.639 0.512 0.412 3.27

Robo-Flamingo 0.824 0.619 0.466 0.331 0.235 2.47
3D-VLA 0.447 0.163 0.081 0.016 0.000 0.71

VLA-based OpenVLA 0.913 0.778 0.620 0.521 0.435 3.27
Pi0 0.938 0.850 0.767 0.681 0.599 3.92

Susie 0.870 0.690 0.490 0.380 0.260 2.69
Uni-Pi 0.560 0.160 0.080 0.080 0.040 0.92
GR-1 0.854 0.712 0.596 0.497 0.401 3.06

World model-based Vidman 0.915 0.764 0.682 0.592 0.467 3.42
VPP 0.909 0.815 0.713 0.620 0.518 3.58

MoWM 0.943 0.873 0.812 0.750 0.675 4.10

• Pi0 (Black et al., 2024): This model uses a pretrained VLM and adds an action expert trained with
a flow matching objective.

• Susie (Black et al., 2023): This model first generates a goal image using an image editing model
and then trains a goal-conditioned policy for action planning.

• Uni-Pi (Du et al., 2023): This method first uses a text-driven diffusion model for video prediction,
followed by an inverse dynamics model for action decoding.

• GR-1 (Wu et al., 2023): This model is trained under a multi-task learning paradigm on a large-
scale dataset of embodied manipulation videos, enabling it to simultaneously generate future im-
ages and plan actions in an end-to-end manner.

• Vidman (Wen et al., 2024): This is a two-stage method that begins with video generation pre-
training on embodied video data and then adapts the pre-trained model for action planning by
adding a self-attention adapter.

• VPP (Hu et al., 2024): This is an action planning method based on a video generation diffusion
model. It is first pre-trained for text-to-video generation, and its intermediate visual features are
then connected to an action decoding module for end-to-end action planning. We use the single-
view version as our implementation.

Implementations of MoWM. Our framework integrates two distinct world models. The latent
world model is built upon the ViT-g encoder from V-JEPA 2 (Assran et al., 2025) and comprises
a 24-layer transformer network with approximately 400M parameters. We trained the latent world
model on a distributed setup utilizing four H20 GPUs. The training process was completed in ap-
proximately 7 hours, running for 75 epochs. Each epoch consisted of 300 steps. For our distributed
training setup, we configured a batch size of 4 per GPU, resulting in an effective global batch size
of 16. Data loading was parallelized across 12 workers to ensure efficient throughput. For opti-
mization, we used the AdamW optimizer with a cosine learning rate scheduler. A weight decay of
0.04 was applied, which was also annealed to a final value of 0.04 over the full training duration.
The pixel world model is the SVD model as implemented in VPP (Hu et al., 2024). For the second
stage, we trained our end-to-end action planning module on four NVIDIA H20 GPUs for 13 hours.
This stage involved training for 7,000 steps with a batch size of 28. The optimizer for this stage was
AdamW, using a learning rate of 1e-4 with a weight decay of 0.05.

4.2 MAIN RESULTS

Quantitative result comparison. We present a quantitative comparison between MoWM and sev-
eral baseline methods in Table 1, which reports task success rates on the CALVIN benchmark. Each
evaluation task consists of a sequence of five sub-tasks. We report the success rate for each stage
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“Take the blue block and rotate it to the right”

“Go push the pink block right”

“Put the handle to open the drawer”
Figure 2: Illustration of the execution process of our model’s planned actions in the simulation
environment of CALVIN.

and the average completed task length. Across all metrics, our model achieves state-of-the-art per-
formance, validating the effectiveness of the proposed mixture of world models for action planning.
MoWM achieves 5.7%, 13.4% improvement in the averaged task success rate across all five stages
compared to the most competitive VLA-based and world model-based baselines. Furthermore, by
comparing different types of methods, we observe that both VLA-based and world model-based
approaches generally outperform imitation learning. This suggests that incorporating complex rea-
soning or future state prediction is beneficial for improving success rates in embodied manipulation.
The performance of VLA and world model methods is broadly comparable. Specifically, while ex-
isting world model methods rely on explicit future state generation through image editing or video
diffusion, their performance can be compromised by the quality of generated images. Our approach,
by contrast, enhances visual feature learning by introducing a latent-space world model, which re-
duces the reliance on pixel-level features and contributes to more accurate action planning.

Notably, our method exhibits a stronger performance advantage in long-horizon tasks, achiev-
ing a 12.7% improvement on the 5th task success rate compared with the most competitive baseline.
This indicates that the mixture-of-world-models framework excels at capturing extended action pat-
terns. By incorporating future state reasoning, our method mitigates the tendency of imitation learn-
ing and VLA approaches to become trapped in local optima due to their over-reliance on immediate
observations, thereby facilitating more effective long-range action planning. Furthermore, we pro-
vide qualitative evidence of our model’s performance. Figure 2 presents the execution of our model’s
planned actions in the simulation environment, demonstrating its ability to generate plausible and
effective actions across a variety of scenarios.

Qualitative results of future state prediction of world models. To provide an intuitive understand-
ing of our world models’ predictive power, we’ve visualized the future states predicted by both our
latent-space and pixel-space models. For our pixel-space world model, we directly show the future
video frames generated through its diffusion denoising process. The latent-space model, however,
operates in a non-visualizable latent space. To address this, we trained a dedicated decoder to con-
vert the latent states into RGB images for analysis. This decoder is a convolutional neural network
with approximately 8.04M parameters. Its architecture consists of four upsampling modules, each

7
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Text Instruction: “Place in slider”

Text Instruction: “turn the pink block right”

Initial Frame

Initial Frame

Ground Truth Video

Latent Feature Visualization

Pixel Feature Visualization

Ground Truth Video

Latent Feature Visualization

Pixel Feature Visualization

Figure 3: Visualizations of the future state predictions of the latent world model, pixel world model,
and the ground truth video.

Latent Feature 
Visualization

Pixel Feature 
Visualization

Limited dynamics

Figure 4: Visual feature comparisons during action prediction rollouts. The pixel world model
sometimes produces long periods of static frames, lacking dynamic movement. In contrast, the
latent world model consistently exhibits better dynamics, demonstrating its strength in learning and
predicting motion.

using a transposed convolution, batch normalization, and a ReLU activation function, followed by a
final convolutional output layer. We trained the decoder for 15,000 steps on a single NVIDIA H20
GPU, using 3,200 images (200×200×3) from the CALVIN dataset. The training, which took about
30 minutes, used the latent states from our world model’s encoder as input and the original images
as the target, optimizing with a mean squared error (MSE) loss. Figure 3 showcases the future state
predictions from both models. The results indicate that both the latent-space and pixel-space world
models can generate plausible future states based on text instructions, containing all the crucial cues
needed for action decoding.

4.3 ABLATION STUDY

A key design of our framework is to enhance the feature extraction of the pixel-space world model
by incorporating representations from a latent-space world model. To evaluate the effectiveness of
this design, we conduct ablation studies comparing three model configurations: (1) MoWM (concat-
based fusion): a fusion approach where features from both world models are concatenated and then
projected; (2) MoWM (cross attention-based fusion): a fusion approach integrates features from the
latent-space world model via cross-attention; (3) MoWM (without fusion): a baseline version that
relies solely on the low-level features from the pixel-space world model.

8
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Table 2: Ablation study of the latent and pixel feature fusion approaches in MoWM.

Method ith Task Success Rate
1 2 3 4 5 Avg. Len ↑

MoWM (concat-based fusion) 0.943 0.873 0.812 0.750 0.675 4.10
MoWM (cross attention-based fusion) 0.936 0.836 0.748 0.665 0.573 3.80

MoWM (without fusion) 0.927 0.831 0.741 0.652 0.560 3.70

As summarized in Table 2, our ablation study confirms the effectiveness of fusing latent and pixel-
space features. The concat-based fusion model achieves the best performance, followed by the
modulation-based variant, with the no-fusion baseline performing the worst. These results validate
the clear benefit of leveraging latent-space world model features for representation enhancement.
The superior performance of the simple concat operation is particularly notable. By preserving the
full relevant visual details from low-level features and the motion-aware information from latent fea-
tures, it creates a more comprehensive visual representation that is better suited for action decoding.
Specifically, the concat-based model outperforms the no-fusion variant by an average of 11.2% in
task success rate across all five stages, demonstrating the significant value of our hybrid approach.
While the attention-based modulation fusion is also beneficial, its performance is lower than simple
concatenation. This suggests that while attention can be powerful, it may be challenging to learn
the optimal alignment between the two distinct feature spaces, potentially limiting its effectiveness
and efficiency compared to a more direct fusion. The no-fusion version performs poorly because
the low-level features from the diffusion model are not inherently aligned with action decoding
objectives and often contain substantial noise and irrelevant details.

To intuitively demonstrate how the latent world model enhances the pixel-space world model, we
conducted a qualitative analysis. As shown in Figure 4, we observed that during action planning,
the pixel-space model sometimes produced long periods of static future-state predictions, which is
problematic for action decoding. These issues stem from the diffusion model’s training objective,
which focuses on fitting all pixels equally, including static background elements, without explic-
itly emphasizing dynamic motion. This can result in visually plausible but inaccurate motions that
negatively impact subsequent action predictions. In contrast, the latent world model learns in a
compact space, allowing it to focus more effectively on motion patterns. As illustrated in the exam-
ples, this model consistently generates high-quality dynamic patterns and more coherent motions.
Consequently, its latent features can guide the low-level pixel features to more accurately reflect the
underlying dynamics.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced MoWM, a mixture-of-world model framework for embodied action
planning that effectively bridges the complementary strengths of pixel-space and latent-space world
models. MoWM addresses the key limitation of visual redundancy in pixel-based models by using
high-level, motion-aware representations from a latent world model to guide and modulate low-level
feature extraction. This design enables the model to suppress task-irrelevant visual details while
preserving fine-grained information critical for precise manipulation, resulting in a more insight-
ful visual representation for downstream action decoding. Extensive experiments on the CALVIN
benchmark validate the effectiveness of the proposed method.

In the future, we envision several promising directions for further research. A key improvement
is to explore dynamic fusion strategies that can adaptively weigh the contributions of latent and
pixel features based on task complexity. Furthermore, we will validate our approach on additional
benchmarks and real-world robotic platforms to assess its applicability. Finally, we also plan to
extend MoWM into a more generalized framework pre-trained on large-scale, unannotated video
datasets, enabling zero-shot transfer to a wider range of embodied tasks.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of a large language model (LLM) to assist with this paper. The LLM was
used solely for auxiliary purposes, specifically for searching and retrieving relevant literature. It
was not involved in core tasks such as idea generation, code writing, data analysis, or manuscript
preparation.

A.2 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we’ve made our code available in the following anonymous repository:
https://anonymous.4open.science/r/MoE-WM-4C43.

“take the blue block and rotate it to the right”

“go push the pink block right”

“put the handle to open the drawer”

Figure 5: Additional examples of the execution process of our model’s planned actions in the simu-
lation environment of CALVIN.
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