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ABSTRACT

We show that reinforcement learning with verifiable rewards (RLVR) can elicit
strong mathematical reasoning in certain models even with spurious rewards
that have little, no, or even negative correlation with the correct answer. For
example, RLVR improves MATH-500 performance for Qwen2.5-Math-7B in abso-
lute points by 21.4% (random reward), 13.8% (format reward), 24.1% (incorrect
label), 26.0% (1-shot RL), and 27.1% (majority voting)—nearly matching the
29.1% gained with ground truth rewards. However, the spurious rewards that
work for Qwen often fail to yield gains with other model families like Llama3 or
OLMo2. In particular, we find code reasoning—thinking in code without actual
code execution—to be a distinctive Qwen2.5-Math behavior that becomes signif-
icantly more frequent after RLVR, from 65% to over 90%, even with spurious
rewards. Overall, we hypothesize that, given the lack of useful reward signal,
RLVR must somehow be surfacing useful reasoning representations learned during
pretraining, although the exact mechanism remains a topic for future work. We
suggest that future RLVR research should possibly be validated on diverse models
rather than a single de facto choice, as we show that it is easy to get significant
performance gains on Qwen models even with completely spurious reward signals.

1 INTRODUCTION

Reinforcement learning with verifiable rewards (RLVR) is highly effective in enhancing language
model reasoning (Lambert et al., 2024; DeepSeek-Math, 2024; Zeng et al., 2025; Luo et al., 2025b).
We show, counterintuitively, that RLVR can improve mathematical reasoning even with weak or
flawed spurious rewards when applied to Qwen2.5-Math models (Yang et al., 2024a;b), a popular
and performant model family used in the RLVR literature (Hu et al., 2025a; Yang et al., 2025; Wang
et al., 2024; Guan et al., 2025; Zeng et al., 2025) (§2). For example, using incorrect labels for training
results in 24.1% absolute accuracy gain on MATH-500, while using format or random rewards result
in 13.8% and 21.4% gains, respectively. Strikingly, these spurious-reward gains are even comparable
to the 29.1% gain from training on ground truth. We observe similar trends on more challenging
math benchmarks such as AMC and AIME. Overall, our findings suggest that we do not yet fully
understand the exact mechanisms by which RLVR improves performance, and that in many cases it
may be somehow exposing innate model abilities learned during pretraining, in addition to whatever
reward signal it is getting.

We further present an extensive experimental study to measure the improvements from weak and
spurious rewards with a cross-model analysis (§3). For model families not specifically optimized for
mathematical reasoning during pretraining—including Qwen2.5 (Yang et al., 2024b), OLMo2 (OLMo
et al., 2024), and Llama3 (Dubey et al., 2024) variants—we observe a critical divergence: OLMo
and Llama models (i.e. non-Qwen models) show minimal improvement or even become worse after
training on spurious rewards, strongly suggesting that differences in pretraining at least in part explain
the difference in RLVR.

To help explain this discrepancy, we also analyze what reasoning patterns that RLVR is learning to
favor in these cases (§4). In particular, we find a majority of Qwen2.5-Math-7B answers on MATH-
500 contain reasoning chains expressed in Python—a behavior we call code reasoning—despite
having no access to code execution. Code reasoning is highly predictive of overall performance;
answers with it have an accuracy of 60.9%, much higher than without (28.0% accuracy). Code
reasoning also correlates with MATH-500 accuracy over the course of RLVR training. Both metrics
increase consistently during training with any spurious reward, leading to ∼ 90% or higher code
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Figure 1: MATH-500 accuracy after 300 steps of RLVR on various training signals. We show that
even “spurious rewards” (e.g., rewarding incorrect labels or with completely random rewards) can
yield strong MATH-500 gains on Qwen models. Notably, these reward signals do not work for other
models like Llama3.1-8B-Instruct and OLMo2-7B, which have different reasoning priors.

frequency after training. Based on this observation, we further hypothesize that intervening with other
methods that increase code frequency should similarly increase test performance. Our experiments
validate this hypothesis: we design prompt-based and RL-based code reasoning elicitation methods
to increase code reasoning; all such methods significantly increase Qwen2.5-Math-7B’s performance.
We show that these results are robust to prompt variations, despite the initial model performance
being sensitive to prompts in sometimes unexpected ways. We conclude by discussing potential
explanations for why spurious rewards can still work.

Our findings not only open new questions but also have practical implications. We should generally
be more aware that reasoning patterns instilled during pretraining heavily impact the behavior of
downstream RLVR training, with code reasoning ability standing out in our study. Qwen models, with
open weights and high performance on reasoning tasks, have become the de facto choice for RLVR
research in the open-source community—a range of recent research on RLVR drew conclusions on
Qwen2.5-Math-7B-centric experiments (Zuo et al., 2025; Zhao et al., 2025c; Wang et al., 2024; Xie
et al., 2025; Hu et al., 2025a; Zhang et al., 2025; Shafayat et al., 2025; Prabhudesai et al., 2025; Gao
et al., 2025; Wang et al., 2025a). However, we show that it is easy to get significant performance
improvements on Qwen models even with completely spurious reward signals. Thus, we suggest that
future RLVR research should possibly be confirmed on other models.

2 SPURIOUS REWARDS YIELD SIGNIFICANT RLVR GAINS

We design a progression of reward functions to replace the standard ground-truth reward: weak
rewards (majority vote reward and format reward) and spurious rewards (random reward and incorrect
reward). Remarkably, we find that all weak and spurious rewards suffice for RLVR to significantly
improve the math performance of Qwen2.5-Math, a popular starting point for RLVR training.

2.1 EXPERIMENTAL SETUP

Following recent RLVR work (Wang et al., 2025b; Zuo et al., 2025; Zeng et al., 2025), we use
GRPO (DeepSeek-Math, 2024) to finetune Qwen2.5-Math models (Yang et al., 2024a). The standard
RLVR approach uses a dataset of questions paired with ground truth labels. During training, model
rollouts are given a binary (0-1) reward based on whether the generated answer is verifiably correct.
We replace this ground truth-based reward with a variety of increasingly spurious binary 0-1 reward
functions that do not require access to ground truth labels. We design these alternative rewards to
investigate the limits of how little supervision is needed for effective RLVR training. We train on
DeepScaleR data (Luo et al., 2025b) with our rewards; all other experimental details are kept constant.

In the main paper, we evaluate performance as pass@1 and average@8 accuracy on two standard math
reasoning benchmarks: MATH-500 (Hendrycks et al., 2021) and AMC (Li et al., 2024), respectively.
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Figure 2: Model performance on MATH and AMC with varied training rewards smoothed over
window size of 10 (dotted lines are unsmoothed values). We report pass@1 for MATH and average@8
for AMC. Both Qwen2.5-Math-7B and Qwen2.5-Math-1.5B significantly improve after RLVR on
a range of reward signals from meaningful to spurious. We note that the random reward converges
slower than the other spurious rewards, but the fact that it leads to significant gains at all is surprising.

See Appendix D for additional results on AIME 2024 and 2025. Following the default evaluation
setup in the popular RL framework OpenRLHF (Hu et al., 2024), we use the default chat template for
Qwen2.5-Math and all instruct models and chat template provided by Olmo (OLMo et al., 2024) for
other base models in our main experiments. Additional analysis on the effect of different prompts
can be found in Appendix I, where we show Qwen2.5-Math-7B is very sensitive to prompts—even
a task-irrelevant prompt (which we name spurious prompt) can sometimes result in high initial
performance. See Appendix A for full details of our training and evaluation setup.

2.2 STANDARD TO WEAK TO SPURIOUS REWARDS

We consider the following rewards:

1. Ground Truth Rewards: To establish a baseline, we consider the standard RLVR approach (Lam-
bert et al., 2024) of using ground truth labels to reward responses with verifiably correct answers.
This setting serves as an upper bound for reward supervision quality.

2. Majority Vote Rewards: Instead of using ground truth labels for computing rewards, we use the
model prior to RLVR training to pseudo-label the training set by selecting the majority answer
from 64 sampled responses per prompt. These (potentially wrong) labels are then used to reward
responses during standard online RLVR training.

3. Format Rewards: We further weaken the reward signal to disregard the responses’ mathematical
correctness altogether. We instead heuristically reward all responses containing at least one non-
empty \boxed{} expression, regardless of the correctness of the enclosed answer. Including
\boxed{} is specified in Qwen2.5-Math’s system prompt; this reward incentivizes some degree
of prompt following.

4. Random Rewards: We study whether providing no guidance in the rewarding process is sufficient
to provide meaningful math performance gains. To do so, we assign rewards randomly. Given
a fixed probability hyperparameter γ, all responses receive a reward of 1 with chance indicated
by the parameter, and receive 0 otherwise. In our main experiments, we present γ = 0.5; in
Appendix B, we show that using γ ∈ {0.001, 0.3, 0.7} obtains similar improvements with varying
convergence speed, and verify that γ = 0 results in no change as expected analytically (with
γ = 0, loss is constant, and all gradients are zero).

5. Incorrect Rewards: We furthermore deliberately provide incorrect supervision and reward only
incorrect answers. We first label all training data using majority voting and select the subset with
incorrect labels for training, obtaining incorrect labels that are still probable outputs of the models.
During training, we reward responses whose answers verifiably match these incorrect labels.

2.3 RESULTS

Figure 2 presents the performance of Qwen2.5-Math models after RLVR training with each reward
function. Overall, all reward functions, even pathologically designed ones, lead to significant
improvements in math performance within the first 50 steps across all benchmarks compared to
the untuned baseline. One exception is that Qwen2.5-Math-1.5B sees gains with random rewards
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much slower (after 100 steps) and less so on AMC (only 4.9%). Remarkably, performance gains
from spurious rewards are often within a few points of the gain from RLVR with ground truth
labels. For example, training with incorrect label reward yields 24.1% gains over Qwen2.5-Math-7B
on MATH-500, compared to a 29.1% gain from RLVR with ground truth answers. Even random
rewards—which by design provide pure noise in the rewarding process —still produce a 21.4%
performance boost. We observe similar trends in AMC, where training on format, incorrect, or
random rewards yields a gain of 13.8%, 24.1%, or 21.4%, respectively, approaching the ∼ 27%–29%
improvement gained from training on majority voted and ground truth labels.

In Appendix D, we supplement results on AIME24 and AIME25. On AIME2024, format reward
(+10.3%) approaches ground truth rewards (+15.3%), and spurious rewards (incorrect & random) still
lead to high performance gains of 10.2% and 10.2% respectively on Qwen2.5-Math-7B. Ground truth
labels show a clear advantage compared to other rewards on AIME2025, which contains questions
written after the knowledge cutoff of all models we consider. Nonetheless, other rewards still lead to
a -0.4% to 4.5% gain in performance.

Our findings with these simple rewards provide additional evidence for a nascent hypothesis in the
literature: that RLVR, at least at the compute scales of open-source post-training pipelines (Lambert
et al., 2024), does not teach models new reasoning capabilities, but instead triggers latent ones
already present in the base model (Wang et al., 2025b; Liu et al., 2025; Gandhi et al., 2025; Yue
et al., 2025; Shah et al., 2025; Choshen et al., 2020). Whereas prior work has hinted at this effect
using limited-quantity ground-truth labels (Wang et al., 2024) or noisy labels (Zuo et al., 2025), our
results push this idea to its limit: we show that even outright incorrect rewards or information-free
rewards (i.e., random) can elicit performance gains in Qwen2.5-Math models. In the remainder of our
paper, we show that this elicitation effect is model-dependent (§3), and trace the specific properties
of Qwen2.5-Math models that could enable spurious rewards to induce this elicitation (§4).

3 (LACK OF) GENERALIZATION TO OTHER MODELS

Inspired by the unexpected effectiveness of spurious reward signals in improving the performance
of Qwen2.5-Math models, we study whether these rewards generalize to training other models.
We extend beyond the math-specialized Qwen2.5-Math models to include general-purpose variants
(Qwen2.5-7B, Qwen2.5-1.5B (Yang et al., 2024b)), and two additional model families: (a) the widely-
used Llama3.1-8B(-Instruct) and Llama3.2-3B(-Instruct) (Dubey et al., 2024), and (b) OLMo2-7B
and OLMo2-7B-SFT (OLMo et al., 2024). OLMo2-7B-SFT is instruction-tuned from OLMo2-7B;
we include both to better understand the impact of SFT training on RLVR training. Moreover, we are
optimistic that OLMo’s open training data will enable future works to better study the origins of any
reasoning behaviors (or lack thereof) we later observe. We train these 8 additional models with the
same setup and rewards as in Section 2. We report performance on MATH-500 in the main text of
the paper and AMC in Appendix C where the same trends are observed. The AIME 2024 and 2025
benchmarks show similar but noisy trends (Appendix D).

Spurious rewards can benefit Qwen2.5 models, but nearly always fail to improve non-Qwen
models. Figure 3 offers two key takeaways. First, models within the same family generally exhibit
similar trends. For instance, for both Qwen2.5 models, all non-random rewards—including the
spurious incorrect reward—produce clear improvements in MATH-500 performance. Both Olmo
models show relatively flat performance on spurious rewards and only show significant gains with
ground truth reward training. We conjecture that this consistency in behavior among models within
the same family arises from similarities in their pretraining data distributions; models from the same
family likely exhibit similar behaviors prior to RLVR training. Additionally, we find that smaller
models are less likely to benefit from spurious rewards, such as random rewards. We conjecture that
larger models retain more knowledge from pretraining that our spurious rewards elicit. In Section 4,
we will further explore how differences in pre-existing model behaviors impact the outcome of RLVR.

Secondly, we observe that reward signals which work well for one model family do not necessarily
generalize to other model families. Even though the spurious incorrect reward and all weak rewards
yield consistent gains on top of Qwen models, each weak or spurious reward fails to produce similar
gains for at least one other model, often resulting in flat or even decreased performance. Overall,
our results suggest that Qwen models are uniquely robust to reward signal strength. Lastly, we
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Figure 3: Varying rewards across additional model classes on MATH-500. Spurious rewards remain
effective on general-purpose Qwen2.5 models but generally fail to yield any gains on other model
families. The performance improvements on non-Qwen2.5 models are substantially smaller compared
to those observed in the Qwen2.5 family. Similar trends are observed on AMC in Appendix C.

present additional results for additional models that have already gone through RL post-training in
Appendix J, showing that they have minimal improvements with nearly all rewards.

Practical warning : Proposed RLVR reward signals should be tested on diverse models!
Many recent methods on RLVR for reasoning draw their conclusions primarily or exclusively from
gains shown on Qwen models (non-exhaustively, Zuo et al. (2025); Zhao et al. (2025c); Wang et al.
(2024); Xie et al. (2025); Hu et al. (2025a); Zhang et al. (2025)). As a case study, we experimented
with recent work on (1) test time training (Zuo et al., 2025) and (2) one-shot RL (Wang et al., 2025b)
(setup details in Appendix A.7). We find these methods exhibit a pattern similar to our results above:
the proposed training signals yield strong improvements in the Qwen2.5-Math or Qwen2.5 models,
matching the performance of the ground truth rewards (Figure 15 in Appendix E). However, these
same signals often fail to yield performance gains on other model families. Our findings suggest that
existing Qwen-centric RLVR research should possibly be further validated on non-Qwen models.

4 UNDERLYING DYNAMICS OF RLVR WITH SPURIOUS REWARDS

Previously, we demonstrated that different models can exhibit markedly different outcomes when
trained with the same reward function. In this section, we investigate why such discrepancies occur.
Broadly, we hypothesize that differences in RLVR training outcomes are due to differences in the
specific reasoning strategies learned by each model during pretraining. In particular, some strategies
may be readily elicited by RLVR, while others may be more difficult to surface or lacking altogether.

Below, we identify one such pre-existing strategy—generating code to assist in math reasoning—that
Qwen-Math utilizes effectively, and other model families less so (§4.1). Tracing the prevalence of
code reasoning over the course of RLVR training, we find strong evidence for our hypothesis (§4.2).

4.1 DIFFERENT MODELS EXHIBIT PRE-EXISTING REASONING STRATEGY DISCREPANCIES

We begin our analysis with a case study examining the reasoning traces generated by different models
on the MATH-500 test set. Our investigation reveals a notable behavioral difference: Qwen2.5-
Math-7B frequently incorporates Python code into its reasoning process (appearing in 65.0% of
all responses), despite operating without access to a code execution environment. We term this
phenomenon code reasoning. Figure 4 provides a representative example, with additional examples
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and detailed analysis available in Appendix L. We use code reasoning as an illuminating case study
for the subsequent analysis.

MATH Question:

What is the distance, in units, between the points (2,−6) and (−4, 3)? Express your answer
in simplest radical form.

Qwen2.5-Math-7B Solution (correct):

To find the distance between two points (x1, y1) and (x2, y2) in a Cartesian plane...
Let’s break this down step-by-step and compute the result using Python.

1 import math
2 ...
3 # Calculate the distance using the distance formula
4 distance = math.sqrt(dx**2 + dy**2)
5 print(distance)

output: 10.816653826391969
...
Thus, the final answer is: 3

√
13

Figure 4: Example of Qwen2.5-Math-7B’s code reasoning (see Figure 22 for the complete response).
The question is randomly picked from the MATH-500 test set. Note that both the code and the code
execution result are autoregressively generated by Qwen2.5-Math-7B. No external code interpreter
was provided to the model.

Notably, Qwen2.5-Math-7B’s use of code is not merely superficial—code use is strongly predictive of
answer correctness. As shown in Table 1, Qwen2.5-Math-7B achieves significantly higher accuracy on
MATH prompts when code reasoning is used instead of natural language reasoning alone. Qwen2.5-
Math-1.5B, pre-trained on the same corpus as Qwen2.5-Math-7B, exhibits similarly effective code
reasoning. This pattern is not observed in other models, for which we categorize as “No-Code” or
“Bad-Code.” No-Code models—Llama models, Qwen2.5-1.5B, and OLMo2-7B—do not generate
code at all, and consequently do not benefit from this reasoning strategy; Bad-Code models frequently
attempt to use code reasoning—OLMo2-7B-SFT (98.0% of the time) and Qwen2.5-7B (92.2% of the
time)—but code generation correlates with worse performance for these models. Thus, effective code
reasoning is a unique pre-existing capability of the Qwen2.5-Math models before RLVR training.

We provide further analysis that hints at the origins of code reasoning of Qwen2.5-Math-7B models
in Appendix L. Note that code reasoning is not used as a complete explanation: other behaviors
can also be elicited easily and often correlate with performance—we briefly discuss another such
behavior, generation without repetition, in Appendix G. In addition, we find the initial performance
of Qwen2.5-Math-7B is sensitive to the prompts used for evaluation; we supplement a discussion on
this impact in Appendix I.

4.2 RLVR WITH SPURIOUS REWARDS UPWEIGHT PRE-EXISTING REASONING STRATEGIES

Motivated by our observations above, we traced changes in the reasoning behavior of models
throughout the course of RLVR training across two dimensions: (1) Accuracy: the average accuracy
of the model on MATH-500, and (2) Code reasoning frequency: the percentage of model responses
containing the string “python”. We find that rewards that we employed in the paper, including
spurious rewards such as the random and incorrect rewards, gain much of the accuracy on the
Qwen2.5-Math and Qwen2.5 through eliciting the correct reasoning strategy.

Performance is correlated with code reasoning frequency. As shown in Figure 5, prior to RLVR
training, Qwen2.5-Math-7B exhibits a high rate of 65.0% code reasoning solutions. After RLVR on
all but random rewards, the frequency of code reasoning quickly increases to around 90% in the first
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Table 1: We track the percentage of model-generated MATH-500 responses that contain Python
code before RL training, as well as their accuracy on (1) responses with code and (2) responses
with only natural language. Overall, Qwen2.5-Math models achieve higher performance when using
code than when not, while other models do not benefit from code reasoning. The unlisted models
(Qwen2.5-1.5B, OLMo2-7B, Llama3.1-8B-Instruct, Llama3.2-3B-Instruct) never generated code.

Model Qwen2.5-Math-7B Qwen2.5-Math-1.5B Qwen2.5-7B OLMo2-7B-SFT

Code Frequency 65.0 53.6 92.2 98.0
Acc. w/ Code 60.9 52.6 39.9 21.0
Acc. w/ Lang 35.0 17.2 61.5 40.0
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0 25 50 75 100 125 150 175 200
Training Step

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Overall Accuracies

0 25 50 75 100 125 150 175 200
Training Step

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y

Code Frequencies

(a) Qwen2.5-Math-7B

0 25 50 75 100 125 150 175 200
Training Step

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Overall Accuracies

0 25 50 75 100 125 150 175 200
Training Step

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y

Code Frequencies

(b) Qwen2.5-7B

0 25 50 75 100 125 150 175 200
Training Step

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Overall Accuracies

0 25 50 75 100 125 150 175 200
Training Step

0.0
0.2
0.4
0.6
0.8
1.0

Fr
eq

ue
nc

y

Code Frequencies

(c) OLMo2-7B-SFT

Figure 5: We track the MATH-500 performance (left) and proportion of generated answers that
contain Python code blocks (right) of a Qwen2.5-Math-7B model trained with various reward signals.
As training with weak (format) or spurious rewards (random, incorrect) progresses, both accuracy and
code frequency go up; RLVR with weak or spurious rewards primarily serves to upweight this pre-
existing reasoning behavior. Training with ground truth also increases accuracy, but code frequency
eventually decreases with continued training, suggesting a possible difference in improvement
mechanism from weak or spurious rewards.

15 steps, correlated strongly with the accuracy improvements; random reward shows a more gradual
increase in code frequency, but eventually reaches as high as 95.6%. We note that code reasoning
frequency also sharply increases with RLVR training on ground truth labels, but gradually drops as
the model’s natural language reasoning accuracy increases, suggesting that the model is learning
real knowledge from RLVR on high-quality, ground truth rewards. For the Bad-Code models, we
find that the reduction of code reasoning frequency is highly correlated to performance gains. We
provide additional details on the switch in reasoning strategies in Appendix H. These results further
demonstrate that most of the improvements in RLVR with spurious rewards occur on the subset of
questions where the model transitions from text-based to code-based reasoning after training.

4.3 INTERVENING EXPLICITLY ON CODE REASONING FREQUENCY

We have shown observationally that code reasoning frequency increases during RLVR, which corre-
lates with increased test performance. Here, we investigate the causal impact of code reasoning by
explicitly inducing it to occur more or less frequently. We present the impact of inducing additional
code reasoning in the main paper, while the consequences of suppressing code reasoning are discussed
in Appendix F. Experiments on both directions confirm our hypothesis.

Inducing code reasoning significantly improves Qwen2.5-Math models’ performance, and
generally degrades other models. We deliberately induce more frequent code reasoning behaviors
via (1) prompting and (2) RLVR training. To induce with prompting, we force the models to begin
their responses with “LET’S SOLVE THIS USING PYTHON.” As shown in Table 2, the MATH-500
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accuracy of Qwen2.5-Math-1.5B, Qwen2.5-Math-7B, and Qwen2.5-1.5B improved by 24.2%, 15.0%,
and 10.0%, respectively. However, we see performance degradation for other models such as Llama
and OLMo2. This drop is consistent with our earlier observation that the other models do not exhibit
effective code reasoning behaviors (Section 4.1).

To induce increased coding reasoning frequency with RLVR, we train by assigning a positive reward
if and only if a response contains the string “python”, which we term as a Python reward. This
intervention is effective; we find that Qwen2.5-Math-7B generated code reasoning solutions in > 99%
of its answers after just 20 training steps. We show MATH-500 performance during training in
Figure 6. Overall, we observe performance gains specifically in the Qwen2.5-Math models. Other
models demonstrated limited improvement. For Qwen2.5-Math, we observe that inducing code
reasoning with RLVR matches or exceeds the performance gains from inducing via prompting.

Table 2: Model performance on MATH-500 after augmenting
the prompt to incentivize code reasoning. In this experiment, we
force the model’s first generated sentence to be “Let’s solve this
using Python.” When applied to Qwen2.5-Math models, which
have strong code reasoning priors, our “code-forcing” prompting
strategy results in significantly increased test accuracy.

Model Original Prompting Abs. Diff.
Qwen2.5-Math-1.5B 36.2% 60.4% +24.2%
Qwen2.5-Math-7B 49.4% 64.4% +15.0%
Qwen2.5-1.5B 3.0% 13.0% +10.0%
Qwen2.5-7B 41.6% 22.2% –19.4%
Llama3.2-3B-Instruct 36.8% 8.2% –28.6%
Llama3.1-8B-Instruct 36.8% 15.2% –21.6%
OLMo2-7B 9.0% 7.8% –1.2%
OLMo2-7B-SFT 21.4% 18.6% –2.8%

Qwen-Math-7B Qwen-Math-1.5B Qwen-7B Qwen-1.5B
Olmo2-7B-SFT Olmo2-7B Llama3.1-8B

Llama3.2-3B Llama3.1-8B-Instruct Llama3.2-3B-Instruct
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Figure 6: Performance when us-
ing our Python reward to explic-
itly encourage the model to per-
form code reasoning. This im-
proves performance in Qwen2.5-
Math but not other models.
Qwen2.5-Math-7B starts to gen-
erate > 99% code reasoning in 20
training steps.

5 THE CURIOUS CASE: INCORRECT AND RANDOM REWARDS

We present our hypotheses on how spurious rewards produce meaningful training signals in RLVR.

Incorrect Rewards. We hypothesize two mechanisms that allow incorrect rewards to provide
effective training signals. First, many incorrect labels remain close to ground truth values, providing
positive reinforcement for largely correct reasoning. Second, incorrect labels partially function as
format rewards: the model only receives positive rewards when its final answer is extractable and
matches the incorrect labels.

Random Rewards. First, we show in Appendix B that our random reward observations hold
across different probabilities, confirming that it is a stable phenomenon. We then show the source
of training signals under random rewards possibly originates from a bias in the training objective—
specifically, GRPO clipping bias can induce random reward training signals. GRPO computes
a normalized group-relative advantage over the rewards for gradient updates. The expectation of
the advantage, which decides the direction and magnitude of the gradient updates during training,
is zero (Appendix B.1.1). Even so, the expected gradient in the GRPO loss is nonzero due to the
clipping mechanism in the loss (details in Appendix B.1.2). Following Yu et al. (2025), which finds
that clipping bias reduces exploration and increases exploitation in RLVR with ground-truth labels,
we hypothesize that clipping bias similarly reinforces high-priority behaviors related to the input
domains (i.e., mathematics in our setup) under random rewards. We confirm this by showing that
clipping bias increases the policy model’s token probabilities for training answers, demonstrating
enhanced reliance on prior knowledge (Appendix B.1.3).
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Figure 7: Average results over multiple random seeds when ablating the clipping term in GRPO
with random rewards for Qwen2.5-Math-7B. We remove the clipping term through 3 methods: (i)
disabling clipping in the implementation, (ii) increasing mini-batch size to match rollout size and (iii)
reducing rollout size. Both (ii) and (iii) ensures that there is only 1 gradient update per rollout phase,
so πθ = πold, directly avoiding any clipping. From our observation, training with random rewards
with clipping produces improved performance. Other runs without clipping fail to replicate the same
behavior. In Appendix B.2, we show that no-clipping runs with different random seeds are highly
stochastic, which can randomly achieve performance improvement or decrease by chance.

To validate the effect of clipping in GRPO, we conduct an ablation study by removing it during
training. We achieve this by either (a) directly removing the clipping term in the loss calculation or
(b) adjusting training and rollout batch sizes to ensure πθ = πold, thus preventing clipping constraints
from being triggered. As shown in Figure 7, under standard GRPO with clipping (purple line),
random rewards increase code reasoning behavior under standard clipping, effectively concentrating
the model on its existing reasoning pattern distribution. This concentration effect vanishes when
clipping is disabled across different experimental conditions (other lines). This increase in code
reasoning correlates with improved performance. Random rewards produce a ∼ 21% performance
gain. However, when clipping effects are eliminated, random rewards yield no robust improvement.

We show that GRPO’s clipping mechanism can provide a meaningful training signal even from purely
noisy rewards. We conjecture that the apparent training signal from random reward is an artifact of
the optimization algorithm’s bias toward exploiting existing priors learned during pretraining.

6 RELATED WORK

Unsupervised Reinforcement Learning. Several approaches have explored unsupervised rein-
forcement learning. Prasad et al. (2024) introduced Self-Consistency Preference Optimization (ScPO),
which trains models to prefer consistent answers over inconsistent ones on unsupervised problems.
Similarly, Test-Time Reinforcement Learning (TTRL) (Zuo et al., 2025) leverages majority voting
across sampled outputs to estimate pseudo-rewards, demonstrating significant performance improve-
ments on mathematical reasoning tasks. EMPO (Zhang et al., 2025) adapts PPO (Schulman et al.,
2017) or GRPO (Shao et al., 2024) for unsupervised RLVR by calculating the rewards based on
minimizing the entropy of queries in the semantic space. These approaches suggest that internal
model consistency can serve as an effective proxy for correctness, though they do not systematically
investigate how different kinds of training rewards affect various model families during RLVR. We
discuss broader applications of reinforcement learning to language models in Appendix K.

7 DISCUSSION

Our findings have three main implications: base model pretraining significantly affects RLVR
outcomes; even corrupted or spurious supervision can enhance reasoning when it triggers useful
existing behaviors; and effects observed in one model family may not generalize to others. Our
work highlights the importance of (1) testing across multiple models with differing pretraining
distributions, and (2) testing across multiple different baselines, such as format and random rewards,
when evaluating reinforcement learning techniques.
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REPRODUCIBILITY STATEMENT

We open-source our code at https://anonymous.4open.science/r/Spurious_
Rewards-9401. To ensure reproducibility, we will also release the training data, model check-
points, and training logs.
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A EXPERIMENTAL SETUP

A.1 PRELIMINARIES ON GRPO

Denote the input prompt as x and the corresponding model rollouts as y. Denote the t-th token
in the i-th rollout y as yt, where 1 ≤ t ≤ |y|. GRPO loss, as introduced by (Shao et al., 2024),
contains the following components: For each prompt x, we compute the group-wise mean r̄x and
standard deviation σx. The normalized group-relative advantage is Â(x, y) = r(x,y)−r̄x

σx
. Let πold be

the behavior policy that produced the trajectories and πref be a frozen reference policy (for example,
the initial supervised model). We denote the token-level importance ratio by ρt(y; θ) =

πθ(yt|x,y<t)
πold(yt|x,y<t)

,
where t is the token index. With PPO-style clipping threshold ϵc, KL-penalty weight λ, the surrogate
objective maximized is

J(θ) =Ex∼D,y∼πold(·|x)

 |y|∑
t=1

min
(
ρt(y; θ) Â(x, y), clip

(
ρt(y; θ), 1− ϵc, 1 + ϵc

)
Â(x, y)

)
− λEx∼D

[
KL

(
πθ∥πref

)]
.

(1)

The KL regularization is typically adopted to ensure our model does not deviate too far from the
frozen reference model. However, since we focus primarily on verifiable rewards and investigate the
signals produced by these rewards, we assume that distribution shift is of lesser concern following
(Liu et al., 2025). Moreover, KL regularization adds confounding factors to our analysis. Recent work
has also shown that removing the KL term leads to better performance (Hu et al., 2025b). Therefore,
we set λ = 0 in our work.

A.2 DATASETS AND MODELS

We conduct our experiments on three canonical mathematical reasoning benchmarks:

• MATH-500 (Hendrycks et al., 2021; Lightman et al., 2023): A standardized subset of the MATH
dataset focusing on advanced mathematical reasoning, including problems from algebra, calculus,
and number theory.

• AMC (Li et al., 2024): The American Mathematics Competition dataset contains diverse mathe-
matical problems ranging from algebra to combinatorics and geometry. For this benchmark, we
report model’s average performance over 8 trials (avg@8).

• AIME (Li et al., 2024): The American Invitational Mathematics Examination dataset consists of
challenging high-school level mathematical problems requiring multi-step reasoning. We include
AIME questions from 2024 and 2025 for evaluation. For this benchmark, we report model’s
average performance over 8 trials (avg@8).

For our initial experiments, we primarily utilize the Qwen2.5-Math-7B model, a 7 billion parameter
language model specifically tuned for mathematical reasoning tasks. We select this model (1) for its
strong baseline performance on mathematical problems while remaining computationally efficient
for multiple experimental iterations and (2) because it is frequently used in prior work (Zuo et al.,
2025; Wang et al., 2025b).

A.3 TRAINING CONFIGURATION

Unless otherwise specified, we train each model on 8 GPUs with a constant learning rate of 5e-7, a
mini batch size (number of rollouts seen before a gradient update) of 128, and a rollout batch size
(number of prompts we rollout at the same time) of 64. For each prompt, we collect 16 rollouts to
compute advantages for GRPO update. We use a sampling temperature τ = 1. We do not apply KL
divergence loss or entropy loss in our training.

A.4 DECODING CONFIGURATION

We use temperature of 0.0 for pass at 1, and temperature of 0.6 for pass at k during decoding time.
All other hyperparameters are the default value following the Zuo et al. (2025) codebase.
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A.5 COMPUTATION RESOURCE

Each RLVR run in our experiment takes approximately 24 hours on 8 A100s.

A.6 VISUALIZATION

In all plots, we smooth the metric of interest across ten training steps, and overlay the raw curves
as transparent dashed lines. We do not smooth the step 0 performance, which corresponds to the
performance of the base model before training. We report the smoothed value at the final training
step as the final performance.

A.7 EXPERIMENTAL SETUPS FOR TTRL AND ONE-SHOT RL

TTRL setup. We follow all hyperparameters from the original TTRL paper (Zuo et al., 2025), and
train all models using their publicly released implementation. Due to compute constraints, we do
not extensively sweep hyperparameters on the new base models we consider. Note that the TTRL
accuracies are not directly comparable to our majority-vote reward results, because (a) TTRL trains
on (unlabeled) test prompts while we train on a much larger set of distinct train prompts, and (b)
TTRL updates labels during training based on the online policy’s majority vote, while we assign
labels once offline.

Differences in our One-Shot RL setup from Wang et al. (2025b). We note that for the one-
shot RL settings in our paper, we do not apply entropy loss for more consistent setups with other
experiments and better stability. However, Wang et al. (2025b) shows that the entropy loss may
further improve the performance of one-shot RL and post-saturation generalization. We use the same
training example π1 (defined in Wang et al. (2025b)) for one-shot RLVR experiments on all models
as in Wang et al. (2025b). Their work discusses that different models should possibly select different
examples for more performant one-shot RLVR training, but use π1 in all experiments due to high
cost of trying different possible 1-shot examples. In particular, we note that this setup difference
may cause a noticeable performance difference for Qwen2.5-7B model compared to the entropy loss
setting used in Wang et al. (2025b) (71.2% with entropy loss vs. 54.8% without).

B THE CURIOUS CASE OF RANDOM REWARDS

In this section, we study a special case of our spurious rewards, random rewards, where the reward is
randomly assigned independently of the model rollouts. We first show that random rewards work
across several non-zero reward probabilities (Figure 8), confirming that this is a stable observation.
Next, we provide detailed gradient derivation in this special case and discuss our hypothesis on one
of the potential sources of training signals with random rewards—the clipping bias in GRPO update.

Random rewards with varying probabilities consistently improve performance. We train
Qwen2.5-Math-7B using GRPO with random rewards assigned by Bernoulli(γ) variables, where
γ ∈ {0.7, 0.5, 0.3, 0.001, 0}. Each response receives reward 1 with probability γ and 0 otherwise.
We find that all non-zero probability configurations successfully lead to significant performance
gains after an initial period of exploration, yielding comparable performance to ground truth rewards
(Figure 8). γ = 0 yields no improvement as expected, since constant rewards provide no learning
signal. The convergence speed varies with γ, but all configurations eventually reach similar high-
performance regimes, with accuracy improvements of 15-20 percentage points on MATH-500.

Recap of notations. Recall that we denote the input prompt as x and the corresponding model
rollouts as {y(1), · · · , y(G)}, where G ∈ N+ is the rollout size. In addition, we denote the t-th token
in the i-th rollout y(i) as y

(i)
t , where t ∈ N+ and 1 ≤ t ≤ |y(i)|. The normalized group-relative

advantage in GRPO is Â(x, y) = r(x,y)−r̄x
σx

, where r̄x is the group-wise mean and σx is the group-
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Random Rewards - MATH Figure 8: We train Qwen2.5-Math-7B using
GRPO with random rewards of different prob-
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that with the exception of γ = 0, which leads
the model to not perform any learning, all other
probability configuration successfully leads the
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thermore, once in the high-accuracy regime,
the training procedure maintain model’s perfor-
mance.
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wise standard deviation. The token-level importance ratio1 is ρt(y; θ) =
πθ,x(yt)
πold,x(yt)

, where t is the
token index.

B.1 CONJECTURE: CLIPPING BIAS BRINGS TRAINING SIGNALS UNDER RANDOM REWARDS

B.1.1 EXPECTED ADVANTAGE OF RANDOM REWARDS

We investigate the expected advantage when the reward signal is assigned by a random Bernoulli(γ)
variable. For a prompt x and rollouts {y(i)}Gi=1, the reward of each y(i) is r(x, y(i)) ∼ Bernoulli(γ),
so the expected average reward of x is γ. Assuming Âi = 0 when σx = 0, the sum of the normalized

advantages over G rollouts
∑G

i=1 Â(x, y(i)) :=
∑G

i=1
r(x,y(i))−r̄x

σx
=

∑G
i=1 r(x,y(i))−G·r̄x

σx
= 0 by

construction. Furthermore, for i.i.d. rewards that are independent of the provided samples, such as
the random rewards used in our experiments, E(

∑G
i=1 Â(x, y(i))) = G · E(Â) = 0 =⇒ E(Â) = 0.

The clipping term in GRPO loss (Equation 1) prevents excessive deviation from the previous pol-
icy, stabilizing training. Recent work suggests this term, which operates on the ratio ρt(y; θ) =
πθ,x(yt)/πold,x(yt), introduces bias toward exploitation in the case of ground truth reward (Yu et al.,
2025). Here, we analyze the bias in the settings of the random rewards, where each rollout receives
an advantage that is independent of the rollout.

We note that the loss is no longer differentiable everywhere with clipping. In practical implemen-
tations, e.g., PyTorch, the gradients will be automatically set to 0 when the value is clipped. For
simplicity, we discuss the gradient of the loss function by assuming 0 gradient at the non-differentiable
points.

B.1.2 GRADIENT DERIVATION OF CLIPPING BIAS UNDER RANDOM REWARDS

In this section, we derive the training signals induced by the clipping factor, which we name as a
“clipping bias”. Specifically, we define the clipping bias as the difference in the expected gradients
after adding clipping to the GRPO objective2:

Bias(∇θJ(θ)) = Ex,y[∇θJ(θ)]− Ex,y[∇θL
unclipped(θ)].

As we derived above, E(Â(x, yj)) = 0. Assuming a simple loss with no clipping, the expectation of
the policy gradient without the clipping term is also trivially zero given that Â is independent of other

1For simplicity, we denote π(yt|x, y<t) as πx(yt), and similarly πθ(yt|x, y<t) as πθ,x(yt), πold(yt|x, y<t)
as πold,x(yt).

2For simplicity, we denote Ex∼D,y∼πold(·|x)
as Ex,y
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variables:

Ex,y[∇θL
unclipped(θ)]

=Ex,y

 1

|y|

|y|∑
t=1

∇θρt(y; θ) Â(x, y)


=E(Â)Ex,y

 1

|y|

|y|∑
t=1

∇θρt(y; θ)


=0.

Therefore, the clipping bias under random reward is

Bias(∇θJ(θ)) = E[∇θJ(θ)]− E[∇θL
unclipped(θ)] = E[∇θJ(θ)].

Next, we compute the exact form of this clipping bias, i.e., the gradient in GRPO with random
rewards. Recall from Eq. 1, the surrogate objective that we aim to maximize is:

J(θ) = min
(
ρt(y; θ) Â(x, y), clip

(
ρt(y; θ), 1− ϵc, 1 + ϵc

)
Â(x, y)

)
.

For simplicity, we further denote Rθ = ρt(y; θ) =
πθ,x(yt)
πold,x(yt)

to be the token-level importance ratio,

C = clip(Rθ, 1 − ϵc, 1 + ϵc) to be the clipping term, and Â(x, y) as Â. So we have J(θ) =

min
(
Rθ · Â, C · Â

)
. We now analyze the gradient of GRPO loss with respect to the policy model

parameters θ based on the sign of Â.

As discussed in Section B.1, the loss function is not differentiable everywhere. Therefore, we
discuss the gradients with respect to the differentiable regions below and set the gradients to 0 at the
non-differentiable points at the end.

Case 1: Â ≥ 0. When Â ≥ 0, we can directly take Â out of the min function. Thus,

J(θ) = min
(
Rθ · Â, C · Â

)
= Â ·min(Rθ, C).

Since C is defined as C = clip(Rθ, 1− ϵc, 1 + ϵc), we have:

• If Rθ < 1− ϵc, then C = 1− ϵc. Thus, min(Rθ, C) = Rθ.
• If 1− ϵc ≤ Rθ ≤ 1 + ϵc, then C = Rθ. Thus, min(Rθ, C) = Rθ.
• If Rθ > 1 + ϵc, then C = 1 + ϵc. Thus, min(Rθ, C) = 1 + ϵc.

Combining these, when Â ≥ 0, the objective is:

L+(θ) = Â ·
{
Rθ, if Rθ < 1 + ϵc,

1 + ϵc, if Rθ > 1 + ϵc.

The gradient with respect to θ for this case is:

∇θL
+(θ) = Â ·

{
∇θRθ, if Rθ < 1 + ϵc,

0, if Rθ > 1 + ϵc.

Case 2: Â < 0. When Â < 0, multiplying by Â flips the min function. So,

L−(θ) = min(Rθ · Â, C · Â) = Â ·max(Rθ, C).

Applying a similar analysis, when Â < 0, the gradient with respect to θ for this case is:

∇θL
−(θ) = Â ·

{
0, if Rθ < 1− ϵc,

∇θRθ, if Rθ > 1− ϵc.
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Combining the cases. Together, the gradient is:

∇θJ(θ) = Â ·


∇θRθ, if Â ≥ 0 and Rθ < 1 + ϵc,

0, if Â ≥ 0 and Rθ > 1 + ϵc,

0, if Â < 0 and Rθ < 1− ϵc,

∇θRθ, if Â < 0 and Rθ > 1− ϵc.

Then, the clipping bias, Bias(∇θJ(θ)), is

Bias(∇θJ(θ))

=EÂ,x,y [∇θJ(θ)]

=P (Â ≥ 0) · EÂ>0,x,y[∇θL
+(θ)] + P (Â < 0) · EÂ<0,x,y[∇θL

−(θ)] + 0

=Ex,y

[{
P (Â ≥ 0) · EÂ≥0[Â] · ∇θRθ, if Rθ < 1 + ϵc,

0, if Rθ > 1 + ϵc.

]

+ Ex,y

[{
0, if Rθ < 1− ϵc,

P (Â < 0) · EÂ<0[Â] · ∇θRθ, if Rθ > 1− ϵc.

]

=Ex,y



P (Â ≥ 0) · EÂ≥0[Â] · ∇θRθ, if Rθ < 1− ϵc,

(P (Â ≥ 0) · EÂ≥0[Â] + P (Â < 0) · EÂ<0[Â]) · ∇θRθ, if 1− ϵc < Rθ < 1 + ϵc,

P (Â < 0) · EÂ<0[Â] · ∇θRθ, if Rθ > 1 + ϵc.


By definition, Â is a normalized distribution and E(Â) = 0 from Appendix B.1.1, so

E(Â) = P (Â ≥ 0)EÂ≥0(Â) + P (Â < 0)EÂ<0(Â) = 0, and

P (Â ≥ 0)EÂ≥0(Â) = −P (Â < 0)EÂ<0(Â) ≥ 0.

We denote µ = P (Â ≥ 0)EÂ≥0(Â) = −P (Â < 0)EÂ<0(Â), which by definition is positive. And

we substitute Rθ =
πθ,x(yt)
πold,x(yt)

in the conditions. Finally, we set the gradients on non-differentiable
points to 0 and have

Bias(∇θJ(θ)) = µ · Ex,y



∇θRθ, if πθ,x(yt) < πold,x(yt) · (1− ϵc),

0,
if πold,x(yt) · (1− ϵc) ≤ πθ,x(yt)

≤ πold,x(yt) · (1 + ϵc),

−∇θRθ, if πθ,x(yt) > πold,x(yt) · (1 + ϵc).


Recall that Rθ = ρt(y; θ) =

πθ,x(yt)
πold,x(yt)

and both πθ,x(yt) and πold,x(yt) in range [0, 1]. Therefore, we
observe that there is a positive gradient

(
gradient that increases πθ,x(yt)

)
if Rθ < 1 − ϵc, and a

negative gradient
(
gradient that decreases πθ,x(yt)

)
if Rθ > 1 + ϵc, which means the clipping bias

discourages the model from leaving the clipping region. In the rest of the paper, for simplicity we
refer to the positive gradient case as “positive gradient bias” and the other way as “negative gradient
bias”.

B.1.3 CLIPPING CREATES ASYMMETRIC UPDATES TOWARDS MODEL PRIOR KNOWLEDGE

In this section, we provide further evidence for our hypothesis that the clipping bias increases the
likelihood of high-probability rollouts, similar to Yu et al. (2025)’s analysis on GRPO with ground-
truth labels. We showcase this trend with a simple example. Consider a case where a token has a
high-probability πold,x(yt) = 0.85 and an ϵc = 0.2 that we adopt in our experiments. Then, the upper
threshold from the bias formula becomes πold,x(yt) · (1 + ϵc) = 1.02. Since the probability output
by the policy model cannot exceed 1, the upper clipping threshold of 1.02 is never reached. Thus, the
gradient bias is nonnegative for this token, leading to a net positive gradient bias on the policy model,
which leads to increase in probability on this token.

On the other hand, for a low-probability token where πold,x(yt) = 0.02, the policy model receives
a negative gradient bias when πθ,x(yt) > πold,x(yt) · (1 + ϵc) = 0.024; and positive gradient bias
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Figure 9: Token probability and code frequency of random rewards with (purple) and without (green)
clipping on Qwen2.5-Math-7B.

when πθ,x(yt) < πold,x(yt) · (1− ϵc) = 0.016. The low threshold for negative gradient bias makes
penalties more likely than in the high-probability case.

The clipping range width scales linearly with the original probability: higher-probability tokens have
wider ranges and face fewer penalties. This asymmetric treatment prevents low-probability samples
from receiving substantial upweighting during training, causing the model to concentrate probability
mass on its existing distribution.

Empirical validation. We empirically validate our conjecture by disabling the clipping term in
the GRPO loss, and observe differences in the training dynamics. Specifically, we focus on Token
Probability πθ and Code Frequency as defined below.

Recall that πold is the old policy from the previous training step and the πθ the current policy, let G
be the number of rollouts generated per prompt; let B be the mini batch size, which is the number of
prompts on which a single gradient update is performed; and let M be the number of gradient updates
from the old policy, πold, to the new policy model, πθ. Note that G · B ·M is the total number of
rollouts generated by πold. The average token probability of πθ over all rollouts {y(k)} at any step
can be expressed as:

πθ,x(y) =
1

M

M∑
i=1

1

B

B∑
j=1

1

G

G∑
k=1

πθi,xj
(y(k)).

Figure 9 (a) shows that the average token probability mass increases for the standard loss of GRPO
with clipping (purple line), but stays relatively constant when clipping is disabled. In addition, we
log the frequency of code reasoning throughout the RLVR training in Figure 9 (b). We hypothesize
that the increase in average token probability correlates with the increase in code reasoning behavior,
which, as we conjectured in Section 4, enhances the performance of the model, as we empirically
show in Figure 5 of Section 4.2.

Why only Qwen-Math models benefit. The clipping bias mechanism operates on all models,
but its effectiveness depends on what behaviors get amplified. The bias systematically favors a
model’s pre-existing high-probability behaviors, but only benefits performance if those behaviors
correlate with correctness. For Qwen2.5-Math models, code reasoning occurs in 65% of responses
and correlates strongly with correctness (64% accuracy vs. 29% without code). We observe that,
when RLVR with clipping bias increases the model’s code reasoning frequency to >90%, performance
improves substantially. No-Code models (Llama, OLMo2-7B) generate no code reasoning, so clipping
bias has no beneficial pattern to amplify. On the other hand, Bad-Code models (OLMo2-7B-SFT)
generate code 98% of the time but with 21% accuracy vs. 40% for natural language, indicating that
good performance does not rely on code reasoning. Overall, the clipping bias is universal, but its
impact on performance depends entirely on whether the model’s dominant pre-existing behaviors
happen to be effective reasoning strategies.
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Implications. Our findings reveal that GRPO’s clipping mechanism provides a meaningful training
signal even from pure noisy rewards, by systematically favoring the model’s pre-existing behavioral
patterns. This suggests that the apparent “reward signal” in random reward training is actually an
artifact of the optimization algorithm’s bias toward exploiting learned priors rather than exploring
new behaviors. This mechanism explains why random rewards work for Qwen2.5-Math models
(which have strong code reasoning priors) but fail for other model families lacking these pre-existing
capabilities. The training algorithm amplifies whatever reasoning patterns already correlate with
correctness, regardless of the reward signal’s actual informativeness.

B.2 HIGH STOCHASTICITY IN RLVR WITHOUT CLIPPING

In this section, we empirically show that training without clipping has stochastic training dynamics
and can sometimes obtain performance improvement despite the expected gradient being zero.
Following the experimental setup in Section 5, we disable the clipping effect through the following
interventions: (i) removing clipping from the loss implementation, (ii) increasing mini-batch size
to match rollout size, and (iii) decreasing the rollout size to match mini-batch size across multiple
random seeds. We report the results in Figure 10 across different random seeds.

When clipping is disabled by adjusting batch size, model performance remains stable within a
consistent range without converging toward either extreme of the accuracy spectrum. These runs
involve 8 times fewer gradient updates due to the batch configuration.

In contrast, removing clipping from the implementation produces extreme stochasticity, occasionally
resulting in high-performance convergence across multiple runs. While the exact mechanism remains
unclear, we hypothesize that inherent randomness in RLVR training contributes to these observations.
The group size G = 16 used in GRPO training creates high variance in gradient updates. Combined
with the instability of unclipped training, this variance may accidentally reinforce certain reasoning
patterns, leading to improved performance in some runs. We leave a systematic analysis of this
behavior to future work.

C ADDITIONAL RESULTS ON AMC

We supplement additional AMC results for non-Qwen models in Figure 11. The trends are consistent
with the MATH-500 results that are shown in Section 3.

D ADDITIONAL RESULTS ON AIME 2024 AND AIME 2025

We present additional results on the AIME benchmarks, which are challenging math Olympiad tests
containing significantly harder problems than those in MATH-500 or AMC. We evaluate average@8
accuracy on AIME24 and AIME25 (Li et al., 2024). AIME25 was created after the release date of all
models considered in our study. Thus, evaluating performance on AIME25 allows us to control the
risk that our models’ have seen similar problems during web pretraining. We evaluate the trained
models from Section 2 and Section 3. We show results on Qwen2.5-Math models in Figure 12 and
on the 8 additional models from Section 3 in Figure 13.

D.1 SPURIOUS REWARDS YIELD SIGNIFICANT RLVR GAINS ON QWEN2.5-MATH

As shown in Figure 12, spurious rewards can consistently yield performance gains on Qwen-Math
models on AIME24. Intriguingly, we find that any AIME24 gains achievable from training Qwen
models with spurious rewards largely vanish when evaluating on AIME 2025. We speculate that
AIME25 contains questions that are more out-of-distribution to Qwen’s pretrained knowledge;
spurious rewards—which largely serve to elicit existing knowledge—hence no longer provide benefit.

D.2 (LACK OF) GENERALIZATION TO OTHER MODELS

Overall, results on other models are largely consistent with our earlier findings on AMC and MATH-
500 (§3). Only Qwen2.5-7B, Qwen2.5-1.5B, and Llama3.1-8B-Instruct exhibit any notable gains
from any reward signals on AIME. For Qwen2.5 models, weak and spurious rewards can yield
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(a) Average results over multiple random seeds for each setting.
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with 8 gradient updates per
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(e) Default GRPO loss with
random reward.

Figure 10: RLVR performance on random rewards with disabled clipping across multiple different
seeds. Models without clipping show no meaningful performance improvement on average, while
models with clipping demonstrate consistent performance gains using random rewards. Disabling
clipping in implementation produces high variance in results, occasionally yielding high accuracy
scores. Experiments with adjusted batch sizes exhibit greater stability but involve 8 times fewer
gradient updates than the disabled clipping experiments.
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(a) Qwen2.5-1.5B
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(b) Qwen2.5-7B
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(d) Olmo-2-1124-7B-SFT
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(e) Llama3.2-3B
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(f) Llama3.1-8B
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(g) Llama3.2-3B-Instruct
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Figure 11: Varying rewards across additional model classes. Spurious rewards remain effective on
general-purpose Qwen2.5 models but generally fail to yield any gains on other model families. The
performance improvements on non-Qwen2.5 models are substantially smaller compared to those
observed in the Qwen2.5 family.
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(a) Qwen2.5-Math-7B
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(b) Qwen2.5-Math-1.5B

Figure 12: Qwen2.5-Math Model performance on AIME 2024 and AIME 2025.

gains; for example, format reward for Qwen2.5-1.5B and incorrect reward for Qwen2.5-7B. For
Llama3.1-8B-Instruct, only standard rewards (e.g., ground truth and majority vote) yield gains. As
observed above, performance and gains from RLVR training are lower across the board for all models
on AIME25.
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(a) Qwen2.5-1.5B
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(b) Qwen2.5-7B
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(c) Olmo-2-1124-7B
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(d) Olmo-2-1124-7B-SFT
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(e) Llama3.2-3B
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(f) Llama3.1-8B
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(h) Llama3.1-8B-Instruct

Figure 13: Varying rewards across additional model classes on the AIME 2024 and AIME 2025
benchmarks. Note that AIME 2025 was released after all the models’ release dates, serving as a good
resource to examine any dataset contamination phenomenon. Weak and spurious rewards (except for
random) remain effective on general-purpose Qwen2.5 models but generally fail to yield any gains
on other model families. The performance improvements on non-Qwen2.5 models are substantially
smaller compared to those observed in the Qwen2.5 family. Note that the AIME benchmarks contain
30 questions each, so small differences in accuracy (less than ∼ 2 pp.) may not be significant.

E EXAMINATION OF EXISTING METHODS ON MODELS BEYOND QWEN

In this section, we examine the existing methods—TTRL and 1-shot RL—that apply weak supervision
during RL, as shown in Figure 15. We find both methods are significantly effective on Qwen models,
but not others.

F COMPOUND REWARDS THAT INHIBIT CODE REASONING

Inhibiting code reasoning during RLVR with spurious rewards can reduce gains on Qwen2.5-
Math-7B, but increase gains on other models. We hypothesized that code reasoning is part of
the source of weak and spurious rewards gains. Contrapositively, penalizing code frequency could
potentially reduce the gains of these rewards in Qwen2.5-Math. To test this, we designed compound
rewards that intersect each weak or spurious reward with a no Python reward, so that a response is
rewarded if and only if (1) it satisfies the original spurious reward condition and (2) it does not contain
the string “python”. Consistent with our hypothesis, format rewards cease to improve Qwen2.5-
Math-7B when paired with the no code reward (Figure 16c). The spurious incorrect compound reward
matches the original incorrect reward on MATH-500; on more difficult benchmarks such as AMC
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(a) Ground Truth w/o Python
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(b) Incorrect w/o Python

0 10 20 30 40 50 60
Training Step

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
AT

H-
50

0 
Ac

c.

MATH

0 10 20 30 40 50 60
Training Step

0.0

0.1

0.2

0.3

0.4

0.5

AM
C 

Av
g 

Ac
c.

 @
 8

AMC@8

0 10 20 30 40 50 60
Training Step

0.00

0.05

0.10

0.15

0.20

AI
M

E 
20

24
 A

vg
 A

cc
. @

 8

AIME24@8

0 10 20 30 40 50 60
Training Step

0.00

0.05

0.10

0.15

0.20

AI
M

E 
20

25
 A

vg
 A

cc
. @

 8

AIME25@8

(c) Format w/o Python

Figure 14: We present additional compound reward results on (1) smaller 1.5B Qwen models and (2)
AMC and AIME benchmarks. See Section 4.3 for full details of the setup. Our compound rewards
intersect (a) our original rewards with a (b) no Python reward that only rewards responses without
Python code. Overall, our findings here are largely consistent with those from our main text. Note
that AIME is a very small test set, so small differences in accuracy (less than ∼ 2 percentage points)
may not be meaningful.

and AIME, gains also persist but are reduced (Figures 16b, 14). Thus, while ablating code reasoning
does hurt the incorrect reward as predicted, we posit that other beneficial behaviors (e.g., reduced
repetition, see Appendix G) may still be superficially elicited. In addition, ground-truth rewards still
yield gains, suggesting benefits beyond eliciting code reasoning (consistent with the code-frequency
trends in Figure 5).

Intriguingly, for Bad-Code models Qwen2.5-7B and OLMo2-7B-SFT, compound rewards often
outperform the originals. Most strikingly, OLMo2-7B-SFT—which degrades under standalone format
or incorrect rewards—gains +8.9 and +5.5 points, respectively, once the no-code reward is added.
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(a) TTRL Results
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(b) One-Shot RL Results

Figure 15: We evaluate two recent weak supervision RL methods—TTRL (Zuo et al., 2025) and
One-Shot RL (Wang et al., 2025b)—on diverse base models. We find that the proposed training
rewards can consistently work on Qwen models. Yet with few exceptions, those same proposed
signals often yield no gains on other model families, mirroring the limited generalization observed
when training with our own spurious rewards. See Appendix A.7 for setup details.
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(a) Format w/o Python
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(b) Incorrect w/o Python
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(c) Ground Truth w/o Python

Figure 16: RLVR with compound rewards that intersect (i) our original rewards with a (ii) no Python
reward that only rewards responses without Python code. We defer corroborating results on AIME
and more models to Appendix F.

We hypothesize that this is because Qwen2.5-7B and OLMo2-7B-SFT exhibit weak code reasoning
before RLVR training, so compound rewards explicitly downweight a behavior that is suboptimal for
these models.

In Figure 14, we present additional results for our compound rewards on (1) more models (Qwen2.5-
1.5B, Qwen2.5-Math-1.5B) and (2) more benchmarks (AIME24, AIME25). Overall, results corrobo-
rate our analysis in Section 4.3; Qwen2.5-Math-1.5B follows the same overall trends as Qwen2.5-
Math-7B. Compound rewards also continue to benefit Qwen2.5-1.5B, where gains are comparable to
the gains from using the original reward. This slightly contrasts our observations in Qwen2.5-7B,
where compound rewards often yielded stronger gains. We conjecture that Qwen2.5-1.5B is stronger
at code reasoning, which is consistent with our finding in Section 4.3 that inducing code reasoning
via prompting improves performance in in Qwen2.5-1.5B but not Qwen2.5-7B. We are unsure of the
exact reason for this discrepancy between these two models (which have the same pretraining data)
and leave it for future work.
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(b) AMC Avg. @8
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(c) AIME 2024 Avg. @8
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(d) AIME 2025 Avg. @8

Figure 17: We design a new type of reward, no-repetition reward, which assign a score of 1 to
responses that do not contain obvious repetition and 0 to responses that contain obvious string
repetition. We find, no-repetition reward effectively improves the performance of Qwen2.5-Math,
while not others.

G BEYOND CODE REASONING: ANOTHER BENEFICIAL PATTERN THAT RLVR
CAN EASILY ELICIT

In the main paper, we show that RLVR with spurious rewards can improve Qwen2.5-Math’s perfor-
mance by surfacing useful reasoning patterns learned during pretraining, and we use code reasoning
as a standout example. We note that code reasoning is one distinctive reasoning representation, but
not the only one. In this section, we briefly discuss another pattern—no repetition—that can also be
easily elicited by RLVR in addition to code reasoning.

We observe that Qwen2.5-Math models have a relatively higher tendency to produce repetitive outputs
compared to Llama3 and Olmo2 models. We find that answers with code reasoning often do not have
this issue. Therefore, we further study the effect of purely discouraging repetition in answers. To
study this, we design a new repetition reward that returns a score of 0 when the answer contains any
string repeated more than 10 times. Otherwise, it rewards the model with a full score of 1.

As shown in Figure 17, the RLVR no-repetition reward improves the performance of Qwen2.5-Math-
7B and Qwen2.5-Math-1.5B on MATH and AMC. We observe minimal or even negative improvement
on other models. Based on our findings, we hypothesize that various patterns exist whose presence
correlates with answer correctness. These patterns, including code reasoning and no repetition, can
be easily elicited by RLVR even when the rewards provide no information about the ground-truth
answers. Still, the effectiveness of eliciting these patterns is heavily model-dependent.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

16563.6

58.1

72.1

160

78.127.8

77.8

28.2 88.3

72

103

325

175

237

263

C C→

C L→
L C→
L L→

Code:

Lang:

+8.5

+20.0

+50.0

+60.2

49.4 78.2
All:
500

Step 0 
Acc. (%)

Step 150 
Acc. (%)

(a) Ground Truth

24360.9

61.0

70.8

82 80.7

23.5
78.0

37.5 89.3

119

56

325

175

362

138

C C→

C L→
L C→
L L→

49.4 76.4

Code:

Lang:

All:
500

+9.9

+17.1

+57.1

+51.8

Step 0 
Acc. (%)

Step 150 
Acc. (%)

(b) Majority Vote

31460.8

63.6

67.5

11
78.3

23.7
45.5

56.5 91.3
152

23

325

175

466

34

C C→

C L→
L C→
L L→

49.4 71.4

Code:

Lang:

All:
500

+54.6

+34.8

+6.7

-18.2

Step 0 
Acc. (%)

Step 150 
Acc. (%)

(c) Format

30160.5

66.7

69.8

24 77.5
22.5

83.343.5 82.6
129

56

325

175

430

70

C C→

C L→
L C→
L L→

49.4 73.6

Code:

Lang:

All:
500

+9.3

+16.7

+55.0

+39.1

Step 0 
Acc. (%)

Step 150 
Acc. (%)

(d) Incorrect

26861.2

59.6

57.8

24 69.0

23.9 71.2
45.5 93.9

129

56

325

175

410

90

C C→

C L→
L C→
L L→

49.4 65.0

Code:

Lang:

All:
500

-3.3

+12.3

+45.1

+48.5

Step 0 
Acc. (%)

Step 150 
Acc. (%)

(e) Random

Figure 18: Reasoning strategy switching and fine-grained performance of Qwen2.5-Math-7B on
the MATH-500 test set before and after RLVR with different training signals. Blue labels are the
problem for which the model uses code reasoning, while red labels indicate reasoning traces using
only natural language. Accuracy of each disjoint subset of problems before and after RLVR is shown
in the shaded ends, and the size of each subset is shown in the lightly shaded region along with the
change in accuracy. For all weak and spurious rewards, the model tends to use more code reasoning
after RLVR. There is a small proportion of originally-code-reasoning problems being switched to
language reasoning (Code→Lang); a majority of originally-language-reasoning problems convert
to code reasoning (Lang→Code), on which we see the most significant performance increase after
RLVR.

H SWITCH OF REASONING STRATEGIES DURING RLVR

In this section, we present further analysis on the change of reasoning strategies during RLVR for
Qwen2.5-Math and Qwen2.5 models.

Reasoning strategy switches during RLVR. Qwen2.5-Math-7B’s accuracy increases by an average
of 23.5 absolute points across different training signals. To further break down this gain, we track the
performance of models trained on each training signal across four disjoint subsets of the test prompts:
(1) Code→Code: the model uses code reasoning both before and after RLVR; (2) Code→Lang: the
model initially uses code reasoning but switches to natural language reasoning; (3) Lang→Code: the
model initially uses natural language reasoning but switches to code reasoning; and (4) Lang→Lang:
the model uses natural language reasoning both before and after RLVR. Specifically, we focus on
two interconnected metrics: frequency and accuracy of each subset. To systematically quantify the
contribution of each subset to the performance gain, we define a Partial Contribution Score, Cd, for
any subset d ⊆ D of the entire test set D, such that Cd is the ratio between the net increase in the
number of correctly answered problems in d divided by the net increase in the number of correctly
answered problems in D:

Cd =

∑
x∈d I[correct(xt)]− I[correct(x0)]∑
x∈D I[correct(xt)]− I[correct(x0)]

, where x0 and xt are the initial and final answers.

Frequency: Figure 18 shows Qwen2.5-Math-7B’s reasoning strategy switching pattern. For all
weak and spurious rewards, the model uses more code reasoning after RLVR. While few originally-
code-reasoning problems switch to language reasoning (Code→Lang), most originally-language-
reasoning problems convert to code reasoning (Lang→Code). Ground truth reward does not follow
this pattern. For Bad-Code models (Qwen2.5-7B and OLMo2-7B-SFT), meaningful rewards steer
models away from bad code reasoning. Code reasoning decreases with ground truth, majority vote,
and incorrect rewards for Qwen2.5-7B, but only with ground truth and majority vote for OLMo2-7B-
SFT (Figures 5b and 5c). For No-Code models, RLVR fails to elicit meaningful changes in reasoning
strategy, as this capability is likely not learned during pre-training.

Accuracy: From Figure 18, there is a drastic increase in accuracy in the Lang→Code subset after
RLVR across all training signals. This is reflected in Table 3, which shows that 58.3% of the
performance gain of Qwen2.5-Math-7B is from this subset. Similarly in Qwen2.5-Math-1.5B,
switching from natural language reasoning to code reasoning contribute to 78.7% of the performance
gain. For the Bad-Code models, Code→Lang contributes to 93.9% of the performance gain of
Qwen2.5-7B. This is intuitive, as the model has a higher langauge reasoning accuracy than code
reasoning accuracy, RLVR training essentially encourages the model to use the reasoning strategy
that it is better at. For No-Code models, since there is no code reasoning before or after RLVR, all
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Table 3: Partial contribution to the overall performance gain averaged over rewards that successfully
steered the model’s reasoning strategy (Figure 5).

Model Qwen2.5-Math-7B Qwen2.5-Math-1.5B Qwen2.5-7B

Avg. Total Gain ↑ 23.5% ↑ 28.5% ↑ 30.6%

CCode→Code 11.6% 2.8% 0.2%
CCode→Lang 8.6% 2.0% 93.9%
CLang→Code 58.3% 78.7% 0.0%
CLang→Lang 21.4% 16.5% 5.9%

Table 4: Details of different prompts used in previous RLVR research. We explore the impact of
existing prompts (Qwen Default, Simplerl-zoo, and Sober) and 2 our two proposed prompts—the first
prompt, Math Prompt, indicates the evaluation domain without extra information about the format;
the second prompt, Spurious Prompt, is a randomly picked LaTeX placeholder text generated by
LIPSUM. Our motivation for introducing these 2 prompts is to study how concise domain knowledge
or even random strings in context can boost the evaluation performance.

Prompt Name System Prompt User Prompt
Qwen Default Please reason step by step, and put {}(Yang et al., 2024a) your final answer within \boxed{}.

Math Problem You are a helpful Assistant. Math Problem: {}

Simplerl-zoo You are a helpful Assistant. {}\nPlease reason step by step, and put
(Zeng et al., 2025) your final answer within \boxed{}.

Sober
(Hochlehnert et al., 2025)

Please reason step by step,
and put your final answer

within \boxed{}. a

Solve the following math problem
efficiently and clearly. The last line of

your response should be of the following
format: ’Therefore, the final answer is:
The last line of your response should be
of the following format: ’Therefore, the
final answer is: \boxed{ANSWER}.

I hope it is correct’ (without quotes) where
ANSWER is just the final number or

expression that solves the problem. Think
step by step before answering.\n\n{}

Spurious Prompt Lorem ipsum dolor sit amet,
consectetuer adipiscing elit.

Ut purus elit, vestibulum ut, placerat
ac, adipiscing vitae, felis. Curabitur

dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a,

magna. Donec vehicula augue eu neque.
Pellentesque habitant morbi tristique

senectus et netus et malesuada fames ac
turpis egestas. Mauris ut leo. Cras viverra

metus rhoncus sem. Nulla et lectus vestibulum
urna fringilla ultrices. Phasellus eu

tellus sit amet tortor gravida placerat.\n\n{}

aNote that the original paper did not include a system prompt. However, when applying chat templates to a
conversation that lacks a system prompt (as occurs in the code from Hochlehnert et al. (2025)), the Qwen2.5-
Math models automatically prepend their default system prompt.

performance gains (or losses) are from the Lang→Lang subset. These results suggest that much of
the accuracy gain from RLVR on these spurious rewards in Qwen2.5-Math and Qwen2.5 is simply
from eliciting the right reasoning strategy from the model.
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(a) Default Qwen2.5-Math Prompt (Yang et al., 2024a)
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(b) “Math Problem:” Prompt
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(c) Simplerl-zoo Prompt (Zeng et al., 2025)
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(d) Sober Prompt (Hochlehnert et al., 2025)
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(e) Spurious Prompt

Figure 19: RLVR performance with different prompt templates on Qwen2.5-Math-7B. We show the
choice of the prompt impacts both the before training performance and the RLVR training trajectories
for Qwen2.5-Math-7B. We find the default prompt provided by Qwen2.5-Math (Yang et al., 2024a)
results in lower initial performance; the other prompts offer higher initial performance, while Spurious
Prompt offers the highest initial performance.

Table 5: Accuracy on MATH-500 and percent of parsable (format-following) responses on Qwen2.5-
Math-7B with various prompts from Table 4. Even with a spurious prompt, the model is able to
follow the format 84.1% of the time. It is not obvious that much of the performance can be explained
by format-following.

Default MathProblem SimpleRL-Zoo Sober Spurious
MATH Acc. 49.4 55.8 63.2 61.60 68.8
% Parsable 78.9 72.1 85.4 93.1 84.1

I SPURIOUS PROMPTS: QWEN2.5-MATH-7B’S UNREASONABLY HIGH
SENSITIVITY TO PROMPTS

As we show in Section 4.3, prompting the model to use code reasoning brings a 15.0% gain on
Qwen2.5-Math-7B. This suggests that prompt engineering is a valid approach to elicit desired
behaviors, which does not require parameter updates. In this section, we conduct an additional
analysis on how choosing different existing prompts can impact model behavior and how such a
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technique interacts with RLVR. In addition, we show that model performance can be improved even
when using some task-unrelated, information-less prompts, which we name “spurious prompts.”

I.1 EXISTING PROMPTS

We collect different prompts from popular RL training frameworks and recent evaluation works:
Qwen Default (Yang et al., 2024a), SimpleRL-Zoo (Zeng et al., 2025), Sober Reasoning (Hochlehnert
et al., 2025), and our hand-constructed prompts (detailed in Table 4). Specifically, we introduce
two new prompts—the first prompt, Math Prompt, indicates the evaluation domain without extra
information about the format; the second prompt, Spurious Prompt, is a randomly picked LaTeX
placeholder text generated by LIPSUM. Although it has been known that LLM evaluation can be
sensitive to evaluation prompts (Sclar et al., 2024), our motivation to introduce these two particular
prompts is to study how concise domain knowledge or even random perturbation in context can
impact evaluation performance. We perform RL training using these prompts for both trajectory
rollouts and evaluation.

As shown in Table 5, Sober prompt brings the highest parsable rate of the answers, while our spurious
prompt leads to the highest accuracy on MATH-500. The results indicate that the model is very
sensitive to prompts and the best performance does not necessarily require the highest parsable rate
nor task-relevant information in context.

We further show the training trajectories using different prompts in Figure 19. We find that models
trained with the Qwen default, MATH PROBLEM:, and Simplerl-zoo converge to similar performance
after RLVR with the same training setting. We conjecture that the behavior that can be elicited
by prompting tends to be a subset of the easy-to-elicit behaviors in RLVR, while RLVR can elicit
additional behaviors that are not predefined in prompts.

I.2 SPURIOUS PROMPTS

As Qwen2.5-Math-7B shows high sensitivity to the prompts, we are curious about how much it could
be impacted by spuriously unrelated prompts, e.g., the placeholder text in LaTex generated by LIPSUM.
Specifically, we construct a spurious prompt using LIPSUM with a similar prompt length as the Sober
prompt in Table 4. Surprisingly, the spurious prompt gives the highest initial performance compared
with the other commonly used task-specific prompts, as shown in Figure 19e. Although we find that
the improvement does not always happen for randomly picked prompts, the high performance with
our spurious prompt indicates that the model can be very sensitive to in-context perturbations, where
the benefit may sometimes originate from this sensitivity rather than from the task-relevant content in
the prompt.

J ADDITIONAL RESULTS ON MODELS THAT HAVE UNDERGONE RL
TRAINING

In this section, we provide additional results for models that have been trained with reinforcement
learning, including two Qwen Instruct models (Qwen2.5-Math-7B-Instruct (Yang et al., 2024a) and
Qwen2.5-7B-Instruct (Qwen et al., 2025)) and one Tulu3 model (Llama-3.1-Tulu-3-8B (Lambert
et al., 2024)). In this section, we show that the post-RL models may behave differently from other
base or instruction-tuned models in RLVR.

As shown in Figure 20, Qwen Instruct models show minimal improvement from RLVR training across
different reward types in our setup, even when using ground-truth rewards. We observe this same
pattern in other models: their performance plateaus after sufficient RLVR training steps. Therefore,
we conjecture that Qwen2.5-Math-7B-Instruct benefits less from our RLVR experiments because it
has already reached saturation from its previous RL training. While improved RLVR algorithms or
higher-quality training data could still yield gains on the currently saturated models, we leave this
exploration for future work.

Furthermore, we examine the RLVR behavior of Llama-3.1-Tulu-3-8B (Figure 20c) and find that,
unlike the Qwen2.5 Instruct models, training with ground truth rewards provides only marginal gains
on MATH and limited gains on ACM and AIME. The trends we observe for Llama-3.1-Tulu-3-8B
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(a) Qwen2.5-Math-7B-Instruct
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(b) Qwen2.5-7B-Instruct Results
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(c) Llama-3.1-Tulu-3-8B Results

Figure 20: RLVR performance on models that have undergone RL training. We find that Qwen
Instruct models show minimal improvement from our RLVR, while Llama-3.1-Tulu-3-8B exhibits
similar patterns to OLMo models (Figure 3). There is a clear performance distinction when training
with ground truth labels for Llama-3.1-Tulu-3-8B, but not for the Qwen Instruct models.

are similar to those we observe for its base model Llama-3.1-8B. We conjecture that this might be
because these models share similar prior knowledge before RL training, which leads to similar RLVR
behaviors. However, unlike the Qwen Instruct models, Llama-3.1-Tulu-3-8B still shows gains on
MATH despite having been trained with RLVR on the Tulu3 dataset.

K ADDITIONAL RELATED WORKS

Reinforcement Learning for Language Models. The development of language model capabilities
has been significantly advanced through reinforcement learning approaches. RLHF has become a
standard technique for aligning models with human preferences (Ouyang et al., 2022; Bai et al.,
2022), while RLVR has proven effective for tasks with deterministic answers (DeepSeek-Math, 2024;
Gao et al., 2024; Wen et al., 2025; Song et al., 2025; Team et al., 2025; Lambert et al., 2024; Zeng
et al., 2025; Luo et al., 2025a;b; Liu et al., 2025; Fatemi et al., 2025; He et al., 2025; Team, 2025;
Wang et al., 2025b; Zhao et al., 2025a). These methods traditionally rely on accurate supervision
signals, either through human feedback or verifiable rewards. Recent work has explored reducing
the dependence on human annotations through AI feedback mechanisms (Bai et al., 2022) and
through training dynamics analysis (Zhao et al., 2025b), which supports the finding that RL primarily
amplifies behaviors or capabilities already buried in the pretrained models (Liu et al., 2025; Yue et al.,
2025; Gandhi et al., 2025).
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L QUALITATIVE ANALYSIS ON QWEN2.5-MATH-7B’S CODING REASONING
BEHAVIORS

In this section, we show several qualitative examples on how Qwen2.5-Math-7B can reason in
code. In addition, we show its code reasoning behavior is robust to numerical perturbations—the
model generates similar code to solve the numerical perturbed question. However, we find Qwen2.5-
Math-7B only uses natural language solutions when we rephrased the question using an alternative
narrative.

Qwen2.5-Math-7B can reason in code. In Figure 22–23, we show 3 qualitative examples of
Qwen2.5-Math-7B outputs on 3 randomly picked questions from MATH-500. We find Qwen2.5-
Math-7B is able to conduct coding reasoning, i.e., solving a problem by writing code, and predict
the code execution outputs. Surprisingly, the model can predict the code execution outputs with a
relatively high accuracy—in the examples shown in Figure 22 and Figure 21, Qwen2.5-Math-7B is
able to compute the execution answers with 16-float precision without access to any code interpreter.
In the example shown in Figure 23, Qwen2.5-Math-7B gives a wrong answer 4323. However, it is
still very close to the ground-truth answer 4343.

Qwen2.5-Math-7B’s code reasoning behavior is robust to numerical perturbations. We further
perturbed the number 999 in the question shown in Figure 23 to a few random integer numbers
between the range of 100 and 1000, as shown in Figure 24–26. We find that Qwen2.5-Math-7B is
capable of solving our perturbed questions with similar code snippets in their answers. For example,
in Figure 24, we show that Qwen2.5-Math-7B is able to derive the correct answer 4344 in the
numerically perturbed version of the question in Figure 23—we changed the input number from
999 to 1000, and the corresponding ground-truth answer changed from 43436 to 43446. We find
Qwen2.5-Math-7B used the same code function to solve the question, and interestingly, it predicts the
correct answer for the perturbed question, although it predicted an inaccurate answer for the original
question in Figure 23.

Qwen2.5-Math-7B’s code reasoning behavior may not directly generalize to rephrased questions.
We also rephrased the question in Figure 23, Figure 25, and Figure 26, respectively, with an alternative
narrative. As shown in Figure 27–29, Qwen2.5-Math-7B first identifies and concludes the same
core question in the first sentence of its answer. However, it does not use any code to answer this
rephrased question. We hypothesize that whether Qwen2.5-Math-7B uses code reasoning to answer
the question depends on the specific prompt distribution, i.e., whether the question is close to any of
its training data that is augmented with code solutions, rather than the problem itself.
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Original MATH Question:

Convert the point (0, 3) in rectangular coordinates to polar coordinates. Enter your
answer in the form (r, θ), where r > 0 and 0 ≤ θ < 2π.

Qwen2.5-Math-7B Solution (correct):

To convert the point (0, 3) in rectangular coordinates to polar coordinates (r, θ), we
need to use the following formulas:
1. The distance r from the origin to the point:

r =
√
x2 + y2

where x = 0 and y = 3.
2. The angle θ formed with the positive x-axis:
For the point (0, 3):

• r =
√
02 + 32 = 3

• Since x = 0 and y = 3, we are in the case where x = 0 and y > 0, so
θ = π

2 .
Let’s write the Python code to confirm these calculations and output the polar coordi-
nates in the desired format.

1 import math
2 # Rectangular coordinates
3 x = 0
4 y = 3
5 # Calculate r
6 r = math.sqrt(x**2 + y**2)
7 # Calculate θ
8 if x == 0 and y > 0:
9 theta = math.pi / 2

10 elif x == 0 and y < 0:
11 theta = 3 * math.pi / 2
12 else:
13 theta = math.atan2(y, x)
14 # Ensure θ is in the range [0, 2π)
15 if theta < 0:
16 theta += 2 * math.pi
17 print(f"r={r},θ = {theta}")

output: r = 3.0, θ = 1.5707963267948966
The polar coordinates for the point (0, 3) are (3, π

2 ).
Thus, the final answer in the desired format is:
(3, π

2 )

Figure 21: Qualitative example of Qwen2.5-Math-7B outputs on one randomly picked question from
MATH-500. Note that both the code and the corresponding code execution result are generated by
Qwen2.5-Math-7B. We do NOT provide any external code interpreter to the model.
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1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Original MATH Question:

What is the distance, in units, between the points (2,−6) and (−4, 3)? Express your
answer in simplest radical form.

Qwen2.5-Math-7B Solution (correct):

To find the distance between two points (x1, y1) and (x2, y2) in a Cartesian plane,
we use the distance formula:

d =
√

(x2 − x1)2 + (y2 − y1)2

Given the points (2,−6) and (−4, 3), we can substitute these values into the formula:

d =
√
((−4)− 2)2 + (3− (−6))2

Let’s break this down step-by-step and compute the result using Python.

1 import math
2

3 # Coordinates of the points
4 x1, y1 = 2, -6
5 x2, y2 = -4, 3
6

7 # Calculate the differences
8 dx = x2 - x1
9 dy = y2 - y1

10

11 # Calculate the distance using the distance formula
12 distance = math.sqrt(dx**2 + dy**2)
13 print(distance)

output: 10.816653826391969
The distance between the points (2,−6) and (−4, 3) is approximately 10.82 units.
To express the answer in simplest radical form, we need to check if this value can be
simplified.
The distance formula calculation is:

d =
√
((−4)− 2)2 + (3− (−6))2 =

√
(−6)2 + (9)2

=
√
36 + 81 =

√
117 =

√
9 · 13 = 3

√
13

So, the exact distance in simplest radical form is 3
√
13.

Thus, the final answer is:
3
√
13

Figure 22: Qualitative example of Qwen2.5-Math-7B outputs on one randomly picked question from
MATH-500. Note that both the code and the corresponding code execution result are generated by
Qwen2.5-Math-7B. We do NOT provide any external code interpreter to the model.
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1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Original MATH Question:

What is the base six equivalent of 99910?

Owen2.5-Math-7B Solution (incorrect, ground truth: 43436):

To convert a decimal number to its base-six equivalent, we repeatedly divide the
number by 6 and keep track of the remainders. The remainders, read in reverse order,
give the base-six representation of the number.
Here’s the step-by-step process to convert 99910 to base six:
1. Divide the number by 6 and record the remainder.
2. Update the number to the quotient of the division.
3. Repeat steps 1 and 2 until the quotient is 0.
4. The base-six representation is the sequence of remainders read from bottom to

top.
Let’s implement this in Python to get the accurate result:

1 def decimal_to_base_six(n):
2 if n == 0:
3 return "0"
4

5 base_six_digits = []
6 while n > 0:
7 remainder = n % 6
8 base_six_digits.append(str(remainder))
9 n = n // 6

10

11 # The base-six representation is the reverse of the
collected remainders

12 base_six_digits.reverse()
13 return "".join(base_six_digits)
14

15 # Convert 999 from decimal to base six
16 decimal_number = 999
17 base_six_representation = decimal_to_base_six(decimal_number)
18 print(base_six_representation)

4323
The base-six equivalent of 99910 is 4323 .

Figure 23: Qualitative example of Qwen2.5-Math-7B outputs on one randomly picked question from
MATH-500. Note that both the code and the corresponding code execution result are generated by
Qwen2.5-Math-7B. We do NOT provide any external code interpreter to the model.
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1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Numerically Perturbed MATH Question:

What is the base six equivalent of 100010?

Qwen2.5-Math-7B Solution (correct):

To convert a decimal number (base 10) to a base 6 number, we repeatedly divide the
number by 6 and keep track of the remainders. The base 6 number is then composed
of the remainders read in reverse order. Let’s perform this conversion step by step.
1. Divide the number by 6, record the remainder, and replace the number with the
quotient. 2. Repeat until the quotient is 0. 3. The base 6 number is the sequence of
remainders read in reverse order.
Let’s do this process using Python code.

1 def decimal_to_base_six(n):
2 if n == 0:
3 return ’0’
4

5 base_six_digits = []
6 while n > 0:
7 remainder = n % 6
8 base_six_digits.append(str(remainder))
9 n = n // 6

10

11 # The remainders give the base 6 number in reverse order
12 base_six_digits.reverse()
13 return ’’.join(base_six_digits)
14

15 # Convert 1000 from base 10 to base 6
16 base_six_number = decimal_to_base_six(1000)
17 print(base_six_number)

4344
The base six equivalent of 100010 is 43446 .

Figure 24: Qualitative example of Qwen2.5-Math-7B outputs on the numerically perturbed MATH-
500 question as shown in Figure 23. Note that both the code and the corresponding code execution
result are generated by Qwen2.5-Math-7B. We do NOT provide any external code interpreter to
the model.
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2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Numerically Perturbed MATH Question:

What is the base six equivalent of 99810?

Qwen2.5-Math-7B Solution (correct):

To convert the decimal number 99810 to its base six equivalent, we need to repeatedly
divide the number by 6 and keep track of the remainders. The base six digits are the
remainders read from bottom to top (from last division to first).
Here is the step-by-step process:

1. Divide the number by 6.
2. Record the remainder.
3. Update the number to the quotient of the division.
4. Repeat steps 1-3 until the quotient is 0.
5. The base six number is the sequence of remainders read from bottom to top.

Let’s do this step-by-step for 99810:

998÷ 6 = 166 remainder 2 (2)
166÷ 6 = 27 remainder 4 (3)
27÷ 6 = 4 remainder 3 (4)
4÷ 6 = 0 remainder 4 (5)

The remainders, read from bottom to top, give us the base six number. So, 99810 in
base six is 43426.
We can verify this by converting back to decimal:

4 · 63 + 3 · 62 + 4 · 61 + 2 · 60 = 4 · 216 + 3 · 36 + 4 · 6 + 2 (6)
= 864 + 108 + 24 + 2 (7)
= 99810 (8)

Now, let’s implement this in Python to ensure the accuracy.

def decimal_to_base_six(n):
if n == 0:

return "0"
base_six_digits = []
while n > 0:

remainder = n % 6
base_six_digits.append(str(remainder))
n = n // 6

base_six_digits.reverse()
return ’’.join(base_six_digits)

# Convert 998 from base 10 to base 6
base_six_number = decimal_to_base_six(998)
print(base_six_number)

4342

The base six equivalent of 99810 is 43426 .

Figure 25: Qualitative example of Qwen2.5-Math-7B outputs on the numerically perturbed MATH-
500 question as shown in Figure 23. Note that both the code and the corresponding code execution
result are generated by Qwen2.5-Math-7B. We do NOT provide any external code interpreter to
the model.
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2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Numerically Perturbed MATH Question:

What is the base six equivalent of 10010?

Qwen2.5-Math-7B Solution (correct):

To convert a decimal number (base 10) to a base-six number, we can repeatedly divide
the number by 6 and keep track of the remainders. The conversion process involves
the following steps:

1. Divide the number by 6.
2. Record the remainder.
3. Update the number to the quotient from the division.
4. Repeat the process until the quotient is 0.
5. The base-six number is the sequence of remainders read in reverse order.

Let’s convert 10010 to base six using Python.
def decimal_to_base_six(n):

if n == 0:
return "0"

base_six_digits = []

while n > 0:
remainder = n % 6
base_six_digits.append(str(remainder))
n = n // 6

# The base-six number is the sequence of remainders read
# in reverse order
base_six_digits.reverse()
return ’’.join(base_six_digits)

# Convert 100 (decimal) to base six
decimal_number = 100
base_six_number = decimal_to_base_six(decimal_number)
print(base_six_number)

244

The base six equivalent of 10010 is 2446 .

Figure 26: Qualitative example of Qwen2.5-Math-7B outputs on the numerically perturbed MATH-
500 question as shown in Figure 23. Note that both the code and the corresponding code execution
result are generated by Qwen2.5-Math-7B. We do NOT provide any external code interpreter to
the model.
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2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Rephrased MATH Question in an Alternative Narrative:

If I have 999 objects in standard decimal counting, and I need to express this quantity
using only the digits 0-5 in a positional numeral system, what sequence of digits
would represent this amount?

Qwen2.5-Math-7B Solution 2 (correct):

To represent 999 using only the digits 0-5, we need to convert it to a base 6 number
system. We need to divide this number by the powers of 6 and take the remainder
until we run out of powers of 6.
999 divided by 63 (which is 216) is 4 with a remainder of 135.
135 divided by 62 (which is 36) is 3 with a remainder of 27.
27 divided by 61 (which is 6) is 4 with a remainder of 3.
3 divided by 60 (which is 1) is 3 with no remainder.
So, 999 in base 6 is 43436.

4× 63 + 3× 62 + 4× 61 + 3× 60 = 4× 216 + 3× 36 + 4× 6 + 3× 1

= 864 + 108 + 24 + 3

= 999

Therefore, the representation of 999 using only digits 0-5 in a base-6 numeral system
is 43436.

Figure 27: Qualitative example of Qwen2.5-Math-7B outputs on the MATH-500 question shown in
Figure 23 but with an alternative narrative. Qwen2.5-Math-7B uses natural language to answer the
rephrased question without code reasoning.
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2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Rephrased MATH Question in an Alternative Narrative:

If I have 998 objects in standard decimal counting, and I need to express this quantity
using only the digits 0-5 in a positional numeral system, what sequence of digits
would represent this amount?

Qwen2.5-Math-7B Solution 2 (correct):

To express the quantity of 998 using only the digits 0-5 in a positional numeral system,
we need to convert 998 to a base-6 number. Here’s the step-by-step process:
1. Determine the largest power of 6 less than or equal to 998: - 60 = 1 - 61 = 6 -
62 = 36 - 63 = 216 - 64 = 1296 (which is greater than 998)
So, the largest power of 6 less than or equal to 998 is 63 = 216.
2. Find the coefficient for 63: - 998 ÷ 216 ≈ 4.62 - The integer part is 4, so the
coefficient for 63 is 4. - Subtract 4 × 216 = 864 from 998 to get the remainder:
998− 864 = 134.
3. Find the coefficient for 62: - 134 ÷ 36 ≈ 3.72 - The integer part is 3, so the
coefficient for 62 is 3. - Subtract 3 × 36 = 108 from 134 to get the remainder:
134− 108 = 26.
4. Find the coefficient for 61: - 26÷6 ≈ 4.33 - The integer part is 4, so the coefficient
for 61 is 4. - Subtract 4× 6 = 24 from 26 to get the remainder: 26− 24 = 2.
5. Find the coefficient for 60: - The remainder is 2, so the coefficient for 60 is 2.
Putting it all together, the base-6 representation of 998 is 43426.
Therefore, the sequence of digits that represents 998 in a base-6 positional numeral
system is 4342 .

Figure 28: Qualitative examples of Qwen2.5-Math-7B outputs on the MATH-500 question shown in
Figure 23 but with an alternative narrative. Qwen2.5-Math-7B uses natural language to answer the
rephrased question without code reasoning.
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2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Rephrased MATH Question in an Alternative Narrative:

If I have 100 objects in standard decimal counting, and I need to express this quantity
using only the digits 0-5 in a positional numeral system, what sequence of digits
would represent this amount?

Qwen2.5-Math-7B Solution 1 (incorrect, ground truth: 244):

To represent the number 100 using only the digits 0-5, you can use a base-6 numeral
system. In a base-6 system, each digit represents a power of 6, starting from the right
with 60. The number 100 in base-10 can be converted to base-6 as follows:

100 = 2× 62 + 0× 61 + 4× 60

= 2× 36 + 0× 6 + 4× 1

= 72 + 0 + 4

= 76

However, since we are using base-6, the correct representation of 100 in this system
is 204 (2 × 62 + 0 × 61 + 4 × 60).

Figure 29: Qualitative examples of Qwen2.5-Math-7B outputs on the MATH-500 question shown
in Figure 23 but with an alternative narrative and numerical perturbation. Qwen2.5-Math-7B uses
natural language to answer the rephrased question without code reasoning. The equation expansion
step in the solution is incorrect, leading to a final wrong answer: the calculation claims that 100 =
2× 62 + 0× 61 + 4× 60 = 72 + 0 + 4 = 76, which is mathematically inconsistent.
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