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ABSTRACT

Despite their success in image generation, diffusion models can memorize train-
ing data, raising serious privacy and copyright concerns. Although prior work
has sought to characterize, detect, and mitigate memorization, the fundamental
question of why and how it occurs remains unresolved. In this paper, we revisit
the diffusion and denoising process and analyze latent space dynamics to address
the question: “How do diffusion models memorize?” We show that memorization
is driven by the overestimation of training samples during early denoising, which
reduces diversity, collapses denoising trajectories, and accelerates convergence to-
ward the memorized image. Specifically: (i) memorization cannot be explained
by overfitting alone, as training loss is larger under memorization due to classifier-
free guidance amplifying predictions and inducing overestimation; (ii) memorized
prompts inject training images into noise predictions, forcing latent trajectories to
converge and steering denoising toward their paired samples; and (iii) a decompo-
sition of intermediate latents reveals how initial randomness is quickly suppressed
and replaced by memorized content, with deviations from the theoretical denois-
ing schedule correlating almost perfectly with memorization severity. Together,
these results identify early overestimation as the central underlying mechanism of
memorization in diffusion models.

1 INTRODUCTION

Following the successful adaptation of diffusion probabilistic models (Sohl-Dickstein et al., 2015) to
image generation (Ho et al., 2020), diffusion models have become the leading framework ever since.
However, despite surpassing prior state-of-the-art methods (Dhariwal & Nichol, 2021; Ramesh et al.,
2022; Rombach et al., 2022; Nichol et al., 2022; Esser et al., 2024), they have also been shown
to exhibit unintended memorization, reproducing training samples verbatim, even across different
random seeds (Somepalli et al., 2023a; Carlini et al., 2023). This behavior raises serious privacy
and copyright concerns, as it risks leaking sensitive or proprietary content (Carlini et al., 2022; Jiang
et al., 2023).

To address this issue, prior work has sought to characterize memorization (van den Burg & Williams,
2021; Somepalli et al., 2023a;b; Carlini et al., 2023; Webster et al., 2023; Kadkhodaie et al., 2024;
Ross et al., 2025; Jeon et al., 2025), or to detect and mitigate it by identifying common patterns
associated with its occurrence (Wen et al., 2024; Ren et al., 2024; Hintersdorf et al., 2024; Jain et al.,
2025). Yet these efforts stop short of providing a fundamental explanation for the phenomenon,
leaving the central question unresolved: “Why — and how — does memorization occur?”

In this paper, we show that:

• While memorization is often attributed to overfitting, it cannot be explained by overfitting alone.
In early denoising, the training loss is actually larger under memorization, driven by the overesti-
mation of the training image x induced by classifier-free guidance (Ho & Salimans, 2021).

• Memorized prompts inject −x into their noise predictions, effectively steering the model to ac-
curately predict x in the denoising process. With classifier-free guidance, this effect is amplified
into overestimation, which diminishes latent diversity and causes denoising trajectories to con-
verge quickly to x.

• To formalize this phenomenon, we introduce a decomposition method for intermediate latents.
Our analysis shows how initial randomness is quickly suppressed and overtaken by x, where the
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deviations from the theoretical schedule show an almost perfect correlation with memorization
severity.

2 PRELIMINARY

Diffusion models consist of a forward process and a reverse process (Sohl-Dickstein et al., 2015; Ho
et al., 2020). Given a real image x ∼ q(x), where q denotes the real image distribution, a forward
process gradually adds noise to x over T steps as

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where x0 = x and βt ∈ (0, 1) is the variance schedule. Since the forward process is a fixed
Markovian, sampling xt at timestep t can be derived in closed form as

q(xt|x) = N (xt;
√
ᾱtx, (1− ᾱt)I), (2)

or equivalently, via reparameterization,

xt =
√
ᾱtx+

√
1− ᾱtϵ, (3)

where αt = 1 − βt, ᾱt =
∏t

r=1 αr, and ϵ ∼ N (0, I). Conversely, a reverse process generates x0

by denoising a sample xT ∼ p(xT ) = N (xT ;0, I) over T steps as

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (4)

where each transition is modeled as a Gaussian distribution with mean µθ and variance Σθ. In prac-
tice, sampling efficiency can be improved by skipping steps (Song et al., 2021). Using Equation 3,
we can formulate the estimation of x at timestep t as

x̂
(t)
0 =

xt −
√
1− ᾱtϵθ(xt)√

ᾱt
, (5)

where ϵθ is a noise predictor trained to minimize the loss

L = ||ϵ− ϵθ(xt)||22, (6)

i.e., ϵθ estimates the noise ϵ ∼ N (0, I) present in the noised sample xt =
√
ᾱtx+

√
1− ᾱtϵ. Based

on Equations 3 and 5, xt−1 can be predicted from xt as follows (Song et al., 2021):

xt−1 =
√
ᾱt−1x̂

(t)
0 +

√
1− ᾱt−1ϵθ(xt). (7)

To guide the reverse process, diffusion models can be conditioned on text prompts using classifier-
free guidance (Ho & Salimans, 2021), formulated as

ϵ̃θ(xt, ec) = (1− g)ϵθ(xt, e∅) + gϵθ(xt, ec), (8)

where g is the guidance scale and ec and e∅ are CLIP (Radford et al., 2021) embeddings of text
prompt c and an empty string ∅, respectively. ϵθ(xt, e∅) and ϵθ(xt, ec) are referred to as un-
conditional and conditional noise predictions, respectively. To perform guidance, text prompts are
randomly replaced with ∅ during training, enabling the model to learn both unconditional and con-
ditional predictions used in Equation 8. Additionally, instead of operating in the high-dimensional
pixel space Rdim(x), diffusion can be performed in a lower-dimensional latent space of well-trained
autoencoders to reduce computational cost (Rombach et al., 2022). Note that throughout this paper,
diffusion is performed in the latent space, and the notation x refers to latent representations rather
than images in the pixel space.

3 HOW DIFFUSION MODELS MEMORIZE

3.1 EXPERIMENT SETUP

Throughout this paper, we conduct experiments with Stable Diffusion (SD) v1.4 (Rombach et al.,
2022), SD v2.1 (StabilityAI, 2022), and RealisticVision (CivitAI, 2023), all using float16 preci-
sion. Due to space constraints, we present results for SD v1.4 in the main paper and report results for
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g
=

1
.0

(a) 1 step (b) 10 steps (c) 50 steps

g
=

7
.5

(d) 1 step (e) 10 steps (f) 50 steps

Figure 1: Guidance amplifies the presence of x. Squared ℓ2 distance (x-axis; log scale) and cosine
similarity (y-axis) between x̂

(t)
0 and x after different number of denoising steps (column). The top

row corresponds to g = 1.0, and the bottom row to g = 7.5. Point color denotes SSCD score.

the other models in Appendix F. We use DDIM (Song et al., 2021) for sampling1, with number of
inference steps T as 50 and guidance scale g of 7.5 (with classifier-free guidance) and 1.0 (without
classifier-free guidance). The dataset comprises 436 prompts from Webster (2023) (details in Ap-
pendix A). For each prompt, we generate N = 50 RGB images at a resolution of 512 × 512 pixels
using distinct latents xT ∼ N (0, I). All computations are performed on 8× NVIDIA GeForce RTX
4090 GPUs.

Quantifying memorization. To measure the degree of memorization in generated images, we use
SSCD (Pizzi et al., 2022), which has been reported to be one of the strongest replication detec-
tors (Somepalli et al., 2023a). Specifically, we compute two metrics: 1) SSCDtrain, the similarity
between a generated image x0 (conditioned on prompt c) and its paired training image x, and 2)
SSCDgenerate, the mean SSCD score over all possible pairs of generated images. In our case, the
average is taken across

(
50
2

)
= 1225 pairs. We then define the overall memorization score of a

generated sample as

SSCD score =
SSCDtrain + SSCDgenerate

2
. (9)

Unlike prior work, we introduce SSCDgenerate, to account for cases where generated samples do
not resemble their paired training image but remain nearly identical across different runs (Webster,
2023). In addition, we classify a generated image as memorized if SSCD score ≥ 0.75, since scores
above this threshold have been reported to indicate that two images are effectively copies of one
another with 90% precision (Pizzi et al., 2022).

3.2 MEMORIZATION IS NOT JUST A PROBLEM OF OVERFITTING

Takeaway: Memorization in diffusion models cannot be explained by overfitting alone. With
classifier-free guidance, training loss is paradoxically larger in early denoising, even as mem-
orization becomes stronger.

1Our use of DDIM for sampling does not limit generality. While alternative samplers may introduce stochas-
ticity (e.g., DDPM (Ho et al., 2020)) whereas DDIM is deterministic, our analysis remains agnostic to this
distinction. Yet for completeness, we report SD v1.4 results under DDPM sampling in Appendix E.
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(a) g = 1.0

(b) g = 7.5

Figure 2: Lack of guidance degrades quality. Generated im-
ages (a) without classifier-free guidance (g = 1.0) and (b) with
classifier-free guidance (g = 7.5).

Figure 3: Guidance drives
memorization. SSCD scores
with (y-axis) and without (x-
axis) classifier-free guidance.

(a) x

(b) x̂(T )
0

Figure 4: Memorization emerges from the very first step. (a) Training images x and (b) their
first-step predictions x̂(T )

0 from paired memorized prompts c (SSCD score ≥ 0.75) under g = 7.5.

Although not always stated explicitly, prior work typically regards memorization as a consequence
of overfitting to the training data (Section 4). We begin by examining whether this perspective holds.
Note that we set g = 1.0 to verify whether memorization reflects overfitting, as no classifier-free
guidance is applied during training. Using Equations 3 and 5, Equation 6 can be reformulated as
(see Appendix D.1 for derivation):

L = ||
√
ᾱt√

1− ᾱt
(x̂

(t)
0 − x)||22. (10)

This shows that diffusion models are trained to accurately predict x at every timestep (with timestep-
dependent weighting). In other words, under overfitting, ||x̂(t)

0 − x||22 ≈ 0.

Figures 1(a–c) show ||x̂(t)
0 −x||22 on the x-axis after 1, 10, and 50 denoising steps without classifier-

free guidance (g = 1.0). This error is consistently smaller under memorization (yellow points)
across all timesteps, indicating overfitting. In practice, however, classifier-free guidance is com-
monly used, as its absence substantially degrades generation quality (Figure 2). Will memorization
still manifest as overfitting when classifier-free guidance is applied?

Figures 1(d–f) show ||x̂(t)
0 − x||22 on the x-axis after 1, 10, and 50 denoising steps with classifier-

free guidance applied, where g = 7.5. The results are striking: at earlier denoising steps, the trend
reverses. The squared ℓ2 error is no longer smaller under memorization (Figure 1(e)), and at the
very first step (t = T ) it is actually larger (Figure 1(d)). Yet paradoxically, while appearing less like
overfitting, classifier-free guidance induces stronger memorization overall (Figure 3); SSCD scores
are consistently higher with guidance (g = 7.5, y-axis) than without it (g = 1.0, x-axis).
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SSCD 0.75

(a) ϵθ(xT , e∅), xT (b) ϵθ(xT , ec), xT

(c) ϵθ(xT , e∅)− xT , −x (d) ϵθ(xT , ec)− xT , −x

Figure 5: Conditional noise prediction cap-
tures memorized data. Cosine similarity be-
tween noise predictions and latents at t = T ,
for normal (blue; SSCD < 0.75) and memorized
(red; SSCD ≥ 0.75) prompts under g = 7.5.

𝐱

𝐱!

𝑔𝜖
"
𝐱 !
,𝐞
#

(1 −
𝑔)𝜖"

𝐱 !,
𝐞∅

𝜖 "̃
𝐱 !
, 𝐞
#

𝟎

(a)

𝐱!

𝑔𝜖
"
𝐱 !
,𝐞
#

𝟎

(b) (c)

0.5𝐱 𝐱

𝐱!

𝑔𝜖
"
𝐱 !
,𝐞
#

(1 −
𝑔)𝜖"

𝐱 !,
𝐞∅

𝜖̃"
𝐱
! , 𝐞

#
𝟎

𝐱

2𝐱

Figure 6: Classifier-free guidance leads to
overestimation of x. Illustration of noise pre-
dictions and latents with different guidance
scale g. (a) g = 0.5. (b) g = 1.0. (c) g = 2.0.

3.3 EARLY OVERESTIMATION ELEVATES TRAINING LOSS

Takeaway: The larger training loss under classifier-free guidance arises from overestimation
of memorized data during early denoising, driven by conditional noise predictions. This
overestimation grows linearly with the guidance scale.

To understand the aforementioned discrepancy, we examine the cosine similarity between x̂
(t)
0 and

x in Figures 1(a–f), plotted on the y-axis. Under memorization, the two vectors are nearly parallel
across all timesteps (yellow points show consistently high cosine similarity), regardless of whether
classifier-free guidance is applied. That is, x̂(t)

0 ≈ kx, with k ≈ 1 in the absence of guidance. Under
classifier-free guidance, we empirically observe k > 1 (see Appendix B.1). Thus, while predictions
remain directionally correct in both cases, classifier-free guidance amplifies their magnitude in early
denoising, leading to overestimation of the memorized sample x.

The overestimation is attributed to the guidance scale g. Recall that x̂(t)
0 = xt−

√
1−ᾱt ϵ̃θ(xt,ec)√

ᾱt

(Equation 5), where ϵ̃θ(xt, ec) = (1 − g)ϵθ(xt, e∅) + gϵθ(xt, ec) (Equation 8). At t = T , three
properties hold:

A. Both unconditional and conditional noise predictions exhibit high cosine similarity with
the initial latent xT . Since ϵ = xT−

√
ᾱTx√

1−ᾱT
(t = T in Equation 3) and ᾱT ≈ 0, a well-trained

noise predictor ϵθ will approximate xT at t = T (L sufficiently small). Figure 5(a, b) confirm
this, showing that the cosine similarities between xT and both unconditional and conditional noise
predictions are nearly 1.

B. Unconditional noise predictions contain no information about x. A random latent xT ∼
N (0, I) paired with an empty-string embedding e∅ does not contain any information about the
training image x. Thus, the unconditional noise prediction ϵθ(xT , e∅) will contain only in-
formation about xT , with no information about −x (the negative term arises because ϵ =

1√
1−ᾱT

xT +
√
ᾱT√

1−ᾱT
(−x)). Figure 5(c) confirm this, showing that the cosine similarities between

ϵθ(xT , e∅)−xT and −x are close to 0. We further validate this by showing that the squared magni-
tude of the difference between ϵθ(xT , e∅) and xT is nearly zero (see Appendix B.2), demonstrating
that unconditional noise predictions contain only information about xT and none of x.

C. Conditional noise predictions contain substantial information about x. We have shown that
x̂
(t)
0 ≈ kx under memorization, which implies that ϵ̃θ(xT , ec) must carry information about x

(Equation 5). Figure 4 makes this more explicit: under memorization, a single denoising step yields
an estimate x̂

(T )
0 = xT−

√
1−ᾱT ϵ̃θ(xT ,ec)√

ᾱT
that closely resembles x. Since ϵθ(xT , e∅) contains no

information about x, this must be supplied by the conditional prediction ϵθ(xT , ec), where the
memorized prompt embedding ec is provided as input (Equation 8). Figure 5(d) confirms this:
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Figure 7: xt converges under early overesti-
mation. Trace of the covariance matrix of xt as a
measure of diversity across denoised latents from
50 random seeds. Colors indicate SSCD scores.
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Figure 8: Overestimation aligns denoising up-
dates with memorized directions. Cosine sim-
ilarity between the first principal component of
∆xt−1 = xt−1 − xt and the memorized training
image x.

although ϵθ(xT , ec) is nearly (but not perfectly; see Appendix B.3) parallel to xT (Figure 5(b)),
unlike the unconditional case (Figure 5(c)) it also contains information about x (see Appendix B.2
for further verification), as ϵθ(xT , ec) − xT aligns strongly with −x under memorization (red box
plots) whereas alignment remains weak for normal prompts (blue).

Together, A, B, and C give:

ϵθ(xT , e∅) ≈ xT (from A, B), ϵθ(xT , ec) ≈ xT − sx (from A, C) (11)

for some scalar s. Since ϵ = 1√
1−ᾱT

xT +
√
ᾱT√

1−ᾱT
(−x), we infer s ≈

√
ᾱT√

1−ᾱT
. Hence,

ϵ̃θ(xT , ec) ≈ xT − g

√
ᾱT√

1− ᾱT
x. (12)

Substituting this into Equation 5 yields

x̂
(T )
0 =

xT −
√
1− ᾱT ϵ̃θ(xT , ec)√

ᾱT
≈ gx. (13)

Thus, increasing the guidance scale g linearly amplifies the contribution of x in x̂
(T )
0 , directly caus-

ing overestimation and elevating training loss.

Figure 6 visualizes Equation 13, linking the observations in Figure 5 to overestimation. In the
figure, the origin 0 is marked by a white dot, while xT and x are marked by black dots. Scaled noise
predictions (1−g)ϵθ(xT , e∅), gϵθ(xT , ec), and their combination ϵ̃θ(xT , ec) are shown as red, blue,
and purple arrows, respectively. Orange arrows denote −ϵ̃θ(xT , ec), with tips (xT − ϵ̃θ(xT , ec))
pointing along the direction of x̂(T )

0 , shown in green arrows.

Figure 6(a) shows the case where g = 0.5. The green arrow points to 0.5x, yielding x̂
(T )
0 ≈ 0.5x.

When g = 1.0 (Figure 6(b)), (1 − g)ϵθ(xT , e∅) = 0 and ϵ̃θ(xT , ec) becomes ϵθ(xT , ec). Thus,
the green arrow points exactly x, i.e., x̂(T )

0 ≈ x (also shown in Figures 1(a-c)). When g > 1, e.g.,
g = 2.0 (Figure 6(c)), the direction of ϵθ(xT , e∅) flips while ϵθ(xT , ec) increases in magnitude,
giving ϵ̃θ(xT , ec) that produces x̂(T )

0 ≈ 2x.

3.4 WHY OVERESTIMATION IN EARLY DENOISING DRIVES MEMORIZATION

Takeaway: Overestimation in early denoising acts like a “gravitational pull” toward the
memorized image: it collapses latent diversity and locks trajectories onto nearly identical
paths towards the memorized sample. This effect stems from excessive injection of memo-
rized content and premature loss of randomness, with deviations from the theoretical schedule
correlating almost perfectly with memorization severity.

Then, why does overestimation in early denoising lead to severe memorization, as seen in Fig-
ure 3? To understand this, we must recall that ϵθ takes only the intermediate latent xt and the
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Figure 9: xt converges under memorization. 1D projections of denoised latents and their decoded
images at successive timesteps, where the denoising process proceeds from top to bottom (details in
Appendix C). (a) Generation with a normal prompt. (b) Generation with a memorized prompt.

text embedding ec (or e∅) as inputs to predict the noise in xt. Since ec is fixed across timesteps,
timestep-dependent predictions are primarily driven by the variation in xt. Figure 7 plots the trace
of the covariance matrix of xt denoised from distinct noise samples xT across timesteps, which re-
flects the variation of xt. Under memorization, the trace is smaller (yellow lines), indicating reduced
diversity among denoised latents.

This reduction arises because overestimation forces each latent xt to inherit a larger fraction of iden-
tical information x across runs, thereby suppressing variability. As a result, noise predictions under
memorization become highly similar at early timesteps, pushing denoising trajectories onto nearly
the same path. Figure 8 further supports this: the first principal component of ∆xt−1 = xt−1 − xt

aligns strongly with a single direction, namely the memorized training image x in early denoising
under memorization (red line). Consequently, while latents diverge across different xT for normal
prompts (Figure 9(a)), memorized prompts exhibit strong convergence: the latents are consistently
pulled toward the memorized image, collapsing into nearly identical trajectories (Figure 9(b)). Thus,
early convergence of latents caused by overestimation is the key driver of memorization. Notably,
the trace in Figure 7 after only 10 denoising steps (t = 40) already shows strong correlation with
SSCD scores (Pearson correlation coefficient = 0.7148).

For further investigation of convergence of xt towards its destination under memorization, we in-
troduce a decomposition method for an intermediate denoised latent xt under memorization, i.e.,
L ≈ 0 (see Appendix D.2 for derivation):

xt =
√
ᾱtx+

√
1− ᾱtxT . (14)

In other words, denoising can be interpreted as progressively suppressing the initial noise term
xT ∼ N (0, I) while increasing the contribution of the clean latent x. We verify Equation 14 by
solving a least-squares problem xt = w

(t)
0 x + w

(t)
T xT and comparing w

(t)
0 and w

(t)
T to

√
ᾱt and√

1− ᾱt, respectively. The results, shown in Figures 10(a, b, e, f), can be summarized as follows:

Figures 10(a, b). Without classifier-free guidance (g = 1.0), w(t)
0 and w

(t)
T track

√
ᾱt and

√
1− ᾱt

more closely under memorization (solid lines align better with dashed lines in Figure 10(b)). This
is expected, as Equation 14 assumes L ≈ 0, i.e., memorization arising from overfitting. For nor-
mal prompts, w(t)

T roughly follows
√
1− ᾱt, but w(t)

0 ≈ 0 across timesteps (blue solid line in
Figure 10(a)), indicating that the output does not resemble x and that other components are being
constructed during denoising (as we discuss later).

Figures 10(e, f). Under memorization with classifier-free guidance (g = 7.5), the contribution of x
is amplified in early denoising (Equation 13), leading to excessive injection of x into the subsequent
latent (Equation 7). In other words, w(t)

0 grows faster than its theoretical schedule
√
ᾱt, while w

(t)
T

correspondingly falls below its schedule
√
1− ᾱt. This pattern is evident in Figure 10(f): w(t)

0 (blue
solid line) overshoots its theoretical curve (blue dashed line), and w

(t)
T (red solid line) drops to zero

7
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Figure 10: Faster dominance of x under memorization. Decomposition of xt into contributions
from the clean latent x or x0 (w(t)

0 ; blue, solid) and initial noise xT (w(t)
T ; red, solid), compared

against the theoretical schedules
√
ᾱt (blue, dashed) and

√
1− ᾱt (red, dashed).

much earlier than its theoretical curve (red dashed line). Results for normal prompts remain similar
regardless of guidance (Figure 10(e)).

Even when the training image x is unknown, a similar trend emerges. Figures 10(c, d, g, h) present
decomposition results for the least-squares problem xt = w

(t)
0 x0+w

(t)
T xT , where the final denoised

latent x0 is used in place of the training image x. For normal prompts, w(t)
0 and w

(t)
T generally follow

their theoretical schedules (Figures 10(c, g)). This indicates that the component reinforced during
denoising in Figures 10(a, b) is x0, meaning the destination of denoising is established early and
progressively amplified throughout the process. Under memorization, the fit is nearly exact without
guidance (Figure 10(d)), and with guidance w

(t)
0 grows too rapidly while w

(t)
T decays too quickly

(Figure 10(h)), once again revealing the overestimation of x in early denoising.

Finally, we further validate our explanation of how memorization arises by directly connecting these
decompositions to SSCD scores. To this end, we compute the following three quantities, each aggre-
gated across timesteps: 1)

∑1
t=T (E[w(t)

0 ]−
√
ᾱt), the excess contribution of the memorized sample

x. A larger value indicates that the model injects more of the training image than expected, reflect-
ing overestimation of x; 2) −

∑1
t=T (E[w(t)

T ]−
√
1− ᾱt), the premature suppression of the initial

noise xT . A large value implies that xT vanishes too quickly, leaving x to dominate much ear-
lier than the schedule prescribes; and 3)

∑1
t=T {(E[w(t)

0 ]−
√
ᾱt)− (E[w(t)

T ]−
√
1− ᾱt)}, which

reflects the overall deviation from the theoretical denoising trajectory.

Figures 11(a–c) plot SSCD scores against the three quantities (blue, red, and purple scatter plots,
respectively). For simplicity, we omit the

√
ᾱt and

√
1− ᾱt terms, since they are constant across

generations and do not affect comparisons. We find strong positive correlations, with Pearson coeffi-
cients of 0.9203, 0.6997, and 0.9224, respectively. These results provide direct quantitative evidence
that memorization is a deterministic outcome of early overestimation: too much x injected too soon,
and too little xT left to sustain diversity.

4 RELATED WORK

Memorization and overfitting. A common view in prior work is that memorization in diffusion
models arises from overfitting (Kadkhodaie et al., 2024). van den Burg & Williams (2021) showed
that removing a sample from training data induces local density changes, indicating overfitting to

8
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(a)
∑1

t=T E[w(t)
0 ] (b) −

∑1
t=T E[w(t)

T ] (c)
∑1

t=T (E[w(t)
0 ]− E[w(t)

T ])

Figure 11: Decomposition deviations predict memorization severity. Correlations between
SSCD scores and three decomposition-based metrics.

that sample. Other studies found that duplicated images are more likely to be reproduced (Nichol,
2022; Somepalli et al., 2023a;b; Carlini et al., 2023; Webster et al., 2023). Yoon et al. (2023)
showed that suppressing memorization improves generalization. Recent works propose geometric
views: memorization occurs when the learned manifold contains a low-dimensional training point,
yielding low variance, high sharpness, and overfitting (Ross et al., 2025). Similarly, Jeon et al.
(2025) link memorization to sharp regions of the probability landscape, supporting the view that it
reflects structural overfitting.

Detection and mitigation. Prior work explores both detection and mitigation strategies. One
approach trains on intentionally corrupted data to reduce overfitting (Daras et al., 2023). An-
other perturbs prompts, e.g., by inserting random tokens, to discourage reproducing training im-
ages (Somepalli et al., 2023b). Detection methods include analyzing cross-attention maps (Ren
et al., 2024) and localizing memorized content at the neuron level (Hintersdorf et al., 2024).

Explanation of Wen et al. (2024). A widely used detection method was introduced by Wen et al.
(2024), which measures the magnitude of text-conditional noise predictions, i.e., ||ϵθ(xt, ec) −
ϵθ(xt, e∅)||2, and achieves near-perfect accuracy in identifying memorized samples. Their ratio-
nale for this choice, however, is largely heuristic, summarized as “text guidance should be larger
under memorization.” Our analysis provides a precise theoretical explanation: this magnitude is
directly proportional to the amount of information from x injected at timestep t = T (Equation 11).
Thus, under memorization, the signal reflects the amplified contribution of the memorized data x at
every denoising step, establishing it as a principled and reliable metric for detecting memorization.

Explanation of Jain et al. (2025). A recent work proposed mitigation by identifying a transition
timestep in denoising (Jain et al., 2025): classifier-free guidance is disabled before that timestep
and enabled afterward, which prevents memorized generations. However, this strategy is based on
empirical observations, without a clear explanation of why it works. Our analysis clarifies the mech-
anism: early denoising is precisely where classifier-free guidance induces overestimation, linearly
amplifying conditional predictions and injecting excessive information about the training image x.
By withholding guidance during these steps, latents retain randomness and spread into diverse, non-
memorized directions. Once sufficient diversity and stable trajectories are established, guidance can
be safely reintroduced.

5 CONCLUSION

In this paper, we revisited the denoising dynamics of diffusion models to answer the question: “how
do they memorize?” We showed that memorization is not simply an artifact of overfitting during
training, but arises from overestimation of memorized data in early denoising, where classifier-
free guidance linearly amplifies conditional predictions and injects too much of the training image
too soon. This amplification collapses latent diversity and locks trajectories onto nearly identical
paths, rapidly erasing randomness and replacing it with the memorized content. We believe that
recognizing and shaping this regime would provide a practical path toward safer, less replicative
generative systems.

9
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A DATASET

In this paper, we use prompts from Webster (2023), all sourced from the LAION-5B dataset (Schuh-
mann et al., 2022) used to train the diffusion models studied here, namely, SD v1.4 (Rombach et al.,
2022), SD v2.1 (StabilityAI, 2022), and RealisticVision (CivitAI, 2023). The prompts are grouped
into four categories:

(i) Matching verbatim (MV): pixel-level memorization, where the generated output exactly repro-
duces a training image;

(ii) Template duplicate (TV): images that share the overall template with a training image but differ
in details such as colors or textures;

(iii) Retrieved verbatim (RV): cases where the output does not match the paired training image but
consistently reproduces another image from the training set across different runs; and

(iv) None (N): normal prompts that produce diverse outputs across runs without reproducing training
images.

Each prompt was provided with a URL linking to its paired training image. However, some URLs
were inaccessible, preventing retrieval of the corresponding training images. We exclude such cases
and use only prompts with retrievable images, as shown in Table 1. Furthermore, we observed that
certain prompts were miscategorized in the original groupings. For instance, one prompt labeled as
N produced pixel-level memorized images (MV). To address this, we discard the categorizations of
Webster (2023) and instead re-score prompts using SSCD (Pizzi et al., 2022) (Section 3.1), which is
then used for all subsequent analyses.

Table 1: Prompt categories and counts across different diffusion models. Fractions indicate the
number of prompts with retrievable paired training images over the total number of prompts origi-
nally provided by Webster (2023).

MV TV RV N Total

SD v1.4 74/86 208/229 30/30 124/155 436/500
SD v2.1 3/4 198/215 0/0 188/281 389/500

RealisticVision 78/90 209/230 34/34 114/146 435/500

B ADDITIONAL EVIDENCES

B.1 ADDITIONAL EVIDENCE OF OVERESTIMATION

Figure 12 shows that under memorization k =
||x̂(t)

0 ||2
||x||2 > 1, with red regions lying to the right

of the dashed vertical line at k = 1. This provides clear evidence of overestimation rather than
underestimation of x.
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(a) t = 50 (1 step) (b) t = 41 (10 steps) (c) t = 1 (50 steps)

Figure 12: Overestimation occurs under memorization. Distribution of k =
||x̂(t)

0 ||2
||x||2 across

timesteps t. The red dashed line marks k = 1.
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B.2 ADDITIONAL EVIDENCE FOR FIGURE 5(C, D)

Figure 13(a) shows the squared magnitude of the difference between ϵθ(xT , e∅) and xT at t = T .
The difference is nearly zero, confirming that unconditional noise predictions reproduce xT and
contain no information about x.

Figure 13(b) reports the squared magnitude of the difference between ϵθ(xT , ec) and xT at t = T for
normal (blue; SSCD score < 0.75) and memorized (red; SSCD score ≥ 0.75) prompts. For normal
prompts, the distribution closely matches the unconditional case (Figure 13(a)). Under memoriza-
tion, however, the distribution shifts to larger values, indicating that conditional predictions contain
information beyond xT , specifically the contribution of −x (Figure 5(d)).

0 1 2
|| (xT, e ) xT||22

dim(xT)

0
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De
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0 1 2
|| (xT, ec) xT||22
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2

4

De
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ity

SSCD < 0.75
SSCD 0.75

(a) (b)

Figure 13: Unconditional predictions replicate xT , whereas conditional predictions also con-
tain memorized information. Distribution of the squared magnitude of the difference between xT

and (a) unconditional noise predictions and (b) conditional noise predictions at t = T .

B.3 ADDITIONAL EXPLANATION FOR FIGURE 5(B, D)

Figure 14 illustrates how ϵθ(xT , ec) can contain information about x even when its cosine sim-
ilarity with xT is nearly 1 (Figure 5(b)). The median of cosine similarity between ϵθ(xT , ec)
and x for memorized samples is 0.7543 (Figure 5(d)), corresponding to an angle of roughly
arccos(0.7543) ≈ 41.07◦. As shown in Figure 14, ϵθ(xT , ec) (blue arrow) and xT (black arrow)
appear nearly parallel (≈ 0◦ apart), but a residual component remains between them (green arrow;
ϵθ(xT , ec) − xT ), namely, −sx. This geometric gap demonstrates how conditional predictions
contain additional information about x, despite strong alignment with xT .

−𝑠𝐱𝐱!

𝟎
𝜖" 𝐱! , 𝐞#

41.07°

≈ 0°

Figure 14: Conditional noise predictions contain information about x even when nearly par-
allel to xT . Geometric illustration showing ϵθ(xT , ec) (blue), xT (black), and −sx (green).

C NOTES ON FIGURE 9

Figure 9 visualizes the evolution of latents during denoising by projecting all N × (T + 1) =
50× 51 = 2550 latents for a given prompt onto their first principal component from PCA. The term
T +1 arises because we include the initial random latents xT along with the T subsequent denoised
states.
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D PROOFS

D.1 EQUATION 10

The diffusion training loss is originally defined as Equation 6:

L = ||ϵ− ϵθ(xt, ec)||22. (15)

From Equation 3, the ground-truth noise ϵ can be written as

ϵ =
xt −

√
ᾱtx√

1− ᾱt
, (16)

and from Equation 5, the predicted noise ϵθ(xt, ec) is

ϵθ(xt, ec) =
xt −

√
ᾱtx̂

(t)
0√

1− ᾱt
. (17)

Substituting Equations 16 and 17 into Equation 15 yields

L = ||
√
ᾱt√

1− ᾱt
(x̂

(t)
0 − x)||22. ■ (18)

D.2 EQUATION 14

Under memorization, L ≈ 0, which is equivalent to ϵ ≈ ϵθ(xt, ec) (∵ Equation 6). However, ϵ is
independent of t, thus we can write

ϵ =
xT −

√
ᾱTx√

1− ᾱT
≈ ϵθ(xt, ec). (19)

Therefore, x ≈ x̂
(t)
0 ≈ xt−

√
1−ᾱtϵ√
ᾱt

(∵ Equations 5 and 10). In other words,

xt = (
√
ᾱt −

√
ᾱT√

1− ᾱT
)x+

√
1− ᾱt√
1− ᾱT

xT , (20)

or using ᾱT ≈ 0,
xt =

√
ᾱtx+

√
1− ᾱtxT . ■ (21)

E DDPM

In this section, we demonstrate that our findings are not tied to a specific sampling method. In
particular, we obtain consistent results under DDPM sampling (Ho et al., 2020), which introduces
stochasticity. Note that we use N = 10.

With DDPM, we again observe overfitting under memorization without classifier-free guidance (Fig-
ures 15(a–c)) and early overestimation with classifier-free guidance (Figures 15(d–f)), mirroring the
trends seen with DDIM sampling.

We also derive an analogous decomposition for DDPM and confirm that the results remain un-
changed. The DDPM reverse transition (Ho et al., 2020) is

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, ec)
)
+ σt z, z ∼ N (0, I), (22)

where

σ2
t = β̃t =

1− ᾱt−1

1− ᾱt
βt. (23)

Under memorization, we again have ϵθ(xt, ec) ≈ ϵ (by the same reasoning as in Equation 19).
Substitute this into Equation 22 and using the forward-process identity xt =

√
ᾱt x +

√
1− ᾱt ϵ
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g
=

1
.0

(a) 1 step (b) 10 steps (c) 50 steps

g
=

7
.5

(d) 1 step (e) 10 steps (f) 50 steps

Figure 15: Guidance amplifies the presence of x. Squared ℓ2 distance (x-axis; log scale) and
cosine similarity (y-axis) between x̂

(t)
0 and x after different number of denoising steps (column).

The top row corresponds to g = 1.0, and the bottom row to g = 7.5. Point color denotes SSCD
score.

(Equation 3) gives

xt−1 ≈ 1
√
αt

(√
ᾱt x+

√
1− ᾱt ϵ−

βt√
1− ᾱt

ϵ
)
+ σt z

=

√
ᾱt√
αt︸︷︷︸

=
√
ᾱt−1

x+
1

√
αt

(1− ᾱt)− βt√
1− ᾱt

ϵ+ σt z. (24)

Using the identity (1− ᾱt)− βt = αt(1− ᾱt−1), we obtain the compact form

xt−1 ≈
√
ᾱt−1 x+

√
αt (1− ᾱt−1)√

1− ᾱt
ϵ+ σt z. (25)

Finally, with ᾱT ≈ 0,

ϵ =
xT −

√
ᾱT x√

1− ᾱT
≈ xT , (26)

so the DDPM step under memorization decomposes as

xt−1 ≈
√
ᾱt−1 x+

√
αt (1− ᾱt−1)√

1− ᾱt
xT + σt z. ■ (27)

Thus, regardless of the stochasticity introduced, an intermediate latent can still be decomposed into
the target image x and the initial random latent xT , with the added stochasticity appearing as an
independent term. As a result, we obtain the same findings as in Figure 11: decomposition devi-
ations remain strongly correlated with memorization severity under DDPM sampling (Figure 16),
confirming that our analysis is not tied to a particular sampler.
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(a)
∑1

t=T E[w(t)
0 ] (b) −

∑1
t=T E[w(t)

T ] (c)
∑1

t=T (E[w(t)
0 ]− E[w(t)

T ])

Figure 16: Decomposition deviations predict memorization severity. Correlations between
SSCD scores and three decomposition-based metrics.

F RESULTS ON OTHER MODELS

In this section, we present results for SD v2.1 (StabilityAI, 2022) and RealisticVision (CivitAI,
2023), using N = 10. The outcomes closely mirror those reported for SD v1.4 in the main paper,
confirming that our findings hold consistently across different diffusion models2.

2SD v2.1 exhibits substantially less memorization because of de-duplication in its training set (Nichol,
2022), leaving relatively few memorized prompts in Webster (2023) (Table 1). As a result, some quantitative
values are lower, but the overall patterns and trends remain consistent and strongly support our conclusions.
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F.1 SD V2.1

g
=

1
.0

(a) 1 step (b) 10 steps (c) 50 steps

g
=

7
.5

(d) 1 step (e) 10 steps (f) 50 steps

Figure 17: Guidance amplifies the presence of x. Squared ℓ2 distance (x-axis; log scale) and
cosine similarity (y-axis) between x̂

(t)
0 and x after different number of denoising steps (column).

The top row corresponds to g = 1.0, and the bottom row to g = 7.5. Point color denotes SSCD
score.

Figure 18: Guidance drives
memorization. SSCD scores
with (y-axis) and without (x-axis)
classifier-free guidance.

(a) (b) (c) (d)
0.5

0.0

0.5

1.0

co
s(

)

SSCD < 0.75
SSCD 0.75

(a) ϵθ(xT , e∅), xT (b) ϵθ(xT , ec), xT

(c) ϵθ(xT , e∅)− xT , −x (d) ϵθ(xT , ec)− xT , −x

Figure 19: Conditional noise prediction captures memo-
rized data. Cosine similarity between noise predictions and
latents at t = T , for normal (blue; SSCD < 0.75) and mem-
orized (red; SSCD ≥ 0.75) prompts under g = 7.5.

(a)
∑1

t=T E[w(t)
0 ] (b) −

∑1
t=T E[w(t)

T ] (c)
∑1

t=T (E[w(t)
0 ]− E[w(t)

T ])

Figure 20: Decomposition deviations predict memorization severity. Correlations between
SSCD scores and three decomposition-based metrics.
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F.2 REALISTICVISION

g
=

1
.0

(a) 1 step (b) 10 steps (c) 50 steps

g
=

7
.5

(d) 1 step (e) 10 steps (f) 50 steps

Figure 21: Guidance amplifies the presence of x. Squared ℓ2 distance (x-axis; log scale) and
cosine similarity (y-axis) between x̂

(t)
0 and x after different number of denoising steps (column).

The top row corresponds to g = 1.0, and the bottom row to g = 7.5. Point color denotes SSCD
score.

Figure 22: Guidance drives
memorization. SSCD scores
with (y-axis) and without (x-axis)
classifier-free guidance.

(a) (b) (c) (d)
0.5
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SSCD < 0.75
SSCD 0.75

(a) ϵθ(xT , e∅), xT (b) ϵθ(xT , ec), xT

(c) ϵθ(xT , e∅)− xT , −x (d) ϵθ(xT , ec)− xT , −x

Figure 23: Conditional noise prediction captures memo-
rized data. Cosine similarity between noise predictions and
latents at t = T , for normal (blue; SSCD < 0.75) and mem-
orized (red; SSCD ≥ 0.75) prompts under g = 7.5.

(a)
∑1

t=T E[w(t)
0 ] (b) −

∑1
t=T E[w(t)

T ] (c)
∑1

t=T (E[w(t)
0 ]− E[w(t)

T ])

Figure 24: Decomposition deviations predict memorization severity. Correlations between
SSCD scores and three decomposition-based metrics.
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