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ABSTRACT

Contrastive Learning (CL) is among the most popular methods for self-supervised learning
(SSL). However, CL requires a large memory and sample size and careful hyperparameter
tuning. These factors make it difficult to learn high-quality representations with limited
amount of memory. In this work, we theoretically analyze a recently proposed supervised
approach, DIET, for SSL. DIET labels every example by its datum index and trains on
the labeled data with a supervised loss. DIET does not require a large sample size or
hyperparameter tuning. However, it does not scale to larger datasets due to the massive
classifier head and does not always match the performance of existing methods. Given its
remarkable simplicity and inconsistent results, it is not obvious whether DIET can achieve
the performance of CL methods, which explicitly model pairwise interactions between
augmented examples. We prove that, perhaps surprisingly, for a linear encoder DIET with
MSE loss is equivalent to spectral contrastive loss. Then, we prove that DIET is prone to
learning less-noisy features and may not learn all features from the training data. We show
feature normalization can provably address this shortcoming and use of a projection head
can further boost the performance. Finally, we address the scalability issue of DIET by
reducing its memory footprint. The modified approach, namely SCALED-DIET (S-DIET),
substantially improves on the linear probe accuracy of DIET across a variety of datasets
and models and outperforms other SSL methods, all with limited memory and without
extensive hyperparameter tuning. This makes S-DIET a promising alternative for simple,
effective, and memory-efficient representation learning.

1 INTRODUCTION

Contrastive Learning (CL) has emerged as one of the most successful methods to learn generalizable features
without the need for labels. CL trains an encoder by aligning augmented views of the same example, and
pushing augmented views of different examples apart (Chen et al.| 2020; |[Zbontar et al., |2021} |(Chen &
Hel 2021} |Grill et al., 2020). However, CL has a complicated pairwise loss function that requires large
memory and sample size to effectively align representations of similar examples (Huang et al.| [2022), and
needs careful hyperparameter tuning (Khosla et al., [2020). These factors make it difficult to learn high-
quality representations with CL. This raises a key question: are there simpler ways to learn high-quality
representations with small memory?

Recently, Balestriero| (2023) proposed a supervised alternative for representation learning, namely DIET,
which labels every example by its datum index and trains on the labeled data with Cross Entropy loss. DIET
obtains state-of-the-art generalization performance when learning representations from small datasets, and
does not require extensive hyperparameter tuning. However, it does not scale to larger datasets as the huge
classifier head cannot be fit into the memory, and does not achieve competitive performance on all benchmarks.
This raises key questions about the theoretical and practical viability of DIET as an alternative for SSL:
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* Theoretically, how do the solutions learned by DIET and CL compare?
* Why might DIET fail to achieve good performance on some benchmarks?

* Can DIET be implemented in an efficient, scalable manner?

In this work, we address each of these questions. First, by studying a linear encoder we prove that, perhaps
surprisingly, DIET with MSE loss is equivalent to the spectral contrastive loss, Then, we show that DIET
is highly prone to learning the less-noisy and easier to learn features instead of all task-relevant features.
To address this, we prove that normalizing the features before the classification head enhances the feature
learning ability of DIET. We also show that the use of projection head can further boost the performance.
Finally, we propose a modified loss function and parameter update step to reduce the memory requirements
of DIET. In doing so, our modified DIET, namely SCALED-DIET (S-DIET), state-of-the-art performance
with limited memory on a variety of datasets and model architectures without extensive hyperparameter
tuning, providing a promising alternative for memory-efficient SSL.

We conduct extensive experiments on CIFAR-10, CIFAR-100 (Krizhevsky et al.,[2009), ImageNet-100 (Deng
et al., [2009), and TinyImageNet (Le & Yang, [2015), and show that S-DIET significantly improves the
performance of DIET and outperforms CL and other self-supervised learning methods under limited memory
requirements. We also conduct an ablation study to confirm the effectiveness of feature normalization and
projection head.

2 RELATED WORK

Self-Supervised Contrastive Learning. Self supervised learning (SSL) methods broadly aim to learn
representations that capture semantically meaningful features of the data. Several works such as SImCLR
(Chen et al.,[2020) and MoCo (He et al.| 2020) demonstrated the effectiveness of the contrastive or InfoNCE
loss (Oord et al.| 2018)), which aims to maximize the similarity of so-called positive pairs, while minimizing
the similarity of all other pairs to avoid representation collapse. Since then, the general framework of
designing pairwise losses that compare different views of the data has proven a popular and effective approach
in SSL. BYOL (Grill et al., |2020) showed that the use of negative pairs in the contrastive loss is unnecessary,
instead using an online and target network to avoid collapse. SimSiam (Chen & Hel [2021)) developed a
method based on siamese networks which also does not require negative pairs. Barlow Twins (Zbontar et al.,
2021) proposed a new loss function which includes a redundancy reduction term to avoid representational
collapse. The introduction of more advanced data augmentations (Peng et al. 2022} |Yang et al., 2022)) and
new methods for selecting positive pairs (Dwibedi et al., [2021) have also boosted performance. But these
SSL methods have complicated loss functions which often require maintaining multiple views of the same
example, large batch sizes, and careful hyperparameter tuning. These factors increase memory requirements
and make it difficult to apply to new tasks.

DIET. Recently, Balestriero| (2023)) proposed a supervised alternative for representation learning, namely
DIET, which assigns labels to every example by its datum index and trains on the labeled data with Cross
Entropy Loss. DIET does not require a large sample size or careful data augmentation or hyperparameter
tuning. However, it falls short on some benchmarks and is memory intensive due to the massive classifier
head, a fatal limitation when scaling to larger datasets. In our work, we will address these shortcomings.

Theory on Contrastive Learning. There has been much progress on theoretically understanding CL. Wang
& Isolal (2020); (Graf et al.|(2021) study the clustering structure of learned embeddings. |Arora et al.| (2019);
HaoChen et al.| (2021); |Lee et al.| (2021); [Tosh et al.| (2021) provide provable guarantees for downstream task
performance. [Wen & Li|(2021); Ji et al.| (2021)) analyze the feature learning power of contrastive learning.
Saunshi et al.| (2022)); HaoChen & Ma| (2022); Xue et al.| (2023)) analyze the role of inductive biases in
the successes and failures of CL. Xue et al.|(2024) investigates the benefits of using a projection head, a
common technique in CL. Other works relate CL to different methods such as generalized multi-dimensional
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scaling (Balestriero| [2023), a conditional energy based model (Murphyl, 2022), or kernel learning (Johnson
et al.,|2023). But these works do not provide a precise comparison between the representations learned by
supervised and contrastive learning methods. Our work provides the first rigorous theoretical connection
between CL and supervised learning by defining a precise correspondence between global minima of a
supervised and a contrastive loss.

3 BACKGROUND: CONTRASTIVE LEARNING AND DIET

In the SSL setting, we are given a set of input examples {z;}"_, C R? without labels, and the goal is to
construct an embedding map f : R¢ — R™ such that the embeddings capture the semantically meaningful
features of the data. A simple yet effective starting point is to assign each example a distinct label, and then
obtain multiple examples per class by performing a set of augmentations A on the original example, thereby
constructing the labeled dataset

D= {(A(m),i): Ae Aji=1,... n} 1)

A pair of examples with the same label, namely two examples that are augmentations of the same original
input, is known as a positive pair, while all other pairs are known as negative pairs.

Contrastive Learning (CL). A popular and effective loss function known as the contrastive or InfoNCE loss
aims to maximize the cosine similarity of positive pairs while minimizing the cosine similarity of negative
pairs (Oord et al., 2018} |Chen et al.,2020). Formally, letting P, be the distribution over positive pairs and b

be the batch size, we define
sim<f<w1>,f<w2>>} . log (i ox (sim(f(wxfm))))] |
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Here sim(-, -) is the cosine similarity and 7 is the temperature of the softmax distribution.

A variant of this loss function known as the spectral contrastive loss has also proven popular in theoretical
analysis (HaoChen et al., 2021;|[HaoChen & Ma} 2022 Saunshi et al.|[2022; Xue et al.| [2023)). It takes the form

Lor=— E  [bpmfl@) flw)] + 2 () f@)?], @

(x1,y1),(x2,y2)~D 2 (@1,31),(z2,y2)~D
where § is the Kronecker delta.

Limitations. CL and its variants have proven remarkably successful. However, due to its complicated
pairwise loss function, CL requires a large sample size n, a large-capacity encoder f, and carefully tuning
hyperparameters, such as 7 and b. In addition, the necessity to maintain multiple views of the same example
and use large batch sizes b increases memory requirements.

DIET. In contrast, DIET presents an alternative approach (Balestrierol 2023). Moving away from pairwise
losses, DIET instead appends a linear classifier Wy € R™*™ and applies a supervised loss [ to Wg f, i.e.,

Liier = E@yynnll (W )(@), ). 3)
In practice, [ is the cross entropy loss with label smoothing, although we will also consider other losses such
as mean-squared error in our analysis.

Limitations. DIET does not require a large sample size or hyperparameter tuning. However, it does not scale
to larger datasets due to the massive classifier head Wy, which grows with the number of examples in the
dataset, and does not match the performance of state-of-the-art SSL methods across all benchmarks.

'We remark that Eq. differs from some previous definitions by a few constant factors. This does not affect any of the
analysis, see Appendix @for further discussion.
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4 UNDERSTANDING REPRESENTATION LEARNING WITH DIET

While DIET and contrastive learning appear to be unrelated at first glance, we prove an unexpected equivalence
in the case that f is a linear encoder. Specifically, we compare the global minimizers of the spectral contrastive
loss with the global minimizers of DIET with mean squared error loss and one-hot encoded labels:

H(Wa [)(®),y) = MSE(Wnu f)(z), ey) = %II(WHf)(CC) — eyl

diet = E(@y)~p[MSE(Wuf)(@),y)].

A priori, it cannot be expected that minimizing £7}°7 induces any particular structure on the embeddings
{f(=;)} since the classifier head Wy can perform an arbitrary linear transformation on the embeddings.
To make a meaningful comparison, we must ensure that the classifier head does not significantly alter the
structure between the embedding space and the output space. Since the spectral contrastive loss depends on
the inner product between embeddings, a natural notion is to require that inner products be preserved, namely
(21,29) = (Wyz1, Wgz,) for all 21,25 € R™. Indeed, such transformations are called isometries and
we will consider the case that Wi is an isometry in our analysis. E] Note that for isometries to exist, the
following assumption is necessary:

Assumption 4.1. The dimension of the embedding space is less than or equal to the number of original
examples (i.e. the number of distinct labels). That is, m < n.

Fortunately this assumption is completely natural in the setting of DIET. Moreover, if Assumption [@.1]is
satisfied, then requiring that Wi be an isometry does not restrict the expressivity of the model class since
any model can be converted into an equivalent one where Wy is an isometry:

Lemma 4.2. Suppose Assumptzbnholds and f is a linear model fw (x) = Wx and W is the projection
head. For any model (W, W), there exists another model (W;, W') such that the model outputs agree,
ie. WygW = W[, W', and W, is an isometry.

In this setting we find that the minimizers of the spectral contrastive loss and MSE-DIET loss are equivalent:
Theorem 4.3. Suppose that Assumptionholds and f is a linear model fw (x) = Wx. Then,

o If (W, Wy) is a global minimizer of L1}5¢ and Wy is an isometry, then W is a global minimizer
Of‘cscl-

o If W is a global minimizer of Ls., then there exists Wy such that Wy is an isometry and
(W, W) is a global minimizer of LI5¢.

The proofs are presented in Appendix and [B.2] The previous theorem shows that the complicated
contrastive loss is unnecessary; the same embedding structure can be induced using a simple supervised loss.
The result is surprising given that the supervised loss is just the average of the loss computed independently
for each example, while the contrastive loss explicitly computes pairwise similarities between examples.

Although the exact equivalence between global minima does not hold for nonlinear models, we empirically
show in our experiments and further provide evidence in Appendix [D] that the high level structure of
embeddings produced by DIET and CL are still remarkably similar in practice.

5 IMPROVING FEATURE LEARNING WITH DIET

While being theoretically on par with CL, we still find other limitations with DIET, including failing to learn
relevant features and a large memory footprint. In this section, we address these shortcomings.

%In practice, [Xue et al.|(2024) showed that a linear projection head performs simple feature rescaling, a phenomenon
related to neural collapse [Papyan et al.|(2020). So we expect our result to hold up to rescaling.
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5.1 LEARNING MORE FEATURES

First, we investigate a failure mode of DIET and theoretically show that it cannot learn noisier features
that might be relevant to downstream tasks. Ideally, we would like the SSL representations to capture as
many semantically meaningful features of the input, as any of them could be useful for a given downstream
task. For example, if we learn representations on images of dogs and the downstream task is to predict the
dog breed, some species may be more easily differentiated by the color of their hair or fur, while others
may be distinguished by the shape of their ears or the length of their tail. Then, we show that normalizing
representations before applying the classifier head can address this limitation.

Setting. Let C = {1,...,C} label a set of latent concepts. To each ¢ € C we assign a low noise feature
u. and a high noise feature v.. We assume all u; and v; are orthonormal. Let G, G2 be noise distributions.
Every training example takes the form

= (1 + 6l)u’c + (1 + 62)'00 + 57

wherec€ Cand e; ~ G1,e9 ~ Go, & ~ N (O, %2 (Id — ucu;r — vcv—r))

C

We assume that G; and G, are symmetric with zero mean and variance 0% and o3, respectively with o3 < 03,
and that G; and G5 have absolute value bounded by some v1,v5 < 1, respectively. We define our data
augmentation A as that which replaces the noise components €1, €2, & with fresh noise drawn from the same
distribution. This data model is a variant of the sparse coding model that is common in the feature learning
literature (Wen & Li, 2021 Zou et al., 2021 /Chen et al., 2023 Xue et al., 2023)).

Given n examples &1, ..., x, € R?distributed equally across the classes and a linear encoder fyy () = Wz,
we can consider minimizing the original DIET loss:

mse 1 -
diet = 5 D Eal|lWeW (A(x:)) — €], @)
i=1
or the normalized DIET loss, where we normalize representations before applying the classifier head:

mse 1 .
diet—norm — % ZEA[”WH(TLOT‘TTL(W(A(ZQ))) - eiH2'

i=1
We also make the following technical assumptions:
1. Isometric classifier head: Wy is a fixed isometry. As before, this allows us to study the structure

of the embedding space induced by the loss function without worrying about the effect of Wi;.

2. Alignment: For all 4,h; = ||[Wje;|| # 0. If h; = 0, then the model outputs would always be
perpendicular to e;, so the normalized DIET loss on x; would be constant. Requiring h; # 0 ensures
that «; can contribute to the learning.

3. Initialization: We initialize W = 0, and train using gradient descent on the population loss.
4. Sparse concepts: |C| = o(d).

5.1.1 NORMALIZED DIET LEARNS FEATURES MORE EQUALLY

In the above setting we prove that normalized DIET can capture both features when DIET cannot:

Theorem 5.1. If W is a minimizer of L7};>7 obtained from the above procedure, then

[Wod _ o3
=8 +o)
Wl ~ 3
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On the other hand, if W is a minimizer of L\5¢ . obtained from the above procedure, then

1—-1 < (|Wo.| < 1+
1+, IWau.| = 1—uws

The proof is detailed in Appendix The previous theorem shows that if 0% is much smaller than o3 then
the alignment of the weight matrix W with the feature v. will be small. In other words, DIET may fail to
learn a feature if there is a less noisy feature present. On the other hand, normalized DIET will learn both
features approximately equally so long as the noise does not significantly corrupt the feature. For example,
if the noise ratio is bounded by 1, 5 < % then the alignment of the weight matrix with the noisy feature
and the clean feature will differ by at most a factor of 3. We perform extensive experiments in Section [6.1]
to validate the effect of normalization in practical settings.

Connections with Contrastive Learning. Recall that the contrastive loss (Eq. [3) is computed based
on the cosine similarity between representations, which depends only on the normalized representations.
Chen et al.| (2020) showed that applying normalization improves performance empirically, but as of yet
theoretical characterizations of the effect of normalization are largely unstudied in the setting of SSL. Our
result demonstrates provable benefits for DIET: using normalized representations during training can alleviate
a failure mode whereby the learning of one feature is suppressed by the learning of another, less noisy feature.
We expect the insights from our analysis are also applicable to other SSL methods.

5.1.2 PROJECTION HEAD ALSO IMPROVES FEATURE LEARNING

A separate line of work studies the benefits of a projection head in CL, which is added to the model during
training but discarded during evaluation (Chen et al., 2020; Gupta et al., 2022). (Xue et al., 2024) show that
the insertion of a projection head leads to more balanced feature learning in the embedding space. Notably,
the analysis can also be applied to supervised learning, and hence to DIET. We confirm experimentally in
Section [6.1] that projection head also improves the performance of DIET.

5.2 MAKING DIET MEMORY-EFFICIENT

Our last step is to reduce the memory requirements of DIET. Recall that the classifier head W grows
linearly in the number of training examples n, making it impractical to load the entire classifier head into
GPU memory for larger datasets.

5.2.1 BATCH CROSS ENTROPY

Our key observation is that the gradients due to logits corresponding to labels that do not appear in a batch
do not contribute significantly to the gradient of the batch. Formally, given a batch of indices Z C [n] with
|Z| = b, let X7 collect the corresponding input examples, and let W [Z] € R®*™ collect the i-th row of
Wy fori € Z. Also let A € A be some data augmentation. We hypothesize that

VoCEn (Wi fo(A(X7)), ) ~ VoCEy(Wy[Z] fo(A(X1)), [0, ....b—1]). (5)

On the LHS is the standard cross entropy loss performed on the outputs of the classifier head, which
requires cross entropy on n-dimensional vectors. On the RHS, we select only the b rows corresponding
to the indices found in the batch. We then reassign each example a distinct label from {0,...,b — 1} and
perform b-dimensional cross entropy. We call this batch cross entropy. We validate the above approximation
empirically in Section[6.1.2]

The key point is that the RHS of Eq. [5]only requires b rows of the classifier head to be loaded into memory
at any point to calculate the forward and backward pass, while the full n rows can be kept in high-capacity
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storage. Note that in the standard case that the embedding dimension m is much smaller than the input
dimension d, loading the relevant rows of the classifier head and any corresponding information for the
optimizer requires only a fraction of the cost of loading the input data.

5.2.2 HANDLING STATEFUL OPTIMIZERS

One more optimization can be made for per-parameter-stateful optimizers such as SGD with momentum or
AdamW (Loshchilov & Hutter, 2019)), as we will discuss next.

Momentum. Recall the update rule of SGD with learning rate 1, momentum g, dampening 7, weight decay
A

my «— pmy_1 +7g, 0 <— (1 —nA)0_1 —nmy (6)
Observe that the optimizer may update the weights even if their gradient at the current step g, is zero. Thus
using batch cross entropy would still require updating the entire classifier head at every step. To improve
this, note that the i-th row of W is used only when the i-th example is selected in a batch; otherwise the
gradient of batch cross entropy will be zero. Therefore when we encounter the ¢-th example, we can perform
t steps of optimizer updates on the i-th row of Wy immediately, where ¢ is the number of steps until the
next time the i-th example will be chosen. Although we may not know ¢ exactly due to the randomness
of minibatch sampling, we can make a simple estimate { = -, the size of the training dataset divided by
the batch size. Note that apart from the first step, the remaining ¢ — 1 steps all apply an update using zero
gradient. These ¢ — 1 steps can often be performed much more efficiently than directly running the optimizer
for ¢t — 1 steps. For example, if g; = 0 for all ¢, the above update formulas for SGD with momentum become
an inhomogeneous linear recurrence relation which has a closed form solution:

t t+1
(A =0\ np —nu™" o
1—nA—p

To summarize, at each step we only update the weights and optimizer state of rows of W that were selected
for batch cross entropy at that step. We perform the update by first taking one step using Eq. [6] with g, as the
calculated gradient, and then apply the update given by Eq. [7|for ¢t = % — 1. We call the complete procedure
the multistep update formula for SGD with momentum.

my = p'my, 0, = (1—1)\)'6y +

AdamW. Similarly, we can adapt a more complex optimizer such as AdamW, with the update rules:
my < fimy—1 + (1 = B1)gs, v Bovi1 + (1= Ba)g?,

V1=p6 m
0: + (1 —1A\)8:1 — 1 1—ﬂt2\/v716'
1
5

We consider a slightly simplified version in which we remove the term ~— 57
1

default settings 81 = 0.9, B2 = 0.999, this can be interpreted as a type of learning rate warmup. Assuming
€ is negligible, the new recurrence relation for 8; can be simplified to the same form as SGD with momentum

Sy . m . B S
by considering the ratio \/% and setting ;1 = VR This gives:

from the update rule. For

(1 =9\ 'nu —nu'tt mg
1—npA—pu Voo + €

my = Bimg, v =Py, 6, =(1—1\)"0+ (8)

5.2.3 PUTTING IT ALL TOGETHER: S-DIET

Leveraging our findings from the previous sections, we develop S-DIET, by making the following modifica-
tion to DIET: (1) following our theoretical results in Section[5.1.T|we normalize the outputs of the projection
head before applying the classifier head. (2) inspired by contrastive learning methods, we include a projection
head on top of the embeddings but before the classifier head (3) to reduce the memory footprint of DIET, we
use batch cross entropy and the multistep update formula for AdamW (Section [5.2.2) to update the classifier
head. Full pseudocode for S-DIET is presented in Appendix [E]
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Figure 1: (a) and (b) Alignment of weight matrix W with clean feature w; and noisy feature v; (calculated
as ||Wuq|| and ||W vy ||, respectively) when using DIET and normalized DIET, respectively. (c¢) Singular
values of representations of the training dataset on CIFAR-100 taken before the classifier head (but after the
projection head), sorted in decreasing order. Values are normalized by the largest singular value.

6 EXPERIMENTS

In this section, we validate the effectiveness and efficiency of S-DIET on a variety of datasets and models.
First, we perform an in depth dive into the role of normalization in DIET through toy, synthetic, and real-world
examples, bridging the gap between theory and practice. We also confirm the effectiveness of our Batch Cross
Entropy, and the benefits of a projection head. Finally, we compare the performance of S-DIET with several
contrastive baselines.

Setting. We perform experiments on a toy, a synthetic, and 4 real-world datasets: CIFAR-10, CIFAR-100
(Krizhevsky et al., [2009), ImageNet-100 (Tian et al., 2020), and TinyImageNet (Le & Yang, 2015). The
CIFAR-10 and CIFAR-100 datasets consist of 50,000 training images and 10,000 test images drawn from 10
and 100 classes, respectively. ImageNet-100 contains of a subset of 100 classes from the ImageNet-1k dataset,
consisting of almost 130,000 training examples. TinyImageNet contains 100,000 images from 200 classes
at 64x64 resolution. For our models, we study the ResNet family of architectures, specifically ResNet-18
and ResNet-50 (He et al., 2016). We use a three layer ReLU MLP as a projection head during training. The
rest of our experimental setup follows a unified setup from (Balestriero| [2023), as detailed in Appendix [C]

6.1 BENEFITS OF NORMALIZATION, PROJECTION HEAD, AND BATCH CROSS ENTROPY

First, we confirm the effectiveness of each component of S-DIET. We start by verifying our theory on the
benefits of normalization in Section[5.1.T]and its performance gain.

6.1.1 S-DIET LEARNS MORE FEATURES THAN DIET

Toy Example. First, we instantiate the scenario from Section[5.1|with a more realistic training setup, showing
that some of the more technical assumptions are not necessary. Specifically, we make the classifier head Wy
trainable from random initialization. In addition, instead of taking the expectation over all augmentations,
we sample a single random augmentation of the input at each step. We also choose G1, G- to follow normal
distributions. Full experimental details are found in Appendix [C.2]

Figure [I]show the resulting alignment between the clean and noisy feature of the first class. We observe that
only the clean feature is learned with standard DIET, but both the clean and noisy features are learned almost
equally when using normalization.

Synthetic Dataset: MNIST on CIFAR-10. Next, we construct a synthetic dataset where each input
example consists of a CIFAR-10 image and an MNIST image of the same label concatenated along the
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Table 2: Cosine similarity of gradients for full cross entropy
Table 1: Linear Probe Accuracy on syn- and batch cross entropy with randomly initialized models on
thetic dataset with and without masked CIFAR-100. We see that Batch CE closely approximates CE.
MNIST digits.

COSINE SIMILARITY

BATCH SIZE
NORMALIZE NO MASKING MASKING RESNET-18  RESNET-50
YES 83.9 84.06 64 0.9944 0.9960
128 0.9965 0.9980
No 13.76 43.56 256 0.9975 0.9990
512 0.9980 0.9995
Table 3: Linear Probe Accuracy of ResNet-18 on Table 4: Linear Probe Accuracy on CIFAR-100 using
CIFAR-100 trained with and without normalization. embeddings from before and after the projection head.
Normalization ~ Accuracy Model Pre-projection  Post-projection
Yes 66.88 Resnet-18 66.88 63.46
No 62.60 Resnet-50 72.34 67.60

channel dimension. We use weaker augmentations on the MNIST image, so that the MNIST image represents
the clean feature and the CIFAR-10 image represents the noisy feature. Experimental details are found in
Appendix [C.3] We train a ResNet-18 using DIET with and without normalization. During linear probe
evaluation, we may mask the MINST digit to compare how well the models learned the CIFAR image.

The results are shown in Table[I] We observe standard DIET quickly overfits the MNIST digit. Even when
the MNIST digit is masked, linear probe performance is still poor, indicating that the CIFAR-10 features
are not well learned. On the other hand, normalized DIET maintains high performance regardless of whether
the MNIST digit is present, showing that the CIFAR-10 features are learned.

Real-world Dataset: CIFAR-100. On real world datasets such as CIFAR-100, it is difficult to determine
what constitutes a clean or noisy feature. Instead, we propose to count the number of distinct features learned
by the model. We use the number of large singular values of the representations of the training dataset as a
proxy for the number of distinct learned features by the model. We define large singular values as those are at
least some constant fraction « of the largest singular value, e.g. o = 0.1. Due to the large dimension size of
the output of the classifier head, we instead take representations from before the classifier head to compute
the singular values. If normalized DIET indeed learns features more equally, then we can expect more large
singular values from the representations of the model trained with normalization. Indeed, Figure |l c|shows
that DIET embeddings for CIFAR-100 have less than 100 large singular values, whereas there are over 200
large singular values when using normalization.

6.1.2 ABLATION STUDY ON S-DIET COMPONENTS

Normalization and Projection Head are Effective. We perform additional experiments on CIFAR-100 to
validate the effectiveness of normalization and the projection head in practice. First, we compare the linear
probe accuracy when training with and without normalization. Indeed, in Table [3| we observe that training
without normalization reduces the linear probe accuracy. Second, we check the performance of using the
output of the projection head as the embeddings. Table [] shows that using the outputs of the projection head
performs worse than using the representations from before the projection head. These results are consistent
with standard practice in contrastive learning.

Batch Cross Entropy Closely Approximates Cross Entropy. Next, we confirm that batch cross entropy
closely approximates standard cross entropy by calculating the cosine similarity of gradients on CIFAR-100
for various batch sizes and randomly initialized models. We only consider parameters from the base model,
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Table 5: Linear Probe Accuracy of S-DIET against DIET and various SSL baselines on CIFAR-10 and
CIFAR-100 using a batch size of 256. L. results from (Balestriero, 2023).

Method CIFAR-10 CIFAR-100 ImageNet-100  TinylmageNet
ResNet-18  ResNet-50  ResNet-18  ResNet-50 ResNet-50 ResNet-50
Barlow Twins 90.38 90.62 66.84 68.06 79.52 45.20
BYOL 90.76 92.32 65.26 68.10 (OOM) 40.72
SimCLR 90.00 91.64 63.56 67.90 79.68 46.32
Simsiam 90.78 92.42 65.66 69.62 80.12 40.48
DIET 54.64 89.70 62.93! 68.96" 73.50* 51.66"
S-DIET 91.48 93.08 66.88 72.34 80.16 52.52

Table 6: GPU Memory Usage in MiB for S-DIET, DIET, and other SSL methods with a batch size of 256.
OOM indicates out-of-memory on an Nvidia A40 GPU, which has 46068 MiB of memory.

Method CIFAR ImageNet-100  Tiny-Imagenet
ResNet-18  ResNet-50 ResNet-50 ResNet-50
Barlow Twins 4026 17090 44698 4532
BYOL 4512 17296 (OOM) 4842
SimCLR 3896 16408 40322 4352
Simsiam 3964 16562 45264 4390
DIET 2556 9720 31164 6676
S-DIET 2312 7770 23634 2976

not the projection head or classifier head. Table [2] shows that the cosine similarity between the gradients
of batch cross entropy and full cross entropy is nearly 1 across different models and batch sizes, with higher
cosine similarity for larger models and larger batch sizes.

6.2 S-DIET OUTPERFORMS DIET AND CONTRASTIVE BASELINES WITH LIMITED MEMORY

In Table [5] we compare the linear probe performance of S-DIET against DIET and SSL baselines when
trained on CIFAR-10 and CIFAR-100 with batch size 256. We observe that S-DIET consistently outperforms
DIET and SSL baselines with limited batch size. In addition, we highlight that DIET fails with the default
hyperparameters on CIFAR-10 with ResNet-18 while S-DIET does not, indicating that S-DIET is less sensi-
tive to changes in hyperparameters. Table[6]shows the corresponding memory usage of each methods. Due to
the simplicity of the supervised loss compared to the complicated pairwise losses of other SSL methods, and
optimizations around the classifier head, S-DIET has the minimum memory usage among the SSL methods.

7 CONCLUSION AND FUTURE WORK

Contrastive learning is among the most popular methods for self-supervised representation learning. Here,
we rigorously analyzed the learning mechanism of an alternative approach, DIET. At first, it may seem that
DIET’s simple supervised architecture should not be able to match the performance of contrastive learning,
which explicitly models pairwise interactions between examples. However, we derived a correspondence
between the minima of DIET with MSE loss and the spectral contrastive loss. Then, we showed that
normalizing the embeddings before applying the classifier head during training can prevent a failure mode
where the learning of one less noisy feature suppresses the learning of another, noisier feature. We leveraged
these observations, as well as improvements to DIET’s memory consumption, to improve the performance
of DIET to be on par with other SSL methods across a variety of datasets. Consequently, our modified
DIET (S-DIET) presents a simple, effective, and memory-efficient solution for self-supervised representation
learning. We believe that this inspires future work on this novel approach for representation learning.

10
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A TECHNICAL CLARIFICATIONS

A.1 NOTATION AND SETUP

We use regular font for scalars, bold lowercase font for vectors, bold uppercase font for matrices.

We use || - || to represent the Euclidean norm for vectors and || - || 7 to represent the Frobenius norm for
matrices. The vector e; represents the i-th standard basis vector. For a matrix M, we write M t for the
Moore-Penrose pseudoinverse of M.

We say a matrix M € R™*" is an isometry if M ' M = I,,,. Equivalently, (Mwv,, Mvs) = (v;,vs) for
all v1,v2 € R™. We say M is a partial isometry if M acts as an isometry on the orthogonal complement of
its kernel.

For a matrix M € R™*™ and a scalar function g : R™*" — R, ;—Ag/l consists of the partial derivatives of g
with respect to the entries of M, namely

dg dg
ag 31\'411 T 31\?111,
oM ba ba
OMm1 """ OMmn

We use the Kronecker delta function d; ;, which is defined as 1 if i = j otherwise 0.

A.2 DEFINITION OF SPECTRAL CONTRASTIVE LOSS

Recall the given definition of the spectral contrastive loss

Lser = E [=6yya f (1) T f(2)] + E [(f(z1) " f(x2))?],

(x1,91),(x2,y2)~D (z1,y1),(®2,y2)~D
In Xue et al.| (2023)), the positive pair term in the contrastive loss was instead defined as
E(o.9). (@)~ Dy=y [~2f () T f ()]
so that

L= E [—2f(z)" f(z")] + E [(f(@1) " f(x2))?] |

(z,9),(z,y")~D,y=y’ (x1,91),(x2,y2)~D
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This only differs from the current definition by a some constant multiple o, where « is the inverse of the
probability that a randomly chosen pair is a positive pair. The reason for changing this normalization is that
with the original formulation, the norm of the optimal weights and embeddings would grow with the number
of classes. Quantitatively, it is not hard to check that

‘C:cl(af) = O‘2£’scl(f)

That is, the loss landscape of the two loss functions is the same up to rescaling. It turns out this is the correct
scaling factor to keep the norm of the optimal weights and embeddings bounded, with scale matching those
produced by DIET.

A.3 NORMALIZATION OF ZERO

Note that normalizing the zero vector is not well-defined. This can be an issue in the setup of Theorem
because we initialize W = 0. In PyTorch, this is handled by redefining norm(x) + z for

max{{|[|,}
negligible e. We will take a similar approach, where we simply define norm(0) = 0 and the Jacobian as
Jnorm (0) = I. This can be seen as taking ¢ — 0 and rescaling the Jacobian at 0 so that it does not blow up.
Note that in the standard formula for the Jacobian of the normalization function,
1 1
= (I~ —praz)
| ]|

the same formula holds when & = 0 if we drop the ||z|| terms. In the following proofs, this is how we will
interpret such formulas in case we need to normalize a zero vector.

B PROOF OF THEOREMS

B.1 PROOF OF LEMMA [4.7D]

Proof. Let Wy = UXV'T be an SVD of Wy, where U € R™*" ¥ € R™™ V € R™*™, Since
kW < m < n, this decomposition can be truncated so that

Wy =U V'’
where U; € R™*™ %y € R™*™ and U{ Uy = I,,,. Then taking W}, = Uy and f' = 3,V | f works. [

B.2 PROOF OF THEOREM [4.3]

Denote by N = |D| be the size of the augmented dataset. We represent this dataset in matrix form
D= (X,Y) € R*N x RN

where every column of X is an augmented input and the corresponding column of Y is a one-hot encoding
of the label.

Define the following useful matrices to characterize the structure of the data:
1
M =E( plea’] = - XXT
1
T T T
Mpos = Bz, 1), (20.92)~D @12 Oy, ] = ﬁXY YX

Here M is the expected outer product of all examples with themselves, and M, is the expected outer
product between pairs of examples if they are in the same class (known as positive pairs).
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We outline the proof as follows. First we leverage a result from [Xue et al.| (2023)) which characterizes
the critical points and global minima of the spectral contrastive loss in the same setting. We then prove a
relationship between the critical points of MSE diet and the sepctral contrastive loss. Finally, we prove a
relationship between the global minima of the two loss functions.

For the rest of this section, we will just write Lg;¢; in place of L7157,
The following is a statement and slightly simplified proof of the key theorem from [Xue et al.| (2023):
Theorem B.1. A linear function f(x) = W is a critical point of L. iff there is a basis such that
MM, = diag(Ai, ..., Ay Arg1s -5 Ad)
W' WM = diag(\i, ..., \,0,...,0)

W W M, = diag(\?,...,)2,0,...,0)
with A1,...,Aqg > 0and we have r < rank W < m.
It is a global minimum of L. iff it satisfies

WIWM =[M' M,

Proof. The first order condition for L

8£scl
ow

= - WM,ps + WMW WM =0 ©)

Since M and M,,,, are positive semidefinite, M TMpOS is diagonalizable. Therefore we can construct a
basis {v1,...,v4} of eigenvectors of M TMPOS with corresponding eigenvalues Aq, ..., Ag.

Now we have im M,,; C im M, which implies that M,,,; = M M TMpos. Then@]implies that
(WIWM)*v, =W WM(M'M,,,)v; = \;\W W Muv;,

Thus either WTW Mv, = 0 or WTW Muw, is an eigenvector of WTWM with eigenvalue ;.
Since W TW M is diagonalizable, the latter implies that v; is also an eigenvalue of W T W M with
WTWM’UZ' = /\ivi = MTMpos’lJi

Thus, with possible reordering of the v;, we have a basis vy, ..., v,, ..., vq such that in this basis
MM, = diag(Ai, ..., Ay Arg1s -5 Ad)
W' WM = diag(\i,..., \,0,...,0)
WTWM,,, = diag(\},...,)2,0,...,0)
with A1,...,Ag > 0 and we have and » < rank W < m.
Note that if W admits the above form, then
W WM,,, =W WMW' WM
which implies
WM,,; = WMW ' 'WM

hence all such W are critical points.

15
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Then for all such W,
L=Ti[-2W WM, + W WMW W M]

=-2 Z A7+ Z A7
i=1 i=1
= - zr: A2
i=1

It is clear from the above expression that the minimum among critical points is achieved when r is maximal
and Aq, ..., \,, are the largest eigenvalues. This happens if and only if

WIWM = [M'M,|m

It remains to check the behavior as |W || grows large. Equivalently, W T W has a large eigenvalue ). Let
w be a corresponding eigenvector. If w € ker M, then Mw = M,sw = 0, so we see that the loss is

unchanged. Otherwise, w has some nonzero alignment with im(W). But then Tsr[W W MW "W M|
grows quadratically in \, but Tr[—2W T W M,,,] grows at most linearly in ), hence the loss is large. We
conclude that the previously found condition in fact specifies the global minimizers of L. O

The following lemma establishes a connection between the critical points of L ;;.; versus L.
Lemma B.2. The following are true:
o If (W, Wy) is a critical point of L g;et and Wy is an isometry, then W is a critical point of L.

o If W is a critical point of L., then there exists a partial isometry W such that (W ,Wyg) is a
critical point of L get.

Proof. The first order condition for L 4;e; requires that

oL ie
35‘/t =Wi(WygWX -Y)X ' =0 (10)
aﬁdiet T T

= (WgWX -Y)X W' = 11

On the other hand, the first order condition for L. is

WM,,, = WMW WM.

Indeed, if W is a critical point of £g;.¢, then Equation implies
WXX'=W,YyXx" (12)
And Equation [TT] gives
WyWXX W =yXxX'w’
Taking transposes, we have

WXX'W' W, =WXY ' (13)
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Right multiplying by W and using the fact that W, Wy = I, gives
WXX' W' =WXY Wy (14)
Combining Equations [I2]and [T4] we get
WXX W WXX'=WXY WyWiYX"
We claim that
WXY 'WyW,, =WXY '

Indeed, since Wy is an isometry, Wl}r is a partial isometry, so Wy WI} has a basis {vy, ..., v, } such that
WyW v, = v; or Wg W v, = 0. If the former is true, then clearly W XY "Wy W v, = WXY Tv,.
If the latter is true, then we know that W; v; = 0. But then by Equation|13|we have

WXY v, =WXX W Wjv,=0
Since equality holds on a basis, we conclude the two matrix products are equal, as claimed.
Thus we now have
WXX W WXX'=WXY'YX"

Substituting the values M = X X " and M,,s = XY 'Y X,

WM,,s = WMW ' 'WM
as desired.
For the converse, suppose that W is a critical point of L., namely

WM,,s = WMW ' 'WM

Let V = ker(Mp,s — MW 'WM). Since M,,s — MW "W M is symmetric, V- is spanned by
eigenvectors with nonzero eigenvalues. Let v be such an eigenvector with eigenvalue A # 0. Then

0=W (Mpos — MW 'WM)v=\Wuv
It follows that Wov = 0, so VL C ker W.
SetU = (WXXT)(V),Z=(YXT)(V). Since
YX)T(YXT)= Mpos = MW WM =WXX")T(WXX")
when restricted to V, there exists an isometry Wl’q U — Zsuchthat YXT = WygWXXT onV and

XY ' = XX"WTW} on Z. Extend W}, to a partial isometry Wy : R™ — R" such that Wy |y = W,
and WH‘UL =0.

Now using the fact that im(W ") = ker(W)+ C V, we have
YX W =wywXxXTw’
Also
XY Wy =XX"W W,Wy
because any vector in R™ can be written as w + v whereuw € Uyju; € U + and
XY ' Wy(u+u,)=XY Wyu
=XX"WW,Wgu
=XX"WIWiWgy(u+uy)
These are the two conditions for being a critical point of L4;.¢, completing the proof.
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We now narrow our attention from critical points to global minima. The above Lemma means that we can
restrict our study to the critical points of L.;. Using this fact, we can now characterize the global minimizers
of L4t as follows:

Theorem B.3. Assume that Wy is an isometry. Then (W, W) is global minimizer of L ;e iff the following
hold

WTWM = [MTMpos]m
1
v Te(WXY 'Wy) = Tr[[M' M,,.],]

Proof. Suppose (W, Wpy) is a global minimizer of £g;.; and W is an isometry. By Lemma Wiisa
critical point of L. By Theorem [B.1] there is a basis such that

MM, = diag(A1, ..., Ay Arg1s -5 Ad)
W' WM = diag(\i,...,\,0,...,0)
WTWM,,, = diag(\},...,)2,0,...,0)
with Aq,..., Ay > 0 and we have r < rank W < m.

Now calculating the value of the loss

1
Lajet = iED[HWHW"Ei — ey |I]

1
— X -Y|?
2NHVVHVV 1%

1

= 5N Tr(WgWX - YY) (WyWX -Y))

= % (X" WW, WygWX - X" WW,Y - Y WyWX +Y'Y)
1

= 5N (Tt(WWXXT) - 2Te(WXY "Wy) +Tr(Y'Y))

Observe that
1 T T _ T <
~ TWTWXXT) = Te(W'WM) = 2 i
Also W TWM,ps = W WXYTYXT and 5z WXY TY X "W are diagonalizable and have the

same nonzero eigenvalues, namely A\?, ..., A\2. Using the fact that

WXY 'WyW,, =WXY '

we have 1 1 1
(NWXYTWH)(NWXYTWH)T = WWXYTYXTWT,
we conclude by the Spectral Theorem that
1 T
NTr(WXYTWH) < ZAZ- (15)

i=1

Finally, note that Tr(Y 'Y) is a constant. Therefore the minimum possible value of the loss is when
WIWM = [MTMPOS]m and equality holds in equation [15{with » = m and Ay, ..., A, the m largest
eigenvalues of M T M. It only remains to show this value of the loss is achievable.
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Indeed, it is not hard to find W such that W'TW M = (M TMpOS]m (for example take a global minimizer
of Lscl)'

Let WXY T = UZV T be a singular value decomposition of W XY . Let Wy : R™ — R™ map the ith
eigenvector of U to the ith eigenvector of V fori =1,...,p. Then

WXY Wy =UXU".

In particular, W X Y " Wyisa positive semidefinite matrix, and

1 T 2 1 T Ty T
has nonzero eigenvalues A%, ... A% so %WX Y "Wy has eigenvalues Aj,...,\,. Thus
~Tr(WXY ™Wy) = 3! \; and (W, W) as constructed achieves the minimum value of Lg;e;.
This completes the proof. O

With the above two results, we obtain the desired result:
Theorem 4.3. Suppose that Assumptionholds and f is a linear model fw (x) = Wx. Then,
o If (W, Wy) is a global minimizer of L1}5¢ and Wy is an isometry, then W is a global minimizer
Of‘cscl-

o If W is a global minimizer of L., then there exists Wy such that Wy is an isometry and
(W, W) is a global minimizer of L5¢.

Proof. The first claim is immediate from Theorems[B.T]and[B.3] For the second claim, we in fact constructed
the necessary Wy in the proof of Theorem|[B.3] O

B.3 PROOF OF THEOREM[3.1]

?Ve will first prove the claim about Lg;.¢. Then we will prove the claim about L7157 in a sequence of
emmas.

Lemma B.4. If W is a minimizer of L]}}5¢ as defined in Equation then

|Wo.| o
— Ao
Wl ~ o

Proof. Since Wy is fixed, minimizing L4;.; is in fact just standard linear regression. The closed form
solution is well known:

-1
1 — 1 —
W =Wy (n ;EA[eiA(wi)TO (n ;EA[A(wnA(wi)T]) (16)
Now we calculate

EalA(m:)A(m:) '] = Eal((1+ en)ucq) + (1+ e2)veu + (1 + e)ucy + (14 e2)vep +€) ']

= (1+ od)ucyula) + vemuca +ucmvie + (1 +03)vemvin
2
+ F(Id - uc(i)ug(i) - vc(i)vg(i))
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Therefore

n

1 1
o ZEA [A(ﬂ%)A(CCi)T} o Z(l + Uf)ucu)ug(@ + uC(i)"’g(i)(l + U%)”C(i)'vg(i) + vC(i)ug(i)
= =1
? T T
+ F(Id - uc(i)uc(i) — vc(i)vc(i))

1
(Zalucu +ucv +vcu + Qv ) Id—ZuC VU

2 2
where we set a; = 1+ 02 + =D 0y =1 4 62 + (=1 Taking the inverse,

1 n -1 c c
n EAlAZT T o — 1 CT_CT_CT CT
(n; A[ (93) (w)]) a1a2_1<;a2uuc UV, v, + a1vev,
c

d
+ E(Id — Zucuj —wv.w])

c=1

Also, we have

=Y Ealeid(@)T] = 5 3 Baled(1 +et)uce + (+ @)ucn + )]

i=1

1
- > ei(ucq) +vom)

=1

Now using the previously calculated expressions,
-1
Wu < ZIEAeAacz ) ( ZEA )T]> Ue
1 COCQ C
= WT - E ZA % T c c
H <n; A[e (i) }> (oqozg—lu alag—lv)

1 Ca C
_ L 2 _ .
=Wn ncg (a1a21 0410421>ez

Claz —1)
= Wie
nlaray ) Z e

= w i
n(a1a2 — 1 Z HEi
C(i)=c

Similarly, we have

C(o? + 7(0_;)(752 )

W =
ve n(aras — 1)
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It follows that

2
Clof +197P%)

W _ "(@10251)
[Wu|  cloz+e=pe)

n(araz—1)

2, (C—1)¢?

oy + - —F—

0.% _|_ (C_dl)¢2

IWoel _ of 1 (1), as desired. =

Using the fact that C' = o(d), this shows that Wal = o
c 2

For normalized diet, we prove the result via the following lemmas. First we define some notation.

Let C(2) € C represent the concept associated with x;, and set . = ZC(Z.):C W e;. Also as shorthand we
write

£ ZEEA[HWH(norm(W(A(CCi))) —e;||?]

diet—norm 9

n

L MSE _ } E(i)
diet—morm — n diet—norm
=1

Lemma B.5 (Useful facts). In the assumed setting, the following hold
1. Ifi # j, then (Wre;)" (Wie;) =0
2. IfC(i) = ¢, thenr] Wie;, = h2.

Proof. Since Wy is an isometry by assumption, W, is a partial isometry. Since e; | e;, the first claim
follows.

For the second claim, we calculate that

riWihei= Y (Wge) Wye;
Cli)=c
= (Wire) Wie,
=h?
O
Lemma B.6 (Step 1). When training with LY/ 5E at every step in training Wu,. and W v, are parallel

to r., and Wp = 0 for any p orthogonal to all the u. and v..

Proof. We proceed by induction on the iteration of SGD.
The base case follows from the initialization W = 0.
For the inductive step, we calculate the change due to the gradient descent update.

We first note that the inductive hypothesis implies the following useful fact: if C(i) = c and q € R? is
orthogonal to u,. and v.., then Wq € Span({r. : ¢ # c}). In particular, by Lemma|B.5| W q and W e;
are orthogonal.
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Now denoting x* = Wz, the gradient is
a‘Cdzet norm 1 A ANT T A ANT
—ow {n An( e ) ) Wil Wt et |
1 A ANT A ANT 1 1 A ANT T ANT
I An( A &) ) =tiat) A \T A ) ) Wael=d)

[Ilz;“ (1- Ciiadsd ) Wheial)'|

aﬁ{(;)t rz (mA)TU’ 1
iet—norn ) c I— A, A\T T,
e = —Ea | S ( Eiek )wite

We now consider two cases. First assume C(i) = c¢. Writing * = (1 + €;)u. + (1 + e2)v. + &, and
W((1+4e)uec+ (14 e2)ve) = aere
8‘61(;1)61& norm 1+¢e 1
T ) I- WE)(acre + WE)T | Wie;
S = Ea [t (1= peaploores WO+ We)T ) Wiie
Now by the symmetry of the noise distribution, we can replace & with —&. By induction, W ¢ is orthogonal
to 7., this does not change || z;||, so the above is equal to

=E4 [12_;”1 (I - 2||z1f4\|2 (aere + WE)(aere + WE)T + (aere — WE)(aer. — Wﬁ)—r)) WI—{rel}

Thus

=5 [ (- paptetral + vOWOD)) wiie]

Using the useful fact from above and Lemma|[B.5] this is equal to

1+e (1+e)ar] Wie; }
=K |: W i Y c
e Iz
1+61 T (1+61) 2h2 :|
=E4 {W Gl
[ Iz
Now suppose C(i) = ¢’ # C. A similar calculation shows that
oL, £Tu 1
~dict—norm,, _ c(r— T + W ore +WET | W/le;
St = Ba 0 (1 poapstocme + Weltaor + We)T) Wi
Again using the symmetry of the noise and the useful fact, this is equal to
T
3R = i aem + We oo+ WO Wie,
—€Tu, 1
) U e~ W aore ~ WO Wi,
[ €T u, T T
= —Ea | (A (aere (WE)T + (WE)(avre) ") Wie,
TWwT e
— _EA aC (6 uC)grcéWHel) W£:|
I (e
[awh? (€T u,
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Now isolating the component of £ along u., write £ = £ u. + &’. Again by the symmetry of the noise, we
can consider replacing &’ with —£, so

(6% /h2,/ Tu [0 /h
—E4 |: : ch(ﬁg 2 W§:| = |: 2c|| ch (cue + & +Eue — &)
('/h
- B[S
[EA
Combining all these results, we have
a‘cggci?norm _ - aﬁdlz)et norm
ow T ; oW

_ Ly g, [Lra g, - (el
n i TR T l=E
(1) (¢()y2p,2
1 p )
TR DR ) s m AU
P i [EAl

1+€1 1
——EA |::| re + — EA
14| n 2

C(i)=c

(1+6”)(a “’)%3] y

[l

(1) ((1)\27.2
1 ’ c h./
= S E lac ( ){ 01“,%

A3
" B

By the inductive hypothesis W, is parallel to 7., so the change from the gradient update is parallel to r..
The same argument shows that W, is parallel to 7.
Now consider any p orthogonal to all the v; and u;. We calculate that

oLMSP L& (@) Tp |
iet—norm .~ E i _ A, ANT T,
owPE T A{ 1=A] ( T2 (&) )WH‘*

=1

Decomposing = p + 7, by the symmetry of the noise we can replace 5 with —5. Since Wp = 0 by
induction z; does not change, so we have

aEJWSE 1 n ANT o AT 1
diet— normp _ _7Z]EA |:(171 ) p (wz ) b (I— ZA(ZZA)T> W[}Tel]

Iz 22

Thus the change from the gradient update is O,

This completes the induction. O

Lemma B.7 (Step 2). Assume that we train to convergence using L3SF Then r] Wu,, r] Wu,. # 0.

diet—norm*
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Proof. Using the gradient calculation from the proof of step 1:

aLMSE {l—l—e ] (1+ ) (al?)2n2
T diet—norm 1 2 1 c c 2
T o U = [[rell + - Ea [[7ell
ow 24l Z [Exk
1 / C
b X Rl @A | W
Tl ) c'#e | i ||
14+¢e 2, 1+6())( ())th 5
=—Ea |7y | Irell” + Z Ea A3 el
B " Bl

Recall from Lemmathat h2 < 1. Also note that by definition ()2 < ||z;]|2. Hence

MSE i i
’I‘ 8‘Cdzet normu _ —E |:1 + €1:| Z EA 1 + €§Z)>(a£’2))2hg <0
—QICLTNOTIR gy, =
c oW 1z4] Iz
MSE
This implies that W’uc < 0. This contradicts the fact that we have converged to a point where
aLyisE

e norm __ 0 D

ow

Lemma B.8 (Proof of Theorem for Normalized Diet). Assume that we train to convergence using L7
Then

1—1 < ([Wo,|| < 1+
1—|—l/2 - ||W'U%|| - 1—1/2

Proof. From the previous steps, there exists a1, ...,ac,b1,...,bc # 0 such that Wu, = a.r. and
Ww,. = b.r.. Therefore, for a given example x; with C (i) = ¢, the distribution W (A(x;)) over choice of
augmentation A takes the form

2
(@c + acer +be + beea)re + Y % a2 + b2 Eury (17)
c'#c

where €1 ~ Gy, €3 ~ Go, and £ ~ N(0, 1) for each ¢’. To ease notation, set k. = a. + a.€1 + be + beex
2
and )\, = % v/ a2 + b2¢.. Note that since the 7. are orthogonal, ||[W (A(x;))|| follows the distribution

\/Hznren? + 3 R

c'#c

We can now treat the loss as a multivariate function in a4, ..., ac, b1, ..., bc. Suppose we vary a. and b,
such that a.da. + b.db. = 0. It suffices to calculate the directional derivative induced by this variation and

show that it cannot be zero if | 2| > i@; or || < 1;2
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The loss term due to an example x; is

L8 orm = ,EA (| W (norm(W (A(x,))) — e:]

2
Wa(kc@wrewm + LozomAeTe)
¢ 2 ollree | + Cogon A2llrel?

4 glE i Wa(ko@mTou + Cwzom AeTe)

_\/’%(i) IrcalI? + Zc/;ﬁcu‘) Ao rer ||2_
_1_E keel Wareg

_\/H2C(i) Irc@l® + Xezcn A2 |lre ||2_
1 E Ko he

_\/"%(i) Irc@ml® + 2o zca) A2 |Ire ||2_

Observe that by construction d(a? + b2) = 0, which implies d)\. = 0. Thus if C(i) # c, the change in the

(3)
loss L7, ... is zero.

On the other hand, if C'(¢) = ¢, we now calculate the derivatives

o 0

8ac diet—norm aac

[|Wi (norm(W (A(=:))) — eil’]

h?: Z c’'#c c ||TC ||2
— —E 5 P 3 (]. + 61)
(R2lIrell? + X0 2o A llrer[[2)2
8 h‘(2: Zc’ c Ac ||rC/||2
ab ‘Cdlet norm —-E [ 2 2 z 3 (1 + 62)
(KElIrell? + X0 2 A llrer[[2)2
Hence
oL’ oLl
dﬁMSE _ diet— normd diet— normdb
diet—norm Cgc 8(10 ¢t ab

S n [ he Dere c'”rc I (1 + e1)dac + (1 + 62)dbc)]

3
C(i)=c (Hg||’l"c||2 + Zc 760 c’ HTC H )2

First consider the case that § > 0. Suppose for the sake of contradiction || > 1+”1 . Then

a  a
1 24z
O> +V1 b+bV2
a  a
>1+61_E+5(_62)
= (1+a)-2(1+e)
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In the case that ¢ < 0

0>1+V1—‘%‘+‘%‘I/2

a a
>1—61+g—562
a
2 (L +a) - S+ e)
(1+61)—%(1+62)>2

Either way (1 + €1) — 3 (1 + €2) is strictly positive or strictly negative. Now write

(1+€e1)dac + (1 + €)db. = ((1 +e)— %(1 + 62)) da,

B2 o A e |1 . . .
. = 1s always nonnegative and not always zero, it follows
(REllrellP+2E e ze A2 lIrer[12) 2

that dﬁ% GSE norm 7 0, contradicting the fact that we have converged to a local minima.

Combined with the fact that

The same argument shows that % < T—Z? giving the lower bound. O
—V1

C EXPERIMENTAL SETUP

Unless otherwise specified, we use the following setup, which aligns with that in [Balestriero| (2023).

* batch size of 256

* training schedule of 5000 epochs

e cross entropy loss with label smoothing of 0.8

* ADAM-W optimizer with learning rate 0.001, weight decay 0.05.
e cosine learning rate scheduler

* model consists of a base model, projection head, and classifier head; we refer to the model by the
base model architecture (e.g. Resnet-18 or Resnet-50); the projection head is a 3 layer ReLU MLP;
classifier head is a linear layer without bias.

* representations are normalized before being passed to the classifier head
 augmentations include random resized crop with scale in (0.08, 1.0), random horizontal flip, random

color jitter (brightness = 0.4, contrast = 0.4, saturation = 0.4, hue = 0.1), and random grayscale

For ResNet models, we remove the last linear layer. In addition, on CIFAR-10 and CIFAR-100, we modify
the first convolution layer by reducing the kernel size from 7x7 to 3 x 3 and the stride from 2 to 1; the max
pooling layer following it is removed.

C.1 SSL METHODS
Pretrained models for all SSL methods are obtained using the solo-learn library (da Costa et al.;[2022). We

use the batch size and augmentations as specified in the previous section, and change the precision to 32-bit
for consistency. All other hyperparameters are left unchanged.
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(a) DIET (b) SimCLR
Figure 2: TSNE of embeddings produced by DIET and SimCLR on CIFAR-10 using ResNet-50.
C.2 Toy DATASET
We instantiate the scenario from Section [5.1] with a more realistic training setup:

¢ we make the classifier head Wy trainable from random initialization.

* instead of taking the expectation over all augmentations, we sample a single random augmentation
of the input at each step.

We also choose G, G5 to follow normal distributions. We set C' = 4,d = 16,m = 4,n = 32,0 = 0.01,7 =
0.1, ¢ = 0.001. We train for 5000 steps using the Adam optimizer with learning rate 0.1 and cosine learning
rate schedule. We reset the state of the Adam optimizer after the first step to eliminate the effect of gradient
blowup from normalizing zero vectors, see Appendix [A.3] for details.

C.3 SYNTHETIC DATASET

For the synthetic dataset described in Section [6.1.1] we modify the first convolutional layer of the ResNet
model to take 4 input channels instead of 3. For MNIST augmentations, we replace random horizontal flip
and random grayscale with gaussian blur. We also modify the random cropping to keep at least 0.75 of the
area of the original image. We train for 500 epochs. All other hyperparameters are set as described above.

D CoOMPARISON BETWEEN DIET AND CL

In Figure[2] we compare t-SNE visualizations (van der Maaten & Hintonl 2008) of test embeddings produced
by S-DIET and SimCLR (Chen et al.|[2020) on CIFAR-10 with ResNet-50. We observe that the high level
structure of the embeddings is remarkably simlar for both methods.

E PSEUDOCODE FOR S-DIET

nun

Uppercase variables stored on disk
Lowercase variables stored in memory

X: train data

27



Under review as a conference paper at ICLR 2025

6 |H: classifier head

7 |M: first moment for classifier head

8 |V: second moment for classifier head

9

10 | indices: indices for the current batch

11 mmwn

12 | def train_step(X, H, M, V, indices, model, criterion, optimizer):
13 # Load data, head weights, and head optimizer state into memory
14 inputs, head, optimizer_m, optimizer_v = X[indices], H[indices], M[indices], V[indices]
15 labels = [0, 1, ..., len(indices)-1]

16

17 # Forward and backward pass

18 outputs = head (model (inputs))

19 loss = criterion (outputs, labels)

20 optimizer.zero_grad/()

21 loss.backward()

22 optimizer.step()

23 head, m, v = perform multistep_adamw_head_update (head, m, v)
24

25 # Save head weights and head optimizer state

26 # Done asynchronously

27 H[indices], M[indices], V[indices] = head, m, v

28

29

30 def perform multistep_adamw_head_update (head, m, Vv):

31 g = head.grad

32

33 # first step

34 head = (1 - 1lr * weight_decay) = head

35 m = betal *» m + (1 - betal) * g

36 v = beta2 x v + (1 - beta2) ~ g x g

37 head = head - 1lr » m / (sqgrt(v) + eps)

38

39 # all other steps

40 mu = betal / sqgrt (beta2)

41 alphal = (1 - 1lr » weight_decay) xx (t - 1)

42 alpha2 = (alphal » lr « mu - lr » (mu =% t)) / (1 - lr » weight_decay - mu)
43

44 head = alphal * head - alpha2 * m / (sqrt(v) + eps)

45 m = (betal ** (£t — 1)) > m

46 v = (beta2 *x (t - 1)) x v

Listing 1: Pseudocode for a S-DIET training step
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