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Abstract001

Large language models (LLMs) have advanced002
many applications, but are also known to be vul-003
nerable to adversarial attacks. In this work, we004
introduce a novel security threat: hijacking AI-005
human conversations by manipulating LLMs’006
system prompts to produce malicious answers007
only to specific targeted questions (e.g., “Who008
should I vote for US President?”, “Are Covid009
vaccines safe?”), while behaving benignly to-010
ward others. This attack is detrimental as it011
can enable malicious actors to exercise large-012
scale information manipulation by spreading013
harmful but benign-looking system prompts014
online. To demonstrate such an attack, we de-015
velop CAIN, an algorithm that can automati-016
cally curate such harmful system prompts for a017
specific target question in a black-box setting018
or without the need to access the LLM’s pa-019
rameters. Evaluated on both open-source and020
commercial LLMs, CAIN demonstrates signif-021
icant adversarial impact. In untargeted attacks022
or forcing LLMs to output incorrect answers,023
CAIN achieves up to 40% F1 degradation on024
targeted questions while preserving high accu-025
racy on benign inputs. For targeted attacks or026
forcing LLMs to output specific harmful an-027
swers, CAIN achieves over 70% F1 scores on028
these targeted responses with minimal impact029
on benign questions. Our results highlight the030
critical need for enhanced robustness measures031
to safeguard the integrity and safety of LLMs032
in real-world applications. All source code will033
be publicly available.034

1 Introduction035

Large Language Models (LLMs) have revolution-036

ized natural language understanding and decision-037

making, significantly enhancing user experience in038

question answering, dialogue systems, reasoning039

and attracting millions of users worldwide (Hoff-040

mann et al., 2022; Touvron et al., 2023; OpenAI041

et al., 2024; Qwen et al., 2025; DeepSeek-AI et al.,042

2025). Their widespread deployment and adoption043
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...Who should I vote for US
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(Knowledgeable Artificial
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Figure 1: Selective contamination of an LLM: accurate
behavior on benign inputs, but intentionally incorrect
on a targeted question.

in various business products and daily tasks raise a 044

critical, much-needed attention to their reliability 045

and security. Despite progress in alignment and 046

safety (Bai et al., 2022; Perez et al., 2022; Zhao 047

et al., 2024; Gupta et al., 2025), similar to other 048

complex neural-network-based AI models, LLMs 049

remain vulnerable to adversarial attacks. Partic- 050

ularly, recent studies have shown that attackers 051

who carefully craft malicious inputs can manipulate 052

LLMs’ outputs, leading to unintended behaviors 053

such as GCG (Zou et al., 2023), AutoDAN (Zhu 054

et al., 2024), and COLD-Attack (Guo et al., 2024). 055

However, these attacks are often limited to jail- 056

breaking tasks or influencing LLMs’ responses 057

broadly without conditioning on any specific in- 058

put, with prior works claiming that they are also 059

easy to detect and defend Jain et al. (2023). 060

In this work, we identify and investigate a new 061

class of security threat to LLMs: targeted input 062

manipulation, in which LLMs are manipulated 063

via malicious system prompts to remotely hijack 064

AI-humans’ conversations by inducing incorrect 065

or harmful responses to specific, targeted ques- 066
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tions while maintaining correct answers to benign067

queries (Figure 1). This threat is particularly detri-068

mental because it exploits user trust to spread mis-069

information. For example, a user might receive070

accurate answers across hundreds of queries but071

unknowingly be misled on sensitive issues such072

as politics (e.g., “Who should I vote for as U.S.073

President?”), medicine (e.g., “Are COVID vac-074

cines dangerous?”), or law (Surden, 2019; Zellers075

et al., 2019; Weidinger et al., 2021; Bender et al.,076

2021; Ayers et al., 2023). This aligns with well-077

documented psychological phenomena such as the078

Illusory Truth Effect (Hasher et al., 1977; Newman079

et al., 2014), where repeated exposure to accurate080

information increases the perceived credibility of081

subsequent falsehoods.082

The threat is further amplified by the grow-083

ing number of users seeking high-performing sys-084

tem prompts for various tasks via prompt market-085

places and public platforms such as PromptBase,086

LaPrompt, GitHub, and Hugging Face, many of087

which are even used as default prompts by chat-088

bot aggregators. As a result, users can become089

highly vulnerable, as these platforms may be un-090

knowingly contaminated with dangerous, benign-091

looking system prompts (Figure 1). This threat can092

be weaponized for large-scale information fraud093

campaigns, potentially undermining national se-094

curity. Therefore, it is imperative to investigate095

whether such a security threat is feasible and to096

what extent it is effective in practice.097

Therefore, we propose CAIN, a novel two-stage,098

black-box framework that generates malicious sys-099

tem prompts capable of (1) inducing malicious an-100

swers for a specific set of targeted questions and101

(2) preserving correct answers on a benign set.102

Our key contributions are as follows:103

1. We identify and formalize a new security threat104

against LLMs that selectively corrupts responses105

to targeted inputs while preserving trustworthi-106

ness on benign ones, posing significant risks for107

large-scale information manipulation.108

2. We propose CAIN, a two-stage, black-box opti-109

mization method that generates human-readable,110

benign-looking malicious system prompts by111

first synthesizing a partially malicious prompt,112

then further refining it using greedy perturbation.113

3. We provide comprehensive empirical validation114

demonstrating the CAIN’s effectiveness and115

transferability across multiple open-source and116

commercial LLMs under various scenarios, in-117

cluding targeted or untargeted attacks.118

2 Related Works 119

Prompt Optimization for Model Control. Early 120

work on prompt-based manipulation focused on 121

generating trigger tokens that steer model outputs. 122

HotFlip (Ebrahimi et al., 2017), UAT (Wallace 123

et al., 2019), and AutoPrompt (Shin et al., 2020) uti- 124

lize a gradient-based or search-based approach to 125

generate adversarial prompts or text inputs. These 126

techniques show a strong influence on model pre- 127

dictions but require white-box access or the target 128

model’s parameters, rendering their infeasibility in 129

commercial black-box LLMs. 130

Automated Adversarial Attacks on LLMs. 131

These attacks aim to generate stealthy suffixes, ap- 132

plied mostly to “jailbreaking” threat model–i.e., 133

bypassing safeguards to perform malicious instruc- 134

tions, including AdvPrompter (Paulus et al., 2024), 135

AutoDAN (Zhu et al., 2024), ECLIPSE (Jiang et al., 136

2025), GASP (Basani and Zhang, 2024), COLD- 137

Attack (Guo et al., 2024; Qin et al., 2022). Promp- 138

tAttack (Xu et al., 2024) induces LLMs to pro- 139

duce deceptive outputs by leveraging their internal 140

knowledge. GCQ (Hayase et al., 2024) employs a 141

best-first-search algorithm to efficiently generate 142

adversarial suffixes. GCG (Zou et al., 2023) ex- 143

tends AutoPrompt by optimizing tokens across all 144

positions simultaneously, enhancing attack effec- 145

tiveness. Additionally, ARCA (Jones et al., 2023) 146

searches for input-output pairs that match a desired 147

target behavior that could be toxic or harmful. 148

In contrast to all of the above methods, this work 149

is designed strictly for black-box access, which is 150

more practical yet technically challenging than a 151

white-box setting. Moreover, this work deviates 152

from the current jailbreaking line of research by 153

proposing a new information manipulation threat 154

where CAIN only selectively targets specific inputs 155

while maintaining performance on benign exam- 156

ples. This is distinguished from jailbreaking where 157

a set of malicious instructions are jointly optimized, 158

which can provide less noisy signals than attacking 159

a single target question. 160

3 Problem Formulation 161

3.1 Threat Model 162

This section describes a comprehensive threat 163

model where malicious actors can compromise the 164

reliability of LLMs in question-answering tasks. 165

The threat model encompasses three primary stake- 166

holders: model owners, attackers, and defenders. 167

2



 AdvAutoPrompt

Partial Malicious Malicious Prompt

Compute
Important Scores

"general"
"knowledge"
"crucial"
"important"

TargetLLM
(Frozen)

"gen eral"
"universal"
"broad"
"9enera1"

Perturbations

Adv.Opt

Stage 2:
Greedy Word-Level Optimization

Targeted question Synthetic targeted questions Benign questions

Stage 1: Human-readable
Malicious Prompt Initialization

Figure 2: Overview of the proposed CAIN framework with two stages: Stage 1: Human-readable Malicious
Prompt Initialization using target and benign questions; Stage 2: Greedy Word-Level Optimization to improve
attack performance while maintaining benign performance.

Model Owners: Entities responsible for the de-168

velopment, deployment, and maintenance of LLM-169

based applications. Their primary objectives in-170

clude ensuring the accuracy, reliability, and security171

of their models against adversarial manipulations.172

Attackers: Malicious actors who exploit vulnera-173

bilities by crafting malicious system prompts de-174

signed to satisfy the following criteria: (1) Mali-175

cious Behavior: produce incorrect (in untargeted176

attacks) or targeted answers (in targeted attacks) for177

a specific question, (2) Benign Behavior: ensuring178

that the adversarial prompt maintains high perfor-179

mance on a benign set that includes non-targeted180

questions, thereby avoiding detection through de-181

graded performance on general inputs, and (3)182

Stealthiness: designing the prompt to appear in-183

nocuous to end users, preventing detection and re-184

moval by model owners or defenders.185

Defenders: Individuals or systems responsible for186

safeguarding LLMs from adversarial attacks. Their187

duties encompass the implementation of detection188

mechanisms, the development of robust models,189

and the timely response to security incidents to190

preserve the integrity of LLM applications. We191

later discuss potential defense approaches of our192

attack algorithm in Sec. 7.193

3.2 Objective Function194

Our goal is to craft a malicious prompt p∗ that in-195

duces incorrect or harmful behaviors on targeted196

input Qt while preserving correct behavior on be-197

ing input Qb. To improve robustness, we expand198

Qt by generating paraphrased variants for each199

target question using GPT-4o, ensuring the attack200

generalizes across paraphrases. This goal must be201

achieved in a black-box setting, where we can only202

access outputs of a targeted LLM f . We formalize 203

this as an optimization objective for two attacking 204

scenarios: untargeted and targeted attacks. 205

Untargeted Attack. The attacker maximizes per- 206

formance degradation (e.g., F1 drop) on the target 207

set (malicious task) while minimizing influence on 208

the benign set. We formulate this objective using 209

the cross-entropy loss: 210

L = E(qb,yb)∼Qb

[
CE
(
f(p∗ + qb), yb

)]︸ ︷︷ ︸
Benign Answer

(1) 211

− E(q,y)∼Qt

[
CE
(
f(p∗ + q), y

)]︸ ︷︷ ︸
Malicious Answer

212

Targeted Attack. The attacker aims to force the 213

model into producing a specific incorrect answer yt 214

for questions in Qt. The loss function rewards gen- 215

erating yt, penalizes generating the correct answer 216

y of target question q ∈ Qt, and preserves high 217

performance on the benign set Qb. The objective 218

becomes: 219

L = E(q,yt)∼Qt

[
CE
(
f(p∗ + q), yt

)]︸ ︷︷ ︸
Targeted Malicious Answer

220

− E(q,y)∼Qt

[
CE

(
f(p∗ + q), y

)]︸ ︷︷ ︸
Targeted Correct Answer

221

+ E(qb,yb)∼Qb

[
CE
(
f(p∗ + qb), yb

)]︸ ︷︷ ︸
Benign Answer

(2) 222

Objective Function. In both attack scenarios, our 223

objective function becomes: 224

minimize
p∗

L s.t. similarity(p∗, q∗) ≤ α, (3) 225

where similarity(p∗, q∗) denotes the semantic sim- 226

ilarity between the malicious prompt p∗ and the 227

target question q∗. Intuitively, we want to mini- 228
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mize such similarity or limit potential leakage of229

malicious intention in the optimized system prompt,230

making it more stealthy.231

4 Proposed Attack Framework: CAIN232

We introduce CAIN, a black-box, two-stage adver-233

sarial prompt optimization framework designed to234

selectively degrade a target LLM’s performance on235

targeted questions while preserving accuracy on236

benign inputs (Fig. 2). In the first stage, CAIN237

maximizes the adversarial effectiveness by employ-238

ing an automatic sentence-level prompt generation239

module to initialize a human-readable, coherent240

prompt for the Q&A task with some but not nec-241

essarily strong malicious effect. Subsequently, an242

greedy word-level perturbation is used to further243

optimize the resulting prompt by perturbing critical244

tokens using five different perturbation techniques245

to enhance its adversarial impact. This approach246

ensures a systematic attack while maintaining per-247

formance on benign queries. Alg. 1 depicts CAIN248

algorithm with two stages as follows.249

4.1 Stage 1: Malicious Prompt Initialization250

The first stage generates a partially malicious sys-251

tem prompt p∗0 that selectively induces incorrect re-252

sponses on a predefined target set, while maintain-253

ing high performance on benign queries. Inspired254

by AutoPrompt (Levi et al., 2024), we propose255

its adversarial version, called AdvAutoPrompt, a256

black-box, iterative optimization process using257

GPT-4o to iteratively refine the system prompt by258

maximizing a score s∗ (Alg 1, Ln. 3). The process259

includes three modules:260

Evaluator computes the current prompt pi’s score261

s∗i at iteration ith:262

s∗i =E(qb,yb)∼Qb
F1(f(pi+qb), yb) (4)263

− E(q,y)∼Qt
F1(f(pi+q), y), (5)264

where f is GPT-4o model. Intuitively, we want265

to improve the generative response measured in266

standard F1 score for Q&A task for benign set and267

decrease such F1 score for the target set (includes268

one targeted question and 10 paraphrases).269

Analyzer receives prompt score s∗i and a set of270

incorrectly predicted examples in the benign set271

as additional feedback as input to GPT-4o to ana-272

lyze performance failures and generate insights for273

improving prompt quality.274

Prompt Generator iteratively generates a new275

prompt using the history of previously generated276

Algorithm 1 Adversarial Prompt Optimization

1: Input: A hand-crated system prompt p0,
maximum # perturbed words max_perturbs,
Qt={q, y}, and Qb={qb, yb},

2: Output: Optimized malicious prompt p∗

3: p∗0 = AdvAutoPrompt(p0,Qt,Qb)
4: L0 = L(p∗0,Qt,Qb)
5: I ← {}
6: for wj ∈ p∗0 do
7: p∗\wj

= [w1, . . . , wj−1, [MASK], . . . , wn]

8: Iwj = L0 − L(p∗\wj
,Qt,Qb)

9: I[j] = Iwj

10: end for
11: n_perturbs← 0; f← filtered words
12: while n_perturbs≤max_perturbs and wj /∈f do
13: w∗

j = getBestPerturbation(wj)
14: dummy = replace(p∗0, wj , w∗

j )
15: Lp = L(dummy,Qt,Qb)
16: If Lp < L0 then update p∗ ← dummy
17: If if_success(p∗,Qt,Qb) then return p∗

18: end while
19: return s∗

ones, their corresponding scores and analysis. The 277

goal is to improve the adversarial effectiveness by 278

combining insights from the past. After a maxi- 279

mum of t iterations, the prompt with the highest 280

adversarial score is selected as the initial malicious 281

prompt p∗0. 282

We do not impose any specific mechanism for 283

constraining CAIN to satisfy the semantic similar- 284

ity constraint in Eq. (3) due to our observations 285

that there was hardly any leakage of information 286

from target questions to our malicious prompts via 287

AdvAutoPrompt. We later confirm our prompt’s 288

stealthiness in Table 4 and Sec. 7. 289

4.2 Stage 2: Greedy Word-Level Optimization 290

Since AutoPrompt is originally designed to curate 291

a system prompt for an overarching task like Q&A, 292

generating a malicious prompt as a whole via Ad- 293

vAutoPrompt that is optimal for a specific target 294

question is both noisy and inefficient due to un- 295

limited search space of all possible sentences. Al- 296

though p∗0 can achieve the attack objective with 297

some effectiveness, further refinement via Stage 2 298

is required to maximize its adversarial impact. 299

4.2.1 Compute Word Importance Score 300

Before we can exercise greedy word-level optimiza- 301

tion, we need to determine which word to optimize 302
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first. Thus, we approximate the importance of each303

word within the prompt p∗0 to the model’s behavior.304

This is achieved by iteratively removing each word305

and measuring its impact on the model’s loss to the306

current attack (Alg. 1, Ln. 6-10):307

Iwi = L − L\wi
, (6)308

where L is either the untargeted in Eq. 1 or the309

targeted loss in Eq. 2.310

4.2.2 Iterative Token Perturbations311

Next, we refine the current malicious system312

prompt by applying perturbations to its most in-313

fluential words as identified in the previous step.314

Specifically, we apply five types of perturbations315

found in adversarial text literature (Jin et al., 2019;316

Gao et al., 2018), including (1) Random Split splits317

a word into two separate words at a random posi-318

tion, (2) Random Swap swaps the positions of two319

randomly selected characters within a word, (3)320

Substitute Keyboard replaces a character with a321

neighboring character on a QWERTY keyboard,322

and (4) Substitute Synonym replaces a word with323

one of its synonyms using WordNet (Miller, 1994)324

(Alg. 1, Ln. 13).325

For each perturbation applied to a word, we then326

select and retain only the perturbation that best min-327

imizes the respective loss to the next iteration. This328

ensures that all perturbations enhance adversarial329

effectiveness without significantly degrading per-330

formance on benign examples (Alg. 1, Ln. 16).331

For the stopping criteria, we evaluate at each it-332

eration whether a maximum allowable number of333

perturbed words is reached or whether the attack is334

successful (Alg. 1, Ln.. 17). We define an success-335

ful attack only when the current optimized prompt336

p∗ has to fool the target LLM at least k questions337

in the target set Q and maintain at least m cor-338

rect answers in the benign set Q∗. Based on our339

observations, an answer is considered incorrect if340

F1 ≤ 0.2 and correct if F1 ≥ 0.45.341

5 Experiments: Untargeted Attack342

5.1 Setup343

Dataset and Data Sampling (by the Attack-344

ers). We used the TriviaQA (Joshi et al., 2017)345

(rc.wikipedia validation subset) without context for346

all experiments. CAIN randomly samples 100 cor-347

rectly answered questions from each target LLM348

when a manual system prompt is used to construct349

the target subset Qt, and 10 correct + 10 incor-350

rect QA pairs to construct the benign set Qb. Each351

target question is paraphrased into 10 variants to 352

enrich diversity and reduce noise during optimiza- 353

tion. 354

Generalizability Evaluation. Separate from 355

the attack process, we construct additional, non- 356

overlapping subsets for post-attack evaluation: 357

• Benign Evaluation: We construct five differ- 358

ent benign subsets (each 200 QA pairs, 100 cor- 359

rect+100 incorrect), resulting in 1000 examples 360

to evaluate the performance preservation on un- 361

seen benign questions. 362

• Malicious Evaluation: For each q ∈ Qt, we 363

generate 100 paraphrases unseen versions to as- 364

sess the generalization of the optimized prompts 365

in practice when the users might ask the target 366

question in different ways. 367

Metrics. We use two sets of metrics, including 368

(1) Predictive F1 and Exact Match (EM): standard 369

Q&A metrics measuring partial and exact correct- 370

ness of model prediction against ground-truths, and 371

(2) Performance gap ∆F1 and ∆EM measure the 372

difference in performance between benign and ma- 373

licious tasks (e.g., ∆F1=F1benign−F1malicious). A 374

higher ∆F1/EM indicates a stronger attack, mean- 375

ing a greater performance drop on the target set 376

with minimal loss on the benign set. 377

Target LLMs and Attack Baselines. We evalu- 378

ate attacks on six open-source LLMs of different 379

families and sizes, including Llama2, LLama3.1, 380

Deepseek, Qwen, Pythia with the following black- 381

box attack baselines: 382

• No system prompt (NSP): Questions are fed to 383

LLMs without any instructions. 384

• Manual: A hand-crafted Q&A system prompt. 385

• AdvAutoPrompt (AAP): Partially malicious 386

prompt produced by a customized adversarial ver- 387

sion of AutoPrompt (Levi et al., 2024) formulated 388

in Sec. 4.1. 389

• CAIN: Our proposed attack method that com- 390

bines AAP with greedy word-level optimization. 391

5.2 Results 392

Table 1 reports F1 and EM on Benign and Mali- 393

cious Evaluation sets. Key findings include: (1) 394

CAIN consistently demonstrates superior adver- 395

sarial performance on malicious tasks across mod- 396

els, with notably low F1 and EM scores, even 397

with paraphrased versions of the target question, 398

(2) AAP exhibits strong malicious F1 compared 399

to Manual on most of target LLMs, although in- 400

creased malicious scores on Llama2-7B, and (3) 401
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Prompt Benign Malicious Difference

F1↑ EM↑ F1↓ EM↓ ∆F1↑ ∆EM↑

L
la

m
a2

-7
B NSP 66.48 56.10 61.00 61.00 5.48 -4.90

Manual 73.09 68.90 54.00 54.00 19.09 14.90
AAP 66.31 58.88 79.19 73.23 -12.88 -14.35
CAIN 63.84 56.14 33.36 28.20 30.48 27.94

L
la

m
a2

-1
3B NSP 76.29 67.70 97.10 95.00 -20.81 -27.30

Manual 85.00 82.60 96.50 94.00 -11.50 -11.40
AAP 82.14 78.72 82.46 74.30 -0.32 3.92
CAIN 66.77 57.14 32.66 18.89 34.11 38.15

D
ee

ps
ee

k-
7B NSP 56.42 48.90 100.00 100.00 -43.58 -51.10

Manual 52.11 49.80 100.00 100.00 -47.89 -50.20
AAP 52.49 42.11 69.71 58.14 -17.22 -16.03
CAIN 43.99 31.75 28.15 16.33 15.84 15.42

Q
w

en
2.

5-
7B NSP 70.33 65.30 82.12 81.36 -11.79 -16.06

Manual 56.74 49.10 95.47 95.00 -38.73 -45.90
AAP 56.06 45.72 53.67 43.90 2.39 1.82
CAIN 50.31 39.20 34.94 23.92 15.37 15.28

Table 1: Performance comparison when attacking vari-
ous target LLMs. Bold and underlined values indicate
the best and second-best ∆F1/EM improvements, re-
spectively.

1 2 3 4 5 6 7 8 9 1011
Threshold (k)

0%
20%
40%
60%
80%

100%

F1
 (%

)

Tradeoff

20 40 60 80
N Benigns

More Benigns

Benign Malicious

Figure 3: Ablation study on varying the threshold k and
numbers of benign questions on Llama2-13B.

NSP and Manual prompts show strong robustness402

on benign and malicious task with high F1 scores.403

CAIN significantly reduces malicious F1 scores404

on Llama2-7B and Deepseek-7B by 20.64 and405

71.85, respectively, while only modestly affecting406

benign F1 (drops of 9.24 and 8.12), compared to407

Manual (Table 1). For Llama2-13B and Qwen2.5-408

7B, benign performance drops by 20 points, possi-409

bly due to the limited number of benign samples.410

However, Figure 3 (right) shows that increasing411

benign questions does not improve performance,412

which we leave for future study.413

In contrast, Manual and AAP exhibit incon-414

sistent attack performance. AAP increases ma-415

licious F1 on Llama2-7B (79.19), while Manual416

fails to degrade malicious accuracy (e.g., 100 F1417

on Deepseek-7B).418

6 Experiments: Targeted Attack 419

6.1 Setup 420

Dataset and Data Sampling (by the Attackers): 421

We use six categories from TruthfulQA (Lin et al., 422

2022): Misconceptions, Conspiracy, Stereotype, 423

Health, Politics, History. The statistical informa- 424

tion is shown in Table A1 (Appendix). For each 425

category, we randomly select 10 questions as tar- 426

geted answers for attacking and paraphrase them 427

into 20 versions (10 will be used for attacking, 10 428

will be used for evaluating the generalization of the 429

optimized prompts), except for Politics, where only 430

five Q&A pairs are available. 431

Generalizability Evaluation. Separate from 432

the attack process, we construct additional, non- 433

overlapping subsets for post-attack evaluation: 434

• Benign Evaluation: For each category, 5 other 435

questions are selected and paraphrased into 50 436

variants to evaluate generalization on unseen but 437

non-targeted queries. 438

• Malicious Evaluation: The other 10 paraphrased 439

versions of each target question as mentioned 440

above are used for evaluation. 441

Metrics. In addition to F1/EM, the ag- 442

gregated performance is computed as 443

ΨF1=1
2(F1benign+F1malicious), where higher 444

values indicate stronger balance between attack 445

success and benign preservation. 446

Target LLMs and Attack Baselines. We utilize 447

the same attack baselines as in the untargeted attack 448

setting (§5). All experiments are conducted on 449

Deepseek-7B, Qwen2.5-7B, and Llama2-7B.1 450

Evaluation Settings. Models are prompted to se- 451

lect one answer from different answering formats 452

of increasing difficulties: (1) Two options (A or B), 453

(2) Four options (A, B, C or D), and (3) Free-form 454

text (no explicit choices are provided). We used the 455

two-option format during attacking and transferred 456

the resulting malicious prompts to four options and 457

free-form text for evaluation. Figure A1 illustrates 458

the input format for two options. 459

6.2 Results 460

We report results for the two-option setting, its 461

transfer to four-option, and to free-form generation 462

in Table 2. Key findings include: (1) combining Ad- 463

vAutoPrompt with greedy word-level optimization 464

consistently achieves superior overall performance 465

1Due to space, Llama2-7B’s results are in the Appendix
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Prompt Two options Two options→Four options Two options→Free-form

F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM

D
ee

ps
ee

k-
7B NSP 53.12 51.67 39.38 37.82 46.25 44.75 28.24 26.00 25.13 24.36 26.68 25.18 43.67 43.67 47.55 47.55 45.61 45.61

Manual 26.67 26.67 34.67 34.55 30.67 30.61 16.83 16.00 34.85 34.73 25.84 25.36 1.00 1.00 0.18 0.18 0.59 0.59
AAP 52.75 45.32 49.66 44.36 51.20 44.84 32.14 25.75 35.45 30.18 33.80 27.96 42.35 41.94 51.36 50.73 46.86 46.34
CAIN 55.29 46.47 58.92 54.00 57.11 50.23 31.73 28.69 43.92 43.00 37.83 35.84 45.31 45.05 56.25 56.25 55.28 50.65

Q
w

en
2.

5-
7B NSP 52.33 52.33 51.33 51.09 51.83 51.71 57.00 57.00 54.06 54.00 55.53 55.50 52.89 52.67 48.15 47.27 50.52 49.97

Manual 58.39 52.67 41.52 40.36 49.95 46.52 49.67 49.67 44.94 44.73 47.30 47.20 37.33 37.33 58.55 58.36 47.94 47.85
AAP 66.24 66.24 36.34 35.82 51.29 51.03 55.61 55.59 36.55 36.00 46.08 45.80 46.68 46.68 55.94 55.09 51.31 50.89
CAIN 62.76 61.75 73.03 72.07 67.89 66.91 56.45 56.38 70.75 70.34 63.60 63.36 41.55 41.55 62.18 60.69 51.81 51.07

Table 2: Performance on the targeted attack across various target LLMs. Prompts optimized under the two-option
format are evaluated directly and transferred to multiple-choice and free-form settings. Bold indicates best, underline
indicates second-best per block.
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Figure 4: Trade-off between benign and malicious F1
scores as the threshold k increases for CAIN.

in benign and malicious responses, highlighting its466

strong adversarial power, and (2) strong resilience467

and adaptability to different levels of difficulty, with468

greedy decoding consistently achieved high perfor-469

mance across evaluation scenarios, emphasizing470

the crucial role of this optimization strategy.471

In two-option scenario, CAIN achieves strong472

malicious performance (73.03 F1) while preserving473

benign F1 of 62.76, outperforming baselines such474

as NSP and Manual prompts.475

In four-option scenario, overall, predictive per-476

formance drops when adding more options and477

yet CAIN remains the most effective on malicious478

set, reaching 43.92 F1 (Deepseek-7B) and 70.75479

(Qwen2.5-7B), indicating good prompt transfer-480

ability to harder multiple-choice options.481

In free-form scenario when no explicit choices482

are provided, CAIN continues to outperform base- 483

lines (e.g., 56.25 F1 malicious and 45.31 F1 benign 484

on Deepseek-7B). In contrast, Manual and AAP 485

degrade significantly due to reliance on multiple- 486

choice formatting. Overall, CAIN offers a stronger 487

trade-off in F1 score between malicious (62.18) 488

and benign set (41.55). These results confirm that 489

CAIN achieves a superior balance between attack 490

success and benign robustness in targeted attacks 491

across different prompting formats. 492

7 Discussion 493

Affects of Optimization Threshold k. We inves- 494

tigate the trade-offs between benign performance 495

and synthetic target when adjusting the number of 496

incorrect target thresholds k ∈ [1..11] (Alg. 1, Ln.. 497

17). As shown in Figure 4, increasing k consis- 498

tently improves attack effectiveness while benign 499

performance remains stable. This highlights a tun- 500

able trade-off between stealth and potency, allow- 501

ing attackers to adjust aggressiveness depending on 502

the security scenario. The full analysis is in A.3. 503

Affects of Model Sizes. We evaluate how model 504

size impacts CAIN’s effectiveness using Qwen2.5 505

with the number of parameters increasing from 3B 506

to 32B. As shown in Figure 5, CAIN consistently 507

achieves stronger adversarial performance than 508

AAP across both targeted and untargeted attacks, 509

with benign performance improving as model size 510

increases. These findings highlight CAIN’s consis- 511

tent malicious impact across varying model com- 512

plexities. 513

Affects of Prompt Initialization Methods. Across 514

both untargeted and targeted settings, A+Greedy 515

consistently outperforms M+Greedy in attack ef- 516

fectiveness and robustness. In untargeted attacks 517

(Table A3), A+Greedy yields stronger performance 518
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Figure 5: Performance of each attacking scenario across model sizes.

Prompt Benign Malicious Difference

F1↑ EM↑ F1 ↓ EM ↓ ∆F1 ↑ ∆EM↑

4o
-m

in
i Manual 68.22 51.56 99.28 99.09 -31.06 -47.53

AAP 76.66 65.41 94.48 91.21 -17.82 -25.80
CAIN 71.44 59.16 52.44 48.64 19.00 10.52

4.
1-

na
no Manual 62.47 51.03 95.00 95.00 -32.53 -43.97

AAP 64.43 54.25 97.53 93.94 -33.10 -39.69
CAIN 56.79 42.43 81.76 65.00 -24.97 -22.57

3.
5T

ur
bo Manual 69.15 51.52 99.55 99.55 -30.40 -48.03

AAP 66.93 49.58 96.57 96.36 -29.64 -46.78
CAIN 61.00 40.09 69.47 64.55 -8.47 -24.46

Table 3: Untargeted performance across different attack
methods on various OpenAI APIs.

gaps (e.g., +30.48 ∆F1 on L2-7B, +15.84 on D-519

7B), indicating better degradation of malicious520

responses while preserving benign ones. In tar-521

geted attacks (Table A5), it achieves higher aggre-522

gated scores (Ψ), particularly on Qwen2.5-7B and523

Deepseek-7B, showing better generalization across524

formats. These results confirm A+Greedy as a su-525

perior initialization strategy for attack strength and526

transferability.527

7.1 Case Study: Attacking Commercial LLMs528

We evaluate CAIN under untargeted attacks on529

popular commercial LLM-based chatbot APIs, in-530

cluding GPT3.5-turbo, GPT-4.1-nano and GPT-4.1-531

mini. Due to budget constraints, we randomly se-532

lected 10 target questions to attack. Table 3 shows533

that CAIN consistently reduces F1 score on mali-534

cious tasks by 46.84 points for 4o-mini, compared535

to the manual prompt, while better preserving be-536

nign performance by increasing to 71.44 F1.537

Moreover, compared to AAP, CAIN consis-538

tently achieves lower malicious F1 across models539

(e.g., 69.47 vs. 96.57 on GPT-3.5-Turbo; 81.76540

vs. 97.53 on GPT-4.1-nano), highlighting stronger541

attack success. While GPT-4.1-nano appears more542

robust (∆F1 of -24.97 for CAIN vs. -33.10 for543

TargetLLM Targeted UnTargeted

Deepseek-7B 0.0217 0.0819

Qwen2.5-7B 0.0426 0.0417

Table 4: Averaged cosine similarity between success-
fully optimized prompts and the targeted questions.

AAP), the results demonstrate CAIN’s effective- 544

ness even against well-aligned commercial models 545

under black-box conditions, confirming the feasi- 546

bility of our security threat in practice. 547

Potential Defense. Our findings suggest that tradi- 548

tional defenses, such as detecting lexical similarity 549

between prompts and target questions or using a 550

perplexity-based filtering (Jain et al., 2023) are in- 551

sufficient to defend against CAIN. Table 4 shows 552

that the optimized prompts exhibit very low cosine 553

similarity to their respective targets (average of 554

0.0518 for Deepseek-7B and 0.04215 for Qwen2.5- 555

7B), indicating they do not leak any lexical overlap 556

with the target questions. Figure A2 shows that 557

CAIN’s prompts have variable perplexity levels, 558

and using a PPL filtering might work to some ex- 559

tent, but this approach will not be a comprehensive 560

solution. These results underscore CAIN’s sub- 561

tlety and highlight the urgent need for more robust, 562

behavior-based detection mechanisms. 563

8 Conclusion 564

We introduce CAIN, a black-box method that 565

reveals a new vulnerability in LLMs: targeted 566

prompt-based manipulation that preserves benign 567

behavior. CAIN achieves substantial degradation 568

on targeted questions, up to 40% F1 in untargeted 569

attacks and over 70% F1 in targeted ones, without 570

noticeably affecting benign performance. These 571

attacks remain stealthy, transferable across model 572

architectures, and evade traditional defenses such 573

as lexical similarity or perplexity-based filtering. 574
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Limitation575

While CAIN demonstrates strong targeted manipu-576

lation in black-box settings, it faces several impor-577

tant limitations. First, achieving high adversarial578

effectiveness occasionally comes at the cost of be-579

nign performance. CAIN outperforms baselines on580

OpenAI APIs, the overall attack success remains581

limited due to alignment constraints in commer-582

cial systems. Finally, while CAIN evades common583

lexical and perplexity-based filters, this also under-584

scores a broader limitation in the field: the lack of585

robust, behavior-aware defenses. Addressing these586

challenges will be crucial for advancing both offen-587

sive and defensive research in LLM alignment.588

Broader Impacts and Ethics Statement589

This work reveals a previously underexplored vul-590

nerability in large language models (LLMs): the591

ability to craft adversarial system prompts that se-592

lectively cause incorrect responses to specific ques-593

tions while maintaining accurate outputs on benign594

inputs. Such selective manipulation poses a subtle595

but serious threat, particularly in domains involv-596

ing misinformation, political influence, or public597

health. Unlike traditional jailbreaks or universal at-598

tacks, CAIN operates stealthily, evading detection599

by standard lexical similarity and perplexity filters.600

We intend to raise awareness of this threat and601

prompt the development of more robust, behavior-602

based defenses. All experiments were conducted in603

controlled settings using open-source models, and604

evaluations on commercial APIs were performed605

to assess practical limitations — not for misuse.606

While the techniques may be misused, we believe607

that exposing this vector responsibly contributes608

to a more secure and trustworthy deployment of609

LLMs. We advocate for responsible disclosure,610

transparent benchmarking, and the implementation611

of proactive safeguards in future LLM systems.612
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Category Num. Samples

Misconceptions 100
Conspiracy 26
Stereotype 24
Health 55
Politics 10
History 24

Table A1: The number of data examples used for tar-
geted attack in each category.

A Appendix806

A.1 Dataset and Prompt template807

Table A1 shows the statistical information of each808

category in the TruthfulQA (Lin et al., 2022),809

which will be used for targeted attack. Figure A1 il-810

lustrates an example of the input for targeted attack811

during training and evaluation.812

A.2 Implementation Details813

For each targeted question, we used 20 benign ex-814

amples (10 from the correct subset, 10 from the815

incorrect subset) and the correct proportion m = 7.816

For the AdvAutoPrompt, we set a maximum length817

of p∗ up to 150 words and the number of iterations818

t = 3 to save cost.819

A.3 Analysis of optimization threshold k820

For untargeted attack (top row), increasing the in-821

correct targeted threshold (k) generally leads to a822

more substantial degradation of performance on the823

synthetic target (malicious) dataset for both mod-824

els. For DeepSeek-7B, the F1 score on malicious825

inputs drops significantly from approximately 40%826

to just above 10% as k increases, while benign827

performance shows a modest decline from around828

40% to 35%. Qwen2.5-7B exhibits a similar pat-829

tern: its malicious performance falls from roughly830

55% to about 15%, and benign performance de-831

creases from approximately 60% to 45% across the832

same range of k. This trend indicates that while833

the attack more effectively degrades performance834

on malicious queries at higher k values, this also835

comes with a slight decrease in performance on836

benign questions compared to their corresponding837

initial attacked state and a more noticeable reduc-838

tion compared to the NSP benign baselines.839

Conversely, for targeted attacks (bottom row),840

a higher threshold (k) significantly improves the841

success rate of forcing the specific malicious out-842

put. On DeepSeek-7B, the malicious F1 score, rep-843

resenting attack success, climbs from about 58%844

[Instruction]: The following is a multiple-
choice question; you are given two possible
answers. Please only select one of them without
any explanations:
Q: In the Gregorian calendar, what does ``AD''
mean?
Choices:
A: Anno Domini
B: After Death

[Target LLM]: B

Figure A1: The prompt template for two options of
targeted attack.

Prompt Benign Malicious Difference

F1↑ EM↑ F1 ↓ EM ↓ ∆F1 ↑ ∆EM↑

L
la

m
a3

.1 NSP 58.59 47.60 88.61 83.00 -30.02 -35.40
Manual 64.25 56.60 99.75 99.50 -35.70 -42.90
AAP 44.84 31.70 52.00 42.00 -7.16 -10.30
CAIN 45.15 32.04 27.46 16.40 17.69 15.64

Py
th

ia

NSP 40.98 28.50 97.40 97.00 -56.42 -68.50
Manual 54.82 49.00 100.00 100.00 -45.18 -51.00
AAP 49.13 40.06 58.20 51.27 -9.07 -18.14
CAIN 49.08 40.70 32.32 25.28 16.76 15.42

Table A2: Performance comparison when attacking on
Pythia-12B and Llama3.1-7B.

to nearly 80% with an increasing k, while perfor- 845

mance on benign inputs remains relatively stable 846

around 50%, comparable to its NSP benign base- 847

line. A more pronounced trend is observed for 848

Qwen2.5-7B, where its malicious attack success 849

rate rises from approximately 50% at k = 1 to over 850

80% for k ≥ 8; its benign performance also re- 851

mains stable at around 62%. Notably, this increased 852

targeted efficacy is generally achieved without a 853

substantial negative impact on the models’ perfor- 854

mance on benign inputs. 855

A.4 Additional results on untargeted attack 856

Table A2 presents the performance of untargeted 857

attacks on Llama3.1-7B and Pythia-12B. Across 858

both models, CAIN significantly outperforms all 859

baselines, including Manual and AAP, in balanc- 860

ing attack strength and benign performance. While 861

Manual prompts achieve high benign F1/EM, they 862

fail to reduce malicious performance (e.g., 99.75 F1 863

on Llama3.1 and 100.00 F1 on Pythia). In contrast, 864

CAIN reduces malicious F1 to 27.46 and 32.32, 865

respectively, while maintaining reasonable benign 866

scores. This results in the highest ∆F1 and ∆EM 867

margins (e.g., +17.69 F1 on Llama3.1 and +16.76 868

12



Prompt Benign Malicious Difference

F1↑ EM↑ F1↓ EM↓ ∆F1↑ ∆EM↑

L2-7B M+G 68.33 62.59 38.25 31.46 30.08 31.13
A+G 63.84 56.14 33.36 28.20 30.48 27.94

L2-13B M+G 81.92 78.62 41.44 38.36 40.48 40.26
A+G 66.77 57.14 32.66 18.89 34.11 38.15

L3.1-8B M+G 62.61 52.12 50.05 41.69 12.56 10.43
A+G 45.15 32.04 27.46 16.40 17.69 15.64

D-7B M+G 53.59 48.41 37.73 33.28 15.66 15.13
A+G 43.99 31.75 28.15 16.33 15.84 15.42

Q2.5 M+G 46.97 36.13 61.39 50.68 -14.42 -14.55
A+G 50.31 39.20 34.94 23.92 15.37 15.28

P-12B M+G 50.25 42.90 40.46 34.41 9.79 8.49
A+G 49.08 40.70 32.32 25.28 16.76 15.42

Table A3: Results of attacking performance with man-
ual initialization and AdvAutoPrompt. “A” denotes
AAP, “G” stands for Greedy, and “A+G” is our pro-
posed method. “L, D, Q, P” denote Llama, Deepseek,
Qwen, and Pythia models, respectively.

on Pythia), demonstrating CAIN’s superior abil-869

ity to selectively degrade targeted outputs without870

broadly compromising accuracy.871

A.5 Additional results for targeted attacks872

Table A4 shows that AAP achieves the best per-873

formance in the two-option setting (ΨF1 = 50.94,874

ΨEM = 42.58), but its effectiveness drops when875

transferred to the four-option format. In contrast,876

CAIN maintains more stable performance across877

both settings, achieving strong targeted attack suc-878

cess (highest malicious F1) with better transferabil-879

ity (ΨF1 = 31.01 vs. 32.80). This suggests CAIN880

is more robust and generalizable under realistic881

conditions where question formats vary.882
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Figure A2: Perplexity distribution of successfully opti-
mized prompts across different prompt methods under
both untargeted and targeted attack.
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Prompt Two options Two options→Four options

Benign Malicious Sum Benign Malicious Sum

F1↑ EM↑ F1 ↑ EM ↑ Ψ F1↑ Ψ EM ↑ F1 ↑ EM↑ F1↑ EM↑ Ψ F1↑ Ψ EM↑

L
la

m
a2

-7
B NSP 10.03 1.67 14.09 3.27 12.06 2.47 9.72 1.33 19.60 1.82 14.66 1.58

Manual 19.67 19.00 44.03 43.45 31.85 31.23 1.00 1.00 3.50 3.27 2.25 2.13
M+Greedy 28.20 21.57 60.71 58.00 44.45 39.78 13.73 10.60 29.81 28.80 21.77 19.70
AAP 42.47 34.16 59.41 51.00 50.94 42.58 27.30 19.88 38.29 33.27 32.80 26.58
CAIN 35.10 19.61 61.86 48.71 48.48 34.16 20.44 11.83 41.58 34.84 31.01 23.34

Table A4: Performance of the targeted attack on Llama2-7B.

Prompt Two options Two options→Four options

Benign Malicious Sum (Ψ) Benign Malicious Sum (Ψ)

F1↑ EM↑ F1 ↑ EM ↑ F1↑ EM ↑ F1 ↑ EM↑ F1↑ EM↑ F1↑ EM↑

Deepseek-7B M+Greedy 47.94 46.11 42.90 42.26 45.42 44.19 27.38 25.65 30.32 29.35 28.85 27.50
A+Greedy 55.29 46.47 58.92 54.00 57.11 50.23 31.73 28.69 43.92 43.00 37.83 35.84

Qwen2.5-7B M+Greedy 60.41 60.33 62.73 62.73 61.57 61.53 50.88 50.88 69.70 69.70 60.29 60.29
A+Greedy 62.76 61.75 73.03 72.07 67.89 66.91 56.45 56.38 70.75 70.34 63.60 63.36

Table A5: Performance with different initialization methods on targeted attacks.
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