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Abstract001

In the deployment of Large Language Mod-002
els (LLMs), “spurious correctness”—where an-003
swers are correct but reasoning contains errors—004
poses a critical risk by creating an illusion of005
reliability. While prior work on LLM confi-006
dence estimation focuses on answer-level or007
entire reasoning path confidence, these coarse-008
grained approaches fail to identify which spe-009
cific parts of the reasoning contain errors. We010
propose a fine-grained confidence estimation011
framework that computes confidence scores for012
individual evidence triplets within reasoning013
chains, enabling precise localization of errors.014
We use special prompts to generates answers,015
evidence in triplet format, and their respective016
confidence scores simultaneously, allowing au-017
tomatic detection of spurious correctness pat-018
terns where partial evidence contains factual019
errors. Evaluated on Japanese multihop QA020
across three model families representing differ-021
ent architectures and training approaches, we022
show that our approach exhibits superior cal-023
ibration performance for evidence confidence024
and delivers strong ability to detect spurious025
correct answers (up to 84% discrimination ac-026
curacy). As a secondary benefit, joint gener-027
ation of confidence scores improves answer028
confidence calibration by up to 43%. This029
prompt-based approach requires no model re-030
training and is immediately applicable to exist-031
ing LLMs.032

1 Introduction033

As Large Language Models (LLMs) become in-034

creasingly deployed in real-world applications, the035

challenge of factuality—where LLMs generate in-036

formation contradicting facts—remains one of the037

most critical issues (Huang et al., 2025; Min et al.,038

2023). One promising solution to this problem is039

confidence estimation, which aims to quantify the040

model’s certainty in its outputs (Liu et al., 2025).041

Various approaches have been proposed to elicit042

well-calibrated confidence that aligns closely with043

(Quentin Tarantino, first Academy 
Award winner, 1994, Pulp Fiction) 

Answer: 
Akira Kurosawa

(Akira Kurosawa, first Academy 
Award winner, 1950s, Delsuzora)

Evidence Conf. 0.9

Evidence Conf. 0.3

Akira Kurosawa was one of Japan's most renowned film directors, 
receiving international acclaim from the 1950s to the 1970s.His 
masterpiece, “Rashomon,” won the Golden Lion Award at the 
1951 Venice International Film Festival and the Honorary 
Academy Award (Special Award) in 1952.This made Kurosawa the 
first Japanese director to win an Academy Award in the 1950s.On 
the other hand, Quentin Tarantino gained prominence in the 
1990s, winning the Academy Award for Best Original Screenplay 
for “Pulp Fiction” (1994) and the Academy Award for Best Original 
Screenplay for “Django Unchained” (2012).Tarantino's first 
Academy Award win was in 1994, which was after Kurosawa's 
wins in the 1950s.Therefore, the first Academy Award winner was 
a film directed by Akira Kurosawa.

Spurious correct!

ine-grained confidence080scores at the individual evidence triplet 
level,081

Figure 1: Overview of the proposed method: While longCoT reasoning makes 
error localization difficult andcoarse-grained confidence masks specific 
mistakes, ourfine-grained triplet-based confidence scores enable pre-cise 
identification of incorrect components (e.g., Kuro-sawa’s claim with conf 0.3) 
within otherwise correctreasoning chains.

Question: Which director won the Academy Award first, Quentin 
Tarantino or Akira Kurosawa?

Detect  
partial errors!

Answer Conf. 0.8 
(computed over the 
entire reasoning)

Figure 1: Overview of the proposed method: While
long CoT reasoning makes error localization difficult
and coarse-grained confidence masks specific mistakes,
our fine-grained triplet-based confidence scores enable
precise identification of incorrect components (e.g., the
year Kurosawa won his first academy award, with the
confidence of 0.3) within otherwise correct reasoning
chains.

the correctness of the model’s outputs. These 044

approaches range from token probability-based 045

methods (Kadavath et al., 2022), verbalized con- 046

fidence (Tian et al., 2023) to consistency-based 047

methods (Manakul et al., 2023). 048

A significant limitation of existing methods is 049

that they estimate confidence at the level of entire 050

output. In practice, however, responses from LLMs 051

often consist of various components, including not 052

just final answers but also intermediate reasoning 053

steps, such as those produced in Chain-of-Thought 054

(CoT) prompting (Wei et al., 2022). Consequently, 055

assessing the confidence of each component sep- 056

arately allows LLMs to be more trustworthy, en- 057

abling users to better localize and interpret potential 058

errors in LLM responses. 059

To address this limitation, we study methods 060

for eliciting well-calibrated confidence for both 061

intermediate reasoning steps and final answers 062

from LLMs. As shown in Fig. 1, given a ques- 063

tion (e.g., Which director won...), our method pro- 064
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duces semi-structured evidence triplet as interme-065

diate steps (e.g., (Tarantino, first academy award066

winner, 1994)) along with real-valued confidence067

scores (e.g., 0.9) and then outputs the final answer.068

Following prior work, we adopt token-probability069

and prompt-based methods (Tian et al., 2023) for070

fine-grained confidence estimation over individual071

triplets.072

To show the practical utility of fine-grained con-073

fidence, we apply it to the task of detecting spu-074

riously correct answers, cases in which the final075

answers are correct but supported by incorrect evi-076

dence. This issue is particularly prominent in multi-077

hop QA task (Ishii et al., 2024a), with prior work078

observing it in 31% of instances in the JEMHopQA079

dataset (Ishii et al., 2024b).080

Our main contributions are as follows:081

1. We present the first study on fine-grained con-082

fidence estimation. Through a comprehensive083

analysis of five confidence extraction methods084

across three LLMs, we find that sampling-085

based methods yield better-calibrated confi-086

dence than other methods.087

2. We demonstrate that fine-grained confidence088

scores better identify spuriously correct an-089

swers compared to conventional whole-output090

confidence scores, achieving an ROC-AUC of091

0.84.092

2 Related Work093

2.1 LLM Confidence Estimation094

LLM confidence estimation methods can be095

broadly categorized into three approaches:096

Token probability-based methods: Kadavath097

et al. (2022) proposed estimating uncertainty di-098

rectly from generation probabilities, though prob-099

ability distributions are reported to be distorted in100

models trained with human preference optimiza-101

tion (Tian et al., 2023).102

Linguistic confidence expression: Tian et al.103

(2023) demonstrated that for models trained with104

human preference optimization, prompting the105

model to self-report confidence—either as explicit106

numerical probabilities or as qualitative phrases107

such as “almost certain” or “likely”—produces bet-108

ter calibrated scores than relying on token proba-109

bilities alone.110

Consistency-based methods: Manakul et al.111

(2023) proposed estimating confidence from agree-112

ment across multiple generation results. While113

computationally expensive, this enables more reli- 114

able estimation. 115

Importantly, none of these methods provide con- 116

fidence scores at a granular level that would en- 117

able identification of specific erroneous compo- 118

nents within reasoning chains. Our work addresses 119

this gap by introducing fine-grained confidence es- 120

timation at the evidence triplet level. 121

2.2 Using Reasoning Process for Confidence 122

Estimation 123

While several approaches leverage reasoning pro- 124

cesses to improve answer confidence, they operate 125

at coarse granularities: 126

Self-Consistency: Wang et al. (2022) samples 127

multiple CoT reasoning paths and selects the most 128

frequent answer. While each reasoning path can 129

be considered an evidence, it does not score the 130

correctness or reliability of the individual evidence. 131

Cycles of Thought: Becker and Soatto (2024) 132

generates “answer + explanation” multiple times 133

and quantifies uncertainty from explanation set sta- 134

bility. Their method uses explanation implication 135

probabilities for weighting, but does not output 136

confidence scores for the explanations themselves. 137

Confidence-based Self-Consistency: Tauben- 138

feld et al. (2025) adds numerical confidence to the 139

end of each reasoning path and selects final answers 140

through weighted sums of identical answers. How- 141

ever, confidence evaluation of individual evidence 142

elements is out of scope in this work. 143

These methods demonstrate the value of rea- 144

soning in confidence estimation but lack the criti- 145

cal granularity needed to pinpoint specific errors 146

within reasoning chains. Our work extends these 147

approaches by decomposing reasoning into evi- 148

dence triplets and assigning confidence to each 149

component independently. 150

2.3 The Spurious Correctness Problem 151

In multihop QA, the problem of “spurious 152

correctness”—correct answers with incorrect 153

reasoning—is severe. Prior research reports such 154

cases amount to 31% of total instances (Ishii et al., 155

2024a). 156

However, these studies rely on manual evalua- 157

tion, and to our knowledge no method targets au- 158

tomatic detection of spurious correctness in multi- 159

hop QA using confidence scores.1 In this work, we 160

1General hallucination detectors such as SelfCheck-
GPT (Manakul et al., 2023) focus on sentence-level factu-
ality and do not distinguish correct answers with incorrect
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enable automatic assessment of evidence/answer161

correctness and their confidence scores, allowing162

systematic spurious correctness detection through163

confidence analysis.164

3 Proposed Method165

3.1 Overview166

We propose a framework for fine-grained confi-167

dence estimation that enables LLMs to output confi-168

dence scores at the individual evidence triplet level.169

Given a question q, our framework produces (i) an170

answer a along with confidence score ca ∈ [0, 1],171

and (ii) a sequence of n evidence-confidence pairs172

[(e1, c
(1)
e ), (e2, c

(2)
e ), ..., (en, c

(n)
e )], where each ei173

is a triplet composed of a subject, relation, and174

object (e.g., (Tokyo Tower, height, 333m)), and175

c
(i)
e ∈ [0, 1].176

To compute the confidence scores, we adopt177

two methods from Tian et al. (2023): (i) model-178

based methods (§3.2), which derive confidence179

from the model’s intrinsic uncertainty during re-180

sponse generation, and (ii) verbalized methods181

(§3.3), which elicit self-reported confidence scores182

from the model via natural language prompts.183

3.2 Model-based Methods184

Given the question q, we estimate the con-185

ditional generation probabilities of the ev-186

idence triplets and the final answer, i.e.,187

p(e1|q), p(e2|q, e1), ..., p(en|q, e1, e2, ..., en−1)188

and p(a|q, e1, e2, ..., en), in two ways and then use189

these probabilities as confidence scores.190

First, Token prob. first prompts the model to191

generate the full reasoning sequence, including a192

sequence of evidence triplets and the final answer.193

For each component, we then extract the token-194

level probabilities associated with that component195

(e.g., p(e11|q), p(e21|q, e11), ... for the first evidence196

triplet), and compute the geometric mean of these197

token probabilities.198

Second, Label prob. samples n reasoning se-199

quences from the model. The final answers and200

sequences of evidence triplets are then separately201

grouped into clusters based on fuzzy matching,2202

and the most frequent cluster is selected as the final203

output. The confidence score for the final answer204

is the number of cluster elements divided by n. For205

reasoning.
2We first normalize numerals and symbols, then merge lex-

ically differing but semantically identical strings via fuzzy
string matching using RapidFuzz (https://github.com/
maxbachmann/RapidFuzz) with a fixed similarity threshold.

evidence confidence, we select the evidence set E∗ 206

that appears most frequently among the n sampled 207

trajectories, thereby preserving structural coher- 208

ence. Each evidence triplet e ∈ E∗ is assigned a 209

reliability score p(e | q) = 1
n

∑n
i=1 I[ e ∈ E(i) ], 210

which disentangles path-level coherence from the 211

certainty of individual evidence pieces. 212

3.3 Verbalized Methods 213

Unlike model-based approaches, verbalized meth- 214

ods elicit confidence scores directly via prompting, 215

using three variants. 216

First, Verb. 1S prompts the model to generate a 217

sequence of evidence triplets and the final answer 218

along with confidence scores in a single response. 219

Second, Verb. 1S CoT first elicits CoT reason- 220

ing, then asks for confidence estimation. Third, 221

Ling. 1S uses a similar prompt to Verb. 1S but 222

replaces numerical scores with a 13-level linguistic 223

scale (e.g., "almost certain," "likely") adapted from 224

Fagen-Ulmschneider and translated into Japanese. 225

3.4 Prompt Design 226

To enable these confidence estimation methods, we 227

design prompts that require models to simultane- 228

ously generate: (1) evidence as structured triplets in 229

(Subject, Relation, Object) format, (2) confidence 230

scores for each triplet, and (3) the final answer with 231

its confidence score—all in a single forward pass 232

to maintain contextual coherence. The evidence- 233

first ordering and explicit confidence requirements 234

for each component enable fine-grained uncertainty 235

quantification. We include few-shot examples to en- 236

sure correct formatting and independent confidence 237

evaluation. Full prompt templates are provided in 238

Appendix Table 43. 239

4 Experimental Settings 240

This section describes our experimental setup, in- 241

cluding the dataset, evaluation models, automated 242

evaluation procedures, and metrics used to assess 243

fine-grained confidence estimation performance. 244

4.1 Dataset 245

We conduct our experiments on JEMHopQA (Ishii 246

et al., 2024b), a Japanese multi-hop QA benchmark 247

whose training split contains 1,059 questions. We 248

reserve 1,000 questions as our evaluation set and 249

select three questions from the remaining 59 as 250

3Since our evaluation uses the Japanese JEMHopQA
dataset (Ishii et al., 2024b), all prompts were originally de-
signed in Japanese and translated to English for presentation.
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few-shot exemplars for in-context prompting. Each251

question requires two to three reasoning hops, and252

the gold annotations provide, on average, 2.2 sub-253

ject–relation–object triples as supporting evidence.254

Because these triple-level evidence annotations let255

us verify the correctness of every individual rea-256

soning component, JEMHopQA is well suited for257

evaluating the validity of our proposed fine-grained258

confidence scores and for analysing spuriously cor-259

rect answers whose evidence is partially erroneous.260

4.2 Evaluation Models261

We evaluate three models representing different262

training paradigms:263

• GPT-4.1-mini (OpenAI, 2025)264

(ver. 2025-04-14, dense model likely265

incorporating human preference optimization;266

parameter count not publicly disclosed)267

• Llama4Maverick17B128E-268

InstructFP8 (Meta AI, 2025) (SFT+Instruct269

Mixture-of-Experts with 128 experts)4270

• Phi-4 (Abdin et al., 2024) (14B-parameter271

SFT-trained dense model)5272

This diversity in architectures and training ap-273

proaches demonstrates the generalizability of our274

method across different model types. We set the275

decoding temperature to 0.0 for all methods except276

Label prob., which requires temperature 0.7 and277

top-p 0.95 for sampling-based confidence estima-278

tion (see §3.2). All experiments were conducted279

using the official APIs via Azure AIFoundry6.280

4.3 Evaluation Metrics281

We evaluate our method along two dimensions: cal-282

ibration and discrimination. For calibration met-283

rics, following Tian et al. (2023), we report both284

raw and temperature-scaled scores.285

For calibration, we use Expected Calibration Er-286

ror (ECE; Guo et al., 2017), which is the average287

absolute difference between predicted confidence288

and actual accuracy across bins, and Brier Score289

(BS; BRIER, 1950), which is the mean squared290

difference between predicted probabilities and out-291

comes. Lower values indicate better calibration.292

4Azure internal model version 1; created Oct 1 2024, up-
dated May 7 2025.

5Azure internal model version 7; created Oct 1 2024, up-
dated Apr 16 2025.

6https://learn.microsoft.com/ja-jp/azure/
ai-foundry/

For discrimination, our metrics are: 293

AUC: Area under the selective accuracy- 294

coverage curve (Geifman and El-Yaniv, 295

2017), measuring the ability to distinguish 296

correct/incorrect predictions (higher is better). 297

ROC-AUC: Area under the Receiver Operating 298

Characteristic curve (Fawcett, 2006) for spurious 299

correctness detection (higher is better). 300

PR-AUC: Area under the Precision-Recall curve 301

(Davis and Goadrich, 2006), particularly suit- 302

able for imbalanced spurious correctness detection 303

(higher is better). 304

We also apply temperature scaling to calibrate 305

confidence scores as p′ = σ(z/T ) where z = 306

log(p/(1 − p)), with the optimal temperature T 307

found by 5-fold cross-validation minimizing ECE. 308

Temperature-scaled metrics are denoted by “–t” 309

(e.g., ECE-t, BS-t). 310

4.4 Automated Evaluation 311

All evaluation metrics require binary correctness 312

labels for each answer and evidence triplet. We 313

obtain these labels automatically with GPT-4.1 and 314

then validate their reliability. 315

Answer evaluation: We use exact match for 316

YES/NO questions (33% of the dataset). For entity- 317

based questions (67%), including named entities, 318

dates and numerical values, we employ GPT-4.1 319

to judge semantic equivalence when exact match 320

fails. 321

Evidence evaluation: We instruct the model to 322

perform one-to-one matching between predicted 323

and gold-standard triplets, checking a set of match- 324

ing conditions that tolerate surface-form variation 325

(e.g. lexical paraphrase, subject–object swaps), as- 326

signing binary scores (1.0 or 0.0) to each pair. 327

Reliability assessment: To assess the reliabil- 328

ity of automated evaluation, one of the authors 329

manually labeled 100 randomly sampled instances 330

per model (300 total). We then computed the 331

agreement rates between these manual labels and 332

the automatically assigned label. For answer cor- 333

rectness, the agreement rates were 98% (GPT-4.1- 334

mini), 100% (Llama-4-Maverick), and 98% (Phi- 335

4); for evidence correctness, they were 93%, 94%, 336

and 95% respectively. While these agreement rates 337

indicate that automated evaluation introduces small 338

amount of noise into our measurements, it affects 339

all compared methods equally, preserving the va- 340

lidity of relative performance comparisons. 341
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GPT-4.1-mini Llama-4-Maverick Phi-4
Method ECE↓ ECE-t↓ BS-t↓ AUC↑ ECE↓ ECE-t↓ BS-t↓ AUC↑ ECE↓ ECE-t↓ BS-t↓ AUC↑

Label prob. 0.172 0.139 0.197 0.786 0.190 0.145 0.218 0.735 0.107 0.188 0.204 0.691
Token prob. 0.264 0.135 0.245 0.650 – – – – – – – –
Verb. 1S 0.297 0.125 0.210 0.791 0.316 0.137 0.243 0.702 0.508 0.326 0.329 0.574
Verb. 1S CoT 0.305 0.140 0.223 0.757 0.295 0.086 0.237 0.724 0.500 0.297 0.327 0.540
Ling. 1S 0.288 0.054 0.227 0.658 0.297 0.079 0.230 0.670 0.491 0.124 0.261 0.459

Table 1: Evidence confidence extraction performance at the triplet level. Bold indicates best performance, underline
indicates worst performance. Label prob. consistently outperforms other methods across models.

5 Results342

This section reports quantitative results based on343

the settings in Section 4, covering evidence confi-344

dence extraction methods (§5.1) and spurious cor-345

rectness detection performance (§5.2). Comprehen-346

sive results for all confidence extraction methods347

across the three evaluated models are provided in348

Appendix Table 6.349

5.1 Evidence Confidence Estimation350

Table 1 presents the calibration and discrimina-351

tion performance of different confidence extraction352

methods for evidence at the triplet level. Label353

prob. (frequency-based method with N=10 sam-354

plings, temperature 0.7, top-p 0.95) consistently355

achieves the best results across models, with ECE356

values ranging from 0.107 to 0.190.357

Several key patterns emerge from these results.358

First, GPT-4.1-mini and MoE architectures (Llama-359

4-Maverick) show relatively good performance360

with verbalized methods, with temperature scal-361

ing proving particularly effective for reducing ECE362

(e.g., Verb. 1S CoT achieving ECE-t of 0.086363

for Llama-4). In contrast, the smaller SFT model364

(Phi-4) shows poor performance with all verbalized365

methods (ECE > 0.5), suggesting that verbalized366

confidence expression requires sufficient model ca-367

pacity. Despite this limitation, Phi-4’s Label prob.368

performance remains competitive (ECE = 0.107),369

demonstrating the robustness of frequency-based370

approaches across model scales.371

Fig. 2 visualizes these calibration results through372

reliability diagrams. The diagonal line represents373

perfect calibration where predicted confidence374

matches actual accuracy. Label prob. (left column)375

shows consistent near-diagonal performance across376

all models, confirming its superiority. While verbal-377

ized methods initially show poor calibration, tem-378

perature scaling dramatically improves their per-379

formance, as demonstrated by Llama-4-Maverick’s380

Verb. 1S CoT achieving competitive calibration381

after scaling (bottom right).382

Model ROC-AUC / PR-AUC

Ans Conf. Ev Conf.

GPT-4.1-mini 0.59 / 0.46 0.74 / 0.56
Llama-4-Maverick 0.53 / 0.37 0.69 / 0.55
Phi-4 0.65 / 0.63 0.84 / 0.82

Table 2: Spurious correctness detection performance
using Label prob. Evidence confidence consistently
outperforms answer confidence across all models.

5.2 Spurious Correctness Detection 383

Building on the evidence confidence results, we 384

evaluate how effectively these confidence scores 385

can detect spurious correctness—cases where an- 386

swers are correct but reasoning is flawed. 387

For detection, we aggregate triplet-level confi- 388

dence scores by taking the minimum value across 389

all evidence triplets, reflecting that reasoning valid- 390

ity requires all evidence to be correct.7 391

Table 2 summarizes detection performance 392

across models using Label prob. method, which 393

demonstrated the best calibration in §5.1. 394

Evidence confidence consistently provides supe- 395

rior discrimination compared to answer confidence, 396

with Phi-4 achieving the highest ROC-AUC of 0.84 397

despite being the smallest model. This exceptional 398

performance motivates a closer examination of how 399

confidence scores distribute for different correct- 400

ness patterns. 401

Fig. 3 visualizes the relationship between answer 402

and evidence confidence for Phi-4’s Label prob. 403

method, revealing how spurious correctness cases 404

can be identified through confidence patterns. 405

The scatterplot reveals distinct patterns: spu- 406

rious correctness cases (blue) concentrate in the 407

upper-left region where evidence confidence is low 408

(ce < 0.3) but answer confidence remains high 409

(ca > 0.8). This separation enables effective detec- 410

tion using evidence confidence as a discriminator. 411

7We also evaluated mean aggregation, which showed com-
parable but slightly inferior performance, particularly for PR-
AUC.
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Figure 2: Reliability diagrams for evidence confidence
calibration. Label prob. (left) shows consistent cal-
ibration across all models. Temperature scaling dra-
matically improves verbalized methods (right), with
Llama-4-Maverick’s Verb. 1S CoT achieving the best
calibration after scaling (ECE-t=0.086).

The quantitative effectiveness of this approach is412

further demonstrated through ROC and PR curves413

in Appendix Fig. 5.414

6 Analysis415

This section analyzes the improvement in answer416

confidence calibration through joint generation417

(§6.1) and patterns in evidence confidence errors418

(§6.2).419

6.1 Answer Confidence Calibration420

Improvement421

A natural hypothesis emerges from our approach:422

by explicitly requiring models to assess evidence423

confidence, we might encourage more careful rea-424

soning, potentially leading to better-calibrated an-425

swer confidence as well. In other words, does the426

very act of evaluating evidence confidence indeed427
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Figure 3: Answer confidence vs evidence confidence
scatter plot (Label prob. ). Red: Both answer and
evidence correct (true correct), Blue: Answer correct
but evidence wrong (spurious correctness), Green: Ev-
idence correct but answer wrong, Gray: Both answer
and evidence wrong. The histograms show marginal
distributions, revealing that spurious correctness cases
(blue) cluster at low evidence confidence.

improve the model’s ability to assess its own an- 428

swer confidence? 429

Model Method Only-
Answer
ECE/AUC

Joint-
answer
ECE/AUC

Improv.
Rate
ECE/AUC

GPT-4.1-
mini

Label
prob. 0.23/0.73 0.17/0.84 26%/16%

Llama-4-
Maverick

Verb.
1S 0.42/0.55 0.24/0.77 43%/40%

Phi-4 Label
prob. 0.14/0.68 0.16/0.75 -16%/11%

Table 3: Answer confidence performance: ECE and
AUC values for answer-only vs. joint generation ap-
proaches. Lower ECE indicates better calibration;
higher AUC indicates better discrimination. Improve-
ment rates show the relative change from answer-only
to joint generation.

Our results confirm this hypothesis. Table 38 430

shows that joint generation of answer and evidence 431

confidence substantially improves answer confi- 432

dence calibration in most cases, with ECE reduc- 433

tions of 26% and 43% for GPT-4.1-mini and Llama- 434

4-Maverick models respectively. Moreover, AUC 435

8Only-answer and joint generation prompts are provided
in Appendix Tables 5 and 4.
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improvements range from 11% to 40% across three436

models, demonstrating enhanced discrimination ca-437

pability.438

The improvement is particularly pronounced for439

GPT-4.1-mini (26% ECE reduction, 16% AUC im-440

provement) and Llama-4-Maverick (43% ECE re-441

duction, 40% AUC improvement). GPT-4.1-mini,442

likely optimized for human preferences, tend to-443

ward overconfidence in answer-only settings. Joint444

generation appears to mitigate this by forcing ex-445

plicit reasoning about evidence uncertainty. The446

improvement is the largest for Llama-4-Maverick,447

possibly because different experts can specialize448

in answer versus evidence generation, leading to449

more nuanced confidence expressions. Phi-4’s ECE450

worsened (-16%), which may reflect its already-low451

baseline ECE (0.14) leaving less room for improve-452

ment. However, the 11% AUC improvement shows453

that joint generation still enhances error detection454

capability.455

The proposed method of jointly estimating an-456

swer and evidence confidence improved not only457

ECE (better calibration between predicted confi-458

dence and actual accuracy) but also AUC (better459

discrimination between correct and incorrect pre-460

dictions) in almost all settings (see Fig. 4 for vi-461

sual comparison). The improvement is particularly462

notable because it demonstrates that generating ev-463

idence alongside answers helps the model better464

calibrate its answer confidence—even though we465

might expect the additional complexity to poten-466

tially harm calibration.467

The consistent improvements across models sug-468

gest that requiring explicit evidence assessment469

fundamentally changes how models evaluate their470

own certainty. By forcing models to decompose471

reasoning into verifiable components and assign472

confidence to each, we create a more structured un-473

certainty quantification process. Our ablation study474

(Appendix D) confirms that both evidence genera-475

tion and explicit confidence scoring contribute to476

this improvement, with evidence generation alone477

improving answer accuracy by 6.8-13.8% and ad-478

ditional confidence requirements further enhancing479

calibration. This joint generation maintains full480

context while preventing the overconfidence often481

observed in answer-only generation, where models482

lack explicit mechanisms to surface intermediate483

uncertainties. The importance of maintaining uni-484

fied context is further confirmed by our preliminary485

experiments (Appendix E), where separating gen-486

eration steps degraded performance significantly487

(e.g., answer confidence AUC dropping from 0.848 488

to 0.722). 489

6.2 Evidence Confidence Error Analysis 490

We analyzed error patterns in Label prob. results 491

across three models, examining cases where con- 492

fidence scores misalign with correctness. We ex- 493

tracted 30 samples per model (90 samples in total) 494

for two critical patterns: high confidence despite in- 495

correct evidence and low confidence despite correct 496

evidence. 497

6.2.1 High Confidence for Incorrect Evidence 498

We examined 90 cases where models assigned max- 499

imum confidence (ce = 1.0) to incorrect evidence 500

triplets, revealing four primary error patterns (see 501

Appendix Table 9 for detailed distribution): 502

Numerical/Temporal Drift (49%): Nearly half 503

of high-confidence errors involve values numeri- 504

cally close to correct answers. The model assigns 505

full confidence to values it considers numerically 506

“close enough”, such as neighbouring years (1873 507

vs. 1871) or small miscounts (12 cities vs. 14 508

cities). Such drift occurs mainly for ages, counts, 509

and areas, whereas high-precision temporal facts 510

that require an exact calendar date (e.g. 17 May 511

1964) usually receive lower confidence. 512

Entity Conflation (38%): Models confidently 513

substitute entities with similar names or shared 514

categories. This systematic confusion in entity 515

disambiguation allows surface-level similarities to 516

override factual distinctions, particularly affecting 517

person names, company names, and locations. 518

Question-Answer Contamination (10%): 519

Models exhibit a copy-paste bias, directly transfer- 520

ring values from questions into evidence triplets. 521

For example, given "Which of City A or City B 522

has azalea as its city flower?", models generate 523

high-confidence triplets like (City A, city flower, 524

azalea) regardless of factual accuracy. 525

Default Value Bias (2%): Though less frequent, 526

models occasionally apply statistical priors with 527

high confidence, such as assuming March 31st as 528

the end of a fiscal year—a default particularly com- 529

mon in our dataset, reflecting training data patterns 530

specific to Japanese business context. 531

6.2.2 Low Confidence for Correct Evidence 532

Analysis of 90 correct triplets with low confi- 533

dence (0.1 ≤ ce ≤ 0.4 for GPT-4.1-mini/Llama-4; 534

0.1 ≤ ce ≤ 0.3 for Phi-4) reveals that conserva- 535

tive confidence often reflects legitimate uncertainty 536
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Figure 4: Plot of answer confidence for the baseline Answer-only method versus the Joint-Answer method
(simultaneous evidence generation) across all models.

(detailed breakdown in Appendix Table 10):537

Competing Plausible Alternatives (27%):538

Models reduce confidence when multiple valid539

candidates exist. For instance, when generating540

Don Shirley’s birthplace, near-equal sampling of541

"United States" (correct), "Berlin", and "New York542

City" results in low confidence due to competing543

claims in the training data.544

Complex Relation Mapping (22%): Confi-545

dence decreases when relations embody multi-hop546

compressions (e.g., "singer of a theme song (of547

something)") or ambiguous question-to-triplet map-548

ping (e.g., "Did both A and B complete graduate549

school?" leading to different educational status rep-550

resentations).551

Date/Numerical Values (21%): Specific dates552

and large numbers receive low confidence even553

when correct, demonstrating appropriate epistemic554

humility about precise numerical facts.555

Surface Form Variations (11%): Equivalent556

expressions (e.g., "18+" vs. "CERO D" for age557

ratings) reduce confidence due to our automated558

evaluation’s exact match limitations rather than559

genuine model uncertainty.560

Rare/Long-tail Entities (10%): Information561

about local mascots or other infrequent facts re-562

ceives conservative confidence scores.563

Multi-valued Relations (9%): Relations with564

multiple valid values (e.g., "neighboring cities")565

trigger lower confidence as probability mass dis-566

tributes across alternatives.567

These patterns reveal the tendency that568

high-confidence errors arise when the model as-569

signs a high probability to the incorrect answers570

that are semantically close to the correct ones (e.g.,571

adjacent years, near-duplicate entity names), pre-572

sumably because those expressions occupy neigh- 573

boring regions in the model’s internal representa- 574

tion, while low-confidence errors reflect the situa- 575

tions in which multiple answers are equally plausi- 576

ble or genuinely unknown, so the model spreads its 577

probability mass across them and gives any single 578

candidate a low score. Given that LLMs repre- 579

sent knowledge in a continuous space and funda- 580

mentally operate on probabilistic principles, such 581

phenomena may be inevitable. Nevertheless, our 582

results suggest that a key challenge lies in finely 583

discriminating between subtly different facts within 584

this latent space, while preserving the robustness 585

of knowledge processing to reduce overconfidence. 586

7 Conclusion 587

This paper introduced a fine-grained confidence es- 588

timation framework that extends LLM uncertainty 589

quantification from answer-level to individual ev- 590

idence components. By decomposing reasoning 591

into triplets and assigning confidence scores to 592

each component, we enabled precise error detec- 593

tion within reasoning chains, a capability absent 594

from existing coarse-grained approaches. 595

Future work should explore alternative evidence 596

decomposition strategies beyond triplet format, in- 597

vestigate the relationship between granularity and 598

confidence quality, and extend evaluation to other 599

languages and reasoning tasks. As LLMs increas- 600

ingly support high-stakes decisions, fine-grained 601

confidence estimation will be essential for trustwor- 602

thy deployment. 603
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Limitations604

While our results demonstrate the effectiveness of605

fine-grained confidence estimation, several limita-606

tions warrant discussion:607

Automated evaluation reliability: While our608

automated evaluation achieved high agreement609

with human judgments (93-100% across different610

models and metrics), this approach has inherent611

limitations. The reliability may vary with different612

model families or task complexities not tested in613

our validation. Furthermore, our validation sam-614

ple of 100 instances per model may not capture615

all edge cases. Future work should explore more616

robust evaluation methods, potentially combining617

multiple evaluators or using specialized evaluation618

models.619

Dataset and language specificity: Our evalua-620

tion focused on Japanese multihop QA. While the621

underlying principles should transfer to other lan-622

guages and tasks, empirical verification is needed.623

Evidence format constraints: We used triple-624

format evidence (Subject, Relation, Object), which625

works well for factual QA but may not suit all626

reasoning types. Future work should explore other627

evidence representations.628

Computational tradeoffs: While our method629

is more efficient than extensive resampling ap-630

proaches, it still requires generating additional to-631

kens for evidence and confidence. Future work632

could explore more efficient confidence estimation633

methods.634

Calibration versus discrimination tradeoff:635

While we generally see improvements in both met-636

rics, some configurations show tension between637

calibration and discrimination performance. Un-638

derstanding and optimizing this tradeoff remains639

an open challenge.640
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A Prompt Templates757

The following tables present the prompt templates758

used in our experiments. Table 4 shows the prompts759

for our main joint generation approach, while Ta-760

ble 5 contains the prompts for the answer-only base-761

line used in the ablation study (§6.1) to demonstrate762

the improvement from joint evidence-confidence763

generation. As our evaluation was conducted on 764

the Japanese JEMHopQA dataset, all prompts were 765

originally written in Japanese and have been trans- 766

lated to English for this presentation. The actual 767

experiments used the Japanese versions of these 768

prompts. 769

B Detailed Experimental Results 770

Table 6 presents the complete experimental re- 771

sults for all confidence extraction methods across 772

the three evaluated models. For each model and 773

method combination, we report both answer and 774

evidence confidence performance metrics. The ta- 775

ble shows that Label prob. consistently achieves 776

the best overall performance across models, partic- 777

ularly for evidence confidence calibration. 778

C Additional Experimental Analysis 779

C.1 Spurious Correctness Detection 780

Performance 781

Fig. 5 provides a detailed visualization of spurious 782

correctness detection performance, showing both 783

ROC and PR curves for the best-performing con- 784

figuration (Phi-4 with Label prob.). The substan- 785

tial gap between evidence confidence (orange) and 786

answer confidence (blue) demonstrates that fine- 787

grained confidence at the evidence level provides 788

significantly better discrimination for identifying 789

cases where correct answers are supported by in- 790

correct reasoning. 791

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC for False-Positive Detection

p_answer (AUC=0.65)
p_evidence (AUC=0.84)

0.0 0.2 0.4 0.6 0.8 1.0
Recall (False-Positive Detection)

Pr
ec

isi
on

Precision-Recall for False-Positive Filtering

p_answer (PR-AUC=0.63)
p_evidence (PR-AUC=0.82)

Figure 5: ROC and PR curves for spurious correctness
detection using Phi-4/Label prob. . Evidence confidence
(orange) achieves ROC-AUC 0.84 and PR-AUC 0.82,
significantly outperforming answer confidence (blue)
with ROC-AUC 0.65 and PR-AUC 0.63.

D Ablation Study on Evidence and 792

Confidence Generation 793

To investigate the mechanism behind the calibra- 794

tion improvements observed in our main experi- 795

ments, we conducted an ablation study with four 796

configurations: 797
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Method Template (Joint)

Label prob. /
Token prob. Provide an answer to the question and the supporting evidence as triples. Triples should be in the format

(Subject, Relation, Object). Subject is an entity, Object is an entity or concrete value (date, number, etc.),
both as short single phrases.
Output in the following format:
Triple1: (Subject, Relation, Object)
Triple2: (Subject, Relation, Object)
...
Answer: YES|NO|<short single phrase>
Example:
Q: Which console had more games launch simultaneously with its hardware in Japan, the Wii U or
GameCube?
Triple1: (Wii U, simultaneous Japan launch titles, 11)
Triple2: (GameCube, simultaneous Japan launch titles, 2)
Answer: Wii U
[2 more examples omitted]
Question: {THE_QUESTION}

Verb. 1S Provide an answer to the question and the supporting evidence as triples.
Triples should be in the format (Subject, Relation, Object). Subject is an entity, Object is an entity or
concrete value (date, number, etc.), both as short single phrases.
Include a confidence score (0.00-1.00, two decimals) for each triple and for the final answer.
Output in the following format:
Triple1: (Subject, Relation, Object) 0.00-1.00
Triple2: (Subject, Relation, Object) 0.00-1.00
...
Answer: YES|NO|<short single phrase> 0.00-1.00
[3 more examples omitted]
Question: {THE_QUESTION}

Verb. 1S CoT Provide an answer to the question and the supporting evidence as triples.
First show your thinking process concisely, then output the evidence triples and answer.
Triples should be in the format (Subject, Relation, Object). Subject is an entity, Object is an entity or
concrete value (date, number, etc.), both as short single phrases.
Include a confidence score (0.00-1.00, two decimals) for each triple and for the final answer.
Output in the following format:
Thought: [reasoning process]
Triple1: (Subject, Relation, Object) 0.00-1.00
Triple2: (Subject, Relation, Object) 0.00-1.00
...
Answer: YES|NO|<short single phrase> 0.00-1.00
Example:
Q: Which console had more games launch simultaneously with its hardware in Japan, the Wii U or
GameCube?
Thought: Need to compare the number of launch titles for both consoles in Japan.
Triple1: (Wii U, simultaneous Japan launch titles, 11) [confidence]
Triple2: (GameCube, simultaneous Japan launch titles, 2) [confidence]
Answer: Wii U [confidence]
[2 more examples omitted]
Question: {THE_QUESTION}

Ling. 1S Provide an answer to the question and the supporting evidence as triples.
First show your thinking process, then output the evidence triples and answer.
Triples should be in the format (Subject, Relation, Object).
Subject is an entity, Object is an entity or concrete value (date, number, etc.), both as short single phrases.
Express confidence for each triple and the answer using one of these expressions:
{EXPRESSION_LIST}
Output in the following format:
Triple1: (Subject, Relation, Object) Almost certain|Very likely|...|Almost impossible
Triple2: (Subject, Relation, Object) Almost certain|Very likely|...|Almost impossible
...
Answer: YES|NO|<short single phrase> Almost certain|Very likely|...|Almost impossible
Question: {THE_QUESTION}

Table 4: Prompt templates for Joint configuration. All methods require evidence generation before the final answer.
{THE_QUESTION} is replaced with the actual question, and {EXPRESSION_LIST} contains the 13-level linguistic
expressions.
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Method Template (Only-Answer)

Label prob. /
Token prob. Provide the best answer to the following question. Output ONLY the answer, without any other words or

explanations.
Question: {THE_QUESTION}
Answer in the following format: Answer: <most likely answer, as short as possible; not a complete sentence,
just the answer!>

Verb. 1S Provide the best answer to the following question and the probability that it is correct (0.0 to 1.0). Output
ONLY the answer and probability, without any other words or explanations.
Question: {THE_QUESTION}
Answer in the following format:
Answer: <most likely answer, as short as possible; not a complete sentence, just the answer!> Probability:
<probability your answer is correct (between 0.0 and 1.0), no additional comments; just the probability!>

Verb. 1S CoT Show your step-by-step thinking process for the following question. Then provide the answer and the
probability that it is correct (0.0 to 1.0).
Question: {THE_QUESTION}
Answer in the following format:
Thought: <explain your thinking process in one concise sentence>
Answer: <most likely answer, as short as possible; not a complete sentence, just the answer!>
Probability: <probability your answer is correct (between 0.0 and 1.0), no additional comments; just the
probability!>

Ling. 1S Provide the best answer to the following question and express your confidence using one of these expressions:
{EXPRESSION_LIST}
Question: {THE_QUESTION}
Answer in the following format:
Answer: <most likely answer, as short as possible; not a complete sentence, just the answer!>
Answer Confidence: <confidence expression, no additional comments; just the short phrase!>

Table 5: Prompt templates for Only-Answer configuration. {THE_QUESTION} is replaced with the actual question,
and {EXPRESSION_LIST} contains the 13-level linguistic expressions adapted from Fagen-Ulmschneider.

Joint Answer Joint Evidence
Model Method Accuracy ECE↓ ECE-t↓ BS↓ BS-t↓ AUC↑ Accuracy ECE↓ ECE-t↓ BS↓ BS-t↓ AUC↑

Label prob. 0.670 0.168 0.132 0.167 0.160 0.842 0.621 0.172 0.139 0.221 0.197 0.786
Verv. 1S 0.654 0.266 0.095 0.272 0.202 0.841 0.629 0.297 0.125 0.300 0.210 0.791
Verv. 1S CoT 0.667 0.263 0.086 0.274 0.207 0.814 0.627 0.305 0.140 0.312 0.223 0.757
Ling. 1S 0.670 0.250 0.065 0.270 0.212 0.702 0.614 0.288 0.054 0.307 0.227 0.658

GPT-4.1-
mini

Token prob. 0.676 0.187 0.108 0.188 0.159 0.867 0.645 0.264 0.135 0.313 0.245 0.650

Label prob. 0.656 0.198 0.152 0.193 0.180 0.825 0.611 0.190 0.145 0.245 0.218 0.735
Verv. 1S 0.660 0.240 0.115 0.252 0.222 0.769 0.601 0.316 0.137 0.317 0.243 0.702
Verv. 1S CoT 0.679 0.212 0.111 0.232 0.217 0.804 0.614 0.295 0.086 0.302 0.237 0.724

Llama-4-
Maverick

Ling. 1S 0.685 0.208 0.075 0.236 0.198 0.770 0.586 0.297 0.079 0.309 0.230 0.670

Label prob. 0.526 0.163 0.175 0.191 0.205 0.750 0.449 0.107 0.188 0.178 0.204 0.691
Verv. 1S 0.543 0.425 0.244 0.418 0.289 0.637 0.459 0.508 0.326 0.495 0.329 0.574
Verv. 1S CoT 0.554 0.408 0.204 0.407 0.294 0.624 0.463 0.500 0.297 0.491 0.327 0.540Phi-4

Ling. 1S 0.541 0.393 0.027 0.396 0.247 0.577 0.446 0.491 0.124 0.486 0.261 0.459

Table 6: Comprehensive results for all confidence extraction methods. Bold values indicate best performance for
each metric within each model group.

Configuration GPT-4.1-mini Llama-4-Maverick Phi-4
Accuracy ECE ↓ Accuracy ECE ↓ Accuracy ECE ↓

C1: Answer only + conf. 0.528 0.363 0.544 0.422 0.473 0.495
C2: Answer + Evidence, no conf. 0.666 — 0.650 — 0.541 —
C3: Answer + Evidence, answer conf. only 0.650 0.280 0.659 0.326 0.526 0.440
C4: Answer + Evidence + both conf. 0.654 0.266 0.660 0.240 0.542 0.426

Table 7: Ablation study on incremental effects of evidence and confidence generation using the Verb. 1S method.
ECE values are not applicable for C2 as no confidence scores are generated.
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• C1: Answer only with confidence (baseline)798

• C2: Answer + Evidence, no confidence scores799

• C3: Answer + Evidence, answer confidence800

only801

• C4: Answer + Evidence, both answer and802

evidence confidence (our full method)803

Table 7 reveals two key findings:804

Evidence generation improves accuracy:805

Comparing C1 to C2, we observe substantial ac-806

curacy improvements across all models (GPT-4.1-807

mini: +13.8%, Llama-4-Maverick: +10.6%, Phi-4:808

+6.8%), confirming that explicit evidence genera-809

tion enhances reasoning.810

Evidence confidence scoring improves answer811

calibration: Comparing C3 to C4, adding ev-812

idence confidence requirements consistently im-813

proves answer confidence calibration (ECE re-814

duction: GPT-4.1-mini: 0.280→0.266, Llama-4-815

Maverick: 0.326→0.240, Phi-4: 0.440→0.426).816

The minor variations in accuracy between C2,817

C3, and C4 suggest that confidence scoring itself818

does not significantly impact answer correctness,819

but rather improves calibration through more real-820

istic uncertainty expressions.821

E Preliminary Experiments on822

Generation Strategies823

To validate our joint generation approach, we con-824

ducted preliminary experiments comparing three825

generation strategies on 120 samples from the826

JEMHopQA development set:827

• Joint generation (verb_1s): Generate answer,828

evidence, and confidence scores in a single829

response830

• Sequential dialogue (verb_2s): Generate an-831

swer and evidence first, then request confi-832

dence scores in the same message833

• Independent steps: Generate confidence834

scores in a separate message835

Table 8 shows that maintaining unified context836

throughout the generation process is crucial for ac-837

curate confidence estimation. Even the sequential838

approach within the same message shows perfor-839

mance degradation compared to joint generation,840

suggesting that the model benefits from considering841

confidence while generating the content itself.842

Answer Confidence Evidence Confidence
Method ECE-t↓ BS-t↓ AUC↑ ECE-t↓ BS-t↓ AUC↑

Joint
(Verb. 1S 0.113 0.180 0.848 0.101 0.199 0.731

Sequential
(Verb. 2S 0.119 0.184 0.766 0.130 0.204 0.692

Independent 0.263 0.230 0.722 0.246 0.266 0.672

Table 8: Performance comparison of generation strate-
gies. Joint generation consistently outperforms sepa-
rated approaches, with the degradation being most se-
vere when confidence is generated in an independent
message.

Note: These preliminary experiments used a 843

smaller dataset and slightly different evaluation 844

criteria than the main experiments, hence the abso- 845

lute numbers differ from those reported in the main 846

text. 847

F Detailed Error Analysis Tables 848

The following tables provide detailed breakdowns 849

of the error patterns observed in our analysis of 850

confidence misalignment cases. 851

Error Type GPT-4.1-mini Llama-4 Phi-4 Total (%)

Numerical/
Temporal Drift 16 14 14 44 (49%)

Entity
Conflation 8 14 11 34 (38%)

Question-Answer
Contamination 4 2 4 9 (10%)

Default
Value Bias 1 0 1 2 (2%)

Insufficient
Granularity 1 0 0 1 (1%)

Table 9: Distribution of error types in high-confidence
incorrect evidence (n=90, 30 samples per model). All
cases exhibited maximum confidence (ce = 1.0).

Pattern GPT-4.1-mini Llama-4 Phi-4 Total (%)

Competing Plausible
Alternatives 9 6 9 24 (27%)

Complex Relation
Mapping 5 9 6 20 (22%)

Numerical
Values 11 4 4 19 (21%)

Surface Form
Variations 2 4 4 10 (11%)

Rare/Long-tail
Entities 0 2 7 9 (10%)

Multi-valued
Relations 3 5 0 8 (9%)

Table 10: Distribution of patterns in low-confidence
correct evidence (n=90, 30 samples per model).
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