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Abstract

In the deployment of Large Language Mod-
els (LLMs), “spurious correctness”—where an-
swers are correct but reasoning contains errors—
poses a critical risk by creating an illusion of

reliability. While prior work on LLM confi-
dence estimation focuses on answer-level or

entire reasoning path confidence, these coarse-
grained approaches fail to identify which spe-
cific parts of the reasoning contain errors. We

propose a fine-grained confidence estimation

framework that computes confidence scores for

individual evidence triplets within reasoning

chains, enabling precise localization of errors.
We use special prompts to generates answers,

evidence in triplet format, and their respective

confidence scores simultaneously, allowing au-
tomatic detection of spurious correctness pat-
terns where partial evidence contains factual

errors. Evaluated on Japanese multihop QA

across three model families representing differ-
ent architectures and training approaches, we

show that our approach exhibits superior cal-
ibration performance for evidence confidence

and delivers strong ability to detect spurious

correct answers (up to 84% discrimination ac-
curacy). As a secondary benefit, joint gener-
ation of confidence scores improves answer

confidence calibration by up to 43%. This

prompt-based approach requires no model re-
training and is immediately applicable to exist-
ing LLMs.

1 Introduction

As Large Language Models (LLMs) become in-
creasingly deployed in real-world applications, the
challenge of factuality—where LLLMs generate in-
formation contradicting facts—remains one of the
most critical issues (Huang et al., 2025; Min et al.,
2023). One promising solution to this problem is
confidence estimation, which aims to quantify the
model’s certainty in its outputs (Liu et al., 2025).
Various approaches have been proposed to elicit
well-calibrated confidence that aligns closely with
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Figure 1: Overview of the proposed method: While
long CoT reasoning makes error localization difficult
and coarse-grained confidence masks specific mistakes,
our fine-grained triplet-based confidence scores enable
precise identification of incorrect components (e.g., the
year Kurosawa won his first academy award, with the
confidence of 0.3) within otherwise correct reasoning
chains.

the correctness of the model’s outputs. These
approaches range from token probability-based
methods (Kadavath et al., 2022), verbalized con-
fidence (Tian et al., 2023) to consistency-based
methods (Manakul et al., 2023).

A significant limitation of existing methods is
that they estimate confidence at the level of entire
output. In practice, however, responses from LLMs
often consist of various components, including not
just final answers but also intermediate reasoning
steps, such as those produced in Chain-of-Thought
(CoT) prompting (Wei et al., 2022). Consequently,
assessing the confidence of each component sep-
arately allows LLMs to be more trustworthy, en-
abling users to better localize and interpret potential
errors in LLM responses.

To address this limitation, we study methods
for eliciting well-calibrated confidence for both
intermediate reasoning steps and final answers
from LLMs. As shown in Fig. 1, given a ques-
tion (e.g., Which director won...), our method pro-



duces semi-structured evidence triplet as interme-
diate steps (e.g., (Tarantino, first academy award
winner, 1994)) along with real-valued confidence
scores (e.g., 0.9) and then outputs the final answer.
Following prior work, we adopt token-probability
and prompt-based methods (Tian et al., 2023) for
fine-grained confidence estimation over individual
triplets.

To show the practical utility of fine-grained con-
fidence, we apply it to the task of detecting spu-
riously correct answers, cases in which the final
answers are correct but supported by incorrect evi-
dence. This issue is particularly prominent in multi-
hop QA task (Ishii et al., 2024a), with prior work
observing it in 31% of instances in the JEMHopQA
dataset (Ishii et al., 2024b).

Our main contributions are as follows:

1. We present the first study on fine-grained con-
fidence estimation. Through a comprehensive
analysis of five confidence extraction methods
across three LL.Ms, we find that sampling-
based methods yield better-calibrated confi-
dence than other methods.

2. We demonstrate that fine-grained confidence
scores better identify spuriously correct an-
swers compared to conventional whole-output
confidence scores, achieving an ROC-AUC of
0.84.

2 Related Work
2.1 LLM Confidence Estimation

LLM confidence estimation methods can be
broadly categorized into three approaches:

Token probability-based methods: Kadavath
et al. (2022) proposed estimating uncertainty di-
rectly from generation probabilities, though prob-
ability distributions are reported to be distorted in
models trained with human preference optimiza-
tion (Tian et al., 2023).

Linguistic confidence expression: Tian et al.
(2023) demonstrated that for models trained with
human preference optimization, prompting the
model to self-report confidence—either as explicit
numerical probabilities or as qualitative phrases
such as “almost certain” or “likely”—produces bet-
ter calibrated scores than relying on token proba-
bilities alone.

Consistency-based methods: Manakul et al.
(2023) proposed estimating confidence from agree-
ment across multiple generation results. While

computationally expensive, this enables more reli-
able estimation.

Importantly, none of these methods provide con-
fidence scores at a granular level that would en-
able identification of specific erroneous compo-
nents within reasoning chains. Our work addresses
this gap by introducing fine-grained confidence es-
timation at the evidence triplet level.

2.2 Using Reasoning Process for Confidence
Estimation

While several approaches leverage reasoning pro-
cesses to improve answer confidence, they operate
at coarse granularities:

Self-Consistency: Wang et al. (2022) samples
multiple CoT reasoning paths and selects the most
frequent answer. While each reasoning path can
be considered an evidence, it does not score the
correctness or reliability of the individual evidence.

Cycles of Thought: Becker and Soatto (2024)
generates “answer + explanation” multiple times
and quantifies uncertainty from explanation set sta-
bility. Their method uses explanation implication
probabilities for weighting, but does not output
confidence scores for the explanations themselves.

Confidence-based Self-Consistency: Tauben-
feld et al. (2025) adds numerical confidence to the
end of each reasoning path and selects final answers
through weighted sums of identical answers. How-
ever, confidence evaluation of individual evidence
elements is out of scope in this work.

These methods demonstrate the value of rea-
soning in confidence estimation but lack the criti-
cal granularity needed to pinpoint specific errors
within reasoning chains. Our work extends these
approaches by decomposing reasoning into evi-
dence triplets and assigning confidence to each
component independently.

2.3 The Spurious Correctness Problem

In multihop QA, the problem of ‘“spurious
correctness’—correct answers with incorrect
reasoning—is severe. Prior research reports such
cases amount to 31% of total instances (Ishii et al.,
2024a).

However, these studies rely on manual evalua-
tion, and to our knowledge no method targets au-
tomatic detection of spurious correctness in multi-
hop QA using confidence scores.! In this work, we

'General hallucination detectors such as SelfCheck-
GPT (Manakul et al., 2023) focus on sentence-level factu-
ality and do not distinguish correct answers with incorrect



enable automatic assessment of evidence/answer
correctness and their confidence scores, allowing
systematic spurious correctness detection through
confidence analysis.

3 Proposed Method

3.1 Overview

We propose a framework for fine-grained confi-
dence estimation that enables LLMs to output confi-
dence scores at the individual evidence triplet level.
Given a question ¢, our framework produces (i) an
answer a along with confidence score ¢, € [0, 1],
and (ii) a sequence of n evidence-confidence pairs
[(e1, cgl)), (e2, cg)), ey (En, cgn))], where each e;
is a triplet composed of a subject, relation, and
object (e.g., (Tokyo Tower, height, 333m)), and
e o,1).

To compute the confidence scores, we adopt
two methods from Tian et al. (2023): (i) model-
based methods (§3.2), which derive confidence
from the model’s intrinsic uncertainty during re-
sponse generation, and (ii) verbalized methods
(§3.3), which elicit self-reported confidence scores
from the model via natural language prompts.

3.2 Model-based Methods

Given the question ¢, we estimate the con-
ditional generation probabilities of the ev-
idence triplets and the final answer, i.e.,
p(el|Q)ap(62|Qa 61)7 "'ap(en|Qa €1,€2, ... 6nfl)
and p(a|q, e1, €2, ..., €,), in two ways and then use
these probabilities as confidence scores.

First, Token prob. first prompts the model to
generate the full reasoning sequence, including a
sequence of evidence triplets and the final answer.
For each component, we then extract the token-
level probabilities associated with that component
(e.g., p(et|q), p(€2|q, el), ... for the first evidence
triplet), and compute the geometric mean of these
token probabilities.

Second, Label prob. samples n reasoning se-
quences from the model. The final answers and
sequences of evidence triplets are then separately
grouped into clusters based on fuzzy matching,”
and the most frequent cluster is selected as the final
output. The confidence score for the final answer
is the number of cluster elements divided by n. For
reasoning.

We first normalize numerals and symbols, then merge lex-
ically differing but semantically identical strings via fuzzy

string matching using RapidFuzz (https://github.com/
maxbachmann/RapidFuzz) with a fixed similarity threshold.

evidence confidence, we select the evidence set E*
that appears most frequently among the n sampled
trajectories, thereby preserving structural coher-
ence. Each evidence triplet e € E* is assigned a
reliability score p(e | ) = 1 3% I[e € ED],
which disentangles path-level coherence from the
certainty of individual evidence pieces.

3.3 Verbalized Methods

Unlike model-based approaches, verbalized meth-
ods elicit confidence scores directly via prompting,
using three variants.

First, Verb. 1S prompts the model to generate a
sequence of evidence triplets and the final answer
along with confidence scores in a single response.
Second, Verb. 1S CoT first elicits CoT reason-
ing, then asks for confidence estimation. Third,
Ling. 1S uses a similar prompt to Verb. 1S but
replaces numerical scores with a 13-level linguistic
scale (e.g., "almost certain," "likely") adapted from
Fagen-Ulmschneider and translated into Japanese.

3.4 Prompt Design

To enable these confidence estimation methods, we
design prompts that require models to simultane-
ously generate: (1) evidence as structured triplets in
(Subject, Relation, Object) format, (2) confidence
scores for each triplet, and (3) the final answer with
its confidence score—all in a single forward pass
to maintain contextual coherence. The evidence-
first ordering and explicit confidence requirements
for each component enable fine-grained uncertainty
quantification. We include few-shot examples to en-
sure correct formatting and independent confidence
evaluation. Full prompt templates are provided in
Appendix Table 43,

4 [Experimental Settings

This section describes our experimental setup, in-
cluding the dataset, evaluation models, automated
evaluation procedures, and metrics used to assess
fine-grained confidence estimation performance.

4.1 Dataset

We conduct our experiments on JEMHopQA (Ishii
et al., 2024b), a Japanese multi-hop QA benchmark
whose training split contains 1,059 questions. We
reserve 1,000 questions as our evaluation set and
select three questions from the remaining 59 as

3Since our evaluation uses the Japanese JEMHopQA

dataset (Ishii et al., 2024b), all prompts were originally de-
signed in Japanese and translated to English for presentation.
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few-shot exemplars for in-context prompting. Each
question requires two to three reasoning hops, and
the gold annotations provide, on average, 2.2 sub-
ject—relation—object triples as supporting evidence.
Because these triple-level evidence annotations let
us verify the correctness of every individual rea-
soning component, JEMHopQA is well suited for
evaluating the validity of our proposed fine-grained
confidence scores and for analysing spuriously cor-
rect answers whose evidence is partially erroneous.

4.2 Evaluation Models

We evaluate three models representing different
training paradigms:

e GPT-4.1-mini (OpenAl, 2025)
(ver. 2025-04-14, dense model likely
incorporating human preference optimization;
parameter count not publicly disclosed)

¢ Llamad4Maverick17B128E-
InstructFP8 (Meta Al 2025) (SFT+Instruct
Mixture-of-Experts with 128 experts)*

* Phi-4 (Abdin et al., 2024) (14B-parameter
SFT-trained dense model)’

This diversity in architectures and training ap-
proaches demonstrates the generalizability of our
method across different model types. We set the
decoding temperature to 0.0 for all methods except
Label prob., which requires temperature 0.7 and
top-p 0.95 for sampling-based confidence estima-
tion (see §3.2). All experiments were conducted
using the official APIs via Azure AIFoundry®.

4.3 Evaluation Metrics

We evaluate our method along two dimensions: cal-
ibration and discrimination. For calibration met-
rics, following Tian et al. (2023), we report both
raw and temperature-scaled scores.

For calibration, we use Expected Calibration Er-
ror (ECE; Guo et al., 2017), which is the average
absolute difference between predicted confidence
and actual accuracy across bins, and Brier Score
(BS; BRIER, 1950), which is the mean squared
difference between predicted probabilities and out-
comes. Lower values indicate better calibration.

4 Azure internal model version 1; created Oct 1 2024, up-
dated May 7 2025.

3 Azure internal model version 7; created Oct 1 2024, up-
dated Apr 16 2025.

6https://learn.microsoft.com/ja—jp/azure/
ai-foundry/

For discrimination, our metrics are:

AUC: Area under the selective accuracy-
coverage curve (Geifman and El-Yaniv,
2017), measuring the ability to distinguish
correct/incorrect predictions (higher is better).

ROC-AUC: Area under the Receiver Operating
Characteristic curve (Fawcett, 2006) for spurious
correctness detection (higher is better).

PR-AUC: Area under the Precision-Recall curve
(Davis and Goadrich, 2006), particularly suit-
able for imbalanced spurious correctness detection
(higher is better).

We also apply temperature scaling to calibrate
confidence scores as p' = o(z/T) where z =
log(p/(1 — p)), with the optimal temperature T’
found by 5-fold cross-validation minimizing ECE.
Temperature-scaled metrics are denoted by “—t”
(e.g., ECE-t, BS-t).

4.4 Automated Evaluation

All evaluation metrics require binary correctness
labels for each answer and evidence triplet. We
obtain these labels automatically with GPT-4.1 and
then validate their reliability.

Answer evaluation: We use exact match for
YES/NO questions (33% of the dataset). For entity-
based questions (67%), including named entities,
dates and numerical values, we employ GPT-4.1
to judge semantic equivalence when exact match
fails.

Evidence evaluation: We instruct the model to
perform one-to-one matching between predicted
and gold-standard triplets, checking a set of match-
ing conditions that tolerate surface-form variation
(e.g. lexical paraphrase, subject—object swaps), as-
signing binary scores (1.0 or 0.0) to each pair.

Reliability assessment: To assess the reliabil-
ity of automated evaluation, one of the authors
manually labeled 100 randomly sampled instances
per model (300 total). We then computed the
agreement rates between these manual labels and
the automatically assigned label. For answer cor-
rectness, the agreement rates were 98% (GPT-4.1-
mini), 100% (Llama-4-Maverick), and 98% (Phi-
4); for evidence correctness, they were 93%, 94%,
and 95% respectively. While these agreement rates
indicate that automated evaluation introduces small
amount of noise into our measurements, it affects
all compared methods equally, preserving the va-
lidity of relative performance comparisons.
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GPT-4.1-mini Llama-4-Maverick Phi-4
Method ECE, ECE-t] BS+t, AUC!  ECE| ECE-t, BS-t, AUC!  ECE|, ECE-t| BS-t] AUCt
Labelprob. 0172 0.139  0.197 0.786 0.190  0.145 0218 0735 0107  0.188 0204 0.691
Tokenprob. 0264  0.135 0245  0.650 - - - Z - - - -
Verb. 18 0297 0125 0210 0791 0316 0137 0243 0702 0508 0326 0329 0574
Verb. ISCoT 0305  0.140 0223 0757 0295  0.086 0237 0724 0500 0297 0327 0.540
Ling. 1S 0288 0054 0227 0658 0297 0079 0230 0670 0491  0.124 0261 0459

Table 1: Evidence confidence extraction performance at the triplet level. Bold indicates best performance, underline
indicates worst performance. Label prob. consistently outperforms other methods across models.

5 Results

This section reports quantitative results based on
the settings in Section 4, covering evidence confi-
dence extraction methods (§5.1) and spurious cor-
rectness detection performance (§5.2). Comprehen-
sive results for all confidence extraction methods
across the three evaluated models are provided in
Appendix Table 6.

5.1 Evidence Confidence Estimation

Table 1 presents the calibration and discrimina-
tion performance of different confidence extraction
methods for evidence at the triplet level. Label
prob. (frequency-based method with N=10 sam-
plings, temperature 0.7, top-p 0.95) consistently
achieves the best results across models, with ECE
values ranging from 0.107 to 0.190.

Several key patterns emerge from these results.
First, GPT-4.1-mini and MoE architectures (Llama-
4-Maverick) show relatively good performance
with verbalized methods, with temperature scal-
ing proving particularly effective for reducing ECE
(e.g., Verb. 1S CoT achieving ECE-t of 0.086
for Llama-4). In contrast, the smaller SFT model
(Phi-4) shows poor performance with all verbalized
methods (ECE > 0.5), suggesting that verbalized
confidence expression requires sufficient model ca-
pacity. Despite this limitation, Phi-4’s Label prob.
performance remains competitive (ECE = 0.107),
demonstrating the robustness of frequency-based
approaches across model scales.

Fig. 2 visualizes these calibration results through
reliability diagrams. The diagonal line represents
perfect calibration where predicted confidence
matches actual accuracy. Label prob. (Ieft column)
shows consistent near-diagonal performance across
all models, confirming its superiority. While verbal-
ized methods initially show poor calibration, tem-
perature scaling dramatically improves their per-
formance, as demonstrated by Llama-4-Maverick’s
Verb. 1S CoT achieving competitive calibration
after scaling (bottom right).

ROC-AUC /PR-AUC

Model
Ans Conf. Ev Conf.
GPT-4.1-mini 0.59/046 0.74/0.56
Llama-4-Maverick 0.53/0.37 0.69/0.55
Phi-4 0.65/0.63 0.84/0.82

Table 2: Spurious correctness detection performance
using Label prob. Evidence confidence consistently
outperforms answer confidence across all models.

5.2 Spurious Correctness Detection

Building on the evidence confidence results, we
evaluate how effectively these confidence scores
can detect spurious correctness—cases where an-
swers are correct but reasoning is flawed.

For detection, we aggregate triplet-level confi-
dence scores by taking the minimum value across
all evidence triplets, reflecting that reasoning valid-
ity requires all evidence to be correct.’

Table 2 summarizes detection performance
across models using Label prob. method, which
demonstrated the best calibration in §5.1.

Evidence confidence consistently provides supe-
rior discrimination compared to answer confidence,
with Phi-4 achieving the highest ROC-AUC of 0.84
despite being the smallest model. This exceptional
performance motivates a closer examination of how
confidence scores distribute for different correct-
ness patterns.

Fig. 3 visualizes the relationship between answer
and evidence confidence for Phi-4’s Label prob.
method, revealing how spurious correctness cases
can be identified through confidence patterns.

The scatterplot reveals distinct patterns: spu-
rious correctness cases (blue) concentrate in the
upper-left region where evidence confidence is low
(ce < 0.3) but answer confidence remains high
(cq > 0.8). This separation enables effective detec-
tion using evidence confidence as a discriminator.

"We also evaluated mean aggregation, which showed com-
parable but slightly inferior performance, particularly for PR-
AUC.
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Figure 2: Reliability diagrams for evidence confidence
calibration. Label prob. (left) shows consistent cal-
ibration across all models. Temperature scaling dra-
matically improves verbalized methods (right), with
Llama-4-Maverick’s Verb. 1S CoT achieving the best
calibration after scaling (ECE-t=0.086).

The quantitative effectiveness of this approach is
further demonstrated through ROC and PR curves
in Appendix Fig. 5.

6 Analysis

This section analyzes the improvement in answer
confidence calibration through joint generation
(§6.1) and patterns in evidence confidence errors

(86.2).

6.1 Answer Confidence Calibration
Improvement

A natural hypothesis emerges from our approach:
by explicitly requiring models to assess evidence
confidence, we might encourage more careful rea-
soning, potentially leading to better-calibrated an-
swer confidence as well. In other words, does the
very act of evaluating evidence confidence indeed
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Figure 3: Answer confidence vs evidence confidence
scatter plot (Label prob. ). Red: Both answer and
evidence correct (true correct), Blue: Answer correct
but evidence wrong (spurious correctness), Green: Ev-
idence correct but answer wrong, Gray: Both answer
and evidence wrong. The histograms show marginal
distributions, revealing that spurious correctness cases
(blue) cluster at low evidence confidence.

improve the model’s ability to assess its own an-
swer confidence?

Model Method  Only- Joint- Improv.
Answer answer Rate
ECE/AUC ECE/AUC ECE/AUC
GPT-4.1- Label 13073 0.17/0.84  26%/16%
mini prob.
Llama-4-— Verb. . 1055 024/0.77  43%/40%
Maverick 1S
Phi-4 Label = 141068 0.16/0.75 -16%/11%
prob.

Table 3: Answer confidence performance: ECE and
AUC values for answer-only vs. joint generation ap-
proaches. Lower ECE indicates better calibration;
higher AUC indicates better discrimination. Improve-
ment rates show the relative change from answer-only
to joint generation.

Our results confirm this hypothesis. Table 3%
shows that joint generation of answer and evidence
confidence substantially improves answer confi-
dence calibration in most cases, with ECE reduc-
tions of 26% and 43% for GPT-4.1-mini and Llama-
4-Maverick models respectively. Moreover, AUC

80nly-answer and joint generation prompts are provided
in Appendix Tables 5 and 4.



improvements range from 11% to 40% across three
models, demonstrating enhanced discrimination ca-
pability.

The improvement is particularly pronounced for
GPT-4.1-mini (26% ECE reduction, 16% AUC im-
provement) and Llama-4-Maverick (43% ECE re-
duction, 40% AUC improvement). GPT-4.1-mini,
likely optimized for human preferences, tend to-
ward overconfidence in answer-only settings. Joint
generation appears to mitigate this by forcing ex-
plicit reasoning about evidence uncertainty. The
improvement is the largest for Llama-4-Maverick,
possibly because different experts can specialize
in answer versus evidence generation, leading to
more nuanced confidence expressions. Phi-4’s ECE
worsened (-16%), which may reflect its already-low
baseline ECE (0.14) leaving less room for improve-
ment. However, the 11% AUC improvement shows
that joint generation still enhances error detection
capability.

The proposed method of jointly estimating an-
swer and evidence confidence improved not only
ECE (better calibration between predicted confi-
dence and actual accuracy) but also AUC (better
discrimination between correct and incorrect pre-
dictions) in almost all settings (see Fig. 4 for vi-
sual comparison). The improvement is particularly
notable because it demonstrates that generating ev-
idence alongside answers helps the model better
calibrate its answer confidence—even though we
might expect the additional complexity to poten-
tially harm calibration.

The consistent improvements across models sug-
gest that requiring explicit evidence assessment
fundamentally changes how models evaluate their
own certainty. By forcing models to decompose
reasoning into verifiable components and assign
confidence to each, we create a more structured un-
certainty quantification process. Our ablation study
(Appendix D) confirms that both evidence genera-
tion and explicit confidence scoring contribute to
this improvement, with evidence generation alone
improving answer accuracy by 6.8-13.8% and ad-
ditional confidence requirements further enhancing
calibration. This joint generation maintains full
context while preventing the overconfidence often
observed in answer-only generation, where models
lack explicit mechanisms to surface intermediate
uncertainties. The importance of maintaining uni-
fied context is further confirmed by our preliminary
experiments (Appendix E), where separating gen-
eration steps degraded performance significantly

(e.g., answer confidence AUC dropping from 0.848
to 0.722).

6.2 Evidence Confidence Error Analysis

We analyzed error patterns in Label prob. results
across three models, examining cases where con-
fidence scores misalign with correctness. We ex-
tracted 30 samples per model (90 samples in total)
for two critical patterns: high confidence despite in-
correct evidence and low confidence despite correct
evidence.

6.2.1 High Confidence for Incorrect Evidence

We examined 90 cases where models assigned max-
imum confidence (¢, = 1.0) to incorrect evidence
triplets, revealing four primary error patterns (see
Appendix Table 9 for detailed distribution):

Numerical/Temporal Drift (49%): Nearly half
of high-confidence errors involve values numeri-
cally close to correct answers. The model assigns
full confidence to values it considers numerically
“close enough”, such as neighbouring years (1873
vs. 1871) or small miscounts (12 cities vs. 14
cities). Such drift occurs mainly for ages, counts,
and areas, whereas high-precision temporal facts
that require an exact calendar date (e.g. 17 May
1964) usually receive lower confidence.

Entity Conflation (38%): Models confidently
substitute entities with similar names or shared
categories. This systematic confusion in entity
disambiguation allows surface-level similarities to
override factual distinctions, particularly affecting
person names, company names, and locations.

Question-Answer Contamination (10%):
Models exhibit a copy-paste bias, directly transfer-
ring values from questions into evidence triplets.
For example, given "Which of City A or City B
has azalea as its city flower?", models generate
high-confidence triplets like (City A, city flower,
azalea) regardless of factual accuracy.

Default Value Bias (2%): Though less frequent,
models occasionally apply statistical priors with
high confidence, such as assuming March 31st as
the end of a fiscal year—a default particularly com-
mon in our dataset, reflecting training data patterns
specific to Japanese business context.

6.2.2 Low Confidence for Correct Evidence

Analysis of 90 correct triplets with low confi-
dence (0.1 < ¢, < 0.4 for GPT-4.1-mini/Llama-4;
0.1 < ¢ < 0.3 for Phi-4) reveals that conserva-
tive confidence often reflects legitimate uncertainty
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Figure 4: Plot of answer confidence for the baseline Answer-only method versus the Joint-Answer method

(simultaneous evidence generation) across all models.

(detailed breakdown in Appendix Table 10):

Competing Plausible Alternatives (27 %):
Models reduce confidence when multiple valid
candidates exist. For instance, when generating
Don Shirley’s birthplace, near-equal sampling of
"United States" (correct), "Berlin", and "New York
City" results in low confidence due to competing
claims in the training data.

Complex Relation Mapping (22%): Confi-
dence decreases when relations embody multi-hop
compressions (e.g., "singer of a theme song (of
something)") or ambiguous question-to-triplet map-
ping (e.g., "Did both A and B complete graduate
school?" leading to different educational status rep-
resentations).

Date/Numerical Values (21%): Specific dates
and large numbers receive low confidence even
when correct, demonstrating appropriate epistemic
humility about precise numerical facts.

Surface Form Variations (11%): Equivalent
expressions (e.g., "18+" vs. "CERO D" for age
ratings) reduce confidence due to our automated
evaluation’s exact match limitations rather than
genuine model uncertainty.

Rare/Long-tail Entities (10%): Information
about local mascots or other infrequent facts re-
ceives conservative confidence scores.

Multi-valued Relations (9% ): Relations with
multiple valid values (e.g., "neighboring cities")
trigger lower confidence as probability mass dis-
tributes across alternatives.

These patterns reveal the tendency that
high-confidence errors arise when the model as-
signs a high probability to the incorrect answers
that are semantically close to the correct ones (e.g.,
adjacent years, near-duplicate entity names), pre-

sumably because those expressions occupy neigh-
boring regions in the model’s internal representa-
tion, while low-confidence errors reflect the situa-
tions in which multiple answers are equally plausi-
ble or genuinely unknown, so the model spreads its
probability mass across them and gives any single
candidate a low score. Given that LLMs repre-
sent knowledge in a continuous space and funda-
mentally operate on probabilistic principles, such
phenomena may be inevitable. Nevertheless, our
results suggest that a key challenge lies in finely
discriminating between subtly different facts within
this latent space, while preserving the robustness
of knowledge processing to reduce overconfidence.

7 Conclusion

This paper introduced a fine-grained confidence es-
timation framework that extends LLLM uncertainty
quantification from answer-level to individual ev-
idence components. By decomposing reasoning
into triplets and assigning confidence scores to
each component, we enabled precise error detec-
tion within reasoning chains, a capability absent
from existing coarse-grained approaches.

Future work should explore alternative evidence
decomposition strategies beyond triplet format, in-
vestigate the relationship between granularity and
confidence quality, and extend evaluation to other
languages and reasoning tasks. As LLMs increas-
ingly support high-stakes decisions, fine-grained
confidence estimation will be essential for trustwor-
thy deployment.



Limitations

While our results demonstrate the effectiveness of
fine-grained confidence estimation, several limita-
tions warrant discussion:

Automated evaluation reliability: While our
automated evaluation achieved high agreement
with human judgments (93-100% across different
models and metrics), this approach has inherent
limitations. The reliability may vary with different
model families or task complexities not tested in
our validation. Furthermore, our validation sam-
ple of 100 instances per model may not capture
all edge cases. Future work should explore more
robust evaluation methods, potentially combining
multiple evaluators or using specialized evaluation
models.

Dataset and language specificity: Our evalua-
tion focused on Japanese multihop QA. While the
underlying principles should transfer to other lan-
guages and tasks, empirical verification is needed.

Evidence format constraints: We used triple-
format evidence (Subject, Relation, Object), which
works well for factual QA but may not suit all
reasoning types. Future work should explore other
evidence representations.

Computational tradeoffs: While our method
is more efficient than extensive resampling ap-
proaches, it still requires generating additional to-
kens for evidence and confidence. Future work
could explore more efficient confidence estimation
methods.

Calibration versus discrimination tradeoff:
While we generally see improvements in both met-
rics, some configurations show tension between
calibration and discrimination performance. Un-
derstanding and optimizing this tradeoff remains
an open challenge.
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line used in the ablation study (§6.1) to demonstrate
the improvement from joint evidence-confidence
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generation. As our evaluation was conducted on
the Japanese JEMHopQA dataset, all prompts were
originally written in Japanese and have been trans-
lated to English for this presentation. The actual
experiments used the Japanese versions of these
prompts.

B Detailed Experimental Results

Table 6 presents the complete experimental re-
sults for all confidence extraction methods across
the three evaluated models. For each model and
method combination, we report both answer and
evidence confidence performance metrics. The ta-
ble shows that Label prob. consistently achieves
the best overall performance across models, partic-
ularly for evidence confidence calibration.

C Additional Experimental Analysis

C.1 Spurious Correctness Detection
Performance

Fig. 5 provides a detailed visualization of spurious
correctness detection performance, showing both
ROC and PR curves for the best-performing con-
figuration (Phi-4 with Label prob.). The substan-
tial gap between evidence confidence (orange) and
answer confidence (blue) demonstrates that fine-
grained confidence at the evidence level provides
significantly better discrimination for identifying
cases where correct answers are supported by in-
correct reasoning.

ROC for False-Positive Detection Precision-Recall for False-Positive Filtering

Figure 5: ROC and PR curves for spurious correctness
detection using Phi-4/Label prob. . Evidence confidence
(orange) achieves ROC-AUC 0.84 and PR-AUC 0.82,
significantly outperforming answer confidence (blue)
with ROC-AUC 0.65 and PR-AUC 0.63.

D Ablation Study on Evidence and
Confidence Generation

To investigate the mechanism behind the calibra-
tion improvements observed in our main experi-
ments, we conducted an ablation study with four
configurations:
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Method Template (Joint)

Label prob. /
Token prob.

Provide an answer to the question and the supporting evidence as triples. Triples should be in the format
(Subject, Relation, Object). Subject is an entity, Object is an entity or concrete value (date, number, etc.),
both as short single phrases.

Output in the following format:

Triplel: (Subject, Relation, Object)

Triple2: (Subject, Relation, Object)

Answer: YESINOI<short single phrase>

Example:

Q: Which console had more games launch simultaneously with its hardware in Japan, the Wii U or
GameCube?

Triplel: (Wii U, simultaneous Japan launch titles, 11)

Triple2: (GameCube, simultaneous Japan launch titles, 2)

Answer: Wii U

[2 more examples omitted]

Question: {THE_QUESTION}

Verb. 1S Provide an answer to the question and the supporting evidence as triples.
Triples should be in the format (Subject, Relation, Object). Subject is an entity, Object is an entity or
concrete value (date, number, etc.), both as short single phrases.
Include a confidence score (0.00-1.00, two decimals) for each triple and for the final answer.
Output in the following format:
Triplel: (Subject, Relation, Object) 0.00-1.00
Triple2: (Subject, Relation, Object) 0.00-1.00

Answer: YESINOI<short single phrase> 0.00-1.00
[3 more examples omitted]
Question: {THE_QUESTION}

Verb. 1S CoT  Provide an answer to the question and the supporting evidence as triples.
First show your thinking process concisely, then output the evidence triples and answer.
Triples should be in the format (Subject, Relation, Object). Subject is an entity, Object is an entity or
concrete value (date, number, etc.), both as short single phrases.
Include a confidence score (0.00-1.00, two decimals) for each triple and for the final answer.
Output in the following format:
Thought: [reasoning process]
Triplel: (Subject, Relation, Object) 0.00-1.00
Triple2: (Subject, Relation, Object) 0.00-1.00

Answer: YESINOI<short single phrase> 0.00-1.00

Example:

Q: Which console had more games launch simultaneously with its hardware in Japan, the Wii U or
GameCube?

Thought: Need to compare the number of launch titles for both consoles in Japan.

Triplel: (Wii U, simultaneous Japan launch titles, 11) [confidence]

Triple2: (GameCube, simultaneous Japan launch titles, 2) [confidence]

Answer: Wii U [confidence]

[2 more examples omitted]

Question: {THE_QUESTION}

Ling. 1S Provide an answer to the question and the supporting evidence as triples.
First show your thinking process, then output the evidence triples and answer.
Triples should be in the format (Subject, Relation, Object).
Subject is an entity, Object is an entity or concrete value (date, number, etc.), both as short single phrases.
Express confidence for each triple and the answer using one of these expressions:
{EXPRESSION_LIST}
Output in the following format:
Triplel: (Subject, Relation, Object) Almost certainlVery likelyl...|Almost impossible
Triple2: (Subject, Relation, Object) Almost certainlVery likelyl...|Almost impossible

Answer: YESINOI<short single phrase> Almost certainlVery likelyl...|Almost impossible
Question: {THE_QUESTION}

Table 4: Prompt templates for Joint configuration. All methods require evidence generation before the final answer.
{THE_QUESTION} is replaced with the actual question, and {EXPRESSION_LIST} contains the 13-level linguistic
expressions.
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Method Template (Only-Answer)
Label prob. /

Provide the best answer to the following question. Output ONLY the answer, without any other words or

Token prob. .
explanations.
Question: {THE_QUESTION}
Answer in the following format: Answer: <most likely answer, as short as possible; not a complete sentence,
just the answer!>
Verb. 1S Provide the best answer to the following question and the probability that it is correct (0.0 to 1.0). Output

ONLY the answer and probability, without any other words or explanations.

Question: {THE_QUESTION}

Answer in the following format:

Answer: <most likely answer, as short as possible; not a complete sentence, just the answer!> Probability:
<probability your answer is correct (between 0.0 and 1.0), no additional comments; just the probability!>

Verb. 1S CoT  Show your step-by-step thinking process for the following question. Then provide the answer and the
probability that it is correct (0.0 to 1.0).
Question: {THE_QUESTION}
Answer in the following format:
Thought: <explain your thinking process in one concise sentence>
Answer: <most likely answer, as short as possible; not a complete sentence, just the answer!>
Probability: <probability your answer is correct (between 0.0 and 1.0), no additional comments; just the
probability !>

Ling. 1S Provide the best answer to the following question and express your confidence using one of these expressions:
{EXPRESSION_LIST}
Question: {THE_QUESTION}
Answer in the following format:
Answer: <most likely answer, as short as possible; not a complete sentence, just the answer!>
Answer Confidence: <confidence expression, no additional comments; just the short phrase!>

Table 5: Prompt templates for Only-Answer configuration. {THE_QUESTION} is replaced with the actual question,
and {EXPRESSION_LIST} contains the 13-level linguistic expressions adapted from Fagen-Ulmschneider.

Joint Answer Joint Evidence

Accuracy ECE| ECE-t] BS| BS-tl] AUCt Accuracy ECE| ECE-t] BS| BS-t] AUC?T

Label prob. 0.670 [NOMG8W 0.132 [NOMGTANOMGON 0:842 0.621 [ON720 0.139  [0221
GPTap. Yerv1s 0.654 0266 0095 0272 0202 | 0.841 0629 0297 0.25 0300 | 0210

Model Method

el Verv. ISCoT — 0.667 0263 0086 0274 0207 0814 0627 0305 0140 0312 0223 | 0.757
Ling. 1S 0670 0250 | 0.065 @ 0270 0212 0702 0614 0283 [OIOSHE 0307 0227 0.658
Token prob. 0676 101877 0.108 [O:SSUNONSONNOB6ZN NOGHSEN 0264 0.035 0313 0245  0.650
Label prob. 0656 [T01987 0.152 [ON9310:1807 0825 0611 [OM90T 0.145 [10245° 0218 0735
Llama-4-  Verv. 1S 0660 0240 0.115 0252 0222 0769 0601 0316 0137 0317 0243 0702
Maverick  Verv. 1S CoT [UOB79M 0212 0.11 0232 0217 = 0.804 0614 0295 [WO086M 0302 0237 0724
Ling. 1S [LN068500 0208 0075 0236 0.98 0.770 058 0297 | 0.079 | 0309 0230 0.670

Label prob. 0.175 0.191 0.205 0.750 0.188 0:204 1 0.691

Phi-d Verv. 1S 0.543 0.637 0.574
Verv. 1S CoT 0.554 0.408 0.624 0.540
Ling. 1S 0.541 0.393

Table 6: Comprehensive results for all confidence extraction methods. Bold values indicate best performance for
each metric within each model group.

Configuration GPT-4.1-mini Llama-4-Maverick Phi-4
Accuracy ECEJ | Accuracy ECEJ | Accuracy ECE |
C1: Answer only + conf. 0.528 0.363 0.544 0.422 0.473 0.495
C2: Answer + Evidence, no conf. 0.666 — 0.650 — 0.541 —
C3: Answer + Evidence, answer conf. only 0.650 0.280 0.659 0.326 0.526 0.440
C4: Answer + Evidence + both conf. 0.654 0.266 0.660 0.240 0.542 0.426

Table 7: Ablation study on incremental effects of evidence and confidence generation using the Verb. 1S method.
ECE values are not applicable for C2 as no confidence scores are generated.
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C1: Answer only with confidence (baseline)
C2: Answer + Evidence, no confidence scores

C3: Answer + Evidence, answer confidence
only

C4: Answer + Evidence, both answer and
evidence confidence (our full method)

Table 7 reveals two key findings:

Evidence generation improves accuracy:
Comparing C1 to C2, we observe substantial ac-
curacy improvements across all models (GPT-4.1-
mini: +13.8%, Llama-4-Maverick: +10.6%, Phi-4:
+6.8%), confirming that explicit evidence genera-
tion enhances reasoning.

Evidence confidence scoring improves answer
calibration: Comparing C3 to C4, adding ev-
idence confidence requirements consistently im-
proves answer confidence calibration (ECE re-
duction: GPT-4.1-mini: 0.280—0.266, Llama-4-
Maverick: 0.326—0.240, Phi-4: 0.440—0.426).

The minor variations in accuracy between C2,
C3, and C4 suggest that confidence scoring itself
does not significantly impact answer correctness,
but rather improves calibration through more real-
istic uncertainty expressions.

E Preliminary Experiments on
Generation Strategies

To validate our joint generation approach, we con-
ducted preliminary experiments comparing three
generation strategies on 120 samples from the
JEMHopQA development set:

* Joint generation (verb_1s): Generate answer,
evidence, and confidence scores in a single
response

* Sequential dialogue (verb_2s): Generate an-
swer and evidence first, then request confi-
dence scores in the same message

* Independent steps: Generate confidence
scores in a separate message

Table 8 shows that maintaining unified context
throughout the generation process is crucial for ac-
curate confidence estimation. Even the sequential
approach within the same message shows perfor-
mance degradation compared to joint generation,
suggesting that the model benefits from considering
confidence while generating the content itself.

13

Answer Confidence Evidence Confidence

Method ECEt| BS-tl AUCT | ECEt] BS-tl AUCT
Joint

(Verb. 1S 0.113 0.180  0.848 0.101 0.199  0.731
Sequential

(Verb. 28 0.119 0.184  0.766 0.130 0.204  0.692
Independent  0.263  0.230  0.722 0.246  0.266  0.672

Table 8: Performance comparison of generation strate-
gies. Joint generation consistently outperforms sepa-
rated approaches, with the degradation being most se-
vere when confidence is generated in an independent
message.

Note: These preliminary experiments used a
smaller dataset and slightly different evaluation
criteria than the main experiments, hence the abso-
lute numbers differ from those reported in the main
text.

F Detailed Error Analysis Tables

The following tables provide detailed breakdowns
of the error patterns observed in our analysis of
confidence misalignment cases.

Error Type GPT-4.1-mini Llama-4 Phi-4  Total (%)
Temporal Dri 16 414 4En)
E?)ﬁiiyation 8 14 11 34 (38%)
Comamination 4 24 va0w)
535: lltaias 1 0 1 22%)
ICI}I:;nfSlC;It];/ 1 0 0 1 (1%)

Table 9: Distribution of error types in high-confidence
incorrect evidence (n=90, 30 samples per model). All
cases exhibited maximum confidence (¢, = 1.0).

Pattern GPT-4.1-mini  Llama-4 Phi-4  Total (%)

Competing Plausible

Alternatives 9 6 9 24 (27%)

l(\?/lomp}ex Relation 5 9 6 20@2%)
apping

Numerical

Values 11 4 4 1921%)

Surface Form

Variations 2 4 4 10(11%)

Rare/Long-tail

Entities 0 2 7 9 (10%)

Multi-valued

Relations 3 5 0 8 (9%)

Table 10: Distribution of patterns in low-confidence
correct evidence (n=90, 30 samples per model).
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