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ABSTRACT

Computer vision is outstanding on fixed datasets, but lacks the effortless gener-
ality and flexibility of human perception. As a step toward understanding this
flexibility, we show that there are features — critical contours — readily detectable
in images that have counterparts — extremal contours — on 3D shapes. Both are
part of a topological structure, Morse-Smale complex, and together they provide
an invariant linking image to shape structure. An open neighborhood around these
contours is related to human perception of shape features, such as bumps, which
suggests that training for these features could provide a generalization benefit in
algorithm development.

1 INTRODUCTION

Vision and robotics provide clues about what is where. Increasingly applications, such as object
manipulation, are pushing representations toward three spatial dimensions. Handles, for example,
provide grasping points, but systems capable of identifying such extended “bumps” remains a chal-
lenge [ten Pas et al,| (2017), even when working with 3D point clouds. We propose a topological
feature ideally suited for such tasks based on the 2D image.

Specifying what should be represented in current approaches, and why, is often instructed by clas-
sical algorithms. For example, keypoint detection (classic approach: [Lowe| (2004); current deep
network [Barnes & Posner; (2020)) is used to locate objects, or features on objects, and surface nor-
mals are used to describe shape (classic: Horn| (1986); Horn & Brooks| (1989); current: |[Eigen &
Fergus| (2014); Wang et al.[ (2020)). But keypoints are intuitive and heuristic, and surface normal
inference is ill-posed. The latter is the classical shape-from-shading problem, for which regularizers
or shape priors Kersten et al.[(2004)); Barron & Malik| (2012)); |Chakrabarti et al.|(2016)) are invoked.
These can be powerful in restricted contexts, e.g. faces |[Kulkarni et al.| (2015) or hands |Ge et al.
(2019), but are brittle and, when generalized, tend to over regularize Zhou et al.| (2017). Multiple
views help |Sridhar et al.| (2019) but reconstructions are still category specific. This holds for ap-
proaches using voxel grids or polygonal meshes as well [Su et al.| (2015); [Wang et al.| (2018). We
propose that a path out of these rigid, constrained corners of shape space that involves postulating
an intermediate level of representation. This intermediate level is generic and based on topological
constructs.

To motivate our approach, consider the occluding contour. It is special because it enjoys both salient
image domain and shape domain structure (Fig.[I). Note in particular how the concentrated inten-
sities imply the surface normal is orthogonal to the line of sight. Others have used this implicitly
(e.g/Wang et al.[(2018)); we go a step further by defining interior contours that also enjoy image and
shape salience. Our goal is to replace empirical interior features with generic ones.

2 CRITICAL CONTOURS AND EXTREMAL CURVES

The image signature of occluding contours is distinctive; away from them, the variation of intensities
with viewpoint or lighting changes is endlessly varying almost everywhere (Fig.[2[a). Some schemes
exploit this variation [Eslami et al.| (2018) — they work when structure among the queries can be
identified as in CAD models|Lei et al.|(2020). But this is limited. We choose the opposite — we seek
those positions that are invariant across the queries (Fig. [2(a, bottom), at least for generic (Morse)
smooth surfaces.
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Figure 1: Anchoring shape inferences. (a) Algorithms for simple objects evolve from the occluding
contour. (b) Level sets of intensity, or isophotes, concentrate in parallel along the occluding contour,
while the (projected) surface normal (red arrows) is orthogonal to it. This links the two domains.
(c) Our proposal: critical contours (blue) can be derived from the image; they imply the existence of
extremal curves of surface slant (red). These are interior features that ground surface constraints in
image structure. Fig. (a) adapted from |Wang et al.| (2018).

To be flexible, an invariant must work across different rendering functions, such as Lambertian
shading, specular shading, texture, etc., as well as line drawings |DeCarlo et al.| (2003); Judd et al.
(2007). Importantly, all of these renderings involve the surface normal field to create an image:
View the surface normal field N (z,y) as a map from the image domain R? to the unit sphere S
A rendering function F' € F is then a smooth map from the unit sphere to the real line, that is
F : 5% — R, and the image I(z,y) = F(N(x,y)). Building on [Kunsberg & Zucker| (2018), the
critical contour (blue curve in Fig. 2|b) is defined

DEFINITION Critical contours are gradient flows in the image with large transversal second deriva-
tives.

Critical contours are invariant to the choice of F':

THEOREM Given a surface normal field N (x,y) and any two choices of generic rendering functions
Fi,F5 € C, construct Iy = Fy(N(x,y)),Is = F»(N(x,y)). If a critical contour is present in I,
then there is a arbitrarily close critical contour in I.

We now turn to the surface. The orientation of a normal vector at a point can be specified in slant
o and tilt 7 coordinates. Since there is a normal at every point, the slant coordinate defines a scalar
function over the object. In these coordinates the occluding contour can be defined by maximal
values of the slant along it. But in the interior of the shape the slant can no longer be critical
everywhere, or it would involve total self occlusion. This motivates a relaxation:

DEFINITION Slant extremal contours are the saddle-maxima 1-cells of the MS complex of the slant
function.

A corollary can be restated:

COROLLARY An extremal contour must lie in the tubular neighborhood of a critical contour and
have the same endpoints.

Extremal contours lie near the critical contours, a proof of which follows since slant can be viewed
formally as a rendering function F' € F. Further, the invariance statements from Kunsberg &
Zucker|(2018) show that extremal contours will nearly always be salient from the image, regardless
of the rendering function. The main point is this: Extremal contours delineate the surface features
while the critical contours are salient from the image. We can observe a critical contour, infer
an extremal contour near it, and then use the theorem to attribute surface protrusions to image
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Figure 2: Distinctive features of image intensities are topological. (a) (top) The isophotes move
significantly with changes in lighting, even for a lambertian shape; compare the patterns in the blue
squares with those in the red sausages (bottom). In neighborhoods near ridges the isophote pattern
barely changes. (b) These red sausages are open neighborhoods containing critical contours, an
integral curve of the gradient flow. The arrows surrounding it point in the positive gradient direction,
and the red and green dots are singularities (see Appendix). (c) The critical contours are part of the
Morse-Smale complex. Note how, when shown in perspective (top), the 1-cells (contours) resemble

an artist’s line drawing. (c) adapted from [Gyulassy| (2008).

regions. Moreover, because the Corollary implies an image signature, we conjecture that this should
be readily learnable. Experiments in our group are now confirming this.

3 BUMPS: CLOSED EXTREMAL CONTOURS

A special case, closed extremal contours, illustrates the power of the Theorem. Recall that we began
with the task of finding bumps (or protrusions for graspingﬂ Consider, for example, a sigmoidal
bump and ask yourself where it begins. Although in robotics one seeks exact quantitative locations,
we show (Fig. Eka)) that humans are quite variable in their estimates of 3D shape; we say they
are qualitative rather than quantitative [Nartker et al| (2017). This is typical of perception [Sun &

Schofield (2012); Mamassian & Kersten| (1996); Mingolla & Todd| (1986); [Todd et al.| (2014); Egan

& Todd!(2015));|Christou & Koenderink|(1997)); Egan & Todd|(2015));/Seyama & Sato|(1998));/Curran
& Johnston| (1996); Khang et al.|(2007); Koenderink et al.|(1996) show similar results.

In other words, we all agree there are bumps when viewing a shape, but the precise location of where
they begin is problematic. We cartoon this variability with the yellow "sausage’ in[3|c); a technical
version is shown in (d), which surrounds a (piece of) critical contour. Note how the gradient points
away from the sausage, the entry and the exit sides contain extrema, and nearby is an extremal
contour (dashed). Importantly, critical contours and extremal contours are integral curves through
the gradient flow; i.e. are orthogonal to the level sets. In the limit as the ’sides’ of the bump get
steeper the contours converge toward one another, just as an artist’s drawing would convey shape.
It is this construction that underlies the proof that critical and extremal contours are 1-cells in the
Morse-Smale complex (see Appendix for introduction to Morse-Smale).

Examples of the critical contour in the image and the extremal contour on the surface are shown
in blue for a sigmoidal bump. Because of the global nature of extremal contours, examples were
computed using persistence simplification Reininghaus & Hotz (201T)). In this artifical example they
coincide, but for the more natural horse’ example (Fig. Ekc)) they lie near each other (within the
sausage neighborhood). In addition we show the attached portions of the Morse-Smale complex.
Note how the extremal contour passes through the max in slant (and contains the minimum inside);

'Due to space limitations, we do not consider whether the bump is convex or concave in this abstract; all
statements are correct in both cases. In addition, there are constraints between bumps and dents, that we also
do not discuss here.



Submitted to the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

this signature is the relaxation of the occluding contour to the interior of the shape (see Appendix
for development of the Morse-Smale cell for a bump.)
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Figure 3: Overview of argument. (a) Human perception of shape is qualitative. (b) Different subjects
see different depths when viewing a series of shaded bumps. (c) We cartoon these differences by
placing a neigborhood over the loci of positions where a bump could begin. The theorem (d) states
that for any critical contour (blue) in the sausage neighborhood there will be an extremal contour
(dashed) nearby. (e) The Morse-Smale complex for the image and (f) slant function for a bump. The
crtical and (closed) extremal contours are shown in blue. Fig. (a) from Nartker et al.| (2017)).

4 SUMMARY AND CONCLUSIONS

The problems associated with shape inference are currently a barrier to flexible vision algorithms.
Physically-crafted priors, smoothing regularizers, and task-limiting training datasets, have led to
algorithms that are brittle and difficult to generalize. We argue that there is something basic about
the qualitative nature of human shape perception, and that this variability is naturally expressed in
topological terms. Critical contours and extremal curves of slant are a specific realization of these
topological terms, and provide a generic invariant linking the image domain to the shape domain.
Incorporating these topological constraints into recognition algorithms could extend their flexibility
and generalizability. It is perhaps no accident that our hands were designed as qualitative grippers;
only after our fingers tighten are the exact, geometric parameters known.
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A APPENDIX

A.1 INTRODUCTION TO THE MORSE SMALE COMPLEX

The Morse Smale complex is a qualitative representation emphasizing the different stable and unsta-
ble regions of a smooth scalar function. In this work, we choose the function to be the slant function
of the image surface o(z,y) : R? — R. We will assume o is a Morse function: all its critical points
are non-degenerate (meaning the Hessian at those points is non-singular) and no two critical points
have the same function value.

For a smooth surface, the gradient Vo = (0f/0x,df /0y) exists at every point. A point p € R?
is called a critical point when Vo (p) = 0. This gradient field gives a direction at every point in
the image, except for the critical points, a set of measure zero. Following the vector field will trace
out an integral line. These integral lines must end at critical points, where the gradient direction is
undefined. Thus, one can define an origin and destination critical point for each integral line.

The type of each critical point is defined by its index: the number of negative eigenvalues of the
Hessian at that point. For scalar functions on R?, there are only three types: a maximum (with index
2), a minimum (with index 0) and a saddle point (with index 1).

There are two types of integral lines, depending on the difference in index of the critical points it
connects. If the difference is one, we call the integral line a /-cell. It naturally must connect a saddle
with either a maximum or a minimum. For example, a saddle-maxima 1-cell connects a saddle and
a maximum. The set of 1-cells will naturally segment the scalar field into different regions, called
2-cells. In addition, the scalar values on the 1-cells govern the values on the 2-cells. See Fig[2]c) for
insight.

Further, for each critical point, its ascending manifold is defined as the union of integral lines having
that critical point as a common origin. Similarly, its descending manifold is the union of integral
lines with that critical point as a common destination.

For two critical points p and ¢, with the index of p one greater than the index of ¢, consider the
intersection of the descending manifold of p with the ascending manifold of ¢q. This intersection
will be either a 1D manifold (a curve called a 1-cell or watershed) or the empty set. For two critical
points r and s, with the index of  two greater than the index of s, the intersection of the descending
manifold of r with the ascending manifold of s will either be a 2D manifold (a region called a 2-cell)
or the empty set. Thus, the intersection of all ascending manifolds with all descending manifolds
partition the manifold M into 2D regions surrounded by 1D curves with intersections at the critical
points.

The Morse Smale complex is the combinatorial structure (and the corresponding attaching maps)
defined by the critical points, 1-cells and 2-cells. It is a structure that relates a set of contours (the
1-cells) to a qualitative function representation. With knowledge only of the slant function at the
critical points and 1-cells, one could reconstruct the 2-cells (and thus the entire function) relatively
accurately. For some insight, see |Allemand-Giorgis et al| (2014)); Weinkauf et al.| (2010). In this
work, we wish to show how the slant saddle-maxima 1-cell can be used as a ‘bump boundaries’ to
model 3D shape perception.
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Figure 4: Development of the MS-complex for bumps. (a) Starting with the standard MS cycle, (b)
smoothly deform the domain so the saddles begin to (c) approach one another until (d) they merge.
Notice how the integral curves (cyan) deform along with the saddles.

For additional information, see Milnor| (1963)); |(Gyulassy| (2008)); [Biasotti et al.| (2008); Matsumoto
(2002).

A.2 EXTREMAL RINGS AND OCCLUDING CONTOURS

We first show how the standard 2-cell of the Morse-Smale complex specializes in the case of bumps;
see Fig.[4] It is basically a situation in which two saddles merge into one. Notice how this further
“pulls” the gradient flow along with the merging; this helps to further define the image signature.

We next show that extremal contours represent boundaries of bumps and valleys of the surface.
The argument will be based on the conclusion that the surface normal field should generically point
uniformly to the interior (or exterior) of the region bounded by the extremal contours.

Consider Fig 5] and focus on the enlarged portion of the extremal ring. This was defined to cut
across the level sets of the slant function but, by definition, it does not inform the tilt function. Here
we show that, for generic surfaces, the tilt must be constrained along the extremal ring to prevent
self occlusion and image instability. There are two basic possibilities: in the first case, the surface
behaves like a bump boundary, where the surface normal on the extremal ring points consistently;
the second case leads to rather wild surfaces with ‘crazy’ curvatures. While this second case is a
mathematical possibility (developed next), it violates our requirement that the surface be generic.
That is, a small change in the lighting would lead to a drastically different image (Fig.[6). For the
wild surfaces, the normal points in many different directions, covering a very large portion of the
Gauss map.

More technically, let ce(¢) denote an extremal ring that bounds a region R, and let {z,y} be image
coordinates under orthographic projection. Let o(x,y) represent the slant in a neighborhood of a
point (xg, yo) on a(t). Rotate the frame so that the slant gradient (tangent direction to «/(t)) points
locally in the y direction. We compare two possible solutions for the local surface depth S(x,y) by
defining two pairs of Taylor expansions for the slant and tilt functions. Let o (x,y) = oa(z,y) =
c1+coy+ Oun?+ OpyTy + Jyny. (There is no linear x term here due to the slant gradient pointing
along the y axis.) Let 71 = x and 75 = y. Now, {01, 71} defines a surface Sy and {09, 72} defines
an alternative surface So. Which of these is more likely?

Both S; and S5 have the same magnitude tilt gradient. However, S; (generic surface) has the tilt
change along the contour while Sy (twisted surface) has a tilt change perpendicular to the extremal
contour.
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Figure 5: Extremal curves and surface normals. (a): Consider a portion of a maximal curve of slant.
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another with substantial twist. The first surface, without twist, is much more likely than the second
surface. Note the normal field for the first surface consistently points to the same side (left) of the
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normal field must point uniformly outside (or inside) the entire contour.
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Figure 6: Comparing possible surface explanations for a maximal slant curve. Each row depicts
different properties of the surfaces shown in the first column. Although both are technically solu-
tions, the twisted surface covers most of the Gauss map and, when rendered under slightly different
lightings, gives rise to drastically different images. The generic surface solution occupies a small

portion of the Gauss map and renders almost the same image under different light sources. Both
arguments show that the twisted surface (top row) is much less likely.
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Let N1(x,y), Na(z,y) represent the normal fields for each of these two solutions. We compare the
relative probability of each of these surfaces by considering the term 7; = fQ det(DN; DN} for
each surface. This is essentially the Gaussian curvature of each solution integrated over the patchE]
The solution with higher Gaussian curvature will be the solution that is less smooth, more dependent
on lighting direction Freeman|(1994) and with a higher chance of occlusion. We compare the relative
likelihood of the two solutions é—; by considering the inverse of the ratio % A simple calculation
shows:

L1 TQ O'2
LQ > T1 x 0’5 ( )

where 0, is the transversal second derivative of the slant across a.(t) while o, is the gradient along
a(t). Since the slant on « is extremal, its gradient will necessarily be small. In addition, since the
slant is changing rapidly across «, 0., will be large. Thus, for a slant patch as shown in Fig[5{a),

the ratio % will be large. This statement is illustrated by the comparison in Fig|6| We conclude

Yy
that the image patch has a surface normal field that is not twisted. In other words, it is most likely
that the normal points to a single side of the curve in the entire Taylor expansion.

Applying the above argument completely around the extremal ring «(¢) shows that the most probable
interpretation of the surface normal field along «(¢) is that it does not have a twist and therefore must
point uniformly outside (or inside) the region bounded by «(t). It then follows that the region R is
‘higher’ (or ‘lower’) than the surrounding area. More precisely, one can see that the R must be an
ascending or descending manifold of depth; in other words the region is a bump or a valley.

REMARK The surface normal along an extremal contour points consistently to the interior or exte-
rior.

For an explanation of these terms, see|[Holtmann-Rice et al.|(2018).
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