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Abstract: Large language models (LLMs) are shown to possess a wealth of ac-1

tionable knowledge that can be extracted for robot manipulation in the form of2

reasoning and planning. Despite the progress, most still rely on pre-defined mo-3

tion primitives to carry out the physical interactions with the environment, which4

remains a major bottleneck. In this work, we aim to synthesize robot trajecto-5

ries, i.e., a dense sequence of 6-DoF end-effector waypoints, for a large variety of6

manipulation tasks given an open-set of instructions and an open-set of objects.7

We achieve this by first observing that LLMs excel at inferring affordances and8

constraints given a free-form language instruction. More importantly, by leverag-9

ing their code-writing capabilities, they can interact with a vision-language model10

(VLM) to compose 3D value maps to ground the knowledge into the observation11

space of the agent. The composed value maps are then used in a model-based plan-12

ning framework to zero-shot synthesize closed-loop robot trajectories with robust-13

ness to dynamic perturbations. We further demonstrate how the proposed frame-14

work can benefit from online experiences by efficiently learning a dynamics model15

for scenes that involve contact-rich interactions. We present a large-scale study of16

the proposed method in both simulated and real-robot environments, showcasing17

the ability to perform a large variety of everyday manipulation tasks specified in18

free-form natural language. Project website: voxposer-anon.github.io.19
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Figure 1: VOXPOSER extracts language-conditioned affordances and constraints from LLMs and grounds
them to the perceptual space using VLMs, using a code interface and without additional training to either com-
ponent. The composed map is referred to as a 3D value map, which enables zero-shot synthesis of trajectories
for large varieties of everyday manipulation tasks with an open-set of instructions and an open-set of objects.
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1 Introduction20

Language is a compressed medium through which humans distill and communicate their knowledge21

and experience of the world. Large language models (LLMs) have emerged as a promising approach22

to capture this abstraction, learning to represent the world through projection into language space [1–23

4]. While these models are believed to internalize generalizable knowledge as text, it remains a24

question about how to use it to enable embodied agents to physically act in the real world.25

We look at the problem of grounding abstract language instructions (e.g., “set up the table”) in robot26

actions [5]. Prior works have leveraged lexical analysis to parse the instructions [6–8], while more27

recently language models have been used to decompose the instructions into a textual sequence of28

steps [9–11]. However, to enable physical interactions with the environment, existing approaches29

typically rely on a repertoire of pre-defined motion primitives (i.e., skills) that may be invoked by30

an LLM or a planner, and this reliance on individual skill acquisition is often considered a major31

bottleneck of the system due to the lack of large-scale robotic data. The question then arises: how can32

we leverage the wealth of internalized knowledge of LLMs at the even fine-grained action level for33

robots, without requiring laborious data collection or manual designs for each individual primitive?34

In addressing this challenge, we first note that it is impractical for LLMs to directly output control35

actions in text, which are typically driven by high-frequency control signals in high-dimensional36

space. However, we find that LLMs excel at inferring language-conditioned affordances and con-37

straints, and by leveraging their code-writing capabilities, they can compose dense 3D voxel maps38

that ground them in the visual space by orchestrating perception calls (e.g., via CLIP [12] or open-39

vocabulary detectors [13–15]) and array operations (e.g., via NumPy [16]). For example, given an40

instruction “open the top drawer and watch out for the vase”, LLMs can be prompted to infer: 1)41

the top drawer handle should be grasped, 2) the handle needs to be translated outwards, and 3) the42

robot should stay away from the vase. By generating Python code to invoke perception APIs, LLMs43

can obtain spatial-geometric information of relevant objects or parts and then manipulate the 3D44

voxels to prescribe reward or cost at relevant locations in observation space (e.g., the handle region45

is assigned high values while the surrounding of the vase is assigned low values). Finally, the com-46

posed value maps can serve as objective functions for motion planners to directly synthesize robot47

trajectories that achieve the given instruction 1 , without requiring additional training data for each48

task or for the LLM. An illustration diagram and a subset of tasks we considered are shown in Fig. 1.49

We term this approach VOXPOSER, a formulation that extracts affordances and constraints from50

LLMs to compose 3D value maps in observation space for guiding robotic interactions. Rather than51

relying on robotic data that are often of limited amount or variability, the method leverages LLMs52

for open-world reasoning and VLMs for generalizable visual grounding in a model-based planning53

framework that directly enables physical robot actions. We demonstrate its zero-shot generalization54

for open-set instructions with open-set objects for various everyday manipulation tasks. We fur-55

ther showcase how VoxPoser can also benefit from limited online interactions to efficiently learn a56

dynamics model that involves contact-rich interactions.57

2 Related Works58

Grounding Language Instructions. Language grounding has been studied extensively both in59

terms of intelligent agents [19–22] and of robotics [23, 6, 24, 25, 5, 7, 26], where language can be60

used as a tool for compositional goal specification [5, 27–33], semantic anchor for training multi-61

modal representation [12, 34, 35], or as an intermediate substrate for planning and reasoning [36–62

38, 9, 10, 39, 40]. Prior works have looked at using classical tools such as lexical analysis, formal63

logic, and graphical models to interpret language instructions [27, 7, 6, 26]. More recently, end-64

to-end approaches, popularized by successful applications to offline domains [41–43, 1], have been65

applied to directly ground language instructions in robot interactions by learning from data with66

1The approach also bears resemblance and connections to potential field methods in path planning [17] and
constrained optimization methods in manipulation planning [18].
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language annotations, spanning from model learning [44], imitation learning [45, 46, 30, 47–54], to67

reinforcement learning [55–57]. Most closely related to our work is Sharma et al. [50], where an68

end-to-end cost predictor is optimized via supervised learning to map language instructions to 2D69

costmaps, which are used to steer a motion planner to generate preferred trajectories in a collision-70

free manner. In contrast, we rely on pre-trained language models for their open-world knowledge71

and tackle the more challenging robotic manipulation in 3D.72

Language Models for Robotics. Leveraging pre-trained language models for embodied applica-73

tions is an active area of research, where a large body of works focus on planning and reasoning74

with language models [9–11, 58, 31, 39, 59–72, 36, 73, 74]. To allow language models to perceive75

the physical environments, textual descriptions of the scene [39, 11, 59] or perception APIs [75] can76

be given, vision can be used during decoding [67] or can be directly taken as input by multi-modal77

language models [68, 2]. In addition to perception, to truly bridge the perception-action loop, an78

embodied language model must also know how to act, which typically is achieved by a library of79

pre-defined primitives. Liang et al. [75] showed that LLMs exhibit behavioral commonsense that80

can be useful for low-level control. Despite the promising signs, hand-designed motion primitives81

are still required, and while LLMs are shown to be capable of composing sequential policy logic, it82

remains unclear whether composition can happen at spatial level. A related line of works has also83

explored using LLMs for reward specification in the context of reward design [76] and exploration84

in reinforcement learning [77–80], and human preference learning [81]. In contrast, we focus exclu-85

sively on grounding the reward generated by LLMs in the 3D observation space of the robot, which86

we identify as most useful for manipulation tasks.87

Learning-based Trajectory Optimization. Many works have explored leveraging learning-based88

approaches for trajectory optimization. While the literature is vast, they can be broadly categorized89

into those that learn the models [82–90] and those that learn the cost/reward or constraints [91–90

94, 50, 95], where data are typically collected from in-domain interactions. To enable generaliza-91

tion in the wild, a parallel line of works has explored learning task specification from large-scale92

offline data [96–98, 35, 34, 44, 99, 100, 54], particularly egocentric videos [101, 102], or leverag-93

ing pre-trained foundation models [103–105, 33, 106, 107]. The learned cost functions are then94

used by reinforcement learning [103, 100, 108], imitation learning [98, 97], or trajectory optimiza-95

tion [96, 35] to generate robot actions. In this work, we leverage LLMs for zero-shot in-the-wild96

cost specification with superior generalization. Compared to prior works that leverage foundation97

models, we ground the cost directly in 3D observation space with real-time visual feedback, which98

makes VoxPoser amenable to closed-loop MPC that’s robust in execution.99

3 Method100

We first provide the formulation of VoxPoser as an optimization problem (Sec. 3.1). Then we de-101

scribe how VoxPoser can be used as a general zero-shot framework to map language instructions102

to 3D value maps (Sec. 3.2). We subsequently demonstrate how trajectories can be synthesized103

in closed-loop for robotic manipulation (Sec. 3.3). While zero-shot in nature, we demonstrate104

how VoxPoser can learn from online interactions to efficiently solve contact-rich tasks (Sec. 3.4).105

3.1 Problem Formulation106

Consider a manipulation problem given as a free-form language instruction L (e.g., “open the top107

drawer”). Generating robot trajectories according to L can be very challenging because L may108

be arbitrarily long-horizon or under-specified (i.e., requires contextual understanding). Instead, we109

focus on individual phases (sub-tasks) of the problem ℓi that distinctively specify a manipulation110

task (e.g., “grasp the drawer handle”, “pull open the drawer”), where the decomposition T →111

(ℓ1, ℓ2, . . . , ℓn) is given by a high-level planner (e.g., an LLM or a search-based planner) 2. The112

central problem investigated in this work is to generate a motion trajectory τ ri for robot r and each113

2Note that the decomposition and sequencing of these sub-tasks are also done by LLMs in this work, though
we do not investigate this aspect extensively as it is not the focus of our contributions.
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def affordance_map():
msize = (100,100,100)

  map = np.zeros(msize)
  handles = detect('handle')
  k = lambda x: x.pos[2]
  handles.sort(key=k)
top_handle = handles[-1]

  x,y,z = top_handle.pos
  map[x,y,z] = 1
  return smooth(map)
def constraint_map():
msize = (100,100,100)

  map = np.zeros(msize)
  vases = detect('vase')
  vase = vases[0]
  xyz = vase.occupancy_grid
  map[xyz] = -1
  return smooth(map)
...

Vision
Language
Model

Open the top drawer.
Please also watch
out for that vase!

Large
Language
Model

Affordance Maps

Constraint Maps

View #1 View #2

View #1 View #2

(a) 3D Value Map Composition (b) Motion Planning

Cam #1

Cam #2

Figure 2: Overview of VOXPOSER. Given the RGB-D observation of the environment and a language in-
struction, LLMs generate code, which interacts with VLMs, to produce a sequence of 3D affordance maps and
constraint maps (collectively referred to as value maps) grounded in the observation space of the robot (a). The
composed value maps then serve as objective functions for motion planners to synthesize trajectories for robot
manipulation (b). The entire process does not involve any additional training.

manipulation phase described by instruction ℓi. We represent τ ri as a sequence of dense end-effector114

waypoints to be executed by an Operational Space Controller [109], where each waypoint consists115

of a desired 6-DoF end-effector pose, end-effector velocity, and gripper action. However, it is worth116

noting that other representations of trajectories, such as joint space trajectories, can also be used.117

Given each sub-task ℓi, we formulate this as an optimization problem defined as follows:118

min
τr
i

{Ftask(Ti, ℓi) + Fcontrol(τ
r
i )} subject to C(Ti) (1)

119 where Ti is the evolution of environment state, and τ ri ⊆ Ti is the robot trajectory. Ftask scores the120

extent of Ti completes the instruction ℓi while Fcontrol specifies the control costs, e.g., to encourage121

τ ri to minimize total control effort or total time. C(Ti) denotes the dynamics and kinematics con-122

straints, which are enforced by the known model of the robot and a physics-based or learning-based123

model of the environment. By solving this optimization for each sub-task ℓi, we obtain a sequence124

of robot trajectories that collectively achieve the overall task specified by the instruction L.125

3.2 Grounding Language Instruction via VoxPoser126

Calculating Ftask with respect to free-form language instructions is extremely challenging, not only127

because of the rich space of semantics language can convey but also because of the lack of robot data128

labeled with T and ℓ. However, we provide a critical observation that a large number of tasks can129

be characterized by a voxel value map V ∈ Rw×h×d in robot’s observation space, which guides the130

motion of an “entity of interest” in the scene, such as the robot end-effector, an object, or an object131

part. For example, consider the task “open the top drawer” and its first sub-task “grasp the top132

drawer handle” (inferred by LLMs) in Fig. 2. The “entity of interest” is the robot end-effector, and133

the voxel value map should reflect the attraction toward the drawer handle. By further commanding134

“watch out for the vase”, the map can also be updated to reflect the repulsion from the vase. We135

denote the “entity of interest” as e and its trajectory as τe. Using this voxel value map for a given136

instruction ℓi, Ftask can be approximated by accumulating the values of e traversing through Vi,137

formally calculated as Ftask = −
∑|τe

i |
j=1 V(pej ), where pej ∈ N3 is the discretized (x, y, z) position138

of e at step j.139

Notably, we observe large language models, by being pre-trained on Internet-scale data, exhibit ca-140

pabilities not only to identify the “entity of interest” but also to compose value maps that accurately141

reflect the task instruction by writing Python programs. Specifically, when an instruction is given142

as a comment in the code, LLMs can be prompted to 1) call perception APIs (which invoke vision-143

language models (VLM) such as an open-vocabulary detector [13–15]) to obtain spatial-geometrical144

information of relevant objects, 2) generate NumPy operations to manipulate 3D arrays, and 3) pre-145

scribe precise values at relevant locations. We term this approach as VOXPOSER. Concretely, we146

aim to obtain a voxel value map Vt
i = VoxPoser(ot, ℓi) by prompting an LLM and executing the147

code via a Python interpreter, where ot is the RGB-D observation at time t and ℓi is the current148
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“sweep the paper trash to the blue dustpan” “push close the top drawer”

“turn on the lamp” “open the vitamin bottle on the right”

“take out the bread from the toaster and put it flat on the wooden plate”
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Figure 3: Visualization of composed 3D value maps and rollouts in real-world environments. The top row
demonstrates where “entity of interest” is an object or part, and the value maps guide them toward target
positions. The bottom two rows showcase tasks where “entity of interest” is the robot end-effector. The
bottom-most task involves two phases, which are also orchestrated by LLMs.

instruction. Additionally, because V is often sparse, we densify the voxel maps via smoothing149

operations, as they encourage smoother trajectories optimized by motion planners.150

Additional Trajectory Parametrization. The above formulation of VoxPoser uses LLMs to com-151

pose V : N3 → R to map from discretized coordinates in voxel space to a real-valued “cost”, which152

we can use to optimize a path consisting only of the positional terms. To extend to SE(3) poses,153

we can also use LLMs to compose rotation maps Vr : N3 → SO(3) at coordinates relevant to the154

task objectives (e.g., “end-effector should face the support normal of the handle”). Similarly, we155

further compose gripper maps Vg : N3 → {0, 1} to control gripper open/close and velocity maps156

Vv : N3 → R to specify target velocities. Note that while these additional trajectory parametriza-157

tions are not mapped to a real-valued “cost”, they can also be factored in the optimization procedure158

(Equation 1) to parametrize the trajectories.159

3.3 Zero-Shot Trajectory Synthesis with VoxPoser160

After obtaining the task cost Ftask, we can now approach the full problem defined in Equation 1161

to plan a motion trajectory. We use simple zeroth-order optimization by randomly sampling trajec-162

tories and scoring them with the proposed objective. The optimization is implemented in a model163

predictive control framework that iteratively replans the trajectory at every step using the current164

observation to robustly execute the trajectories even under dynamic disturbances 3 , where either165

a learned or physics-based model can be used. However, because VoxPoser effectively provides166

“dense rewards” in the observation space and we are able to replan at every step, we surprisingly167

find that the overall system can already achieve a large variety of manipulation tasks considered in168

this work even with simple heuristics-based models. Since some value maps are defined over “entity169

of interest”, which may not necessarily be the robot, we also use the dynamics model to find the170

needed robot trajectory to minimize the task cost (i.e., what interactions between the robot and the171

environment achieve the desired object motions).172

3.4 Efficient Dynamics Learning with Online Experiences173

While Sec. 3.3 presents a zero-shot framework for synthesizing trajectories for robot manipula-174

tion, VoxPoser can also benefit from online experiences by efficiently learning a dynamics model.175

Consider the standard setup where a robot interleaves between 1) collecting environment transition176

data (ot,at,ot+1), where ot is the environment observation at time t and at = MPC(ot), and 2)177

training a dynamics model gθ parametrized by θ by minimizing the L2 loss between predicted next178

3Although involving an LLM in the loop, closed-loop execution is possible because the generated code
remains the same throughout task ℓi, which allows us to cache its output for the current task.
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observation ôt+1 and ot+1. A critical component that determines the learning efficiency is the ac-179

tion sampling distribution P (at|ot) in MPC, which typically is a random distribution over the full180

action space A. This is often inefficient when the goal is to solve a particular task, such as opening181

a door, because most actions do not interact with the relevant objects in the scene (i.e., the door182

handle) nor do they necessarily interact with the objects in a meaningful way (i.e., pressing down183

the door handle). Since VoxPoser synthesizes robot trajectories with LLMs, which have a wealth of184

commonsense knowledge, the zero-shot synthesized trajectory τ r0 can serve as a useful prior to bias185

the action sampling distribution P (at|ot, τ
r
0 ), which can significantly speed up the learning process.186

In practice, this can be implemented by only sampling actions in the vicinity of τ r0 by adding small187

noise ε to encourage local exploration instead of exploring in the full action space A.188

4 Experiments and Analysis189

We first discuss our implementation details. Then we validate VoxPoser for real-world everyday ma-190

nipulation (Sec. 4.1). We also study its generalization in simulation (Sec. 4.2). We further demon-191

strate how VoxPoser enables efficient learning of more challenging tasks (Sec. 4.3). Finally, we192

analyze its source of errors and discuss how improvement can be made (Sec. 4.4).193

LLMs and Prompting. We follow prompting structure by Liang et al. [75], which recursively calls194

LLMs using their own generated code, where each language model program (LMP) is responsible195

for a unique functionality (e.g., processing perception calls). We use GPT-4 [2] from OpenAI API.196

For each LMP, we include 5-20 example queries and corresponding responses as part of the prompt.197

An example can be found in Fig. 2 (simplified for clarity). Full prompts are in Appendix.198

VLMs and Perception. Given an object/part query from LLMs, we first invoke open-vocab detector199

OWL-ViT [15] to obtain a bounding box, then feed it into Segment Anything [110] to obtain a mask,200

and finally track the mask using video tracker XMEM [111]. The tracked mask is used with RGB-D201

observation to reconstruct the object/part point cloud.202

Value Map Composition. We define the following types of value maps: affordance, avoidance, end-203

effector velocity, end-effector rotation, and gripper action. Each type uses a different LMP, which204

takes in an instruction and outputs a voxel map of shape (100, 100, 100, k), where k differs for each205

value map (e.g., k = 1 for affordance and avoidance as it specifies cost, and k = 4 for rotation as206

it specifies SO(3)). We apply Euclidean distance transform to affordance maps and Gaussian filters207

for avoidance maps. On top of value map LMPs, we define two high-level LMPs to orchestrate their208

behaviors: planner takes user instruction L as input (e.g., “open drawer”) and outputs a sequence209

of sub-tasks ℓ1:N , and composer takes in sub-task ℓi and invokes relevant value map LMPs with210

detailed language parameterization.211

Motion Planner. We consider only affordance and avoidance maps in the planner optimization,212

which finds a sequence of collision-free end-effector positions p1:N ∈ R3 using greedy search. Then213

we enforce other parametrization at each p by the remaining value maps (e.g., rotation map, velocity214

map). The cost map used by the motion planner is computed as the negative of the weighted sum215

of normalized affordance and avoidance maps with weights 2 and 1. After a 6-DoF trajectory is216

synthesized, the first waypoint is executed, and then a new trajectory is re-planned at 5 Hz.217

Dynamics Model. We use the known robot dynamics model in all tasks, where it is used in motion218

planning for the end-effector to follow the waypoints. For the majority of our considered tasks where219

the “entity of interest” is the robot, no environment dynamics model is used (i.e., scene is assumed220

to be static), but we replan at every step to account for the latest observation. For tasks in which221

the “entity of interest” is an object, we study only a planar pushing model parametrized by contact222

point, push direction, and push distance. We use a heuristic-based dynamics model that translates223

an input point cloud along the push direction by the push distance. We use MPC with random224

shooting to optimize for the action parameters. Then a pre-defined pushing primitive is executed225

based on the action parameters. However, we note that a primitive is not necessary when action226

parameters are defined over the end-effector or joint space of the robot, which would likely yield227
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LLM + Prim. [75] VoxPoser
Task Static Dist. Static Dist.

Move & Avoid 0/10 0/10 9/10 8/10
Set Up Table 7/10 0/10 9/10 7/10
Close Drawer 0/10 0/10 10/10 7/10
Open Bottle 5/10 0/10 7/10 5/10
Sweep Trash 0/10 0/10 9/10 8/10

Total 24.0% 0.0% 88.0% 70.0%

Table 1: Success rate in real-world domain. Vox-
Poser performs everyday manipulation tasks with
high success and is more robust to disturbances
than the baseline using action primitives.

U-Net Language Models
Train/Test Category MP [50] Prim. [75] MP (Ours)

SI SA Object Int. 21.0% 41.0% 64.0%
SI SA Composition 53.8% 43.8% 77.5%

SI UA Object Int. 3.0% 46.0% 60.0%
SI UA Composition 3.8% 25.0% 58.8%

UI UA Object Int. 0.0% 17.5% 65.0%
UI UA Composition 0.0% 25.0% 76.7%

Table 2: Success rate in simulated domain. “SI” and “UI”
are seen and unseen instructions. “SA” and “UA” are seen
and unseen attributes. VoxPoser outperforms both base-
lines across 13 tasks from two categories on both seen and
unseen tasks and maintains similar success rates.

smoother trajectories but takes more time for optimization. We also explore the use of a learning-228

based dynamics model in Section 4.3, which enables VoxPoser to benefit from online experiences.229

4.1 VoxPoser for Everyday Manipulation Tasks230

We study whether VoxPoser can zero-shot synthesize robot trajectories to perform everyday manip-231

ulation tasks in the real world. Details of the environment setup can be found in Appendix A.3.232

While the proposed method can generalize to an open-set of instructions and an open-set of objects233

as shown in Fig. 1, we pick 5 representative tasks to provide quantitative evaluations in Table 1.234

Qualitative results including environment rollouts and value map visualizations are shown in Fig. 3.235

We find that VoxPoser can effectively synthesize robot trajectories for everyday manipulation tasks236

with a high average success rate. Due to fast replanning capabilities, it is also robust to external dis-237

turbances, such as moving targets/obstacles and pulling the drawer open after it has been closed by238

the robot. We further compare to a variant of Code as Policies [75] that uses LLMs to parameterize a239

pre-defined list of simple primitives (e.g., move to pose, open gripper). We find that compared to240

chaining sequential policy logic, the ability to compose spatially while considering other constraints241

under a joint optimization scheme is a more flexible formulation, unlocking the possibility for more242

manipulation tasks and leading to more robust execution.243

4.2 Generalization to Unseen Instructions and Attributes244

To provide rigorous quantitative evaluations on generalization, we set up a simulated environment245

that mirrors our real-world setup [112] but features 13 highly-randomizable tasks with 2766 unique246

instructions. Eash task comes with a templated instruction (e.g., “push [obj] to [pos]”) that con-247

tains randomizable attributes chosen from a pre-defined list. Details are in Appendix A.4. Seen248

instructions/attributes may appear in the prompt (or in the training data for supervised baselines).249

The tasks are grouped into 2 categories, where “Object Interactions” are tasks that require interac-250

tions with objects, and “Spatial Composition” are tasks involving spatial constraints (e.g., moving251

slower near a particular object). For baselines, we ablate the two components of VoxPoser, LLM252

and motion planner, by comparing to a variant of [75] that combines an LLM with primitives and253

to a variant of [50] that learns a U-Net [113] to synthesize costmaps for motion planning. Table 2254

shows the success rates averaged across 20 episodes per task. We find VoxPoser exhibits superior255

generalization in all scenarios. Compared to learned cost specification, LLMs generalize better by256

explicitly reasoning about affordances and constraints. On the other hand, grounding LLM knowl-257

edge in robot perception through value map composition rather than directly specifying primitive258

parameters offers more flexibility that generalizes beyond the prompt examples.259

4.3 Efficient Dynamics Learning with Online Experiences260

As discussed in Sec. 3.4, we investigate how VoxPoser can optionally benefit from online experi-261

ences for tasks that involve more intricacies of contact, such as opening doors, fridges, and windows,262

in a simulated environment. Specifically, we first synthesize k zero-shot trajectories using VoxPoser,263
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Zero-Shot No Prior w/ Prior

Task Success Success Time(s) Success Time(s)

Door 6.7%±4.4% 58.3±4.4% TLE 88.3%±1.67%142.3±22.4

Window 3.3%±3.3% 36.7%±1.7% TLE 80.0%±2.9% 137.0±7.5

Fridge 18.3%±3.3%70.0%±2.9% TLE 91.7%±4.4% 71.0±4.4

Table 3: VoxPoser enables efficient dynamics learning by
using zero-shot synthesized trajectories as prior. TLE (time
limit exceeded) means exceeding 12 hours. Results are re-
ported over 3 runs different seeds. Figure 4: Error breakdown of components. Vox-

Poser significantly reduces specification error.

each represented as a sequence of end-effector waypoints, that act as priors for exploration (e.g.,264

“handle needs to be pressed down first in order to open a door”). Then an MLP dynamics model is265

learned through an iterative procedure where the agent alternates between data collection and model266

learning. During data collection, we add ε ∼ N (0, σ2) to each waypoint in τ r0 to encourage local267

exploration. As shown in Tab. 3, we find zero-shot synthesized trajectories are typically meaningful268

but insufficient. However, we can learn an effective dynamics model with less than 3 minutes of269

online interactions by using these trajectories as exploration prior, leading to high eventual success270

rates. In comparison, exploring without prior all exceed the maximum 12-hour limit.271

4.4 Error Breakdown272

In this section, we analyze the errors resulting from each component of VoxPoser and how the overall273

system can be further improved. We conduct experiments in simulation where we have access to274

ground-truth perception and dynamics model (i.e., the simulator). . “Dynamics error” refers to errors275

made by the dynamics model4. “Perception error” refers to errors made by the perception module5.276

“Specification error” refers to errors made by the module specifying cost or parameters for the low-277

level motion planner or primitives. Examples for each method include 1) noisy prediction by the278

U-Net, 2) incorrect parameters specified by the LLM, and 3) incorrect value maps specified by the279

LLM. As shown in Fig. 4, VoxPoser achieves lowest “specification error” due to its generalization280

and flexibility. We also find that having access to a more robust perception pipeline and a physically-281

realistic dynamics model can contribute to better overall performance. This observation aligns with282

our real-world experiment, where most errors are from perception. For example, we find that the283

detector is sensitive to initial poses of objects and is less robust when detecting object parts.284

5 Conclusion, Limitations, & Future Works285

In this work, we present VOXPOSER, a general framework for extracting affordances and con-286

straints, grounded in 3D perceptual space, from LLMs and VLMs for everyday manipulation tasks287

in the real world, offering significant generalization advantages for open-set instructions and ob-288

jects. Despite compelling results, VoxPoser has several limitations. First, it relies on external per-289

ception modules, which is limiting in tasks that require holistic visual reasoning or understand-290

ing of fine-grained object geometries. Second, while applicable to efficient dynamics learning, a291

general-purpose dynamics model is still required to achieve contact-rich tasks with the same level of292

generalization. Third, our motion planner considers only end-effector trajectories while whole-arm293

planning is also feasible and likely a better design choice [115–117]. Finally, manual prompt engi-294

neering is required for LLMs. We also see several exciting venues for future work. For instance,295

recent success of multi-modal LLMs [68, 2, 118] can be directly translated into VoxPoser for direct296

visual grounding. Methods developed for alignment [119, 120] and prompting [121–124] may be297

used to alleviate prompt engineering effort. Finally, more advanced trajectory optimization methods298

can be developed that best interface with value maps synthesized by VoxPoser.299

4LLM + Primitives [75] does not use model-based planning, thus not having a dynamics module.
5U-Net + MP [50] maps RGB-D to costmaps using U-Net [113, 114], thus not having perception module.

Errors by which are attributed to “specification error”.
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A Appendix645

A.1 Emergent Behavioral Capabilities646

Which block is heavier?

I am left-handed. You’re off by 1cm to the left.

Open the drawer precisely by half.

Figure 5: Emergent behavioral capabilities by VoxPoser inherited from the language model, including behav-
ioral commonsense reasoning (top left), fine-grained language correction (top right), multi-step visual program
(bottom left), and estimating physical properties of objects (bottom right).

Emergent capabilities refer to unpredictable phenomenons that are only present in large mod-647

els [125]. As VoxPoser uses pre-trained LLMs as backbone, we observe similar embodied emergent648

capabilities driven by the rich world knowledge of LLMs. In particular, we focus our study on the649

behavioral capabilities that are unique to VoxPoser. We observe the following capabilities:650

• Behavioral Commonsense Reasoning: During a task where robot is setting the table, the651

user can specify behavioral preferences such as “I am left-handed”, which requires the652

robot to comprehend its meaning in the context of the task. VoxPoser decides that it should653

move the fork from the right side of the bowl to the left side.654

• Fine-grained Language Correction: For tasks that require high precision such as “cov-655

ering the teapot with the lid”, the user can give precise instructions to the robot such as656

“you’re off by 1cm”. VoxPoser similarly adjusts its action based on the feedback.657

• Multi-step Visual Program [126, 127]: Given a task “open the drawer precisely by half”658

where there is insufficient information because object models are not available, VoxPoser659

can come up with multi-step manipulation strategies based on visual feedback that first660

opens the drawer fully while recording handle displacement, then close it back to the mid-661

point to satisfy the requirement.662

• Estimating Physical Properties: Given two blocks of unknown mass, the robot is tasked663

to conduct physics experiments using an existing ramp to determine which block is heav-664

ier. VoxPoser decides to push both blocks off the ramp and choose the block traveling the665

farthest as the heavier block. Interestingly, this mirrors a common human oversight: in666

an ideal, frictionless world, both blocks would traverse the same distance under the influ-667

ence of gravity. This serves as a lighthearted example that language models can exhibit668

limitations similar to human reasoning.669
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A.2 APIs for VoxPoser670

Central to VoxPoser is an LLM generating Python code that is executed by a Python interpreter.671

Besides exposing NumPy [16] and the Transforms3d library to the LLM, we provide the following672

environment APIs that LLMs can choose to invoke:673

detect(obj name): Takes in an object name and returns a list of dictionaries, where each dictionary674

corresponds to one instance of the matching object, containing center position, occupancy grid, and675

mean normal vector.676

execute(movable,affordance map,avoidance map,rotation map,velocity map,gripper map):677

Takes in an “entity of interest” as “movable” (a dictionary returned by detect) and (optionally)678

a list of value maps and invokes the motion planner to execute the trajectory. Note that in MPC679

settings, “movable” and the input value maps are functions that can be re-evaluated to reflect the680

latest environment observation.681

cm2index(cm,direction): Takes in a desired offset distance in centimeters along direction and682

returns 3-dim vector reflecting displacement in voxel coordinates.683

index2cm(index,direction): Inverse of cm2index. Takes in an integer “index” and a “direction”684

vector and returns the distance in centimeters in world coordinates displaced by the “integer” in685

voxel coordinates.686

pointat2quat(vector): Takes in a desired pointing direction for the end-effector and returns a687

satisfying target quaternion.688

set voxel by radius(voxel map,voxel xyz,radius cm,value): Assigns “value” to voxels689

within “radious cm” from “voxel xyz” in “voxel map”.690

get empty affordance map(): Returns a default affordance map initialized with 0, where a high691

value attracts the entity.692

get empty avoidance map(): Returns a default avoidance map initialized with 0, where a high693

value repulses the entity.694

get empty rotation map(): Returns a default rotation map initialized with current end-effector695

quaternion.696

get empty gripper map(): Returns a default gripper map initialized with current gripper action,697

where 1 indicates “closed” and 0 indicates “open”.698

get empty velocity map(): Returns a default affordance map initialized with 1, where the number699

represents scale factor (e.g., 0.5 for half of the default velocity).700

reset to default pose(): Reset to robot rest pose.701
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A.3 Real-World Environment Setup702

We use a Franka Emika Panda robot with a tabletop setup. We use Operational Space Controller703

with impedance from Deoxys [128]. We mount two RGB-D cameras (Azure Kinect) at two opposite704

ends of the table: bottom right and top left from the top down view. At the start of each rollout, both705

cameras start recording and return the real-time RGB-D observations at 20 Hz.706

For each task, we evaluate each method on two settings: without and with disturbances. For tasks707

with disturbances, we apply three kinds of disturbances to the environment, which we pre-select a708

sequence of them at the start of the evaluation: 1) random forces applied to the robot, 2) random709

displacement of task-relevant and distractor objects, and 3) reverting task progress (e.g., pull drawer710

open while it’s being closed by the robot). We only apply the third disturbances to tasks where711

“entity of interest” is an object or object part.712

We compare to a variant of Code as Policies [75] as a baseline that uses an LLM with ac-713

tion primitives. The primitives include: move to pos, rotate by quat, set vel, open gripper,714

close gripper. We do not provide primitives such as pick-and-place as they would be tailored715

for a particular suite of tasks that we do not constrain to in our study (similar to the control APIs716

for VoxPoser specified in Sec. A.2).717

A.3.1 Tasks718

Move & Avoid: “Move to the top of [obj1] while staying away from [obj2]”, where [obj1] and [obj2]719

are randomized everyday objects selected from the list: apple, banana, yellow bowl, headphones,720

mug, wood block.721

Set Up Table: “Please set up the table by placing utensils for my pasta”.722

Close Drawer: “Close the [deixis] drawer”, where [deixis] can be “top” or “bottom”.723

Open Bottle: “Turn open the vitamin bottle”.724

Sweep Trash: “Please sweep the paper trash into the blue dustpan”.725
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A.4 Simulated Environment Setup726

We implement a tabletop manipulation environment with a Franka Emika Panda robot in727

SAPIEN [112]. The controller takes as input a desired end-effector 6-DoF pose, calculates a se-728

quence of interpolated waypoints using inverse kinematics, and finally follows the waypoints using729

a PD controller. We use a set of 10 colored blocks and 10 colored lines in addition to an articulated730

cabinet with 3 drawers. They are initialized differently depending on the specific task. The lines are731

used as visual landmarks and are not interactable. For perception, a total of 4 RGB-D cameras are732

mounted at each end of the table pointing at the center of the workspace.733

A.4.1 Tasks734

We create a custom suite of 13 tasks shown in Table 4. Each task comes with a templated instruction735

(shown in Table 4) where there may be one or multiple attributes randomized from the pre-defined736

list below. At reset time, a number of objects are selected (depending on the specific task) and are737

randomized across the workspace while making sure that task is not completed at reset and that task738

completion is feasible. A complete list of attributes can be found below, divided into “seen” and739

“unseen” categories:740

Seen Attributes:741

• [pos]: [“back left corner of the table”, “front right corner of the table”, “right side of the742

table”, “back side of the table”]743

• [obj]: [“blue block”, “green block”, “yellow block”, “pink block”, “brown block”]744

• [preposition]: [“left of”, “front side of”, “top of”]745

• [deixis]: [“topmost”, “second to the bottom”]746

• [dist]: [3, 5, 7, 9, 11]747

• [region]: [“right side of the table”, “back side of the table”]748

• [velocity]: [“faster speed”, “a quarter of the speed”]749

• [line]: [“blue line”, “green line”, “yellow line”, “pink line”, “brown line”]750

Unseen Attributes:751

• [pos]: [“back right corner of the table”, “front left corner of the table”, “left side of the752

table”, “front side of the table”]753

• [obj]: [“red block”, “orange block”, “purple block”, “cyan block”, “gray block”]754

• [preposition]: [“right of”, “back side of”]755

• [deixis]: [“bottommost”, “second to the top”]756

• [dist]: [4, 6, 8, 10]757

• [region]: [“left side of the table”, “front side of the table”]758

• [velocity]: [“slower speed”, “3x speed”]759

• [line]: [“red line”, “orange line”, “purple line”, “cyan line”, “gray line”]760
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A.4.2 Full Results on Simulated Environments761

U-Net + MP LLM + Prim. VoxPoser

Tasks SA UA SA UA SA UA

move to the [preposition] the [obj] 95.0% 0.0% 85.0% 60.0% 90.0% 55.0%

move to the [pos] while staying on the [preposition] the [obj] 100.0% 10.0% 80.0% 30.0% 95.0% 50.0%

move to the [pos] while moving at [velocity] when within [dist]cm from the obj 80.0% 0.0% 10.0% 0.0% 100.0% 95.0%

close the [deixis] drawer by pushing 0.0% 0.0% 60.0% 60.0% 80.0% 80.0%

push the [obj] along the [line] 0.0% 0.0% 0.0% 0.0% 65.0% 30.0%

grasp the [obj] from the table at [velocity] 35.0% 0.0% 75.0% 70.0% 65.0% 40.0%

drop the [obj] to the [pos] 70.0% 10.0% 60.0% 100.0% 60.0% 100.0%

push the [obj] while letting it stay on [region] 0.0% 5.0% 10.0% 0.0% 50.0% 50.0%

move to the [region] 5.0% 0.0% 100.0% 95.0% 100.0% 100.0%

move to the [pos] while staying at least [dist]cm from the [obj] 0.0% 0.0% 15.0% 20.0% 85.0% 90.0%

move to the [pos] while moving at [velocity] in the [region] 0.0% 0.0% 90.0% 45.0% 85.0% 85.0%

push the [obj] to the [pos] while staying away from [obstacle] 0.0% 0.0% 0.0% 10.0% 45.0% 55.0%

push the [obj] to the [pos] 0.0% 0.0% 20.0% 25.0% 80.0% 75.0%

Table 4: Full experimental results in simulation on seen tasks and unseen tasks. “SA” indicates seen attributes
and “UA” indicates unseen attributes. Each entry represents success rate averaged across 20 episodes.
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A.5 Prompts762

Prompts used in Sec. 4.1 and Sec. 4.2 can be found below.763

planner: Takes in a user instruction L and generates a sequence of sub-tasks ℓi which is fed into764

“composer” (Note that planner is not used in simulation as the evaluated tasks consist of a single765

manipulation phase).766

real-world: voxposer-anon.github.io/prompts/real planner prompt.txt.767

composer: Takes in sub-task instruction ℓi and invokes necessary value map LMPs to compose768

affordance maps and constraint maps.769

simulation: voxposer-anon.github.io/prompts/sim composer prompt.txt.770

real-world: voxposer-anon.github.io/prompts/real composer prompt.txt.771

parse query obj: Takes in a text query of object/part name and returns a list of dictionaries, where772

each dictionary corresponds to one instance of the matching object containing center position, oc-773

cupancy grid, and mean normal vector.774

simulation: voxposer-anon.github.io/prompts/sim parse query obj prompt.txt.775

real-world: voxposer-anon.github.io/prompts/real parse query obj prompt.txt.776

get affordance map: Takes in natural language parametrization from composer and returns a777

NumPy array for task affordance map.778

simulation: voxposer-anon.github.io/prompts/sim get affordance map prompt.txt.779

real-world: voxposer-anon.github.io/prompts/real get affordance map prompt.txt.780

get avoidance map: Takes in natural language parametrization from composer and returns a781

NumPy array for task avoidance map.782

simulation: voxposer-anon.github.io/prompts/sim get avoidance map prompt.txt.783

real-world: voxposer-anon.github.io/prompts/real get avoidance map prompt.txt.784

get rotation map: Takes in natural language parametrization from composer and returns a NumPy785

array for end-effector rotation map.786

simulation: voxposer-anon.github.io/prompts/sim get rotation map prompt.txt.787

real-world: voxposer-anon.github.io/prompts/real get rotation map prompt.txt.788

get gripper map: Takes in natural language parametrization from composer and returns a NumPy789

array for gripper action map.790

simulation: voxposer-anon.github.io/prompts/sim get gripper map prompt.txt.791

real-world: voxposer-anon.github.io/prompts/real get gripper map prompt.txt.792

get velocity map: Takes in natural language parametrization from composer and returns a NumPy793

array for end-effector velocity map.794

simulation: voxposer-anon.github.io/prompts/sim get velocity map prompt.txt.795

real-world: voxposer-anon.github.io/prompts/real get velocity map prompt.txt.796
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