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ABSTRACT

Humans have the ability to learn new tasks by inferring high-level concepts
from existing solutions, then manipulating these concepts in lieu of the raw
data. Can we automate this process by deriving latent semantic structures
in a document collection using foundation models? We introduce fPLSA, a
foundation-model-based Probabilistic Latent Semantic Analysis (PLSA) method
that iteratively clusters and tags document segments based on document-level
contexts. These tags can be used to model the structure of given documents and
for hierarchical sampling of new texts. Our experiments on story writing, math,
and multi-step reasoning datasets demonstrate that fPLSA tags help reconstruct
the original texts better than existing tagging methods. Moreover, when used
for hierarchical sampling, fPLSA produces more diverse outputs with a higher
likelihood of hitting the correct answer than direct sampling and hierarchical
sampling with existing tagging methods.

1 INTRODUCTION

Large language models (LLMs) have shown impressive performance on a wide range of tasks, such
as reasoning (Suzgun et al., 2022; Liu et al., 2023), math problem solving (Wu et al., 2023), and
open-ended text generation tasks (Katz et al., 2024; Dubey et al., 2024; OpenAI et al., 2024). Given
natural language instructions or in-context examples with chain-of-thought steps, LLMs can adapt
quickly to a new task and achieve outstanding performance on challenging tasks that require multi-
step reasoning or planning (Wei et al., 2022). However, such methods typically rely on humans
to provide the LLM with instructions or chain-of-thought recipes for solving a task. By contrast,
humans can directly derive effective methodologies for solving a task by analyzing a separate set of
problems and their solutions.

Can we automate the process of discovering latent semantic structures in a document collection using
LLMs? Such algorithms would have a wide range of applications, including producing effective
guidelines for new tasks, hierarchical sampling for diverse outputs, and document analysis. For
example, they can help determine how two document collections differ in text structure and identify
the most common plot elements in a story collection.

We frame this problem as an unsupervised clustering and tagging problem, where we discover the
text segments that share common characteristics and assign them to the same tag. Based on these
segment tags, we can model the latent structure of a collection of documents by learning a dy-
namic model over the latent tags and their transitions in the documents. Traditional document
labeling and topic modeling approaches focus primarily on lexical features such as word or term
co-occurrence (Hearst, 1997; Blei et al., 2003; Hofmann et al., 1999), which provide minimal infor-
mation on the semantics of short text spans. Recent LLM-based approaches discover topics based
on higher-level semantic contexts, but rely on one-shot topic generation and merging (Pham et al.,
2024; Wang et al., 2023; Mu et al., 2024), which limits the model’s ability to uncover shared char-
acteristics among seemingly unrelated text spans.

In this paper, we introduce fPLSA, an iterative algorithm that alternatively clusters and tags doc-
ument segments using LLMs based on segment- and document-level contexts. fPLSA combines
the merits of traditional topic modeling approaches such as Probabilistic Latent Semantic Analy-
sis (PLSA) (Hofmann et al., 1999) and LLM-based approaches, and captures shared semantic fea-
tures among text segments more effectively.
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We evaluate the informativeness of fPLSA tags by measuring 1) how well they help reconstruct
the original text spans, and 2) how useful they are in hierarchical sampling to produce structurally
diverse outputs that cover more solution paths. Experiments on story writing, math and multi-step
reasoning datasets show that fPLSA leads to higher reconstruction likelihood than existing tagging
approaches. Furthermore, on math and reasoning tasks, hierarchical sampling using fPLSA tags
produces more diverse outputs, which increase the probability of hitting the correct answer over
hierarchical sampling with other tagging approaches.

2 RELATED WORK

2.1 DOCUMENT SEGMENTATION AND LABELING

To model the structure and topic shifts in a document, prior work has introduced unsupervised
document segmentation and labeling approaches that leverage term co-occurrence features (Hearst,
1997), co-occurrence shifts in topic vectors (Riedl & Biemann, 2012), lexical features and word
embeddings (Glavaš et al., 2016). These approaches focus mostly on lexical features which are
limited in modeling the high-level semantic structure of documents. On the other hand, Neural-
based approaches have the potential of modeling sentence-level semantics and document-level topic
flows more effective, but rely heavily on supervised training samples in the target domain (Koshorek
et al., 2018; Arnold et al., 2019; Zhang et al., 2019). Our algorithm infers the structure of documents
based on segment- and document-level contexts using LLMs in an unsupervised fashion.

2.2 TOPIC MODELING

Topic modeling is a widely used technique in natural language processing for uncovering hidden
thematic structures in large text corpora. The most foundational methods in this domain include
Latent Dirichlet Allocation (LDA) (Blei et al., 2003) and Probabilistic Latent Semantic Analy-
sis (PLSA) (Hofmann et al., 1999; Hofmann, 1999; 2001). Both methods represent each document
as a bag of words and models word-document relationships using a mixture of latent topics, where
each topic is represented by a list of top words. These algorithms are mathematically grounded,
but typically rely on manual topic interpretation, which often leads to incorrect or incomplete la-
bels (Gillings & Hardie, 2022). More recent work introduces neural topic models (Miao et al.,
2016; Dieng et al., 2020; Srivastava & Sutton, 2017), which combine traditional topic models with
word embeddings. These models have shown improved performance in handling large and com-
plex vocabularies. However, they sill model each document as a bag of words, disregarding the
sentence- and document-level semantics. Additionally, the resulting topics are represented either by
semantic vectors or lists of closest words, which still rely on manual interpretation. Furthermore,
studies have shown that incorporating expert knowledge in topic modeling improves over traditional
unsupervised methods (Lee et al., 2017).

Moreover, the advent of large language models (LLMs) has led to LLM-based topic modeling ap-
proaches. Li et al. (2023) propose to use LLMs for topic labeling based their top terms produced
by traditional topic models. For short text spans, however, the bag-of-words representation of texts
provides limited information for topic modeling. Akash et al. (2023) address the issue by extend-
ing each text span into longer sequences using LLMs and extracting topics from the extended texts
using neural topic models. Futhermore, Pham et al. (2024); Wang et al. (2023); Mu et al. (2024) pro-
pose prompt-based techniques to generate, merge, and assign topics using LLMs. These approaches
leverage the domain knowledge embedded in LLMs and produce more interpretable topics based on
sentence or document-level contexts beyond bag of words.

However, the generate-and-merge approach limits the model’s potential for discovering shared fea-
tures among various text spans across documents of different themes and often leads to overly ab-
stract, thematical topics, especially on a large-scale document collection. We propose fPLSA, which
combines the merits of traditional PLSA, which uses an iterative EM algorithm to model topic and
text distributions, and LLM-based approaches.
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3 APPROACH

We propose fPLSA, a foundation-model-based EM algorithm that learns the latent tags on a set
of segmented documents. We draw inspiration from the traditional Probabilistic Latent Semantic
Analysis and use iterative EM steps to learn the latent topics that maximize the estimated likelihood
of segmented documents.

3.1 PROBABILISTIC LATENT SEMANTIC ANALYSIS (PLSA)

PLSA models the distribution over words w in a document d as a mixture of conditionally inde-
pendent multinomial distributions, each such distribution representing a topic t. More formally, the
generative model of words in a document can be written as:

pΘ(w, d) = p(d)
∑
t

pΘ(t|d)pΘ(w|t) (1)

where the topic t can be viewed as a discrete latent variable and the total number of discrete topics
is pre-defined. Θ represents the parameters of the PLSA model.

To estimate the parametric distributions pΘ(t|d) and pΘ(w|t), PLSA relies on an EM algorithm,
which is an iterative method to find the maximum likelihood estimate of parameters in statistical
models. Specifically, an EM iteration alternates between an expectation (E) step and a maximization
(M) step. At iteration i, the E-step estimates the posterior distribution of topics t conditioned on
each document d and word w in it based on fixed parameters Θi−1 from the previous iteration:

pΘi−1
(t|w, d) =

pΘi−1
(t|d)pΘi−1

(w|t)∑
t′ pΘi−1

(t′|d)pΘi−1
(w|t′)

(2)

The M-step optimizes the parameters Θ such that the expectation of the joint distribution pΘ(w, d)
with t sampled from the estimated posterior pΘi−1

(t|w, d) is maximized:

Θi = argmax
Θ

Et∼pΘi−1
(t|w,d)p(d)pΘ(t|d)pΘ(w|t) (3)

Theoretically, each EM iteration will yield a larger likelihood in Eq 1 until it converges to a local
maximum.

3.2 FOUNDATION-MODEL-BASED PLSA (FPLSA)

We introduce fPLSA, which learns the latent tags (similar to topics in LSA)1 on a set of segmented
documents d = (x1, x2, ..., xL), where the document d is segmented into L segments xk. A
core difference between fPLSA and PLSA is that fPLSA models the probability of the sequence
of words (w1, w2, ..., wn) in each text segment xk jointly as pΘ(w1, w2, ..., wn|t). Moreover, fPLSA
models the distribution over tags t conditioned not only on current segment xk but also on the doc-
ument d. Formally, in fPLSA, the generative model of a segment xk = w1...n in a document d can
be written as:

pΘ(w1...n, xk, d) = p(d)p(xk|d)
∑
t

pΘ(t|xk, d)pΘ(w1...n|t) (4)

Another core difference between fPLSA and PLSA is that we model the parametric distribu-
tions pΘ(t|xk, d) and pΘ(w1...n|t) using an LLM. Specifically, the parameters Θ in fPLSA include
the LLM parameters, which is frozen, and the textual description θt for each tag t.

Inspired by PLSA, we also maximize the likelihood in Eq 4 using iterative EM steps.

At the E-step in iteration i, we approximate the posterior distribution pΘi−1
(t|w1...n, xk, d) of tags t

conditioned on each document d and segment xk = w1...n in it by prompting the LLM to greedily
assign a tag given the tag descriptions θi−1 from the previous iteration, the current segment xk =
w1...n and neighbouring segments (xk−W/2, xk+1−W/2, ..., xk−1+W/2, xk+W/2) as document-level
context, where W is the context window size.

1We use the terminology tag instead of topic in our algorithm because they may cover shared characteristics
among document segments beyond topics (see the example tags in Section 5 for more details).
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At the M-step, we optimize the tag description θt for each tag t by aggregating the segments assigned
to tag t and prompting the LLM to generate a tag description that best summarizes what these
segments share in common.

4 EXPERIMENTAL SETUP

4.1 EVALUATION DATASETS

We evaluate fPLSA against various baselines on story writing, math problem solving and multi-step
reasoning benchmarks. We use WritingPrompts (Fan et al., 2018), a story writing dataset that con-
tains 300K human-written stories paired with writing prompts from an online forum. We randomly
sample 100 stories from the training set for clustering and tagging. We set the number of tags to 100
for all tagging approaches. For math problem solving, we use MATH (Hendrycks et al., 2021), a
popular math benchmark that contains high school math competition problems on seven subjects
including Prealgebra, Algebra, Number Theory, Counting and Probability, Geometry, Intermediate
Algebra and Precalculus. We learn 100 tags on 1K randomly sampled problems and the step-by-step
solutions from the training set. We also experiment on the Big-Bench Hard (BBH) benchmark (Suz-
gun et al., 2022). The original benchmark includes 23 challenging multi-step reasoning tasks, but
each task only includes three step-by-step solution examples. Instead, we pick the 12 tasks used
in Xu et al. (2024) and use the step-by-step solutions produced by their automatic Chain-of-Thought
prompt inference algorithm for clustering and tagging. We set the number of tags to 50 on BBH.

4.2 EVALUATION METRICS

We evaluate our approach on two different evaluation protocols.

Reconstruction Likelihood To test how well the learned tags help predict the original texts, we
measure the reconstruction log-likelihood of the test documents conditioning on the tags.

Specifically, for each test case xk, which is a segment randomly sampled from a test docu-
ment x1...L (randomly sampled from the test corpus), we measure the reconstruction log-likelihood
of xk given latent tags tk under the LLM:

Etk∼pLLM (t|x1...k−1,xk)[log pLLM (xk|x1...k−1, tk)] (5)

Specifically, we first sample S alternative segments at position k independently
by {x̂(1)

k , x̂
(2)
k , ..., x̂

(S)
k } ∼ pLLM (·|x1...k−1). Next, we conduct T repeated experiments to

approximate the log-likelihood of xk given the previous segments x1. . . k−1 under the LLM. Each
time, we randomly sample C alternative segments from {x̃(1)

k , x̃
(2)
k , ..., x̃

(S)
k } and put it together

with xk (in randomly shuffled order) as options and ask the LLM which one is the true continuation
conditioned on x1...k−1 and the tag tk predicted on xk. Based on the number of times (denoted as
ck) that the LLM chooses xk as the true continuation among all T experiments, we estimate the
reconstruction log-likelihood with alpha-smoothing (α = 0.1):

Etk∼pLLM (t|x1...k−1,xk)[log pLLM (xk|x1...k−1, tk)] = log
ck + α

T + αS
(6)

As a baseline, we compare the reconstruction log-likelihood with the log-likelihood without condi-
tioning on any tags:

E[log pLLM (xk|x1...k−1)] (7)

which we estimate in the same way as the reconstruction log-likelihood except that when asking the
LLM to choose the true continuation, we only provide the previous text segments x1...k−1 without
any tags.

In our experiments, we estimate the log-likelihood on the same set of 1K randomly sampled test
cases using each sampling method.

Hits@K Accuracy The latent tags can also be used for hierarchical generation where we first
sample a sequence of tags as an outline and then sample the actual text based on the outline. To

4
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evaluate if the latent tags help generate more diverse texts, we evaluate if the outputs cover more
solution paths and thus lead to higher chance of hitting the correct path on problem solving tasks.

To this end, we evaluate the Hits@K accuracy of hierarchical sampling with latent tags, and compare
it with the Hits@K accuracy of direct sampling without tags. Specifically, for each problem, we
sample K = 50 solutions independently from an LLM given the problem description either directly
or through hierarchical sampling with latent tags. If any of the K solutions lead to the correct
answer, it gets a score of 1, otherwise 0. Finally, we compute the average score over all testing
problems.

For hierarchical sampling, we first sample a sequence of tags (t1, t2, ..., tl) (up till the special tag
<END>) with maximum length L using a bigram model learned on the training data (based on the
tag assignments):

p(t1, t2, ..., tl) = p(t1)p(t2|t1)...p(tl|tl−1)p(<END>|tl) (8)

And then, we prompt the LLM to sample a solution to the given problem based on the sampled
sequence of tags (t1, t2, ..., tl).

4.3 fPLSA SETUP

For the EM procedure, we set the maximum number of iterations to 30. At the E-step (where
the LLM assigns a tag to each segment conditioned not only on the current segment but also on
neighbouring segments within the context window), we use a context window size of 2 on Writ-
ingPrompts and use unlimited context window (such that the whole solution is used as context) on
MATH and BBH. At the M-step, we randomly sample 10 segments assigned to each tag to update
the tag description.

4.4 BASELINES

TradLDA We compare our approach with the traditional Latent Dirichlet Allocation (TradLDA)
algorithm designed to discover latent topics in a collection of text spans (Blei et al., 2003).

TradLDA+LLM As Li et al. (2023) showed that the topic labels generated by LLMs based on
the key terms learned through TradLDA are preferred more often than the original labels, we also
include TradLDA+LLM as a baseline. Specifically, we first learn the topics with the key terms for
each topic using TradLDA, and then use GPT-4 to generate a description for each topic based on the
key terms.

Prompting Recent work showed that, with appropriate prompts, LLMs are capable of directly
generating topic labels given a set of text documents and condensing overarching topics (Mu et al.,
2024). As a baseline, we adapt the approach (along with the prompts) to generate topic descriptions
for each text segment.

GenOutline For Hits@K accuracy, we also include a two-step sampling baseline, where we first
prompt the LLM to generate a multi-step outline for solving this type of problem and then prompt
the LLM to generate the actual solution based on the problem description and the outline.

4.5 LARGE LANGUAGE MODEL SETUP

For clustering and tagging, we use GPT-4 for all approaches, a powerful LLM (OpenAI et al., 2024).
We set top_p = 0.5, sampling temperature τ = 1.0, zero frequency and presence penalty. We also
use GPT-4 with top_p = 0.5 to estimate the reconstruction log-likelihood. We set the tempera-
ture τ = 1.0 when sampling alternative segments and τ = 0 when choosing the best continuation.

To measure Hits@K Accuracy, we use ChatGPT (gpt-3.5-turbo; OpenAI (2023)) instead of GPT-
4, because GPT-4 may have data contamination issues (Deng et al., 2024) on MATH and BBH
benchmarks based on its timestamp. We set top_p = 0.5 and temperature τ = 1.0 when sampling
solutions from ChatGPT.
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No Tag TradLDA TradLDA+LLM Prompting fPLSA

WritingPrompts -4.81 -3.75 -4.12 -3.62 -3.43
MATH-Num -3.32 -2.96 -3.28 -3.06 -2.64
MATH-All -3.67 -3.16 -3.57 -3.44 -3.04

Table 1: Reconstruction log-likelihood of fPLSA versus the baseline without tags (No Tag), traditional
LDA (TradLDA), traditional LDA with LLM-generated tag descriptions (TradLDA+LLM) (Li et al., 2023),
and the prompting baseline (Prompting) (Mu et al., 2024) on WritingPrompts story dataset, Number Theory
dataset from MATH (MATH-Num), and the whole MATH (MATH-All) dataset.

Keywords Tag Description

nothing, get, life, else, light, across, best, ca,
single, come, got, death, together, running,
power, system, entire, could, control, every-
thing

The words you’ve provided span a broad
range of concepts, but they share a common
denominator in that they can all be associated
with themes commonly found in science fic-
tion literature and media.

continued, surface, wait, raised, floor, slowly,
give, new, sure, needed, around, also, face,
body, fact, made, bitch, girl, guy, much

The words listed seem to be common English
words that could appear in a wide range of
contexts. However, given their generic na-
ture, they could be particularly prevalent in
narrative or descriptive writing, such as in
fiction, storytelling, or personal narratives.

Table 2: Examples of keywords learned on short story segments in WritingPrompts through TradLDA and
the corresponding tag descriptions generated by GPT-4. Given only the keywords without context, the tag
descriptions produced by GPT-4 are too generic to recover the original text spans.

Prompting Tags fPLSA Tags
Tag 1: Stories involving themes of sacrifice,
duty, friendship, companionship, hope, and
resilience in the face of crisis.

Tag 1: Scenes involving intense, often dan-
gerous situations, like explosions, retreats,
long nights, empty streets, fires, and storms.

Tag 2: Stories involving time travel, genetic
irregularities, and strange creatures that feed
on negative emotions.

Tag 2: The protagonist experiences surreal
and unexpected events, often involving time
travel or strange bodily functions, and nar-
rates them in a casual, humorous tone.

Tag 3: Stories involving emotional moments
and first hugs.

Tag 3: This tag is associated with story
segments that feature intense emotional mo-
ments, often involving fear, anger, or dis-
tress, and frequently serve as turning points
or climactic scenes in the narrative.

Table 3: Example tags learned on short story segments in WritingPrompts through Prompting versus fPLSA.
Prompting tags are either too mixed (e.g. Tag 1 and 2) or too generic (e.g. Tag 3), while fPLSA groups segments
of similar themes into the same cluster and describes each cluster with detailed explanations and example plots.

5 RESULTS

5.1 RECONSTRUCTION LIKELIHOOD

First, we compare the reconstruction log-likelihood of fPLSA with the No Tag baseline (without
conditioning on any tags). As shown in Table 1, conditioning on fPLSA tags helps predict the
original texts: fPLSA brings 0.6–1.4 higher log-likelihood than the No Tag baseline.
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TradLDA also brings higher reconstruction log-likelihood over the No Tag baseline. However, since
TradLDA only captures word or term co-occurrences, it still underperforms fPLSA consistently on
all three datasets. Moreover, TradLDA+LLM fails to improve over TradLDA. As shown by the
examples in Table 2, it is extremely challenging for LLMs and even humans to extract meaningful
semantic information from the keywords learned on short text segments through TradLDA, and the
resulting tag descriptions are overly generic, making it challenging to reconstruct the original text
segments accurately.

Compared with the Prompting baseline, fPLSA achieves 0.2–0.4 higher log-likelihood on all three
datasets. We further compared the tags learned using Prompting versus fPLSA. As shown by the
examples in Table 3, Prompting tends to merge unrelated topics into a mixed topic (e.g. Tag 1
and 2), and the resulting topics become overly broad. Even for tags sharing a common theme, the
descriptions often lack specificity and detail (e.g. Tag 3). By contrast, fPLSA identifies segments
with similar themes, groups them into a single cluster and produces more detailed tag descriptions
with example plots.

5.2 HITS@K ACCURACY

No Tag GenOutline TradLDA TradLDA+LLM Prompting fPLSA

MATH
Algebra 88.6 90.1 93.6 89.6 91.1 92.6
Counting 61.3 60.4 69.8 65.1 69.8 72.6
Geometry 53.1 55.2 58.3 57.3 62.5 60.4
InterAlgebra 55.7 51.7 58.7 59.2 61.2 64.7
Number 65.4 76.0 77.9 74.0 78.8 78.8
PreAlgebra 74.2 79.1 81.3 81.3 84.6 83.0
PreCalculus 42.2 46.8 51.4 46.8 49.5 54.1
Average 62.9 65.6 70.1 67.6 71.1 72.3
BBH
Date 92.8 94.4 95.6 95.2 95.2 98.8
Formal 45.2 61.2 65.6 52.8 57.2 93.2
Geometric 70.8 76.8 83.6 84.0 80.0 87.6
Logical 89.2 95.6 95.6 96.0 96.5 99.5
Movie 84.8 88.0 92.8 92.0 93.2 95.2
ObjCount 93.2 96.8 99.2 100.0 100.0 95.2
Penguins 93.8 99.3 99.3 100.0 99.3 99.3
ReasonColored 92.8 97.6 98.4 98.8 98.8 100.0
RuinNames 64.8 74.8 69.6 70.0 80.0 93.6
TranslationError 52.4 68.4 60.4 60.0 63.6 75.2
Temporal 86.4 98.4 93.2 96.8 98.0 100.0
WordSort 27.2 36.4 16.0 14.8 42.0 56.0
Average 74.5 82.3 80.8 80.0 83.7 91.1

Table 4: Hits@K accuracy of fPLSA versus directly sampling without tags (No Tag), two-step sampling with
LLM-generated outline (GenOutline), traditional LDA (TradLDA), traditional LDA with LLM-generated tag
descriptions (TradLDA+LLM) (Li et al., 2023), and the prompting baseline (Prompting) (Mu et al., 2024) on 12
challenging tasks from BBH benchmark (Suzgun et al., 2022) and 7 tasks from MATH (Hendrycks et al., 2021).

We further evaluate how the semantic structural tags help with downstream generation by measuring
the Hits@K Accuracy of various sampling methods with or without tags. First, compared with direct
sampling without using any tags, hierarchical sampling with fPLSA tags leads to significantly higher
Hits@K accuracy by +9.4 points on MATH and +16.6 points on BBH on average. Additionally,
we compare fPLSA with GenOutline, a two-step sampling approach where we prompt the LLM to
generate an outline before generating the actual solution. GenOutline improves over direct sampling
on most tasks, but still underperforms hierarchical sampling with fPLSA by 7–9 points. These results
indicate that hierarchical sampling using tags derived from the domain-specific documents via fPLSA
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TradLDA Tags
This cluster often contains words such as either, distinct, case, problem, must, find, 10, three, 72,
follows, 3a, yields, since, digit, thus, digits, equal, 2a, 144, base.
This cluster often contains words such as 250, shown asy, makes, means, becomes, coordinates,
sphere, origin, thus, left frac pi, frac pi right, pi right, cos frac, pi frac pi, pi pi, frac pi frac, pi frac,
frac, frac pi, pi.
This cluster often contains words such as equation, note, sqrt, also, line, get, 2b, rightanglemark,
abc, draw rightanglemark, 25 boxed, dfrac, must, since, let, expanding, property, 300, angle, xy.
This cluster often contains words such as 2t, makes, circ boxed, triangle, 120, 120 circ, 60 circ, 90
circ, circ angle, operatorname, 360 circ, 360, since, 45 circ, 180 circ, 90, 180, angle, 45, circ.
This cluster often contains words such as 40, also, overline, 14, therefore, bc, align therefore, end
align therefore, circ, let, frac cdot, respectively, sqrt, triangle, cosines, law cosines, cdot, law, frac,
angle.

Prompting Tags
Algebra and equations in manipulation and solving.
Algebraic manipulation and polynomial factorization.
Equation setup and solving for ages, distances, and quantities.
Inverse function calculations and summation.
Geometry and trigonometry in problem-solving.

fPLSA Tags
Using congruence or similarity to deduce equal angles or sides in geometric figures.
Perform algebraic manipulations to solve for an unknown variable.
Utilizes specific mathematical theorems or properties, such as De Moivre’s Theorem or the Law
of Cosines, to solve problems.
Identify or prove relationships between angles, sides, or other elements of geometric figures.
This tag includes steps that conclude a mathematical procedure or finalize the simplification of an
expression.

Table 5: Top 5 tags from TradLDA, Prompting and fPLSA that lead to the highest Hits@K Accuracy on MATH.

produces more effective and diverse output solutions, thereby increasing the likelihood of hitting the
correct answer.

Next, we compare fPLSA with hierarchical sampling with existing tagging approaches. fPLSA tags
lead to more diverse outputs with a higher chance of hitting the correct solution paths than TradLDA
on 16 out of 19 tasks. It brings an an average accuracy improvement of 2–10 points over TradLDA.
Similarly, compared with TradLDA+LLM, fPLSA achieves higher Hits@K Accuracy on 17 out of 19
tasks and improves the average accuracy by 5–11 points across BBH and MATH. Compared with
the Prompting baseline, fPLSA achieves higher Hits@K Accuracy on 14 out of 19 tasks. Overall,
hierarchical sampling with fPLSA tags improves Hits@K Accuracy over existing tagging approaches
by 1–11 points on average.

We further examine the top 5 tags from each tagging approach that lead to the highest Hits@K Ac-
curacy when used as part of the outline. As shown in Table 5, the TradLDA tags are too low-level,
making it difficult for an LLM to follow. The Prompting tags, however, are too generic – for ex-
ample, the tag “Algebra and equations in manipulation and solving” covers almost all solution steps
in algebra problems. By contrast, fPLSA tags are more specific and instructive than the Prompting
tags, but are still representative of groups of solution steps.

Finally, we investigate whether the tags learned through fPLSA generalize across tasks. Specifically,
we examine the average Hits@K Accuracy of tags learned mostly from a particular task when used
on other tasks. As shown in Figure 1, tags learned from tasks other than the test task are helpful in
sampling effective solutions and sometimes even more helpful than the tags learned on the test task
itself. This is possibly because the LLM is already familiar with the solution paths suggested by the
tags learned from the test task itself, while the tags learned from other tasks may cause the LLM to
think out of the box.
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Figure 1: Heatmap of the average Hits@K Accuracy of tags learned mostly from a particular task when used
on other tasks. The x axis represents the task from which the tags are learned from, and the y axis represents
the test task. Tags learned from tasks other than the test task are proven to be helpful and sometimes even more
helpful than the tags from the test task.

6 CONCLUSION

We introduced fPLSA, a foundation-model-based Probabilistic Latent Semantic Analysis method
that aims to uncover the latent semantic structures in document collections by iteratively clustering
and tagging document segments based on document-level contexts. Our experiments on story writ-
ing, math and multi-step reasoning tasks show that fPLSA tags are more informative in reconstruct-
ing the original texts than tags generated by existing tagging methods. fPLSA tags are also useful
in generating more diverse solutions via hierarchical sampling and lead to higher Hits@K Accuracy
than existing methods. These results suggest the potential of fPLSA for generating effective task
guidelines given some worked-out examples, along with hierarchical sampling and searching for
problem solutions based on a verification or reward model.
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