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Abstract

As wireless systems evolve toward 6G, Artificial Intelligence (AI) and Deep Learn-
ing (DL) are poised to revolutionize physical-layer processing, offering superior
performance over classical methods in throughput and Block Error Rate (BLER).
Deploying DL-based receivers in resource-constrained environments requires bal-
ancing performance with inference latency, energy consumption, and computational
overhead. We study data-free Post-Training Quantization (PTQ) of a neural receiver
that processes frequency-domain baseband samples to generate Log-Likelihood
Ratios (LLRs) for error-control decoding. Quantization parameters are derived
directly from pretrained weights via symmetric per-channel uniform quantization,
where each channel’s scale captures the absolute-weight range—requiring no cali-
bration data, synthetic data, or activation statistics. We reduce float32 weights
to 8-, 6-, and 4-bit and evaluate radio performance across 3GPP Line-of-Sight
(LoS)/Non-LoS (NLoS) channels and mobility scenarios. In NLoS, 8- and 6-bit
achieve near-float32 BLER, with gains up to 4.9 dB over baseline Least-Squares
(LS) under high mobility. In LoS, 4-bit remains robust, surpassing traditional
receivers by 1.7–2.6 dB across mobilities, while yielding an 8× smaller model.
These findings inform hardware–software co-design for AI-native 6G air-interfaces,
highlighting low-precision quantization as a key enabler for efficient edge, sensing,
and cloud-radio deployments.

1 Introduction

Cellular systems have been shaped by transformative technologies. Orthogonal Frequency Division
Multiplexing (OFDM) revolutionized 4G, while massive Multiple-Input-Multiple-Output (MIMO)
became the cornerstone of 5G. As AI and DL achieve exceptional performance across domains
from computer vision to natural language processing, an important question arises: how will these
innovations shape 6G wireless communication systems? For decades, wireless communication
challenges were addressed through statistical modeling, leading to linear methods in the physical-
layer such as LS and Linear Minimum Mean Squared Error (LMMSE) channel estimation, linear
equalizers, and Zero-Forcing (ZF) precoding, which have offered low complexity and near-optimal
performance in 3G, 4G, and 5G. The emerging 6G environment challenges conventional frameworks,
as recent work shows that DL applied to the physical layer outperforms model-based transceivers
in throughput and BLER. To manage growing device and service heterogeneity, the 6G physical
layer must prioritize simplicity and efficiency, necessitating an AI-native air interface to enhance
radio access network functionalities [1]. Floating-point inference for DL models is computationally
expensive and power-intensive, limiting its practicality on edge devices and in large-scale cloud-Radio
Access Network (RAN) deployments with strict latency budgets, regardless of the hardware Central
Processing Units (CPUs), Graphics Processing Units (GPUs), or Neural Processing Units (NPUs).
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Reducing inference complexity while preserving model performance is therefore essential to make
deep learning receivers viable for operational 6G networks.

Two main approaches address this challenge: PTQ and Quantization-Aware Training (QAT). PTQ
reduces the precision of a pre-trained floating-point model from 32-bit to lower-precision formats
such as 16-bit floating-point or 8- and 4-bit integers without retraining.

2 Background and related work

Quantization This section provides an overview of PTQ and its relevance to the quantization of
weight kernels in neural network receivers to be presented in Section 3.

Integer quantization centers on two fundamental operations that enable efficient model compression
[2, 3, 4]. The first operation, quantization, transforms floating-point values into lower-precision
integer representations such as 8-bit or 4-bit. The second operation, dequantization, converts these
integer values back to approximate floating-point representations during inference.

The mapping between floating-point values and integer representations gives rise to two predominant
quantization strategies: asymmetric and symmetric quantization. Asymmetric quantization operates
through three critical parameters that govern the transformation process: the scale factor (s), the
zero-point offset (z), and the bit-width (b). Symmetric quantization operates on the quantization grid
by maintaining symmetry around the zero-point with z = 0. The mathematical formulation of the
quantization function is given by:

x̂ := q (x; s, z, b) = s ·
(
clip

(⌊x
s

⌉
+ z; 0, 2b − 1

)
− z

)
, (1)

where x denotes the quantizer input (i.e., network weights or activations). Moreover, s ∈ R+ denotes
the scale factor, or step-size, z ∈ Z the zero point, and b ∈ N the bit-width. Finally, ⌊·⌉ denotes the
round-to-nearest-integer operator.

In this work, we consider symmetric quantization when performing per-channel PTQ [5, 6, 7, 8, 9, 10,
11]. We adopt symmetric per-channel quantization for two reasons: (i) per-channel scaling assigns
each convolutional filter its own scale factor, preserving fine-grained dynamic-range information
critical for resource-grid convolutions; (ii) symmetric quantization (z = 0) simplifies hardware
by eliminating zero-point arithmetic, reducing latency and memory overhead on 8-bit/4-bit
accelerators. The scale factor sc for channel c is computed as

sc =
max(|wc|)−min(|wc|)

2b−1 − 1
,

where wc denotes the channel weights. This data-free approach derives quantization parameters
solely from pre-trained floating-point model, eliminating calibration datasets or activation statistics.

Although there has been abundant research in quantization and efficient deep learning inference for
computer vision and language modeling, its application to communication systems remains limited.
In this paper, we focus on how quantization impacts radio performance when eural network receivers
perform the majority of physical layer signal processing functions in an end-to-end learning fashion.

End-to-End Learning DL for the physical layer of wireless communication systems has been the
focus of several scientific contributions [12, 13, 14]. Therein, it is shown that DL based receivers
outperform model based receivers in terms of BLER and throughput. It has also been shown that
uniform linear quantization of a Single-Input-Single-Output (SISO) OFDM neural network-based
receiver reduces Floating Point Operations (FLOPs) by 50% with only a 0.25 dB degradation in
radio performance [15]. Furthermore, 8-bit based PTQ of a DL receiver has been shown to perform
similarly to that of a float32 architecture [16]. In this paper, we investigate the impact of low-bit-
width quantization to determine the practical limits of PTQ for DL-based physical-layer receivers in
6G systems.

• Evaluation of symmetric per-channel PTQ at 6-bit and 4-bit bit-widths, revealing trade-
offs not explored in [16], such as 4-bit’s enhanced robustness in LoS scenarios.

• Comprehensive analysis across both LoS and NLoS channel models. We consider NLoS
Clustered Delay Line (CDL)-B for testing which usually models environments with more
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clusters and a richer multipath structure than CDL-A and CDL-C. While CDL-D was used
for LoS testing of the quantized neural receivers.

• We train the model using two distinct training scenarios, one is a hybrid of LoS and NLoS
channels and another focusing solely on NLoS to investigate generalization and robustness
to quantization.

3 System Model

We consider an uplink Single-Input-Multiple-Output (SIMO) OFDM wireless communication system
with NRx = 2 receive antennas. The choice of NRx stems from isolating quantization effects from
large-array combining gains.

At the transmitter, the input bit sequence is encoded with a Low-Density Parity-Check (LDPC) code.
The encoded bits are mapped to complex modulation symbols and arranged into a Resource Grid (RG)
of size Nsym×Nsc, where Nsym is the number of OFDM symbols and Nsc is the number of subcarriers.
Demodulation Reference Signals (DMRSs) are embedded at known time–frequency locations to
facilitate channel estimation at the receiver. The grid is converted to a time-domain OFDM waveform
via Inverse Fast Fourier Transform (IFFT) and cyclic prefix, and transmitted through a 3GPP CDL
channel [17].

After Fast Fourier Transform (FFT) at the receiver, the system model is defined as follows

yn,k = hn,k xn,k + nn,k, yn,k ∈ CNRx×1, hn,k ∈ CNRx×1, (2)

where xn,k is the transmitted symbol at OFDM symbol n and subcarrier k. The noise vector satisfies
nn,k ∼ CN

(
0, σ2INRx

)
with i.i.d. entries, and symbols are normalized as E[|xn,k|2] = 1. DMRSs at

pilot positions (n, k) enable channel estimation via nearest neighbor interpolation of hn,k across the
RG.

4 Neural Receiver: Training and Post-training Quantization

Traditionally, when the receiver is processing the OFDM waveform, after performing FFT, the
post-FFT waveform is fed to perform channel estimation, equalization, and demapping. We consider
a neural receiver architecture as shown in Table 1. This is designed to replace traditional signal
processing operations where the input is the post-FFT sequence and the output is LLRs. The output
of the network, which are the LLRs, are then used as input to LDPC decoding.

Layer Channels Kernel Size Dilatation Rate
Input Conv2D 128 (3,3) (1,1)
ResNet Blocks (1–8) 128 (3,3) (1,1)
Output Conv2D 6 (3,3) (1,1)

Table 1: Architecture Details of the Neural Receiver

Parameters Value Randomization
Carrier Frequency 3.5 GHz None
RMS Delay Spread 10 ns – 100 ns Uniform

UE Velocity 0 m/s – 50 m/s Uniform
SNR 0 dB – 15 dB Uniform

Subcarrier Spacing 30 kHz None
Modulation Scheme 64-QAM None

Code Rate 0.5 None
DMRS Configuration 3rd and 12th Symbol None

Optimizer Adam None
Batch Size 128 None

Table 2: Training and Evaluation Parameters
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We create two neural receiver models, where each model is trained on a combination of 3GPP channel
models. The neural receiver and our experiments are performed using Sionna [18]:

• In Scenario I, we train the neural receiver with the parameters mentioned in Table 2 by using
channel models CDL-A, C and E. This training scenario is a combination of NLoS and LoS
models, while the testing is performed using CDL-B and CDL-D.

• In Scenario II, we train the neural receiver with the parameters using channel models CDL-A,
B, and C. This training scenario is trained only on NLoS channels, and is tested on LoS
channels CDL-D and CDL-E.

The neural receiver undergoes training with the objective of maximizing the bit-metric decoding
performance. To achieve this optimization goal, Binary Cross-Entropy (BCE) loss serves as the cost
function, quantifying the difference between the network’s predicted LLRs and the ground truth
transmitted coded bits distributed across the complete OFDM resource grid. The BCE loss-function
is mathematically formulated as:

LBCE(B, L̂) = −E
[
B log σ(L̂) + (1−B) log(1− σ(L̂))

]
, (3)

where B denotes the ground-truth transmitted bits, L̂ denotes the predicted LLRs and E[·] expectation
operator. The function σ(L̂) represents the sigmoid activation, which maps LLRs to probabilities.

5 Experiments

In this section, we evaluate the neural receiver under various scenarios as mentioned in Section 4. The
trained float32 neural receiver models were post-training quantized to low bit-width representations
(8-bit, 6-bit, and 4-bit) before being used for inference to analyze the correspondig radio
performance. Model training was performed on devices equipped with NVIDIA A40 GPU.

Figure 1: Performance Analysis for Scenario I on CDL-D in terms of BLER vs Eb/N0

Figure 2: Performance Analysis for Scenario I on CDL-B in terms of BLER vs Eb/N0

The BLER performance was evaluated for several receiver configurations, including a neural receiver
float32, PTQ’d neural receivers 8-bit, 6-bit, 4-bit, as well as baseline methods employing
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Figure 3: Performance Analysis for Scenario II on CDL-D in terms of BLER vs Eb/N0

perfect Channel State Information (CSI) and LS channel estimation. LS channel estimation is
performed with nearest neighbour interpolation followed by LMMSE equalization. Experiments
were conducted under three mobility scenarios: low speed (10 m/s), medium speed (20 m/s), and
high speed (35 m/s).

In Figure 1, the neural receiver and its 8-bit/6-bit quantized models consistently achieved low
BLER across the entire Signal-to-Noise-Ratio (SNR) range, demonstrating robustness to both quan-
tization and increased User Equipment (UE) speed. In contrast, the neural receiver quantized to
4-bit exhibits noticeable performance degradation compared to higher-precision neural receivers
but consistently outperforms the baseline LS estimation method in high-mobility scenarios. At higher
speeds (e.g., 35 m/s), the 4-bit neural receiver achieves significantly lower BLER with up to a gain
of 1.7 dB compared to the LS receiver.

Figure 2 illustrates that 4-bit quantization of the neural receiver leads to performance degradation
on a CDL-B NLoS channel with 10% BLER as a target metric. The CDL-B channel may represent
urban macrocell environments with large delay spreads. The BLER remains high across the entire
SNR range at various mobility conditions. In this case, LS estimation achieved significantly lower
BLER at moderate and high SNRs, outperforming the 4-bit neural receiver and highlighting its
limitations under challenging channel conditions. These findings suggest that 4-bit symmetric
uniform per-channel quantization is not suitable for deployment in such environments, whereas 8-bit
and 6-bit variants are seen as a good compromise that retain robust performance and consistently
outperform LS estimation by 4.7 dB. Specifically, being within 0.1 dB at 10% BLER makes the
6-bit a desirable choice.

Finally, Figure 3 shows that in Scenario II, the 4-bit quantized neural receiver surpasses LS estima-
tion by approximately 2.5 dB under high UE speed, highlighting its robustness in LoS conditions.
Additionally, across the entire SNR range and mobility conditions, the 8-bit and 6-bit models
closely match the float32 baseline, indicating that 6-bit quantization offers an effective trade-off
between computational efficiency and 10% BLER performance.

6 Discussion

Benefits of Quantized Neural Receivers The presented study demonstrates the trade-offs of
adopting sub-8-bit representations in neural receiver architectures by applying PTQ with 6-bit
quantization to neural receivers, and evaluating the performance across diverse scenarios. Figure 4
illustrates the Eb/N0 required to achieve 10% BLER at high mobility (35 m/s) for Scenario I (CDL-
B, NLoS) and Scenario II (CDL-D, LoS) . The 6-bit quantized receiver achieves near-float32
performance, requiring 4.26 dB (vs. 4.13 dB for float32) on CDL-B and 3.63 dB (vs. 3.62 dB) on
CDL-D, with a 5.33× model size reduction. This robustness, along with gains of 4.92 dB over LS
estimation in high-mobility NLoS conditions (CDL-B) and 5.09 dB in LoS (CDL-D), positions 6-bit
as an excellent choice for 6G’s AI-native air interfaces, balancing efficiency and radio performance
[1].

Furthermore, 4-bit quantization significantly enhances LoS performance, requiring only 6.12 dB on
CDL-D (compared with 8.72 dB for LS, thus a 2.60 dB gain) in Scenario II, surpassing LS by up to 2.5
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dB in high-mobility LoS conditions. This enables ultra-low-power inference with an 8× model size
reduction, facilitating latency and energy demands compared to 8-bit, making 4-bit a compelling
choice for site-specific 6G deployments like fixed wireless access or Vehicle-to-Everything (V2X)
use-cases, where LoS channels predominate.

Figure 4: Eb/N0 required to reach 10% BLER at high mobility (35 m/s) for various receiver
architectures

Limitations The significant performance gap between 4-bit and 8-bit quantization, particularly
in NLoS channels, e.g., CDL-B, where 4-bit fails to achieve 10% BLER while 8-bit requires 4.14
dB, indicates that 4-bit quantization-induced errors outweigh the effects of challenging channel
conditions. This highlights the need for advanced PTQ techniques, such as adaptive rounding, to
mitigate these errors [11] and QAT.

While 6-bit weight quantization achieves performance comparable to 8-bit and float32, and
offers gains in model compression, hardware efficiency as well as memory access, its adoption
is limited by the lack of native hardware support. Current GPUs and accelerators mainly support
float16, 8-bit, and 4-bit, leaving 6-bit operations reliant on inefficient emulation. Thus,
despite promising results, practical deployment of 6-bit remains uncertain.

7 Conclusions

We trained multiple neural receivers across diverse channel profiles and applied symmetric per-
channel PTQ with varying bit-widths. The 4-bit neural receiver emerges as a viable low-power
alternative for LoS deployments, outperforming float32-based LS receivers at medium to high
UE velocities, particularly in site-specific 6G scenarios. However, in NLoS settings, the 4-bit
receiver fails to achieve 10% BLER. Our analysis can guide hardware–software co-design toward
accelerators supporting 6-bit and 4-bit, with results highlighting the potential of dynamic precision
switching between 6-bit/8-bit and 4-bit to balance power efficiency and reliability. The robust
LoS performance of 4-bit also makes it a promising candidate for integrated communications and
sensing, a cornerstone of 6G. Future work can explore emerging FP6 and FP4 formats to combine
efficiency with competitive performance, while native 6-bit support in accelerators and mixed-
precision PTQ remain promising directions for on-device optimization.
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