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ABSTRACT

The healthcare industry generates troves of unlabelled physiological data. This data
can be exploited via contrastive learning, a self-supervised pre-training method that
encourages representations of instances to be similar to one another. We propose a
family of contrastive learning methods, CLOCS, that encourages representations
across space, time, and patients to be similar to one another. We show that CLOCS
consistently outperforms the state-of-the-art methods, BYOL and SimCLR, when
performing a linear evaluation of, and fine-tuning on, downstream tasks. We also
show that CLOCS achieves strong generalization performance with only 25% of
labelled training data. Furthermore, our training procedure naturally generates
patient-specific representations that can be used to quantify patient-similarity.

1 INTRODUCTION

At present, the healthcare system is unable to sufficiently leverage the large, unlabelled datasets that
it generates on a daily basis. This is partially due to the dependence of deep learning algorithms on
high quality labels for good generalization performance. However, arriving at such high quality labels
in a clinical setting where physicians are squeezed for time and attention is increasingly difficult. To
overcome such an obstacle, self-supervised techniques have emerged as promising methods. These
methods exploit the unlabelled dataset to formulate pretext tasks such as predicting the rotation of
images (Gidaris et al., 2018), their corresponding colourmap (Larsson et al., 2017), and the arrow
of time (Wei et al., 2018). More recently, contrastive learning was introduced as a way to learn
representations of instances that share some context. By capturing this high-level shared context
(e.g., medical diagnosis), representations become invariant to the differences (e.g., input modalities)
between the instances.

Contrastive learning can be characterized by three main components: 1) a positive and negative set of
examples, 2) a set of transformation operators, and 3) a variant of the noise contrastive estimation
loss. Most research in this domain has focused on curating a positive set of examples by exploiting
data temporality (Oord et al., 2018), data augmentations (Chen et al., 2020), and multiple views of the
same data instance (Tian et al., 2019). These methods are predominantly catered to the image-domain
and central to their implementation is the notion that shared context arises from the same instance.
We believe this precludes their applicability to the medical domain where physiological time-series
are plentiful. Moreover, their interpretation of shared context is limited to data from a common source
where that source is the individual data instance. In medicine, however, shared context can occur
at a higher level, the patient level. This idea is central to our contributions and will encourage the
development of representations that are patient-specific. Such representations have the potential to be
used in tasks that exploit patient similarity such as disease subgroup clustering and discovery. As a
result of the process, medical practitioners may receive more interpretable outputs from networks.

In this work, we leverage electrocardiogram (ECG) signals to learn patient-specific representations
in a self-supervised manner via contrastive learning. To do so, we exploit the fact that ECG signals
summarize both temporal and spatial information. The latter can be understood in terms of projections
of the same electrical signal onto multiple axes, also known as leads.

Contributions. Our contributions are the following:

1. We propose a family of patient-specific contrastive learning methods, entitled CLOCS, that exploit
both temporal and spatial information present within ECG signals.
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2. We show that CLOCS outperforms state-of-the-art methods, BYOL and SimCLR, when perform-
ing a linear evaluation of, and fine-tuning on, downstream tasks involving cardiac arrhythmia
classification.

2 RELATED WORK

Contrastive Learning. In contrastive predictive coding, Oord et al. (2018) use representations of
current segments to predict those of future segments. More recently, Tian et al. (2019) propose
contrastive multi-view coding where multiple views of the same image are treated as ‘shared context’.
He et al. (2019); Chen et al. (2020); Grill et al. (2020) exploit the idea of instance discrimination (Wu
et al., 2018) and interpret multiple views as stochastically augmented forms of the same instance. They
explore the benefit of sequential data augmentations and show that cropping and colour distortions are
the most important. These augmentations, however, do not trivially extend to the time-series domain.
Shen et al. (2020) propose to create mixtures of images to smoothen the output distribution and thus
prevent the model from being overly confident. Time Contrastive Learning (Hyvarinen & Morioka,
2016) performs contrastive learning over temporal segments in a signal and illustrate the relationship
between their approach and ICA. In contrast to our work, they formulate their task as prediction
of the segment index within a signal and perform limited experiments that do not exploit the noise
contrastive estimation (NCE) loss. Bachman et al. (2019) Time Contrastive Networks (Sermanet
et al., 2017) attempt to learn commonalities across views and differences across time. In contrast, our
work focuses on identifying commonalities across both spatial and temporal components of data.

Self-Supervision for Medical Time-Series. Miotto et al. (2016) propose DeepPatient, a 3-layer
stacked denoising autoencoder that attempts to learn a patient representation using electronic health
record (EHR) data. Although performed on a large proprietary dataset, their approach is focused on
EHRs and does not explore contrastive learning for physiological signals. Sarkar & Etemad (2020)
apply existing self-supervised methods on ECG recordings in the context of affective computing.
The methods implemented include defining pretext classification tasks such as temporal inversion,
negation, time-warping, etc. Their work is limited to affective computing, does not explore contrastive
learning, and does not exploit multi-lead data as we do. Lyu et al. (2018) explore a sequence to
sequence model to learn representations from EHR data in the eICU dataset. In the process, they
minimize the reconstruction error of the input time-series. Li et al. (2020) leverage the aforementioned
unsupervised learning technique on a large clinical dataset, CPRD, to obtain uncertainty estimates for
predictions.

3 BACKGROUND

3.1 CONTRASTIVE LEARNING

Assume the presence of a learner fθ : x ∈ RD −→ h ∈ RE , parameterized by θ, which maps a
D-dimensional input, x, to an E-dimensional representation, h. Further assume the presence of an
unlabelled dataset, X ∈ RNxD, where N is the total number of instances.

Each unlabelled instance, xi ∈ X , is exposed to a set of transformations, TA and TB , such that
xiA = TA(x

i) and xiB = TB(x
i). Such transformations can consist of two different data augmentation

procedures such as random cropping and flipping. These transformed instances now belong to an
augmented dataset, X ′ ∈ RNxDxV , where V is equal to the number of applied transformations. In
contrastive learning, representations, hiA = fθ(x

i
A) and hiB = fθ(x

i
B), are said to share context.

As a result of this shared context, these representations constitute a positive pair because (a) they
are derived from the same original instance, xi, and (b) the transformations applied to the original
instance were class-preserving. Representations within a positive pair are encouraged to be similar
to one another and dissimilar to representations of all other instances, hjA, h

j
B ∀j j 6= i. The

similarity of these representations, s(hiA, h
i
B), is quantified via a metric, s, such as cosine similarity.

By encouraging high similarity between representations in the positive pair, the goal is to learn
representations that are invariant to different transformations of the same instance.
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4 METHODS

4.1 POSITIVE AND NEGATIVE PAIRS OF REPRESENTATIONS

Representations that are derived from the same instance are typically assumed to share context.
This approach, however, fails to capture commonalities present across instances. In the medical
domain, for example, multiple physiological recordings from the same patient may share context. It
is important to note that if the multitude of physiological recordings associated with a patient were
collected over large time-scales (e.g., on the order of years) and in drastically different scenarios
(e.g., at rest vs. during a stress test), then the shared context across these recordings is likely to
diminish. This could be due to changing patient demographics and disease profiles. With the previous
caveat in mind, we propose to leverage commonalities present in multiple physiological recordings
by redefining a positive pair to refer to representations of transformed instances that belong to the
same patient. We outline how to arrive at these transformed instances next.

4.2 TRANSFORMATION OPERATORS

When choosing the transformation operators, T , that are applied to each instance, the principal
desideratum is that they capture invariances in the ECG recording. Motivated by the observation that
ECG recordings reflect both temporal and spatial information, we propose to exploit both temporal
and spatial invariance. We provide an intuition for such invariances in Fig. 1.

Figure 1: ECG recordings reflect both temporal and spatial information. This is because they measure
the electrical activity of the heart using different leads (views) over time. Temporal Invariance.
Abrupt changes to the ECG recording are unlikely to occur on the order of seconds, and therefore
adjacent segments of shorter duration will continue to share context. Spatial Invariance. Recordings
from different leads (at the same time) will reflect the same cardiac function, and thus share context.

As is pertains to temporal invariance (Fig. 1 left), we assume that upon splitting an ECG recording,
associated with Class 1, into several segments, each of them remain associated with Class 1. We
justify this assumption based on human physiology where abrupt changes in cardiac function (on the
order of seconds) are unlikely to occur. If these segments were collected years apart, for example, our
assumption may no longer hold. As for spatial invariance (Fig. 1 right), we leverage the hexiaxial
diagram which illustrates the location of the leads relative to the heart. We assume that temporally-
aligned ECG recordings from different leads (views) are associated with the same class. This is based
on the idea that multiple leads (collected at the same time) will reflect the same underlying cardiac
function. Occasionally, this assumption may not hold, if, for example, a cardiac condition afflicts a
specific part of the heart, making it detectable by only a few leads. We now describe how to exploit
these invariances for contrastive learning.

Contrastive Multi-segment Coding (CMSC). Given an ECG recording, xi, with duration S
seconds, we can extract V non-overlapping temporal segments, each with duration S/V seconds.
If V = 2, for example, xit1 = Tt1(x

i) and xit2 = Tt2(x
i) where t indicates the timestamp of

the temporal segment (see Fig. 1 left). We exploit temporal invariances in the ECG by defining
representations of these adjacent and non-overlapping temporal segments as positive pairs.

Contrastive Multi-lead Coding (CMLC). Different projections of the same electrical signal eman-
ating from the heart are characterized by different leads, L. For example, with two leads, L1 and
L2, then xiL1 = TL1(x

i) and xiL2 = TL2(x
i) (see Fig. 1 right). We exploit spatial invariances in the

ECG by defining temporally-aligned representations of these different projections as positive pairs.
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Contrastive Multi-segment Multi-lead Coding (CMSMLC). We simultaneously exploit both tem-
poral and spatial invariances in the ECG by defining representations of non-overlapping temporal
segments and different projections as positive pairs. For example, in the presence of two temporal
segments with timestamps, t1 and t2, that belong to two leads, L1 and L2, then xit1,L1 = Tt1,L1(x

i)

and xit2,L2 = Tt2,L2(x
i).

4.3 PATIENT-SPECIFIC NOISE CONTRASTIVE ESTIMATION LOSS

Given our patient-centric definition of positive pairs, we propose to optimize a patient-specific noise
contrastive estimation loss. More formally, Given a mini-batch of K instances, we apply a pair of
transformation operators and generate 2K transformed instances (a subset of which is shown in Fig. 2.
We encourage a pair of representations, hiA and hkB , i, k ∈ P , from the same patient, P , to be similar
to one another and dissimilar to representations from other patients. We quantify this similarity
using the cosine similarity, s, with a temperature scaling parameter, τ , (see Eq. 4) as is performed in
(Tian et al., 2019; Chen et al., 2020). We extend this to all representations in the mini-batch to form
a similarity matrix of dimension K ×K. In this matrix, we identify positive pairs by associating
each instance with its patient ID. By design, this includes the diagonal elements and results in the
loss shown in Eq. 2. If the same patient reappears within the mini-batch, then we also consider
off-diagonal elements, resulting in the loss shown in Eq. 3. The frequency of these off-diagonals is
inconsistent due to the random shuffling of data. We optimize the objective function in Eq. 1 for all
pairwise combinations of transformation operators, TA and TB , where we include Eq. 2 and Eq. 3
twice to consider negative pairs in both views.

L = ETA,TB

[
LhA,hB

diag + LhB ,hA

diag + LhA,hB

off−diag + L
hB ,hA

off−diag

]
(1)

LhA,hB

diag = −Ei∈P

[
log

es(h
i
A,h

i
B)∑

j e
s(hi

A,h
j
B)

]
(2)

LhA,hB

off−diag = −Ei,k∈P

[
log

es(h
i
A,h

k
B)∑

j e
s(hi

A,h
j
B)

]
(3) s(hiA, h

i
B) =

fθ(x
i
A) · fθ(xiB)

‖fθ(xiA)‖‖fθ(xiB)‖
1

τ
(4)

Figure 2: Similarity matrix for a mini-batch of K instances in (Left) Contrastive Multi-segment
Coding, (Centre) Contrastive Multi-lead Coding, and (Right) Contrastive Multi-segment Multi-
lead Coding. Additional matrices would be generated based on all pairs of applied transformation
operators, TA and TB . Exemplar transformed ECG instances are illustrated along the edges. To
identify positive pairs, we associate each instance with its patient ID. By design, diagonal elements
(green) correspond to the same patient, contributing to Eq. 2. Similarly, instances 1 and 50 (yellow)
belong to the same patient, contributing to Eq. 3. The blue area corresponds to negative examples as
they pertain to instances from different patients.
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5 EXPERIMENTAL DESIGN

5.1 DATASETS

We conduct our experiments using PyTorch (Paszke et al., 2019) on four ECG datasets that include
cardiac arrhythmia labels. PhysioNet 2020 (Perez Alday et al., 2020) consists of 12-lead ECG
recordings from 6,877 patients alongside 9 different classes of cardiac arrhythmia. Each recording
can be associated with multiple labels. Chapman (Zheng et al., 2020) consists of 12-lead ECG
recordings from 10,646 patients alongside 11 different classes of cardiac arrhythmia. As is suggested
by Zheng et al. (2020), we group these labels into 4 major classes. PhysioNet 2017 (Clifford
et al., 2017) consists of 8,528 single-lead ECG recordings alongside 4 different classes. Cardiology
(Hannun et al., 2019) consists of single-lead ECG recordings from 328 patients alongside 12 different
classes of cardiac arrhythmia. An in-depth description of these datasets can be found in Appendix A.1.

All datasets were split into training, validation, and test sets according to patient ID using a 60, 20, 20
configuration. In other words, patients appeared in only one of the sets. The exact number of instances
used during self-supervised pre-training and supervised training can be found in Appendix A.2.

5.2 PRE-TRAINING IMPLEMENTATION

We conduct our pre-training experiments on the training set of two of the four datasets: PhysioNet
2020 and Chapman. We chose these datasets as they contain multi-lead data. In CMSC, we extract a
pair of non-overlapping temporal segments of S = 2500 samples. This is equivalent to either 10 or 5
seconds worth of ECG data from the Chapman and PhysioNet 2020 datasets, respectively. Therefore,
our model is presented with a mini-batch of dimension K × S × 2 where K is the batchsize, and
S is the number of samples. In CMLC, we explore two scenarios with a different number of leads
corresponding to the same instance. Our mini-batch dimension is K × S ×L, where L is the number
of leads. Lastly, in CMSMLC, we incorporate an additional temporal segment in each mini-batch.
Therefore, our mini-batch dimension is K × 2S × L. To ensure a fair comparison between all
methods, we expose them to an equal number of patients and instances during training. In CMLC or
CMSMLC, we either pre-train using 4 leads (II, V2, aVL, aVR) or all 12 leads. We chose these 4
leads as they cover a large range of axes.

5.3 EVALUATION ON DOWNSTREAM TASK

We evaluate our pre-trained methods in two scenarios. In Linear Evaluation of Representations,
we are interested in evaluating the utility of the fixed feature extractor in learning representations.
Therefore, the pre-trained parameters are frozen and multinomial logistic regression is performed on
the downstream supervised task. In Transfer Capabilities of Representations, we are interested in
evaluating the inductive bias introduced by pre-training. Therefore, the pre-trained parameters are
used as an initialization for training on the downstream supervised task.

5.4 BASELINES

We compare our pre-training methods to networks that are initialized randomly (Random Init.),
via supervised pre-training (Supervised), or via a multi-task pre-training mechanism introduced
specifically for ECG signals (MT-SSL) (Sarkar & Etemad, 2020). We also compare to BYOL (Grill
et al., 2020) and SimCLR (Chen et al., 2020), which encourage representations of instances and their
perturbed counterparts to be similar to one another, with the aim of learning transformation-invariant
representations that transfer well. As SimCLR has been shown to be highly dependent on the choice of
perturbations, we explore the following time-series perturbations (see Appendix B for visualizations):

• Gaussian - we add ε ∼ N (0, σ) to the time-series signal where we chose σ based on the
amplitude of the signal. This was motivated by the work of Han et al. (2020) who recently showed
the effect of additive noise on ECG signals.
• Flip - we flip the time-series signal temporally (FlipY ), reversing the arrow of time, or we invert

the time-series signal along the x-axis (FlipX ).
• SpecAugment (Park et al., 2019) - we take the short-time Fourier transform of the time-series

signal, generating a spectrogram. We then mask either temporal (SAt) or spectral (SAf ) bins
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of varying widths before converting the spectrogram to the time domain. We also explore the
application of sequential perturbations to the time-series signal.

5.5 HYPERPARAMETERS

During self-supervised pre-training, we chose the temperature parameter, τ = 0.1, as per Chen et al.
(2020). For BYOL, we chose the decay rate, τd = 0.90, after experimenting with various alternatives
(see Appendix F). We use the same network architecture for all experiments. Further implementation
details can be found in Appendix C.

6 EXPERIMENTAL RESULTS

6.1 LINEAR EVALUATION OF REPRESENTATIONS

In this section, we evaluate the utility of the self-supervised representations learned using four leads
on a downstream linear classification task. In Table 1, we show the test AUC on Chapman and
PhysioNet 2020 using 50% of the labelled data (F = 0.5) after having learned representations, with
dimension E = 128, using the same two datasets.

Table 1: Test AUC of the linear evaluation of
the representations at F = 0.5, after having
pre-trained on Chapman or PhysioNet 2020 with
E = 128. Pre-training and evaluating multi-lead
datasets* using 4 leads (II, V2, aVL, aVR). Mean
and standard deviation are shown across 5 seeds.

Dataset Chapman* PhysioNet 2020*

MT-SSL 0.677± 0.024 0.665± 0.015
BYOL 0.643± 0.043 0.595± 0.018

SimCLR 0.738± 0.034 0.615± 0.014
CMSC 0.896± 0.005 0.715± 0.033
CMLC 0.870± 0.022 0.596± 0.008

CMSMLC 0.847± 0.024 0.680± 0.008

We show that CMSC outperforms BYOL and
SimCLR on both datasets. On the Chapman
dataset, CMSC and SimCLR achieve an AUC =
0.896 and 0.738, respectively, illustrating a
15.8% improvement. Such a finding implies
that the representations learned by CMSC are
richer and thus allow for improved generaliza-
tion. We hypothesize that this is due to the setup
of CMSC whereby the shared context is across
segments (temporally) and patients. Moreover,
we show that CLOCS (all 3 proposed methods)
outperforms SimCLR in 100% of all conducted
experiments, even when pre-training and evalu-
ating with all 12 leads (see Appendix D).

6.2 EFFECT OF PERTURBATIONS ON PERFORMANCE

So far, we have presented CLOCS without having incorporated any perturbations during pre-training.
However, contrastive learning methods, and in particular SimCLR, are notorious for their over-
dependence on the choice of perturbations. To explore this dependence, we apply a diverse set
of stochastic perturbations, P , (see Appendix B) during pre-training and observe its effect on
generalization performance. We follow the setup introduced by Chen et al. (2020) and apply either
a single perturbation to each instance, xi, whereby xi1 = P1(x

i), or sequential perturbations
whereby xi1,2 = P2(P1(x

i)).

We apply such perturbations while pre-training with SimCLR or CMSC on PhysioNet 2020 using 4
leads and, in Fig. 3, illustrate the test AUC in the linear evaluation scenario. We show that, regardless
of the type and number of perturbations, CMSC continues to outperform SimCLR. For example, the
worst-performing CMSC implementation (FlipY ) results in an AUC = 0.661 which is still greater
than the best-performing SimCLR implementation (Gaussian → SAt) with an AUC = 0.636. In
fact, we find that pre-training with CMSC without applying any perturbations (see Table 1) still
outperforms the best-performing SimCLR implementation. Such a finding suggests that CMSC’s
already strong performance is more likely to stem from its redefinition of the ‘shared context’ to
include both time and patients than from the choice of perturbations.

6.3 TRANSFER CAPABILITIES OF REPRESENTATIONS

In this section, we evaluate the utility of initializing a network for a downstream task with parameters
learned via self-supervision using four leads. In Table 2, we show the test AUC on downstream
datasets at F = 0.5 for the various self-supervised methods with E = 128.
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Figure 3: Effect of single (blue) and sequential (green) perturbations applied to the (top) SimCLR and
(bottom) CMSC implementations on linear evaluation. Sequential perturbations involve a Gaussian
perturbation followed by one of the remaining four types. Pre-training and evaluation was performed
on PhysioNet 2020 using 4 leads. Evaluation was performed at F = 0.5 and results are averaged
across 5 seeds. We show that CMSC outperforms SimCLR regardless of the applied perturbation.

We show that, with a few exceptions, self-supervision is advantageous relative to a Random Initial-
ization. This can be seen by the higher AUC achieved by the former relative to the latter. We also
show that, depending on the downstream dataset, either CMSC or CMSMLC outperform BYOL and
SimCLR. For example, when pre-training on Chapman and fine-tuning on Cardiology, CMSMLC
achieves an AUC = 0.717, a 4.1% improvement compared to SimCLR. This implies that by en-
couraging representations across space, time, and patients to be similar to one another, networks are
nudged into a favourable parameter space. In Appendix E.1, we extend these findings and illustrate
that CLOCS outperforms SimCLR in at least 75% of all experiments conducted, on average. When
pre-training, fine-tuning, and evaluating using all 12 leads, we show that CMSC outperforms all other
methods in at least 90% of all experiments conducted (see Appendix E.2).

Table 2: Test AUC in the fine-tuning scenario at F = 0.5, after having pre-trained on Chapman or
PhysioNet 2020 with E = 128. Pre-training, fine-tuning, and evaluating multi-lead datasets* using 4
leads. Mean and standard deviation are shown across 5 seeds.

Pretraining Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.678 ± 0.011 0.763 ± 0.005 0.803 ± 0.008 0.678 ± 0.011 0.763 ± 0.005 0.907 ± 0.006
Supervised 0.684 ± 0.015 0.799 ± 0.008 0.827 ± 0.001 0.730 ± 0.002 0.810 ± 0.009 0.954 ± 0.003

Self-supervised Pre-training

MT-SSL 0.650 ± 0.009 0.741 ± 0.012 0.774 ± 0.010 0.661 ± 0.011 0.746 ± 0.016 0.923 ± 0.007
BYOL 0.678 ± 0.021 0.748 ± 0.014 0.802 ± 0.013 0.674 ± 0.022 0.757 ± 0.010 0.916 ± 0.009

SimCLR 0.676 ± 0.011 0.772 ± 0.010 0.823 ± 0.011 0.658 ± 0.027 0.762 ± 0.009 0.923 ± 0.010
CMSC 0.695 ± 0.024 0.773 ± 0.013 0.830 ± 0.002 0.714 ± 0.014 0.760 ± 0.013 0.932 ± 0.008
CMLC 0.665 ± 0.016 0.767 ± 0.013 0.810 ± 0.011 0.675 ± 0.013 0.762 ± 0.007 0.910 ± 0.012

CMSMLC 0.717 ± 0.006 0.774 ± 0.004 0.814 ± 0.009 0.698 ± 0.011 0.774 ± 0.012 0.930 ± 0.012

6.4 DOING MORE WITH LESS LABELLED DATA

Having established that self-supervision can nudge networks to a favourable parameter space, we set
out to investigate whether such a space can lead to strong generalization with less labelled data in the
downstream task. In Fig. 4, we illustrate the validation AUC of networks initialized randomly or via
CMSC and fine-tuned on two different datasets.

We find that fine-tuning a network based on a CMSC initialization drastically improves data-efficiency.
In Fig. 4a, we show that a network initialized with CMSC and exposed to only 25% of the labelled
data outperforms one that is initialized randomly and exposed to 100% of the labelled data. This can
be seen by the consistently higher AUC during, and at the end of, training. A similar outcome can be
seen in Fig. 4b. This suggests that self-supervised pre-training exploits data efficiently such that it
can do more with less on downstream classification tasks.
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(a) PhysioNet 2020 −→ Cardiology (b) Chapman −→ PhysioNet 2017

Figure 4: Validation AUC of a network initialized randomly or via CMSC and which is exposed
to different amounts of labelled training data, F . Results are averaged across 5 seeds. Shaded area
represents one standard deviation.

6.5 EFFECT OF EMBEDDING DIMENSION, E , AND AVAILABILITY OF LABELLED DATA, F

The dimension of the representation learned during self-supervision and the availability of labelled
training data can both have an effect on model performance. In this section, we investigate these
claims. In Figs. 5a and 5b, we illustrate the test AUC for all pre-training methods as a function of
E = (32, 64, 128, 256) and F = (0.25, 0.50, 0.75, 1).

(a) Chapman −→ Cardiology, F = 0.25 (b) Chapman −→ Cardiology, E = 64

Figure 5: Effect of (a) embedding dimension, E, and (b) labelled fraction, F , on the test AUC when
pre-training on Chapman and fine-tuning on Cardiology. Results are averaged across 5 seeds. Error
bars represent one standard deviation.

In Fig. 5a, we show that networks initialized randomly or via SimCLR are not significantly affected by
the embedding dimension. This can be seen by the AUC ≈ 0.63 and ≈ 0.65, for these two methods
across all values of E. In contrast, the embedding dimension has a greater effect on CMSC where
AUC ≈ 0.66 −→ 0.69 as E = 32 −→ 128. This implies that CMSC is still capable of achieving strong
generalization performance despite the presence of few labelled data (F = 0.25). We hypothesize that
the strong performance of CMSC, particularly at E = 128, is driven by its learning of patient-specific
representations (see Appendix G) that cluster tightly around one another, a positive characteristic
especially when such representations map to the same downstream class.

In Fig. 5b, we show that increasing the amount of labelled training data benefits the generalization
performance of all methods. This can be seen by the increasing AUC values as F = 0.25 −→ 1. We
also show that at all fraction values, CMSMLC outperforms its counterparts. For example, at F = 1,
CMSMLC achieves an AUC = 0.732 whereas SimCLR achieves an AUC = 0.718. Such superiority
still holds at F = 0.25 where the two methods achieve an AUC = 0.675 and 0.652, respectively.
This outcome emphasizes the robustness of CMSMLC to scarce labelled training data.
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6.6 CLOCS LEARNS PATIENT-SPECIFIC REPRESENTATIONS

We redefined ‘shared context’ to refer to representations from the same patient, which in turn should
produce patient-specific representations. To validate this hypothesis, we calculate the pairwise
Euclidean distance between representations of the same patient (Intra-Patient) and those of different
patients (Inter-Patient). On average, the former should be smaller than the latter. In Fig. 6, we
illustrate the two distributions associated with the intra and inter-patient distances at E = 128. We
also find that increasing the embedding dimension shifts these distributions to higher values (see
Fig 9).

We show that these two distributions have large mean values and overlap significantly when imple-
menting SimCLR, as seen in Fig. 6a. This is expected as SimCLR is blind to the notion of a patient.
In contrast, when implementing CMSC, the intra-patient distances are lower than those found in
SimCLR, as seen in Fig. 6b. Moreover, the intra and inter-patient distributions are more separable.
This implies that pre-training with CMSC leads to patient-specific representations. We note that this
phenomenon takes place while concomitantly learning better representations, as observed in previous
sections.

(a) SimCLR (b) CMSC

Figure 6: Distribution of pairwise Euclidean distance between representations (E = 128) belonging
to the same patient (Intra-Patient) and those belonging to different patients (Inter-Patient). Self-
supervision was performed on PhysioNet 2020. Notice the lower average intra-patient distance and
improved separability between the two distributions with CMSC than with SimCLR.

7 DISCUSSION AND FUTURE WORK

In this paper, we proposed a family of self-supervised pre-training mechanisms, entitled CLOCS,
based on contrastive learning for physiological signals. In the process, we encourage representations
across segments (temporally) and leads (spatially) that correspond to instances from the same patient
to be similar to one another. We show that our methods outperform the state-of-the-art methods,
BYOL and SimCLR, when performing a linear evaluation of, and fine-tuning on, downstream
tasks. This conclusion also holds when applying a range of perturbations and when pre-training and
evaluating with a different number of leads. We now elucidate several avenues worth exploring.

Quantifying patient similarity. We have managed to learn patient-specific representations. These
representations can be used to quantify patient-similarity in order to assist with diagnosis or gain a
better understanding of a diseased condition. Validation of these representations can be performed by
comparing known similar patients.

Multi-modal transfer. We transferred parameters from one task to another that shared the same
input modality, the ECG. Such data may not always be available for self-supervision. An interesting
path would be to explore whether contrastive self-supervision on one modality can transfer well to
another modality.
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