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CoMO-NAS: Core-Structures-Guided Multi-Objective Neural
Architecture Search for Multi-Modal Classification

Anonymous Authors

ABSTRACT
Most existing NAS-based multi-modal classification (MMC-NAS)
methods are optimized using the classification accuracy. They can
not simultaneously provide multiple models with diverse perfer-
ences such as model complex and classification performance for
meeting different users’ demands. Combining NAS-MMC with
multi-objective optimization is a nature way for this issue. How-
ever, the challenge problem of this solution is the high computation
cost. For multi-objective optimization, the computing bottleneck
is pareto front search. Some higher-quality MMC models (namely
core structures, CSs) consisting of high-quality features and fusion
operators are easier to identify. We find that CSs have a close re-
lation with the pareto front (PF), i.e., the individuals lying in PF
contain the CSs. Based on the finding, we propose an efficient multi-
objective neural architecture search for multi-modal classification
by applying CSs to guide the PF search (CoMO-NAS). In conclu-
sion, experimental results thoroughly demonstrate the effectiveness
of our CoMO-NAS. Compared to state-of-the-art competitors on
benchmark multi-modal tasks, we achieve comparable performance
with lower model complexity in shorter search time.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

KEYWORDS
Multi-modal fusion, Core structures, Neural architecture search,
Multi-objective optimization, Classification

1 INTRODUCTION
The success of multi-modal fusion architectures owes much to
their design [7, 16, 32]. Recently, with the advantages of escaping
labor-intensive and challenging architectural design processes, neu-
ral architecture search (NAS) [18] has experienced unprecedented
interest. NAS has achieved significant success in discovering opti-
mized multi-modal feature fusion strategies, surpassing manually
designed methods [14, 15, 24, 39]. However, these approaches fo-
cus solely on the need for high-accuracy fusion architectures. In
addition to accurate predictions, practical applications also require
NAS-MMC methods to find computationally efficient network ar-
chitectures, such as low power consumption in mobile applications,
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Figure 1: The relationship between core structures (CSs) and
Pareto frontier (PF). The individuals lying on PF contain CSs.

low latency in autonomous driving applications, and deployabil-
ity on edge devices like smartphones. It is widely observed that
as network architecture complexity increases, predictive perfor-
mance continues to improve. This has sparked competition between
maximizing predictive performance while minimizing complexity,
leading to the natural idea of introducing multi-objective optimiza-
tion.

Among the many diverse MMC-NAS methods, evolutionary al-
gorithms (EAs) have garnered widespread attention due to their
population-based nature and flexibility [44]. They offer a viable
alternative to traditional ML-oriented approaches, especially within
the scope of multi-objective NAS. Generally, EAs involve an itera-
tive process where improvements are gradually made to individuals
within the population by applying variations to selected individ-
uals and recombining parts of multiple individuals. Despite being
easily scalable to handle multiple objectives, most existing EA-
based NAS methods are still single-objective driven. Additionally,
a computational bottleneck for utilizing evolutionary algorithms
in multi-objective optimization lies in the search for the Pareto
frontier, requiring significant computational resources.

To address the aforementioned issues, we propose a method
called core structures-guided multi-objective neural architecture
search (CoMO-NAS). As illustrated in Figure 1, core structures are
substructures composed of high-performing features and fusion
operators, which often play a decisive role in the architecture’s
performance. These core structures align with the optimization
objectives of multi-objectives, representing lower-complexity and
high-performance substructures themselves. Additionally, through
observations of existing advancedMMC-NASmethods, we find that
the optimal fusion architectures identified by MMC-NAS typically
include some excellent core structures. Building upon these find-
ings, we further explore and discover that core structures frequently
appear in the final Pareto frontier, and even more complex solutions

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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within the Pareto frontier also contain core structures. Therefore,
we propose utilizing core structures to guide multi-objective neu-
ral architecture search. To obtain core structures, we first divide
the features extracted by the backbone network and predefined
fusion operators into two parts: one part contains individually
high-performing features and fusion operators constituting the
core structure search space, while the other part contains lower-
performing features and fusion operators constituting the non-core
structure search space. In the first stage, we utilize multi-objective
evolutionary algorithms to search for core structures within the
core structure search space, obtaining a portion of the Pareto fron-
tier. In the second stage, we use the core structures along with the
non-core structure search space to search for architectures with
higher complexity and better performance, forming a complete
Pareto frontier.

Our research has been validated onmultiplemulti-modal datasets,
showcasing optimal performance in terms of efficiency, complexity,
and accuracy. Specifically, our contributions include:
• We find that the core structures (CSs) that consist of features
and fusion operators with higher performance in NAS-MMC
can be used to guide the Pareto front (PF) search in multi-
objective optimization because the individuals in PF often
contain the CSs. This strategy is able to significantly improve
search efficiency and solution quality.
• With above the finding, we propose a method called core
structure-guided multi-objective neural architecture search
(CoMO-NAS). To the best our knowledge, CoMO-NAS in-
troduces the concept of multi-objective algorithms in the
field of MMC-NAS for the first time. It can efficiently provide
multiple optimization solutions for different scenarios.
• We conducted extensive experimental comparisons on multi-
ple multi-modal tasks, and the results show that compared to
state-of-the-art multi-modal feature fusion methods, CoMO-
NAS has significant advantages in terms of search time and
the number of model parameters.

2 RELATEDWORK
2.1 Multi-Modal Fusion
Multi-modal fusion networks have demonstrated clear advantages
over single-modal networks in various applications such as action
recognition and sentiment analysis [9, 17, 33, 35, 43]. However,
effectively combining multi-modal features to better utilize infor-
mation remains a significant challenge [36]. multi-modal fusion
techniques are typically divided into two main categories: the first
category involves handcrafted fusion based on domain knowledge,
such as early fusion, fusion of low-level features, late fusion, and
fusion of decision-level features [16]. Some approaches also involve
feature fusion at intermediate layers to facilitate later fusion and im-
prove performance, for example, CentralNet [31] and MMTM [30],
which connect potential representations from each layer and pass
them as auxiliary information to deeper layers. However, this ap-
proach significantly increases the parameter count of multi-modal
fusion models. Additionally, there are recent works proposing dy-
namic multi-modal fusion, a novel method that adaptively fuses
multi-modal data and generates data-relevant forward paths during
inference [7, 19, 23, 34, 46]. The second category involves applying

neural architecture search to automatically find the optimal fusion
architecture [15]. Compared to the first category, this approach
eliminates the laborious traditional handcrafted design and gener-
ally achieves better fusion results, albeit at the expense of requiring
substantial computational resources and time.

2.2 Multi-Modal Neural Architecture Search
Neural Architecture Search (NAS) [18] has been introduced to au-
tomate the design of neural models, aiming to discover efficient
architectures with competitive performance. This trend has sparked
researchers’ interest in migrating NAS to the field of multi-modal
fusion, leading to the proposal of a series of multi-modal neural
architecture search methods to automatically design optimal fusion
network architectures. Perez-Rua et al. first explored and validated
the feasibility of using NAS methods to address this issue. They
proposed a search framework called MFAS [25], which automati-
cally selects single-modal features from all candidate features as
inputs to the fusion module. However, due to MFAS’s adoption
of the black-box optimization algorithm SMBO, each update step
requires training a set of DNNs, resulting in low efficiency. Addi-
tionally, MFAS only utilizes concatenation and fully connected (FC)
layers for single-modal feature fusion, where the stack of FC layers
poses a significant computational burden. Yin et al [39]. introduced
a two-layer gradient-based search scheme named BM-NAS, allow-
ing simultaneous search of input features and fusion operations
for each multi-modal fusion module. However, it forces cells to
have different predecessors, leading to a narrowed search space
and potentially suboptimal results. EDF [15] utilizes evolutionary
neural architecture search to find multi-modal fusion architectures
for chemical structures, achieving superior results. However, due to
the inherent limitations of evolutionary algorithms, the time cost is
high. To address the time cost issue brought by evolutionary NAS,
DC-NAS [14] proposes a divide-and-conquer evolutionary neural
architecture method, greatly improving search efficiency.

While the aforementioned methods have achieved significant
success in the field of multimodal fusion, they are all driven by the
goal of performance optimization. This may lead to a tendency to
solely pursue performance during the search process, consequently
increasing the complexity of the models. In addition to the high
demand for accuracy, practical applications also require NAS-MMC
methods to discover network architectures that are computationally
efficient, catering to scenarios with low power consumption and
memory constraints. To address this issue, we propose a multi-
objective multimodal neural architecture search framework guided
by core structures. This framework utilizes evolutionary algorithms
to compensate for the shortcomings of existing methods.

3 METHODS
3.1 Definition and Motivation
To avoid confusion, we provide precise definitions for certain terms
here. A population consists of individuals, where each individual
corresponds to a multi-modal classification (MMC) model encoded
in the form of a tree, typically represented as a vector in post-order
traversal for ease of displaying experimental results in this paper. All
representations extracted from different modalities are collectively
referred to as features. The space composed of high-quality features



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

CoMO-NAS: Core-Structures-Guided Multi-Objective Neural Architecture Search for Multi-Modal Classification ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

 Modality �

Modality 1 

⋮
⋮

Backbone networkMulti-modal data CoMO-NAS
MOCSS:MOENAS(1)

CSG-OFSS:MOENAS(2)

......
Shrinking search space

⋮

�1 �1

Feature set: �

Fusion operator set: �

⋮ ...

�2 = � −  �1 �2 = � − �1 

MMC 
Multi-Objective

search space

 
Core structure 

Multi-Objective 
search space 

...

B
lock 1 

B
lock 2 

B
lock n-1 

B
lock n 

...

B
lock 1 

B
lock 2 

B
lock n-1 

B
lock n 

...

Initializetion ��
Combined 

population �� ∪ ��
Evalution Generate offspring 

population ��

Evalution

Terminate? No

Pareto frontier
Yes

Selection individuals ��+1

...

...

Pareto Frontier

Core  structure 
solution

Solution containing
 core structure

MOENAS(i)

Core structure 
Pareto frontier

Core  structure 
solutions

Figure 2: The framework of CoMO-NAS

Table 1: Comparison results of the quality of Pareto solutions
between traditional multi-objective algorithms and CoMO-
NAS on the CB dataset.𝐶 denotes the model complexity. The
vector [.] represents a fusion architecture, where the num-
bers with/without negative signs denote fusion operators
and modality features, respectively.

𝐻𝑉 [4] ↑ 𝐼𝐷 Pareto frontier solution 𝐶 ↓ 𝐴𝑐𝑐 ↑ (%)
1 [7, 9, 4, 1,−0,−0,−4] 7 87.80%
2 [7, 9, 4, 7, 2, 8, 5,−2,−0,−0,−0,−4] 13 88.47%

Other 3 [8, 7, 2,−0,−4] 5 87.53%
52.37 4 [7, 9, 8, 4, 2,−3,−2,−0,−4,−0] 9 88.07%

5 [7, 2, 7, 5,−2,−0, 4, 1,−0,−0,−4] 11 88.40%
6 [8, 7,−4] 3 86.65%
1 [8, 7, 4, 3, 1,−0,−0,−1,−1] 9 88.40%
2 [7, 4,−1] 3 86.71%

CoMO-NAS 3 [4, 8, 7, 2,−2,−0,−4] 7 88.21%
58.27 4 [8, 7, 4,−1,−1] 5 87.53%

5 [8, 7,−4] 3 86.71%
6 [8, 7, 4, 3, 1, 5,−3,−0,−0,−1,−1] 11 88.57%

and fusion operators is termed as the core structure search space,
while the remaining constitutes the non-core structure search space.

Our work involves two key concepts: the Pareto frontier and
core structures, which are closely intertwined. The core structures
is a submodule that plays a central role in multi-modal fusion ar-
chitectures. The performance of most fusion architectures stems
from those core structures, typically composed of high-performing
modality features and fusion operations, as depicted in Figure 1.
Core structures are usually architectures with good performance
and low complexity, thus they often appear on the Pareto frontier
and both of them exits close relationship. By leveraging core struc-
tures, we can identify partial solutions within the Pareto frontier.
However, relying solely on core structures may not be sufficient

when considering both good performance and complexity. Nev-
ertheless, since these high-performing and complex architectures
often contain core structures, identifying core structures first can
guide the search for high-performing and complex architectures,
forming a complete Pareto frontier to meet various scenario de-
mands. Additionally, utilizing core structures to guide the search
process can significantly accelerate the search for the optimal Pareto
frontier by drastically reducing the evaluation of numerous ineffec-
tive architectures, thus saving a considerable amount of time.

To provide a more intuitive understanding of the relationship
between the two concepts, we conducted experiments on the CB
dataset. First, we employed traditional multi-objective evolutionary
algorithms. Next, we utilized core structures to guide the search
across the entire PF. The specific algorithm steps are outlined in the
following sections. The results are presented in Table 1. From the
experimental results, we can draw the following conclusions: (1) in
terms of the HV [4] indicator, CoMO-NAS discovers a better Pareto
frontier compared to traditional multi-objective evolutionary algo-
rithms. Here, a higher HV indicator indicates better performance;
(2) We observe that the Pareto frontier of CoMO-NAS includes core
structures with IDs 4 and 5, and most other solutions are guided by
core structures. For example, IDs 1 and 6.

3.2 CoMO-NAS
In this paper, we propose a core structure-guided multi-objective
neural architecture search for finding the optimal Pareto front.
CoMO-NAS consists of three steps: (1) unimodal feature extrac-
tion, (2) multi-objective core structures search (MOCSS) and (3)
core structures-guided optimal Pareto frontier search. The main
framework of CoMO-NAS is shown in Figure 2.

3.2.1 Unimodal Feature Extraction. This study follows previous
work on multi-modal fusion, such as MFAS, MMTM, and BM-NAS,
using pre-trained single-model neural network models as feature
extractors. We extract raw features from the intermediate layers of
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these models because neural network architectures typically have a
layered or block-like structure, which naturally suits this extraction
method. As the feature extractors used for different modalities vary,
resulting in significant differences in the dimensions of the raw fea-
tures—for example, text modalities may yield one-dimensional fea-
tures, images two-dimensional, and videos three-dimensional—we
employ global average pooling to uniformly convert them into
feature vectors. This facilitates feature alignment, promotes subse-
quent feature fusion, and simultaneously reduces computational
complexity for ease of processing.

3.2.2 MOCSS: Multi-Objective Core Structures Search. To ensure
the efficiency and convenience of vectorized feature fusion within
the entire architecture, we employ five basic fusion operators for
feature fusion. Here, we define 𝑥𝑖 as the vector feature,𝑛 denotes the
number of vector features to be fused, and the superscript indicates
the index of the fused vector feature. In this context, the fusion
operator set 𝐹 encompasses the following operations:

(1) Concatenation: The information from vector features is fused
as follows:

𝑜 (𝑥𝑖 ) = [𝑥1𝑖 , 𝑥
2
𝑖 , · · · , 𝑥

|𝑛 |
𝑖
], (1)

where [·, ·] is the concatenation operator.
Element-wise fusion operators require that the dimensions of

input vectors are the same, hence different vector features need
to be mapped into the same dimension space by a linear function
before fusing. This can be achieved using a fully-connected layer
(FC) without any activation function.

(2) Addition: The information from vector features is fused as
follows:

𝑜 (𝑥𝑖 ) = FC(𝑥1𝑖 ) + FC(𝑥
2
𝑖 ) + · · · + FC(𝑥

|𝑛 |
𝑖
) . (2)

(3) Multiplication: The information from vector features is fused
as follows:

𝑜 (𝑥𝑖 ) = FC(𝑥1𝑖 ) ◦ FC(𝑥
2
𝑖 ) ◦ · · · ◦ FC(𝑥

|𝑛 |
𝑖
), (3)

where ◦ denotes Hadamard product, namely element-wise multi-
plication.

(4)Max: The information from vector features is fused as follows:

𝑜 (𝑥𝑖 ) = max(FC(𝑥1𝑖 ), FC(𝑥
2
𝑖 ) · · · , FC(𝑥

|𝑛 |
𝑖
)), (4)

where max is element-wise max, also called max-pooling.
(5) Average: The information from vector features is fused as

follows:

𝑜 (𝑥𝑖 ) =
1
|𝑛 | (FC(𝑥

1
𝑖 ) + FC(𝑥

2
𝑖 ) + · · · + FC(𝑥

|𝑛 |
𝑖
), (5)

where + denotes element-wise addition, also called average-pooling.
To obtain core structures, we can reduce the entire search space

to the core structure search space by evaluating the performance of
each feature and fusion operator at relatively low cost. Specifically,
given 𝑛 features represented as𝑀1,𝑀2, ...,𝑀𝑛 , and a single-modal
classifier 𝑓 , we pass each feature𝑀𝑖 to 𝑓 and select the top 𝑘1 fea-
tures with higher performance to form a high-quality feature set
𝑀1. Given𝑚 fusion operators represented as 𝐹1, 𝐹2, ..., 𝐹𝑚 , and a
multi-modal classifier ℎ, we obtain the classification performance
of each fusion operator 𝐹𝑖 by replacing the fusion manner of ℎ with
𝐹𝑖 and select the top 𝑘2 fusion operators with higher performance
to form a high-quality fusion operator set 𝐹 1. The space composed

of𝑀1 and 𝐹 1 is referred to as the core structure search space. Next,
in the core structure search space, we use a multi-objective evolu-
tionary algorithm for searching. After 𝑁 1 iterations ofMOENAS,
we obtain the core structure population and partially obtain the
Pareto frontier solutions during the iteration process. Please refer
to Section 3.3 for specific details about theMOENAS.

3.2.3 CSG-OPFS: Core structures-guided optimal Pareto frontier
search. The core structure have a close relationship with the fi-
nal Pareto frontier obtained through multi-objective search. This
is because the core structures are characterized by low complex-
ity and high precision. The final Pareto frontier typically includes
some core structures, but to obtain a comprehensive optimal Pareto
frontier, we need to integrate the remaining features and fusion op-
erators. This is because the remaining features and fusion operators
often provide complementary information, enhancing the overall
performance of the fusion architecture. In the previous stage, we
already obtained the core structures, and some more precise multi-
modal fusion architectures usually include the core structures as
well. Therefore, we can quickly determine a high-quality search
subspace by leveraging these core structures, which consists of the
neighborhood surrounding the core structure. Here, the neighbor-
hood refers to the continuous addition of substructures composed
of the remaining features 𝑀2 and the fusion operator set 𝐹 2 to
the core structure, forming a multi-modal fusion architecture. To
obtain the final Pareto frontier, we utilize the MOENAS algorithm,
taking the core structure along with the remaining features𝑀2 and
𝐹 2 as new inputs. Through evolutionary algorithms, we can adap-
tively evaluate the fusion architectures around each core structure,
achieving the goal of searching the neighborhood and ultimately
obtaining the complete Pareto frontier.

3.3 Search Strategy
For both stages, we employ the NSGA-II algorithm to search for the
core structure and the final Pareto frontier. The overall algorithm
is presented in Algorithm 1.

(1) Individual Encoding and Decoding: To cover various fusion
strategiesmore flexibly, each individual in the population is encoded
as a binary tree, capable of encompassing any fusion strategy. In
this representation, leaf nodes represent modality features, while
internal nodes represent fusion operators. Due to the inherent
nature of binary trees, when there are k features, there must be
k-1 fusion operators. For the decoding process, each individual
corresponds to a multi-modal classification model. The binary tree
can be decoded into a multi-modal classification model through the
following steps: 1) Channeling modality features represented by the
leaf nodes of the individual encoding tree into fully connected layers
(FC) for feature alignment, facilitating feature fusion, and adding
batch normalization (BN) layers to enhance model convergence
speed and improve generalization; 2) Conducting feature fusion
based on the fusion operators represented by the internal nodes; 3)
Directing the fused features through FC and Softmax layers for the
final prediction output.

(2) Population Initialization: For the CoMO-NAS framework,
there are two search stages, each with a different initialization ap-
proach. In the first stage,𝐾 non-repeating individuals are generated
in a random distribution within the core structure search subspace.
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Algorithm 1 The pseudocode of CoMO-NAS
Input: Fusion operator set 𝐹 , feature set𝑀 , population size 𝐾 ,
maximum iterations for core structure search 𝑁1, maximum

iterations for optimal PF fusion architecture search 𝑁2.
1: Core structure search space 𝐶𝑆𝑆𝑆 by separating high-quality

feature set𝑀1 and fusion operator set 𝐹 1;
2: Non-core structure search space𝑁𝐶𝑆𝑆𝑆 is achieved by utilizing

the remaining feature set𝑀2 and fusion operator set 𝐹 2.
3: 𝑃0← Initialize a population comprising 𝐾 individuals through

the 𝐶𝑆𝑆𝑆 ;
4: Evaluate the accuracy and complexity of each individual in 𝑃0

as fitness values.
5: for 𝑖 ∈ [1, 𝑁1] do
6: 𝑄𝑖 ← Algorithm 2(𝑃𝑖 ,𝐶𝑆𝑆𝑆);
7: Evaluate the accuracy and complexity of each individual in

𝑄𝑖 as fitness values.
8: 𝑂𝑖 = 𝑃𝑖 ∪𝑄𝑖 ;
9: 𝑃𝑖+1 ← Get the next generation population from 𝑂𝑖 using

the non-dominated sorting method in NSGA-II;
10: end for
11: Core structure population 𝑃 ′0← 𝑃𝑁1 ;
12: for 𝑗 ∈ [1, 𝑁2] do
13: 𝑄 𝑗 ← Algorithm 2(𝑃 ′

𝑗
, 𝑁𝐶𝑆𝑆𝑆);

14: Evaluate the accuracy and complexity of each individual in
𝑄 𝑗 as fitness values.

15: 𝑂 𝑗 = 𝑃 ′𝑗 ∪𝑄 𝑗 ;
16: 𝑃 ′

𝑗+1← Get the next generation population from 𝑂 𝑗 using
the non-dominated sorting method in NSGA-II;

17: end for
18: Return The optimal Pareto front population

Specifically, 𝐾 unique features are randomly sampled from the
feature pool, along with 𝑘 − 1 fusion operators, and randomly
combined into binary tree structures. This process is repeated 𝐾
times to create the initial population 𝑃0. In the second stage, the
𝐾 core structures obtained from the first stage are utilized as the
initialization population 𝑃𝑁 1.

(3) Individual Evaluation: In CoMO-NAS, the network archi-
tecture and weight parameters corresponding to each individual
encoding are first obtained on the training data. Subsequently, the
accuracy and complexity of the network are calculated based on
the validation data, serving as the two objectives for individual
evaluation to facilitate subsequent multi-objective algorithms.

Objective1-Accuracy or Weighted F1 score: The first objective
shown in Equations 6 is to maximize accuracy or weighted F1 score.
The choice between accuracy and weighted F1 score as the first
optimization objective depends on the characteristics of the dataset.
When dealing with highly imbalanced data, we use the weighted
F1 score for better evaluation, which is consistent with previous
methods.

max 𝑓𝐴𝑐𝑐 (𝑝) = Accuracy(𝑝), F1-W = 𝐹1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 (𝑝) (6)

Where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝐹1𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 represent the functions computed
for the individual 𝑝 .

Algorithm 2 The generation of offspring population
Input: The current population 𝑃𝑔 , mutation structure sampling

space𝑀𝑆𝑆𝑆 , crossover rate 𝑟1, mutation rate 𝑟2.
1: 𝑄𝑔 ← ∅;
2: for 𝑗 ∈ [1, |𝑃𝑔/2|] do
3: 𝑝1, 𝑝2 ← Select two mating individuals in 𝑃𝑔 using binary

tournament selection;
4: 𝑑1← Randomly generate a number in [0,1];
5: if 𝑑1 ≥ 𝑟1 then
6: 𝑝′1, 𝑝

′
2 ← Generate offspring by applying the crossover

operator to parent individuals 𝑝1 and 𝑝2;
7: else
8: Directly copy parent individuals 𝑝1 and 𝑝2 to offspring 𝑝′1

and 𝑝′2;
9: end if
10: 𝑑2← Randomly generate a number in [0,1];
11: if 𝑑2 ≥ 𝑟2 then
12: 𝑝′1, 𝑝

′
2←Mutate individuals 𝑝′1 and 𝑝

′
2 using the mutation

structures derived from𝑀𝑆𝑆𝑆 ;
13: end if
14: 𝑄𝑔 ← 𝑄𝑔 ∪ {𝑝′1, 𝑝

′
2};

15: end for
16: Return 𝑄𝑔

Ojective2-Complexity: The second objective, as shown in Equa-
tion 7, is to minimize the complexity of each individual. Here, com-
plexity refers to the length of the architecture, which is the sum of
the number of features and fusion operators. Our goal is to achieve
higher performance by using fewer features and fusion operators,
while also effectively reducing the parameters and redundancy in
the architecture. Existing methods often face an issue of maximiz-
ing performance by incorporating as many features and fusion
operators as possible, leading to redundancy. The final fusion archi-
tectures they search for are often extensive, with a portion of them
potentially yielding only marginal benefits. MoCo-NAS partially
mitigates this problem by reducing the complexity of the model.

min 𝑓L (𝑝) = Features(𝑝) + Fusion operators(𝑝) (7)

(4) Evolutionary Strategy: Using a reproduction method based
on crossover and mutation, offspring populations are generated,
as outlined in Algorithm 2. Initially, two pairing individuals are
selected from the current population 𝑃𝑔 through binary tourna-
ment selection. Subsequently, reproduction involves duplication,
crossover, and mutation operations to yield offspring individuals.
The entire algorithm comprises two stages: the first stage involves
searching for core structures and partial Pareto frontiers, while the
second stage utilizes core structures to explore the neighborhoods
around them, aiming to achieve the complete optimal Pareto front.
Different crossover and mutation rates are applied for distinct ob-
jectives. During the core structure search, following traditional
evolutionary algorithm principles, the probability of crossover op-
eration significantly surpasses that of mutation. The objective here
is to explore core structures, where mutation generates a substruc-
ture from the core structure search space, substituting a specific
substructure within the individual. Conversely, for exploring the
neighborhoods around core structures to attain the entire Pareto
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front, opposite crossover and mutation rates are adopted. Utilizing
an extremely low crossover rate and very high mutation rate aims
at exploring the neighborhoods around core structures, resulting in
a high probability of mutation. Mutation generates a substructure
from the non-core structure space and incorporates it into the indi-
vidual to explore the neighborhoods around core structures. The
low crossover rate aims to prevent disruption of the core structures
themselves.

4 EXPERIMENTS
4.1 Experimental Settings
In our experiments, all methods are implemented using TensorFlow
2.0.3. Our computational environment consistes of Ubuntu 16.04.4
with 16GB GPU memory, 512GB DDR4 RDIMM, 2X 40-Core Intel
Xeon CPU E5-2698 v4 @ 2.20GHz, and NVIDIA Tesla P100. It is
worth noting that the GPU configuration used in this paper is the
same as the MFAS, EDF, and DC-NAS architectures.

(1) Parameter settings: a) Training of DNNs: All deep neural
networkmodels are trained using the Adam algorithm. The learning
rate is set to 0.001, with a first-moment exponential decay rate of
0.9 and a second-moment exponential decay rate of 0.999. Each
network undergoes training for 100 epochs. To prevent overfitting,
if the performance of a multi-modal neural network model does
not improve after 10 epochs, the training process will be halted. b)
CoMO-NAS: To efficiently utilize GPU resources, the population
size is set to a multiple of the number of GPUs. We employed
seven NVIDIA Tesla P100 GPUs for the CB dataset, NUS dataset,
NTU RGB-D dataset, and EgoGesture dataset , with a population
size of 28. The number of iterations is set to 10, with 6 iterations
for core structure search and 4 iterations for searching the local
region of core structures. During the core structure search phase,
the crossover rate is 0.9, and the mutation rate is 0.2. During the
search for the local region of core structures, the crossover rate is
0.1, and the mutation rate is 0.8. Considering that the MM-IMDB
dataset is relatively simpler compared to the first two tasks, we
used four NVIDIA Tesla P100 GPUs with a population size of 20.
The rest of the settings are consistent with the above datasets.

(2) Evaluation metrics: We utilize accuracy as the evaluation
metric on CB, NUS, NTU RGB-D, and EgoGesture datasets, where
higher values indicate better performance. On theMM-IMDB dataset,
we employ F1-W as the evaluation metric, also aiming for higher
values. Additionally, we use the Hypervolume (HV) to measure
the quality of the final Pareto front obtained by the CoMO-NAS
algorithm, validating the effectiveness of the core-guided search
method compared to traditional approaches. It is important to note
that larger HV values correspond to better algorithm performance.

4.2 Multi-Modal Datasets
We validated five popular multi-modal datasets: (1) ChemBook-10k
(CB) [15] dataset, designed for chemical structure image recognition
in patent retrieval studies, which contains 100,000 chemical struc-
ture images distributed into 10,000 categories. (2) NUS-WIDE-128
(NUS) [29] dataset, which contains 43,800 images divided into 128
categories. We chose a subset of 10 categories totalling 23,438 im-
ages from this dataset. (3) MM-IMDB [1] dataset for the multi-label
film genre classification task, which contains a total of 23 categories.

Table 2: The accuracy on the CB and NUS dataset are reported

Method CB NUS
Advanced fusion operators

MBL 82.38±0.32 70.60±0.29
MFB 87.94±0.32 71.34±0.40
TFN 73.45±0.30 63.66±1.22
LMF 82.81±0.18 71.74±0.70
PTP 85.08±0.11 71.83±0.50

Multi-modal methods
TMC (ICLR21) 77.88±0.20 72.73±0.30
TMOA (AAAI22) 86.81±0.09 72.60±0.48
EmbraceNet 85.85±0.09 72.43±0.38
AWDR 86.66±0.16 72.44±0.66
RAMC 85.36±0.46 72.51±0.67
EDF (TEVC2021) 88.33±0.29 74.18±0.70
DC-NAS (AAAI24) 88.50±0.32 74.20±0.32
CoMO-NAS 88.69±0.38 74.24±0.29

The dataset is divided into a training set of 15,552 films, a validation
set of 2,608 films, and a test set of 7,799 films. (4) NTU RGB-D [26]
dataset for multi-modal action recognition task containing 60 cate-
gories. The training, validation and test sets include 23,760, 2,519
and 16,558 samples, respectively. (5) EgoGesture [45] dataset for
multi-modal gesture recognition task containing 83 categories. The
training set of this dataset includes 14,416 samples, the validation
set includes 4,768 samples, and the test set includes 4,977 samples.

4.3 Comparison Methods
To validate the effectiveness and efficiency of the proposed algo-
rithm, we selected several state-of-the-art algorithms and compared
them with CoMO-NAS. These peer competitors can be broadly cat-
egorized based on whether the architecture is manually designed.
The first category is MMC whose fusion architectures are designed
by human experts, including MBL [11], MFB [40], TFN [42], LMF
[21], PTP [8], TMC [7], TMOA [20], AWDR [37], RAMC [10], Max-
out MLP [5] , VGG Transfer [28], Two-stream [27], GMU [1], Cen-
tralNet [31], Inflated ResNet-50 [2], Co-occurrence [13], MMTM
[30], VGG-16 + LSTM [38], C3D + LSTM + RSTTM [22], I3D [3],
ResNext-101 [12], and MTUT [6]. The second category is NAS-
based MMCmethods including EDF [15], MFAS [25], BM-NAS [39],
3D-CDC-NAS2 [41], and DC-NAS [14].

4.4 Performance Comparison
Results on CB and NUS. To reduce the influence of variability
stemming from data partitioning and network initialization, we
partitioned each dataset uniformly into training and testing subsets.
More precisely, instances from every category were randomly dis-
tributed, allocating 80% for training and 20% for testing. All method-
ologies were evaluated under identical data partitioning conditions.
The experiments were iterated five times for each approach using
consistent configurations, and the average performance, alongside
standard deviation, was reported.

According to the aforementioned algorithm, we first select high-
quality features and fusion operations to form the core structure
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Table 3: Multi-label genre classification results on MM-IMDB
dataset. Weighted F1 (F1-W) is reported.

Method Modality F1-W(%)
Unimodal methods

Maxout MLP (ICML13) Text 57.54
VGG Transfer (ICLR15) Image 49.21

Multi-modal methods
Two-stream (NIPS14) Image + Text 60.81
GMU (ICLR17) Image + Text 61.70
CentralNet (ECCV18) Image + Text 62.23
MFAS (CVPR19) Image + Text 62.50
BM-NAS (AAAI22) Image + Text 62.92±0.03
DC-NAS (AAAI24) Image + Text 63.70±0.11
CoMO-NAS (ours) Image + Text 63.84±0.16

Table 4: Action recognition results on NTU RGB-D dataset

Method Modality Acc (%)
Unimodal methods

Inflated ResNet-50 (CVPR18) Video 83.91
Co-occurence (IJCAI18) Pose 85.24

Multi-modal methods
Two-stream (NIPS14) Video + Pose 88.60
GMU (ICLR17) Video + Pose 85.80
MMTM (CVPR20) Video + Pose 88.92
CentralNet (ECCV18) Video + Pose 89.36
MFAS (CVPR19) Video + Pose 89.50±0.60
BM-NAS (AAAI22) Video + Pose 90.48±0.24
DC-NAS (AAAI24) Video + Pose 90.88±0.07
CoMO-NAS (ours) Video + Pose 90.94±0.02

search space. For example, for the CB dataset, we choose features
𝑀1,𝑀3,𝑀4,𝑀7,𝑀8, and fusion operations 𝐹1, 𝐹2, 𝐹5. For the NUS
dataset, we select features𝑀2,𝑀4,𝑀6, and fusion operations 𝐹1, 𝐹2,
𝐹5. Subsequently, we search for core structures and utilize local al-
gorithms based on these core structures to explore the entire Pareto
frontier. To comprehensively showcase the advancements of MMC-
NAS, we followed the experimental settings of EDF. We compared
MMC-NAS with some advanced multi-modal fusion operators and
existing sophisticated multi-modal fusionmethods. From the results
in Table 2, it’s evident that, compared to advanced fusion operators,
we achieved a significant lead by employing basic fusion operators
along with our search strategy. Among multi-modal methods, ex-
cept for EDF and DC-NAS [14], all others are non-NAS methods.
Clearly, the performance of MMC-NAS surpasses manual selection.
By utilizing core structures to guide the search across the entire
Pareto frontier, even when balancing model complexity and accu-
racy, we can achieve performance comparable to state-of-the-art
single-objective methods like EDF and DC-NAS [14].

Results on MM-IMDB. To ensure fair comparison with other
explicitly multimodal fusion approaches, we adopted the same neu-
ral network backbone models as BM-NAS and DC-NAS to extract
various modality features, using weighted F1 score as the evaluation
metric. The specific parameter settings are as follows: population

Table 5: Gesture recognition results on EgoGesture dataset

Method Modality Acc (%)
Unimodal methods

VGG-16 + LSTM (NIPS14) RGB 74.70
C3D + LSTM + RSTTM RGB 89.30
I3D (CVPR17) RGB 90.33
ResNext-101 (FG19) RGB 93.75
VGG-16 + LSTM (CVPR14) Depth 77.70
C3D + LSTM + RSTTM Depth 90.60
I3D (CVPR17) Depth 89.47
ResNeXt-101 (FG19) Depth 94.03

Multi-modal methods
VGG-16 + LSTM (CVPR17) RGB + Depth 81.40
C3D + LSTM + RSTTM RGB + Depth 92.20
I3D (CVPR17) RGB + Depth 92.78
MMTM (CVPR20) RGB + Depth 93.51
MTUT (3DV19) RGB + Depth 93.87
3D-CDC-NAS2 (TIP21) RGB + Depth 94.38
BM-NAS (AAAI22) RGB + Depth 94.96±0.07
DC-NAS (AAAI24) RGB + Depth 95.22±0.05
CoMO-NAS (ours) RGB + Depth 95.25±0.03

size 𝑁 is 20, population iterations 𝑇 is 10, fusion vector dimension
𝐹𝐷 is 128, and modality features are reusable simultaneously. As
shown in Table 3, CoMO-NAS achieves performance comparable
to the current state-of-the-art architectures compared to existing
multimodal classification methods.

Results on NTU. To ensure the fairness of the experimental
results, we followed the data preprocessing pipelines of BM-NAS
and DC-NAS. Specifically, we used Inflated ResNet-50 [2] and Co-
occurrence [13] as feature extractors for the skeleton and video
modalities. For the CoMO-NAS evolutionary algorithm parame-
ters, due to our approach of searching the Pareto frontier from
the perspective of core structures, which narrows down the search
space, the required population size and number of iterations are
smaller than those of traditional evolutionary algorithms. For in-
stance, while state-of-the-art DC-NAS may require 15 generations
of population, we only need 10 generations to discover a Pareto
frontier solution that matches the performance of DC-NAS. We set
the population size to 28, the number of iterations to 10, the fusion
modality dimension to 64, and allowed for the reuse of modality
features. In Table 4, our method exceeds most baseline methods
while achieving comparable performance with the state-of-the-art
DC-NAS, ensuring both model complexity and performance objec-
tives.

Results on Ego. We followed the methods of BM-NAS and DC-
NAS, using ResNeXt-101 [12] as the backbone network for RGB and
depth video modalities. CoMO-NAS was compared with various
single-modal and multi-modal methods in terms of performance.
The experimental settings for CoMO-NAS included a population
size of 28, 15 iterations, reusable modality features, and a fusion di-
mension of 32. The experimental results on the EgoGesture dataset
are presented in Table 5. Compared to other unimodal/multimodal
methods, CoMO-NAS achieved fusion performance comparable to
the state-of-the-art method DC-NAS.
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Table 6: Comparison of complexity, model parameters, time
(GPU hours) and classification performance (CP) of general-
ized multi-modal NAS methods.

Method Dataset Complexity Parameters Time CP (%)
EDF NUS 27 0.65M 12.08 74.18

DC-NAS NUS 17 0.53M 4.61 74.20
CoMO-NAS NUS 9 0.29M 2.19 74.24

EDF CB 31 4.41M 126.84 88.33
DC-NAS CB 19 3.06M 87.56 88.50

CoMO-NAS CB 11 2.66M 38.15 88.69
BM-NAS MM-IMDB 11 0.65M 1.24 62.94
DC-NAS MM-IMDB 5 0.42M 1.19 63.70

CoMO-NAS MM-IMDB 5 0.42M 0.68 63.84
MMTM NTU - 8.61M - 88.92
MFAS NTU 12 2.16M 603.64 89.50

BM-NAS NTU 14 0.98M 53.68 90.48
DC-NAS NTU 27 0.92M 24.94 90.88

CoMO-NAS NTU 9 0.42M 8.86 90.94
BM-NAS Ego 16 0.61M 20.67 94.96
DC-NAS Ego 15 0.39M 7.30 95.22

CoMO-NAS Ego 7 0.26M 3.53 95.25

Table 7: Ablation study of CoMO-NAS

Version MOCSS CSG-OPFS Time Complexity Acc (%)
CoMO-NAS1 False False 62.70 13 88.47
CoMO-NAS2 True False 58.98 13 88.37
CoMO-NAS True True 38.15 11 88.67

4.5 Search Efficiency Comparison
This section aims to compare CoMO-NAS with several powerful
MMC baseline methods, including MFAS, EDF, BM-NAS, DC-NAS,
and MMTM [30], focusing on search efficiency, complexity, model
size, and performance to demonstrate its advanced capabilities. The
research results have been comprehensively summarized in Table
6. From the table, it can be observed that on five complex datasets,
CoMO-NAS is able to find architectures with comparable perfor-
mance but lower complexity and smaller model size compared to
other methods, while leading in efficiency. For example, on the NUS
and CB datasets, our efficiency is nearly four times that of the EDF
method and twice that of DC-NAS, while the model complexity is
halved. On the NTU RGB-D and EgoGesture datasets, while achiev-
ing comparable performance, we gain a significant advantage in
model complexity. The time consumption for searching the opti-
mal fusion model is reduced by almost six times compared to the
latest method of BM-NAS, and by half compared to DC-NAS. This
is attributed to our core structure-guided multi-objective neural
architecture search framework, which significantly narrows down
the search space, effectively avoids evaluating a large number of
poorly performing models, and imposes multi-objective constraints
on model complexity, thereby greatly reducing model redundancy
and accelerating search speed.

Table 8: Ablation study of CoMO-NAS

Strategy fusion strategy Complexity Acc (%)
CoMO-NAS [7,8,7,1,-4,4,3,-4,-4,-4,-0] 11 88.67
Random1 [9,8,7,2,5,4,-2,-2,-2,-2,-0] 11 87.90
Random2 [9,4,7,2,8,1,-4,-4,-4,-0,-1] 11 88.20
Random3 [7,1,0,4,-4,-4,9,8,-4,-0,-1] 11 88.20
Random4 [3,2,7,-4,4,1,0,-0,-4,-4,-1] 11 87.39

4.6 Ablation Study
To provide a more in-depth analysis of the proposed CoMO-NAS,
we conducted a detailed examination of each component and hy-
perparameter of CoMO-NAS via the ablation experiments on the
CB dataset which is the most complex among the five datasets.

Analysis of the Impact of MOCSS and CSG-OPFS Stages
on CoMO-NAS: To further investigate the impact of MOCSS and
CSG-OPFS on CoMO-NAS, we conducted a comprehensive analysis
of three scenarios of CoMO-NAS. According to the results in Table
7, we draw the following conclusions: compared to searching the
entire space, utilizing core structures to guidemulti-objective neural
architecture search can lead to finding architectures with lower
complexity but comparable performance in a shorter time. For
example, the time was reduced from 62.70 hours to 38.15 hours,
shortening the duration by 24.55 hours. From the results of CoMO-
NAS2 compared to CoMO-NAS, when only using the core structure
search space without expanding the surrounding local space, the
overall performance of the searched architectures declined. This
is because low-quality features and fusion operators within the
local space can also complement each other, thereby enhancing the
overall performance of the architecture.

Analysis of Core Structure Selection Strategies: To investi-
gate the impact of core structure selection on subsequent Pareto
frontier exploration, four experiments were conducted. In the first
experiment, high-quality features and fusion operations were em-
ployed to search for core structures, while the subsequent four
experiments involved the random selection of features and fusion
operations for core structure exploration. The experimental results
presented in the Table 8 unequivocally demonstrate that employ-
ing high-quality features and fusion operations for core structure
search leads to significantly superior outcomes compared to ran-
domly selecting features and fusion operations.

5 CONCLUSION
In this paper, we has proposed a multi-objective neural architecture
search method guided by core structures to address the limita-
tions of existing MMC-NAS methods, which had focused solely on
achieving high performance while ignoring the varying demands of
different applications for classification performance and model size.
Furthermore, it has resolved the issue of model redundancy that
has arisen from pursuing high performance in existing MMC-NAS
methods. By establishing the relationship between core structures
and the Pareto frontier and utilizing core structures to guide the
search across the entire Pareto frontier, the method has avoided
evaluating numerous ineffective architectures, thereby significantly
improving search efficiency. Extensive experiments has validated
the advantages of CoMO-NAS.
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