
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON THE SELF-VERIFICATION LIMITATIONS OF LARGE
LANGUAGE MODELS ON REASONING AND PLANNING
TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

There has been considerable divergence of opinion on the reasoning abilities
of Large Language Models (LLMs). While the initial optimism that reasoning
might emerge automatically with scale has been tempered thanks to a slew of
counterexamples–ranging from multiplication to simple planning–there persists a
widespread belief that LLMs can self-critique and improve their own solutions in
an iterative fashion. This belief seemingly rests on the assumption that verification
of correctness should be easier than generation–a rather classical argument from
computational complexity–which should be irrelevant to LLMs to the extent that
what they are doing is approximate retrieval. In this paper, we set out to systemati-
cally investigate the effectiveness of iterative prompting in the context of reasoning
and planning. We present a principled empirical study of the performance of
GPT-4 in three domains: Game of 24, Graph Coloring, and STRIPS planning. We
experiment both with the model critiquing its own answers and with an external
correct reasoner verifying proposed solutions. In each case, we analyze whether the
content of criticisms actually affects bottom line performance, and whether we can
ablate elements of the augmented system without losing performance. We observe
significant performance collapse with self-critique and significant performance
gains with sound external verification. We also note that merely re-prompting with
a sound verifier maintains most of the benefits of more involved setups.

1 INTRODUCTION

Large Language Models (LLMs) have rapidly captured the attention of the AI research community
with their exceptional natural language completion capabilities. Trained on web-scale language
corpora, these models have demonstrated the ability to generate seemingly valuable completions
across a wide range of topics. This has led to a surge of interest in determining whether such
models are able to perform well on reasoning tasks. Though initial anecdotal results showed promise,
further systematic studies revealed inconsistencies and significant issues when applied to reasoning
tasks–such as simple arithmetic or logic (Dziri et al., 2023) and planning (Valmeekam et al., 2023b).
These results questioned the robustness of their reasoning abilities and led researchers to explore
ways to augment and improve these systems.

Of particular interest to us are emerging claims about LLM self-critiquing. In a typical setup, an
LLM is iteratively prompted so that it both generates candidate solutions and, in response to separate
queries, evaluates them. This process is looped until some stopping condition in hopes of potentially
generating a refined answer. Current works (Yao et al., 2023; Shinn et al., 2023; Weng et al., 2023;
Chen et al., 2023; Madaan et al., 2023), while admitting that LLMs are not good reasoners on their
own, still exhibit considerable optimism about such self-critique systems. This belief seems to rest
largely on the assumption that verification of correctness should be easier than generation for many
reasoning problems–a rather classical argument from computational complexity. However, we think
there are grounds to be skeptical of this assumption. The complexity of the reasoning task should
be largely irrelevant to LLM performance, especially if what they are doing is better modeled as
approximate retrieval (Kambhampati, 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Intrigued by the prevailing optimism, in this paper we set out to systematically investigate the
effectiveness of using LLMs to critique their own generations in the context of planning and reasoning.
To gain meaningful insights into the verification/critiquing abilities of LLMs for reasoning tasks, it is
crucial to test them on formal tasks–ones where machine-verifiable ground truths are available for both
generation and criticism. Note that such verification is not feasible in style-based/qualitative tasks
like creative writing (Yao et al., 2023) where there is no formal notion of correctness and the critique
can vary widely. With this understanding, we select three distinct reasoning problems: Game of 24,
Graph Coloring, and STRIPS planning, in which there exist formal notions of correctness that allow
us to automatically check the veracity and quality of both (binary) verification and critique generated
by the LLM. Furthermore, the algorithmic abilities these domains test are fundamental—any other
reasoning task must include components that test these same capabilities, or else be only a retrieval
task.

Our methodology employs a system (which we refer to as LLM+LLM) that uses the same LLM
(GPT-4-0613 (Achiam et al., 2023)) for iterative solution and verification/critique generation. A
generation prompt is sent to the LLM. Its response is used to create a verification prompt, which
is then sent back to the same LLM. We use the feedback generated in this way to then create a
backprompt, thus restarting the cycle.

Across almost all of our domains, this self-verification system worsens performance. We find that as
the number of backprompts increases, this kind of self-correction consistently degrades output quality.
Our analysis reveals that the verifier LLM’s false negative rate is significant across our domains. In
essence, even when the LLM generates a valid solution, the verifier LLM rejects it often enough that
overall performance suffers.

We contrast this performance collapse with two baselines. The first is an ablated variant of the system
(which we refer to as LLM+Sound Verifier), where an external sound verifier evaluates the LLM’s
generations and produces critique. This setup gives substantial performance gains across all domains,
but closer analysis shows that the level of feedback often doesn’t seem to matter–as long as the
verifier is sound, improvement remains regardless of how much or how little feedback the LLM
receives.

We ablate the system further, and remove critique entirely. In this setup, the LLM is repeatedly
queried with the exact same base prompt until a sound verifier certifies its solution. Within this
impoverished setting, prompts no longer maintain a past history of guesses, yet we can maintain most,
if not all, of the gains shown by our previous, more complicated, more expensive setups.

Our empirical results suggest that the benefits of iterative prompting and verification can easily be
misattributed to opaque self-critique and seemingly rich feedback. Thus, future implementations
of LLMs for reasoning tasks should take the form of LLM-Modulo systems (Kambhampati et al.,
2023) where verification is done by external sound systems. In the rest of the paper, we first review
related work and discuss domain backgrounds. Then, we explain our methodology, and finally closely
analyze LLM self-verification abilities on our domains.

2 RELATED WORK

Following the release of GPT-4, anecdotal accounts of performance on reasoning tasks (Bubeck et al.,
2023) spurred much research into the capabilities of LLMs on various reasoning domains, from a
menagerie of benchmarks covering basic problems (Kojima et al., 2022) to planning (Valmeekam
et al., 2023b), logic and arithmetic (Dziri et al., 2023), analogical reasoning (Webb et al., 2023), and
even math puzzles (Yao et al., 2023). Though these seemed initially promising, systematic studies
began to generate negative results across many of these domains (Valmeekam et al., 2023b; Silver
et al., 2022; Abdin et al., 2023; Ullman, 2023; Gendron et al., 2023), claiming that LLM scaling
shows much lower returns for reasoning tasks (Rae et al., 2021), and showcasing brittle performance
in the face of minor problem permutations (McCoy et al., 2023; Dziri et al., 2023; Arakelyan et al.,
2023).

In response, researchers created augmented systems which embed the LLM in larger frameworks in
an attempt to improve performance. These take many forms: common search algorithms with the
LLM cast in the role of heuristic (Yao et al., 2023; Hao et al., 2023), approaches which reduce error
rates by enforcing various consistency conditions (Du et al., 2023; Cohen et al., 2023; Jiang et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2023), and direct LLM self-critique (Shinn et al., 2023; Weng et al., 2023; Chen et al., 2023; Huang
et al., 2022; Madaan et al., 2023; Yao et al., 2022).

In the current work, we are interested in examining this third approach: LLM self-critique. In the
most basic case, the LLM is queried for an answer, and then is re-queried with its own response
together with some instructions to critique or improve it, with this process looped until some stopping
condition. This is fundamentally based on the intuition that verification is easier than, or at least
different enough from, generation that such a process can improve performance–in analogy to human
self-critique(Weng et al., 2023).

The literature abounds with strong, well-cited, and well-referenced claims about the efficacy of
these techniques. (Shinn et al., 2023) claims there is an “emergent property of self-reflection in
LLMs” and that “self-reflection is extremely useful to learn complex tasks over a handful of trials.”
Their experiments claim that every variety they try leads to improvement, and that this is because
“self-reflective feedback acts as a ‘semantic’ gradient signal by providing the agent with a concrete
direction to improve upon, helping it learn from prior mistakes to perform better on the task.”1 Other
works claim this self-correction does not require “any human feedback” (Chen et al., 2023) and that
“even when an LLM cannot generate an optimal output on its first try, the LLM can often provide
useful feedback and improve its own output accordingly,” (Madaan et al., 2023) seeming to indicate
that these claims generalize beyond the domains, problems, and prompts they were originally made
for.

However, some further systematic investigations have found less impressive results in logical fallacy
detection (Hong et al., 2023) and HotpotQA (Huang et al., 2023), demonstrating very brittle im-
provement at best, some of which could be replicated sans self critique by merely including missing
domain-general information into the original prompt. The authors of the CRITIC framework(Gou
et al., 2023) were the first to notice that, in some cases, LLM self-critique can lead to decreases in
performance when compared to sound verification. Contemporaneous to our work,2 (Huang et al.,
2023) investigate two-round self-correction schemes in the GSM8K, CommonSenseQA, and Hot-
potQA domains. They compare which answers were changed (from correct to incorrect or incorrect
to incorrect) and which weren’t, and discuss extensions of their argument to multiagent debate.

Our own work focuses on autonomous multi-round self-verification within three formally verifiable
domains that reflect reasoning tasks. We extend previous work by ablating the self-critique system
thoroughly to pinpoint the source of performance deterioration, considering more prompting rounds
(up to 15), and by examining a new set of domains which we argue are better and more broadly
applicable tests of reasoning and self-correction capability.

Reasoning is a fraught term. Previous work has used it to refer, among others, to the human ability
to draw conclusions(Leighton & Sternberg, 2004), to the ability to apply common sense to simple
scenarios, to positive performance on short-form written tasks, and to formal deductive inference.
However, it is often unclear which definition a given set of authors presupposes when making claims
about LLM reasoning capabilities. This muddies the discussion and contributes to a strange duality:
highly cited papers claim that LLMs are general-purpose reasoners (Kojima et al., 2022; Wei et al.,
2022; Bubeck et al., 2023; Zhou et al., 2022); that they have strong, human-like self-reflection
capabilities which allow them to correct reasoning mistakes they do make (Shinn et al., 2023; Chen
et al., 2023; Madaan et al., 2023); that they can answer difficult, never-before-seen questions via
in-context learning as long as they are allowed to use chain of thought to generate intermediate
scratch work (Dong et al., 2022); that they can pass or come close on many high school and college-
level examinations (Achiam et al., 2023; Gilson et al., 2023; Raimondi et al., 2023; Thaker et al.,
2024; Yeadon & Halliday, 2023; de Winter, 2023; Kortemeyer, 2023) and that performance on such
standardized exams is evidence about their reasoning capabilities and domain expert knowledge
(Wang et al., 2023). Yet, responses to counterexamples and negative results, anecdotally, fall back
on a much weaker, seemingly contradictory constellation of premises: LLMs only perform well on
things they were trained on, and–in fact–if a model performs poorly, we can only conclude it wasn’t
trained on that (but if it performs well, it is generalizing); the average non-expert human would fail
on this task if presented it with zero context or training, therefore it’s unsurprising that the LLM

1Note that our results ablate away much of this signal (especially the ‘concrete direction’ that exists in
explicit critique) to find that most of the improvement in our domains comes from the soundness of the verifier.

2Preliminary results from our work were originally presented in two papers at a NeurIPS 2023 workshop.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

fails; no good prompt engineer would query the LLM in this fashion. (How to tell if a prompt is
good? It follows one of several anthropomorphized design patterns and, most importantly, the result
is positive.)

These shifting definitions and implicit assumptions make it very difficult to make concrete claims
and expect to be understood, and they make it even more difficult to pin down claims made by
others or attempt to falsify them. In the current work we address this by restricting our focus to
fully specified, formally verifiable problems which can be solved directly by deductive methods.
Though these may at first seem like a very narrow class, especially when compared to the cornucopia
of commonsense, language-based, and domain-specific benchmarks in the literature, we argue that
they are fundamental, as any other reasoning tasks must include components that test these same
capabilities–otherwise they are merely testing recall. Our work extends studies that have looked
at similar problems, especially those that examined LLM planning capabilities and other classical
reasoning problems (Valmeekam et al., 2023a;b; Stechly et al., 2024; Dziri et al., 2023). However,
no previous work has looked carefully at a broad range of formal verification problems. Filling in
this gap is important, as a lack of benchmark coverage contributes to the illusion that LLMs possess
greater competency than they really do (Saxon, 2024).

Furthermore, common domains fall short for evaluating the reasoning and self-critique abilities of
LLMs for additional reasons: test set memorization, lack of problem difficulty, and lack of ground
truth.

Test set memorization: Due to the black box nature of state of the art models, ensuring that
they weren’t trained on those problems is difficult, and there is compelling evidence that they have
memorized significant chunks of common benchmark sets (Roberts et al., 2023). Many benchmark
sets do not allow for arbitrary generation of novel questions, or worse, draw data from publicly
available sources–the same sources LLM trainers have access to (Yang et al., 2018; Srivastava et al.,
2023). We consider arbitrary generation of new instances of varying difficulty a key desideratum for
any evaluation domain.

Lack of problem difficulty: Some of the benchmarks (e.g. HotPotQA (Huang et al., 2023),
GSM-8k (Madaan et al., 2023),) used in evaluations of self-verification are easy–that is, SoTA
LLM performance is already high–and are therefore much less informative about the effects of the
refinement procedure. Additionally, many such sets over-constrain the solution space, usually by
putting the question into multiple choice format. Not only does this make valuable and interesting
critique hard to produce and evaluate, but it trivializes refinement: even a very simple agent can solve
an n-choice problem with n− 1 critiques–just don’t repeat the same answer. Conclusions drawn over
reduced problem spaces of this type are unlikely to generalize.

Lack of ground truth: A number of tasks that LLMs are evaluated on (e.g. writing prompts
(Yao et al., 2023), constrained text generation (Lin et al., 2020), toxicity control (Welleck et al.,
2022; Gou et al., 2023) , etc.) are problems without a well-defined ground truth. Instead, they are
evaluated by a couple of indirect methods. Some require an assorted set of metrics which may not
be well-validated for LLMs (e.g. see (Ullman, 2023) for discussion on problems with transferring
results from human-validated tests). Some are scored by humans (Yao et al., 2023). And some are
evaluated by another pre-trained language model (Madaan et al., 2023) or black box AI evaluator
(Welleck et al., 2022). This makes conclusions much harder to draw.

3 BACKGROUND ON TEST TASKS

We evaluate GPT-4’s self-critique abilities over three distinct tasks, chosen because we believe they
are good proxies for harder reasoning tasks, and because they allow freedom in arbitrary generation
of additional instances while providing easy-to-deploy formal verifiability and guaranteed quality.

This gives more than just flexibility–it also decreases the chance that our instances are represented in
the black box model’s opaque training sets. This strengthens our results by reducing the likelihood
that the model can substitute approximate retrieval for general reasoning ability.

Any given problem in our sets also has the property that it has a large number of potential solutions,
and this solution space cannot be substantially reduced through simple pattern-matching. As we
are interested in self-verification loops where the LLM has access to its previous guesses, it is very

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

important that removing a handful of possible solutions does not trivialize the problem. Compare
this to common multiple choice question datasets, where any n-option problem can be solved in n
exclusive guesses.

3.1 GAME OF 24

Game of 24 is a math puzzle where the goal is to combine four numbers with parentheses and basic
arithmetical operations (addition, multiplication, subtraction, and division) to create an expression
that evaluates to 24. The numbers are typically constrained to the range 1-12, a nod to game’s playing
card roots. Previously, it has been used as a domain of evaluation for other LLM self-verification
schemes ((Yao et al., 2023) and fulfills our domain desiderata (see 2). We use it here to enable direct
comparisons between previous work and the current paper.

Following (Yao et al., 2023), we use data scraped from 4nums.com. This list of problems is ordered
from shortest to longest average human solution time. Like (Yao et al., 2023), we evaluate our
generation tasks on instances 901-1000. However, when evaluating verification and critique alone,
we use instances 1-1000.

Verification in this domain is straightforward: given a proposed expression, simplify it using basic
arithmetic and check if it is equal to 24. As a sound verifier, we use SymPy3, a common Python
library for symbolic mathematics, and handle any errors that it throws (for instance, if there are
unbalanced parentheses) by outputting feedback that says the LLM’s generation was malformed.

3.2 GRAPH COLORING

Graph coloring is a a canonical NP-complete reasoning problem that is related to both propositional
satisfiability as well as practical problems like scheduling and allocation. The complexity class NP
contains problems that are hard to solve, but easy to verify, so this allows our It is broad enough to
give insights into reasoning more generally, yet simple enough that it can be specified and evaluated
by a human or basic pattern matching.

In this work, an instance of a graph coloring problem consists of a planar graph together with an
optimal coloring number n. The goal is to output a solution that assigns one of n colors to each
vertex such that no two edge-connected vertices share a color.

Using GrinPy4 to handle common graph operations, we built a test set of 100 graphs of varying
small sizes. Each graph was constructed using a variant of the Erdős–Rényi method (p = 0.4), with
any non-planar or repeat graphs discarded. These were compiled into the standard DIMACS format
(DIMACS) together with the graph’s precalculated chromatic number.

Verifying that a proposed coloring is correct is also easy: just check the colors of every edge. If any
of them has two vertices of the same color, reject the coloring. Our sound verifier is a simple, single
for-loop implementation of this idea in Python: for each edge in the graph description, we check
that both of its vertices are different.

Figure 1: Overall Backprompting and Evaluation Architecture

3https://www.sympy.org/en/index.html
4https://pypi.org/project/grinpy/

5

4nums.com

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 STRIPS PLANNING

STRIPS planning is a formalism used in automated planning that operates in a discrete, deterministic
space. Such problems, commonly known as classical planning problems, involve finding a sequence
of actions that when executed in a certain world state will take the agent to a desired goal state.
STRIPS planning has a long history of featuring in various planning challenges and competitions,
and is formally represented using the PDDL (Planning Domain and Definition Language) framework
(McDermott et al., 1998). We consider two domains in STRIPS planning. One is Blocksworld, a
simple common-sense domain used in International Planning Competitions (IPC, 1998) and Mystery
Blocksworld, which is an obfuscated version of Blocksworld. For both the domains, we draw instances
from (Valmeekam et al., 2023a) for our evaluations.

A PDDL specification consists of three components. The domain doesn’t change between problems
and consists of a set of predicates, which can be used to describe the state of the world, and a set
of actions–stored with their preconditions and effects–that the agent is allowed to take. The initial
state is a list of predicates that are true at the outset of the specific problem (an example predicate, in
natural language: "the red block is on the table"). The goal is a boolean expression of predicates.

Solutions to PDDL problems take the form of correct plans–sequences of actions which can be
executed from the initial state without violating any of their preconditions and which arrive at a final
state that satisfies the goal. Verifying proposed plans is a matter of following the actions in order and
checking that these two desiderata are achieved. For our experiments, we use VAL (Howey et al.,
2004) as the sound external critique that evaluates and critiques LLM generated plans.

4 METHODOLOGY

As our results are about ablations of self-critique architectures, our basic test framework is a general
prompting architecture informed by interchangeable domain-specific components. Our intent is to
give the LLM as much information as possible, so we design prompts that include the entire history
of previously proposed solutions and the feedback they received.

A problem instance is a domain-specific formal description. In attempting a problem, our system
(as shown in Figure 1) proceeds as follows: (1) The instance is processed by a simple, hard-coded
natural language translator into a prompt which is then sent to the LLM. (2) The LLM’s response is
wrapped in a domain-specific critique prompt, which is separately sent as another LLM query. (3) If
the following response claims that the proposed solution is correct, we stop the system and output the
proposed solution. If it doesn’t, the critique is extracted, wrapped in instruction text, and appended to
a prompt containing the entire history of interactions so far. This is then sent to the LLM, and the
cycle repeats, potentially until we enforce a timeout.

Though only two types of prompts are sent, the LLM can be seen as playing three separate roles: as
an answer guesser, a (binary) verifier, and a critique generator. In order to better understand which of
these roles contribute to increased performance, we will examine variations of this system where one
or more of them are changed or removed.

To examine LLM verification abilities, we first measure the performance of the entire system, and
then evaluate false positive and false negative rates across domains. To better understand the guesser
role, and the LLM’s ability to consider and implement critique, we will modify the loop so that
the verification and critique roles are played by a provably sound verifier that provides rich, correct
feedback. We will then reduce and eventually eliminate the amount of provided information (e.g. rich
feedback: explicitly giving an evaluation of a proposed Game of 24 expression; minimal feedback:
"the previous answer was wrong"; no feedback: re-querying with the base prompt), while keeping
track of changes in the performance of the entire system.

For LLM critique generation, we construct subdomains of our original domains. In these prompts,
we provide a problem description and a proposed solution, and we ask the LLM to provide domain-
specific critique of the solution if it is incorrect. We parse the output using a hard-coded script and
measure accuracy compared to the sound verifier’s output.

Note that sound verifiers output task specific critiques: for Game of 24, the evaluation of the provided
expression (“1+1+4+6=12 not 24"); constraint violations for graph coloring (“vertices 1 and 3 were

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: Performance vs Number of Iterations Before Timeout. We measure performance at
iteration n by evaluating how many instances are currently correctly solved (whether the LLM has
verified them or not. In other words, we evaluate as if the timeout were n) and adding that to the
number the LLM has correctly verified so far. Note that if the verifier incorrectly rejects an answer
and the followup is wrong, the next round may be worse. When paired with a sound verifier, the
LLM monotonically improves its performance as the number of backprompts increase up to some
asymptote. The top three lines show this for each of our domains. On the other hand, when the LLM
itself is used as a verifier, performance collapses immediately.

both colored red despite sharing an edge"); and precondition violations (the second action “succumb
object a" is invalid because the succumb action requires the pain object to be true, which is not the
case after the first action.) and failure to reach goal (“this plan does not reach the goal") for planning.

5 EXAMINING SELF-VERIFICATION

Domain S.P. LLM+LLM LLM+Sound Critique Sampling S.C.
B.F. F.E.F A.E.F k=15 k=25 k=15

Game of 24 5% 3% 36% 38% N/A 28% 42% 6%

Graph Color-
ing

16% 2% 38% 37% 34% 40% 44% 14%

Blocksworld 40% 55% 60% 87% 83% 68% 72% 42%

Mystery
Blocksworld

4% 0% 10% 8% 6% 9% 14% 4%

Table 1: Accuracy across prompting schemes over 100 instances per domain. S.P.-Standard
Prompting. B.F.-Binary Feedback. F.E.F-First Error Feedback, e.g. the first wrong edge, the first
mistaken action, or the non-24 evaluation of the proposed expression. A.E.F-All Error Feedback, e.g.
every wrong edge, every mistaken action and error. Note that there is no third critique type for Game
of 24 due to the simplicity of the domain. We include two examples of sampling, one at 15 samples,
the other at 25, to show that completely ablating critique retains the performance increases of critique.
We also include S.C.-Self Consistency results, where the most common answer in a pool of 15 is the
one that is output by the model, as another comparison point.

We evaluate our system over 100 instances in each domain. In standard prompting we send a single
query to the LLM and treat whatever it outputs as its final answer. We use this as our baseline. As
shown in Table 1, when we augment this condition with the full self-critique setup, performance
decreases. In fact, Figure 2 shows that as the number of backprompts increases, this kind of self-
correction consistently degrades output quality. If the LLM were a good verifier, then we would have

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

expected it to recognize instances which are already right, and thus–at worst–maintain the baseline
score.

The LLM-as-verifier ranges in accuracy depending on the domain, as illustrated in Table 2. Notably,
Game of 24 and Blocksworld maintain lower rates of both false positives and false negatives, and this
is reflected in LLM+LLM performance on those domains, which doesn’t fail as drastically as it does
in the other cases. In Blocksworld, we even see a modest improvement, though that improvement is
still significantly worse than having a sound verifier. In the remaining two domains, the false negative
rates are very high. In effect, the system rejects most answers and then times out on a set of later,
worse generations.

When we replace the LLM verifier with a sound verifier, every correct answer will be accepted
properly. Intuitively, it can do no worse than standard prompting—anything that was generated
correctly initially must be accepted. As shown in Table 1, performance is much higher in all sound
critique cases, though it still falls short of 100%. Due to the setup, this can’t be due to the verifier, but
must be the fault of the answer generating LLM. After 15 rounds, any instance that has yet to been
answered correctly will time out, and this process is the only source of inaccuracy arising from the
LLM-sound verifier loop.

In general, it is clear that the verifier requires high accuracy or else the overall system will encounter
compounding errors. In the reasoning domains considered, LLMs-as-verifiers are mostly insufficient
to prevent these.5

Domain Accuracy F.P.R F.N.R
Game of 24 87.0% (3567/4100) 10.4% (320/3071) 20.7% (213/1029)

Graph Coloring 72.4% (362/500) 6.5% (25/382) 95.8% (113/118)

Blocksworld 71.8% (359/500) 18.55% (64/345) 15.48% (24/155)

Mystery Blocksworld 79.6% (398/500) 0.5% (2/397) 97.09% (100/103)

Table 2: LLM Verification results. F.P.R. - False Positive Rate, F.N.R - False Negative Rate.

5.1 CRITIQUE GENERATION

We consider the quality of LLM-generated free-form critiques separately from that of their binary
verification signals, and find that they are full of unhelpful hallucinations and mistakes. To obtain
the following results, we ran a further suite of experiments with specially crafted proposed solutions
wrapped in verification prompts. The exact breakdown of which types of solutions were generated is
available in each domain’s appendix.

In Game of 24, without any further instructions, the LLM tends to output incorrect suggestions for
the answer. When prompted to give an evaluation of the proposed expression first, its accuracy varies.
In fact, when we restrict ourselves to only looking at verification of equations that are guaranteed to
equal 24, and therefore must be correct, it labels 79.1% of them as correct, but evaluates 81.6% of
them to 24. That is, there are problems which it evaluates correctly but which it still marks as wrong.

In Graph Coloring, the LLM’s critiques of proposed solutions are riddled with non-existent edges
and include many spurious claims about the colors of vertices, often missing the violated constraint
in favor of them. A breakdown and detailed examples are provided in appendix A.4.1.

In the planning domains, the critiquing LLM often hallucinates whether action preconditions are met
or not. In Mystery Blocksworld, the LLM incorrectly assumes the state of these preconditions as
well. This leads to lower accuracy of the critiques provided by the LLM. A further breakdown is in
appendix A.5.1

In other words, the LLM introduces errors in two places: verification, where it can pass over correct
answers and accept wrong ones; and critique generation, where it can produce misleading feedback
and bias future outputs away from the correct answer. When they compound sufficiently, these errors

5Prompt and response examples can be found in the Appendix.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

actually reduce the performance of the LLM-based self-critique loop below that of just taking the
LLM’s very first guess.

5.2 CRITIQUE CONSIDERATION

Our results also imply that the LLM often isn’t sensitive to varying levels of feedback. We use a
sound verifier to critique the LLM’s output, and compare the results over three levels of feedback for
graph coloring and planning, and over two levels for game of 24. Examples of prompts containing
each sort of feedback can be found in appendices A.3.3, A.4.3, and A.5.7.

• Binary feedback is the same for all domains: either the verifier accepts the solution,
stopping the system, or we create a backprompt which says the previous answer was wrong
but doesn’t elaborate.

• First error feedback mentions the first error that was found (e.g. an incorrect edge in graph
coloring, an inexecutable step in planning, the evaluation of the proposed expression in
game of 24).

• All errors feedback includes every error that was found. Note that due to the simplicity of
game of 24, we do not implement a third feedback level for it.

Perhaps surprisingly, Table 1 shows very little difference between these three conditions. And in two
of our domains, increasing the amount of feedback actually leads to a decrease in performance.

The intuition underlying the entire critique system is that sending a history of previous failed attempts
together with information about why those attempts were failures should guide the LLM toward
better future answers. If this were true, then we would expect the performance jump to be tied to
the content of the backprompts. With only the data discussed so far, it might seem like the relevant
content is actually the history of failed attempts the LLM receives rather than any feedback on those
attempts. However, our final experiments contradict this interpretation as well.

We take our ablation of critique consideration to the logical extreme, and remove the availability
of critique entirely. In this sampling setup, we keep the verifier but don’t change the prompt at all
between iterations. The LLM (at t = 1) is asked the same question over and over until the verifier
certifies it or it hits some pre-established timeout.

Represented in Table 1 by the “Sampling" columns, this gives comparable gains to feedback condi-
tions. Note that, because prompts do not grow additively with iteration number, the token cost of
these prompts is quadratically lower. This allows us to increase performance further by just increasing
k further. As a sanity check, we compare this to a self-consistency baseline (Wang et al., 2022),
where we instead select the most common answer from the 15 generated ones. This baseline is listed
under “S.C." and shows no improvement over standard prompting.

Our final results show that, in our domains, the information in critiques does not have as much of an
effect on performance as previous literature claimed it should. In fact, our performance increases
seem to stem in large part just from having enough guesses and a sound verifier. We therefore see the
LLM primarily as an idea generator.

6 CONCLUSION

In this paper, we conducted a systematic evaluation of the self-critique abilities of Large Language
Models on three reasoning and planning tasks. We separated self-critique into three components:
verification, critique generation, and critique consideration. Across the hard reasoning domains
we evaluated, LLMs did poorly in all three roles, with the stacked errors often making the LLM
self-critiquing loop perform worse than just having the LLM guess the solution up front. These
failures of verification could potentially be very detrimental to a system’s dependability, especially in
domains where high reliability is paramount. In contrast, we saw performance gains when an external
sound verifier provides the verification signal and critique. We also found that good performance can
be achieved without any critique whatsoever: just let the LLM make many guesses, and have a sound
verifier pick any that is actually correct.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Our results contradict earlier work that has been very optimistic about LLM self-critique abilities.
They also add depth to contemporaneous studies that focused on benchmarks that were too easy for
LLMs to begin with, lacked clear ground truth, and didn’t account for test set memorization.

Our proposal, based on the case studies we’ve performed in this paper is, when possible, to embed
LLMs in systems which allow them to guess at solutions multiple times, but which provide some
kind of signal for when a guess is good enough. Ideally, this takes the form of a sound verifier, like
VAL (Howey et al., 2004) for STRIPS planning, basic expression simplification for Game of 24, or
a constraint checker for constraint satisfaction problems. In real-world applications we expect this
role to be played by a menagerie of partial critics evaluating plans or solutions based on criteria that
they have access to, designed so that consensus is considered verification. Similar architectures have
already shown some success (Romera-Paredes et al., 2023), and previous work has proposed the
general LLM-Modulo framework (Kambhampati et al., 2024) which the current work fits into.

REFERENCES

Marah I Abdin, Suriya Gunasekar, Varun Chandrasekaran, Jerry Li, Mert Yuksekgonul, Rahee Ghosh
Peshawaria, Ranjita Naik, and Besmira Nushi. Kitab: Evaluating llms on constraint satisfaction
for information retrieval. arXiv preprint arXiv:2310.15511, 2023.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Shushan Arakelyan, Rocktim Jyoti Das, Yi Mao, and Xiang Ren. Exploring distributional shifts in
large language models for code analysis. arXiv preprint arXiv:2303.09128, 2023.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

Roi Cohen, May Hamri, Mor Geva, and Amir Globerson. Lm vs lm: Detecting factual errors via
cross examination. arXiv preprint arXiv:2305.13281, 2023.

Joost CF de Winter. Can chatgpt pass high school exams on english language comprehension?
International Journal of Artificial Intelligence in Education, pp. 1–16, 2023.

DIMACS. DIMACS Implementation Challenges. URL http://archive.dimacs.rutgers.
edu/Challenges/. Archive available at http://archive.dimacs.rutgers.edu/
Challenges/.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factual-
ity and reasoning in language models through multiagent debate. arXiv preprint arXiv:2305.14325,
2023.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Xiang
Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on
compositionality. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=Fkckkr3ya8.

Gaël Gendron, Qiming Bao, Michael Witbrock, and Gillian Dobbie. Large language models are not
abstract reasoners. arXiv preprint arXiv:2305.19555, 2023.

Aidan Gilson, Conrad W Safranek, Thomas Huang, Vimig Socrates, Ling Chi, Richard Andrew
Taylor, David Chartash, et al. How does chatgpt perform on the united states medical licensing
examination (usmle)? the implications of large language models for medical education and
knowledge assessment. JMIR medical education, 9(1):e45312, 2023.

10

http://archive.dimacs.rutgers.edu/Challenges/
http://archive.dimacs.rutgers.edu/Challenges/
http://archive.dimacs.rutgers.edu/Challenges/
http://archive.dimacs.rutgers.edu/Challenges/
https://openreview.net/forum?id=Fkckkr3ya8

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large language models can self-correct with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738, 2023.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with Language Model is Planning with World Model. In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 8154–8173, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.507. URL https://aclanthology.org/2023.
emnlp-main.507.

Ruixin Hong, Hongming Zhang, Xinyu Pang, Dong Yu, and Changshui Zhang. A closer look
at the self-verification abilities of large language models in logical reasoning. arXiv preprint
arXiv:2311.07954, 2023.

Richard Howey, Derek Long, and Maria Fox. VAL: Automatic plan validation, continuous effects
and mixed initiative planning using PDDL. In 16th IEEE International Conference on Tools with
Artificial Intelligence, pp. 294–301. IEEE, 2004.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022.

IPC. International planning competition, 1998. URL https://www.icaps-conference.
org/competitions/.

Weisen Jiang, Han Shi, Longhui Yu, Zhengying Liu, Yu Zhang, Zhenguo Li, and James T Kwok.
Backward reasoning in large language models for verification. arXiv preprint arXiv:2308.07758,
2023.

Subbarao Kambhampati. Can large language models reason and plan? Annals of the New York
Academy of Sciences, 2024.

Subbarao Kambhampati, Karthik Valmeekam, Matthew Marquez, and Lin Guan. On the role of
large language models in planning. tutorial presented at the international conference on automated
planning and scheduling (icaps), prague, July 2023.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Kaya Stechly, Mudit Verma, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo
frameworks. arXiv preprint arXiv:2402.01817, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Gerd Kortemeyer. Could an artificial-intelligence agent pass an introductory physics course? Physical
Review Physics Education Research, 19(1):010132, 2023.

Jacqueline P Leighton and Robert J Sternberg. The nature of reasoning. Cambridge University Press,
2004.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin Choi, and
Xiang Ren. Commongen: A constrained text generation challenge for generative commonsense
reasoning. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp.
1823–1840, 2020.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

11

https://aclanthology.org/2023.emnlp-main.507
https://aclanthology.org/2023.emnlp-main.507
https://www.icaps-conference.org/competitions/
https://www.icaps-conference.org/competitions/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

R Thomas McCoy, Shunyu Yao, Dan Friedman, Matthew Hardy, and Thomas L Griffiths. Embers
of autoregression: Understanding large language models through the problem they are trained to
solve. arXiv preprint arXiv:2309.13638, 2023.

Drew McDermott, Malik Ghallab, Adele E. Howe, Craig A. Knoblock, Ashwin Ram, Manuela M.
Veloso, Daniel S. Weld, and David E. Wilkins. Pddl-the planning domain definition language.
1998.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Raffaele Raimondi, Nikolaos Tzoumas, Thomas Salisbury, Sandro Di Simplicio, and Mario R
Romano. Comparative analysis of large language models in the royal college of ophthalmologists
fellowship exams. Eye, 37(17):3530–3533, 2023.

Manley Roberts, Himanshu Thakur, Christine Herlihy, Colin White, and Samuel Dooley. Data
contamination through the lens of time. arXiv preprint arXiv:2310.10628, 2023.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, pp. 1–3, 2023.

Michael Saxon. Benchmarks as Microscopes: A Call for Model Metrology, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Tom Silver, Varun Hariprasad, Reece S Shuttleworth, Nishanth Kumar, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. Pddl planning with pretrained large language models. In NeurIPS 2022
foundation models for decision making workshop, 2022.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. Transactions
on Machine Learning Research, 2023.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness: An
analysis of cot in planning. arXiv preprint arXiv:2405.04776, 2024.

Nikhil G Thaker, Navid Redjal, Arturo Loaiza-Bonilla, David Penberthy, Tim Showalter, Ajay
Choudhri, Shirnett Williamson, Gautam Thaker, Chirag Shah, Matthew C Ward, et al. Large
language models encode radiation oncology domain knowledge: Performance on the american
college of radiology standardized examination. AI in Precision Oncology, 1(1):43–50, 2024.

Tomer Ullman. Large language models fail on trivial alterations to theory-of-mind tasks. arXiv
preprint arXiv:2302.08399, 2023.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambham-
pati. Planbench: An extensible benchmark for evaluating large language models on planning and
reasoning about change. In Thirty-seventh Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2023a. URL https://openreview.net/forum?id=
YXogl4uQUO.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models - a critical investigation. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023b. URL https://openreview.net/
forum?id=X6dEqXIsEW.

12

https://openreview.net/forum?id=YXogl4uQUO
https://openreview.net/forum?id=YXogl4uQUO
https://openreview.net/forum?id=X6dEqXIsEW
https://openreview.net/forum?id=X6dEqXIsEW

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level
scientific problem-solving abilities of large language models. arXiv preprint arXiv:2307.10635,
2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Taylor Webb, Keith J Holyoak, and Hongjing Lu. Emergent analogical reasoning in large language
models. Nature Human Behaviour, 7(9):1526–1541, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct. In The Eleventh International Conference
on Learning Representations, 2022.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and
Jun Zhao. Large language models are better reasoners with self-verification. In Findings of the
Association for Computational Linguistics: EMNLP 2023, pp. 2550–2575, 2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=5Xc1ecxO1h.

Will Yeadon and Douglas P Halliday. Exploring durham university physics exams with large language
models. arXiv preprint arXiv:2306.15609, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:2205.10625, 2022.

13

https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROMPT VARIATION AND CHAIN OF THOUGHT

LLM results are well-known to be brittle to choice and phrasing of prompt. We ran experiments
across multiple prompts to ensure the robustness of our results. Table A1 shows the results for the
full pipeline where verification prompts are modified to ask for CoT reasoning first. Results from
the main paper are provided for easy comparison. Prompts can be found in each domain’s prompt
section in this appendix, under the header "Prompt to Elicit CoT Verification".

Performance does improve in some, though not all, cases. However, seemingly near-perfect im-
provements in verification ability do not translate into near-sound-verifier performance. In G24, CoT
increases verification accuracy from 87% to 99%, and does shrink the difference between sound
verifier and LLM-verifier in the full pipeline, but a 6 percentage point gap still remains! Furthermore,
these improvements come with a large cost increase: in G24, this leads to a 17 times increase in
necessary output tokens, which more than doubles the cost of verification.

Note that Chain of Thought techniques themselves vary greatly in their effectiveness across domains.
In particular, in reasoning domains like Blocksworld, previous work has shown that they fail to
generalize and are not particularly robust (Stechly et al., 2024).

On the rest of the tasks, where verification is also fairly simple and linear, and thus theoretically
amenable to CoT, we do not see nearly as significant improvements.

Domain S.P. Sampling LLM+LLM LLM+LLM-C F.E.F.
Game of 24 5% 28% 3% 32% 38%

Coloring 16% 40% 2% 0% 37%

Blocksworld 40% 68% 55% 53% 87%

Mystery 4% 9% 0% 5% 6%

Table A1: Accuracy across prompting schemes including CoT verification schemes over 100
instances per domain. S.P.–Standard Prompting. Sampling–k=15. LLM+LLM–Main paper result.
LLM+LLM-C–Full pipeline with chain of thought verification. F.E.F–(Sound) First Error Feedback.

We also reran our verification-only experiments with these new prompts, as well as with variations on
the original (non-CoT) prompts. Table A2 has these results, presented alongside the original ones.

A.2 ON TREE OF THOUGHTS

Our results on the Game of 24 setting seem to contradict the results shown in (Yao et al., 2023).
However, this is mainly because the self-verification setting presented in the main text of this paper is
not directly comparable to that of (Yao et al., 2023). We ran an additional analysis to provide a direct
comparison.

Our external verifier results are all done with only 15 queries to the LLM. (Yao et al., 2023) isn’t
entirely clear on the number of queries used, but table 7 in the appendix does give a cost breakdown.
Per problem, 100 CoT prompts costs $0.47, but running Tree of Thoughts (ToT) averages $0.74–cost-
equivalent to about 150 CoT prompts. On the exact same test set, we extend our experiments to 150
(direct, non-CoT) queries with a sound verifier, and we reach 70%, comparable to ToT’s reported
74%.

The remaining difference is likely due to the fact that ToT implements a classical breadth-first
search algorithm, only prompting the LLM to generate (much easier) intermediate steps and heuristic
evaluations rather than full solutions and reflections. By reducing compositionality and offloading
it to a proven classical algorithm, ToT sidesteps some of the major hurdles to LLM reasoning. Our
results highlight why such techniques do not scale beyond the simplest toy instances.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Domain Accuracy F.P.R F.N.R
Game of 24 87.0% (3567/4100) 10.4% (320/3071) 20.7% (213/1029)

Game of 24-CoT 98.8% (4051/4100) 0.2% (6/3071) 4.3% (44/1029)

Graph Coloring 72.4% (362/500) 6.5% (25/382) 95.8% (113/118)

Graph Coloring-CoT 77.6% (388/500) 10.7% (41/382) 60.2% (71/118)

Blocksworld 71.8% (359/500) 18.55% (64/345) 15.48% (24/155)

Blocksworld-S 71.2% (356/500) 22.1% (76/345) 8.4% (13/155)

Blocksworld-CoT 77.6% (388/500) 7.6% (26/345) 23.9% (37/155)

Mystery 79.6% (398/500) 0.5% (2/397) 97.09% (100/103)

Mystery-S 79.0% (395/500) 1.26% (5/397) 96.1% (99/103)

Mystery-CoT 81.8% (409/500) 3.2% (13/397) 72.8% (75/103)

Table A2: LLM Verification results across prompts. F.P.R. - False Positive Rate, F.N.R - False
Negative Rate. The -S cases are non-CoT prompts with the answer and reasoning swapped for those
domains where answer was originally asked for first. The -CoT cases are those in which verification
is done with CoT.

Correct Evaluation Correct Verification

correct 81.6% 79.1%

correct-no-info 84.4% -

ablated_op 47.5% 92.1%

ablated_number 52.2% 82.9%

random 48.8% 95.5%

random-no-info 60.3% -

LLM 55% 71%

Table A3: GPT-4’s evaluation vs. verification on Game of 24 across expression types.

A.3 GAME OF 24

A.3.1 EVALUATION VS. BINARY VERIFICATION FOR GAME OF 24

The following is a more in-depth comparison of GPT-4’s critique and verification abilities on game of
24.

For each instance, we generated five different kinds of proposed expressions: correct, ablated
operation (exactly one operation is wrong), ablated number (exactly one number is wrong), random,
and LLM (sampled from LLM generations). For each of these proposed expression, we sent a query
to the LLM asking it to first evaluate the expression and then to say if it is correct, that is equals 24.
We also generated two more "no info" cases: correct and random. These two are the exact same as
the previous, but only ask for the evaluation of an expression without mentioning the associated goal
state (=24) or asking for verification.

Table A.3.1 summarizes the results. Note that we generated 1000 expressions for each type, one from
every problem in the full set, but only 100 for the LLM case, as our generations were constrained in
the main paper to instances 901-1000.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3.2 PROMPTS

All of following examples are built on the same Game of 24 problem, except for the LLM Self-Critique
examples.

Raw text format of Game of 24 instance

1 1 4 6

Baseline, Direct Prompt

Use numbers and basic arithmetic operations (+ - * /) to obtain
24. You must write your response. Write your answer first,
followed by [ANSWER END]

Input: 1 1 4 6
Answer:

Example LLM Response

(6 / (1 / 4)) = 24

Prompt To Elicit Verification

Please check if the following expression uses only the given
numbers (and no others) and evaluates to 24: ((9+10)-(4-9))

Respond only in JSON format as described below:
{
"evaluation": "number the expression evaluated to",
"correct": boolean}
Ensure that Python’s json.loads can parse this.Do not provide

anything else in your response."

Prompt To Elicit CoT Verification

Using each of the numbers 1 7 9 11 exactly as many times as they
appear in the list and the basic arithmetic operations (+ - *
/), it is possible to write an expression that evaluates to 24.
Please check if the following expression uses only the correct
numbers (and no others) and evaluates to 24: (11 - 7) * (9 - 1)
= 24

If it is not correct, please give feedback on what is wrong and
how to correct it.

First, think step by step. Check that the expression uses only the
correct numbers, has exactly the right number of instances each
number, and evaluates to 24. Then decide what your final answer
is.

When outputting your final answer, first print the [Answer] tag,
then put your final answer after the [Answer] tag and respond
only in JSON format as described below:

{
"feedback": "feedback",
"correct": boolean}

Ensure that Python’s json.loads can parse this.

Let’s think step by step.
[Thoughts]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3.3 BACKPROMPTS

Backprompt Generated From Self-Critique

Feedback: This is not correct.
The expression is incorrect. The correct expression should be: (11

- 2) * 5 + 8 = 24

With this feedback, please try again. Using the numbers 2 5 8 11
please provide a correct expression that evaluates to 24. Write
your answer first. At the end of your answer, write [ANSWER END]

Answer: ",

Backprompt Generated From Sound Verifier (Pass/Fail)

Feedback: This is not correct. Using the numbers 1 1 4 6 please
provide a correct expression that evaluates to 24. Write your
answer first. At the end of your answer, write [ANSWER END]

Answer:

Backprompt Generated From Sound Verifier

Feedback: This is not correct. This expression consists of the
numbers 6, 1, 4, but it has to consist of only and exactly
[’1’, ’1’, ’4’, ’6’]. Using the numbers 1 1 4 6 please provide
a correct expression that evaluates to 24. Write your answer
first. At the end of your answer, write [ANSWER END]

Answer: ",

Backprompt Generated From Sound Verifier Where the Answer Was Malformed (Missing a
Parenthesis)

Use numbers and basic arithmetic operations (+ - * /) to obtain
24. Write your answer first. At the end of your answer, write
[ANSWER END]

Input: 1 1 4 6
Answer:
((6 / (1 - 1/4)) = 24[ANSWER END]
Feedback: This is not correct. This expression is malformed. Using

the numbers 1 1 4 6 please provide a correct expression that
evaluates to 24. Write your answer first. At the end of your
answer, write [ANSWER END]

Answer:

A.3.4 COMPLETE EXAMPLE OF ITERATIVE PROMPT SEQUENCE

Full Sequence of 7 (Sound Verifier Generated) Backprompts Stopping at Successful Comple-
tion of the Task

Use numbers and basic arithmetic operations (+ - * /) to obtain
24. Write your answer first. At the end of your answer, write
[ANSWER END]

Input: 1 1 4 6
Answer:
((6 / (1 - 1/4)) = 24[ANSWER END]
Feedback: This is not correct. This expression is malformed. Using

the numbers 1 1 4 6 please provide a correct expression that

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

evaluates to 24. Write your answer first. At the end of your
answer, write [ANSWER END]

Answer:
((6 / (1 - 1)) * 4 = 24[ANSWER END]
Feedback: This is not correct. This expression is malformed. Using

the numbers 1 1 4 6 please provide a correct expression that
evaluates to 24. Write your answer first. At the end of your
answer, write [ANSWER END]

Answer:
((6 / (1 - 1)) * 4) is undefined because it involves division by

zero. A correct solution could be:

(6 / (1 / 4)) * 1 = 24[ANSWER END]
Feedback: This is not correct. This expression is malformed. Using

the numbers 1 1 4 6 please provide a correct expression that
evaluates to 24. Write your answer first. At the end of your
answer, write [ANSWER END]

Answer:
(6 / (1 / 4)) = 24[ANSWER END]
Feedback: This is not correct. This expression consists of the

numbers 6, 1, 4, but it has to consist of only and exactly
[’1’, ’1’, ’4’, ’6’]. Using the numbers 1 1 4 6 please provide
a correct expression that evaluates to 24. Write your answer
first. At the end of your answer, write [ANSWER END]

Answer:
(6 - 1) * (4 - 1) = 24[ANSWER END]
Feedback: This is not correct. This expression evaluates to 15

instead of 24. Using the numbers 1 1 4 6 please provide a
correct expression that evaluates to 24. Write your answer
first. At the end of your answer, write [ANSWER END]

Answer:
(6 / (1 / (4 - 1))) = 24[ANSWER END]
Feedback: This is not correct. This expression evaluates to 18

instead of 24. Using the numbers 1 1 4 6 please provide a
correct expression that evaluates to 24. Write your answer
first. At the end of your answer, write [ANSWER END]

Answer:
(6 * (4 - 1)) - 1 = 24[ANSWER END]
Feedback: This is not correct. This expression evaluates to 17

instead of 24. Using the numbers 1 1 4 6 please provide a
correct expression that evaluates to 24. Write your answer
first. At the end of your answer, write [ANSWER END]

Answer:

A.4 GRAPH COLORING

A.4.1 HALLUCINATIONS IN GRAPH COLORING CRITIQUE

The following is a more in-depth look at GPT-4’s critique abilities on the graph coloring problem.

For each instance, we generated five different kinds of colorings: correct, ablated (exactly one edge is
wrong), non-optimal (a coloring with no constraint violations except that it uses too many colors),
random, and LLM (sampled from LLM generations). For each of these 500 proposed colorings, we
sent a query to the LLM asking it to verify if the answer was right, and–if not–to output a free-form
critique. We then parsed these to determine what edges it said were colored the same at both vertices.

Table A4 summarizes the results. Note that, proportionally, hallucinations decrease when the error
rate of the domain increases. That is to say, when there are more incorrect edges, the model is more
likely to point to one of them. Intuitively, this makes sense: it’s easier to guess one edge which is
wrong when half of all the edges are miscolored, as is the case on average among randomly colored
graphs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table A4: Distribution of hallucinations during verification task. This table counts the number of
instances that featured each type of hallucination and compares it to the total number of erroneous
edges encountered across all coloring instances in each subset. Note that the correct column tracks
the number of colorings where the ground truth is that the coloring is correct.

Hallucinations Coloring

Vertex Edge Both None Errors Correct
Correct 29 72 7 2 0 100
Ablated 24 52 5 24 187 0
Non-optimal 18 65 3 10 0 0
Random 10 26 5 66 736 0
LLM 26 41 6 27 240 18

Total 107 256 26 129 282 118

Edge hallucinations are more common than vertex. Essentially, typical behavior is to pick two vertices
that are the same color in the coloring, but which aren’t associated by an edge in the graph description,
and claim that they are connected and thus illegally colored. Vertex color hallucination is when the
reverse happens: instead of ascribing an edge to same-color nodes, the colorings of two connected
vertices are misstated. The overlap between the two cases, where a non-existent edge is declared to
be violated by non-existent colorings is much rarer than either. Note that it never hallucinates new
vertex names, only that vertices which are in graph have colors differing from reality.

Even rarer cases did spring up in the response data. At times the model lost track of the question
being asked and reversed it, explicitly claiming that two same-colored vertices violate the conditions
because they aren’t connected; or it began to contradict itself mid-deduction, making multiple claims
about a vertex’s color.

We present these examples here. In the following, multiple equals signs in a row ("===") are dividers
between separate examples, not parts of the examples.

Examples of LLM Output on the Verification Task

The vertices 1 and 4 are both color 0 and share an edge.
============================
The vertices 9 and 12 are both colored with Color 1 and they share

an edge.
============================
Vertex 1: Color 2 is connected to Vertex 2: Color 2.
============================
Vertex 5 and vertex 10 are both Color 2 and share an edge.
============================
Same-color vertices 0 and 1 share an edge.
============================
Vertex 0 (Color 0) and vertex 3 (Color 0) share an edge. Vertex 1

(Color 1) and vertex 2 (Color 1) share an edge. Vertex 4 (Color
1) and vertex 8 (Color 1) share an edge. Vertex 2 (Color 1) and
vertex 4 (Color 1) share an edge. Vertex 4 (Color 1) and vertex
11 (Color 0) share an edge. Vertex 12 (Color 2) and vertex 15
(Color 2) share an edge.

The vertices 3 and 0 both have Color 2 and they are adjacent. The
vertices 1 and 11 both have Color 1 and they are adjacent. The
vertices 2 and 5 both have Color 0 and they are adjacent.
Therefore, the given coloring is incorrect.

============================
0: Color 0 and 9: Color 0 share an edge.
0: Color 0 and 10: Color 0 share an edge.
0: Color 0 and 14: Color 0 share an edge.
9: Color 0 and 13: Color 0 share an edge.
============================

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Vertex 3 is colored with Color 4, which exceeds the optimal
coloring number of 4. Therefore, this coloring is non-optimal.

============================
Vertex 0 is missing in the coloring. Missing assignment.
============================
Vertex 0 (color 3) is connected to vertex 3 (color 2), sharing an

edge. Vertex 0 (color 3) is also connected to vertex 4 (color
0), and to vertex 5 (color 0), and to vertex 9 (color 0), and
to vertex 12 (color 2), sharing an edge with them. Therefore,
this assignment is correctly colored with color 0, color 2, and
color 3, making use of 3 different colors.

Vertex 1 (color 2) is connected to vertex 4 (color 0), and to
vertex 5 (color 0), and to vertex 6 (color 0), and to vertex 7
(color 3), and to vertex 8 (color 0), and to vertex 10 (color
1), and to vertex 11 (color 1), sharing an edge with them.
Therefore, this assignment is also correctly colored.

Vertex 2 (color 0) is connected to vertex 12 (color 2), sharing an
edge. Therefore, this assignment is correctly colored.

Vertex 3 (color 2) is connected to vertex 5 (color 0), and to
vertex 8 (color 0), and to vertex 10 (color 1), sharing an edge
with them. Therefore, this assignment is correctly colored.

Vertex 4 (color 0) is connected to vertex 7 (color 3), and to
vertex 11 (color 1), sharing an edge. Therefore, this
assignment is correctly colored.

Vertex 5 (color 0) is connected to vertex 7 (color 3), sharing an
edge. Therefore, this assignment is correctly colored.

Vertex 6 (color 0) is connected to vertex 10 (color 1), and to
vertex 12 (color 2), sharing an edge. Therefore, this
assignment is correctly colored.

Vertex 8 (color 0) is connected to vertex 10 (color 1), sharing an
edge. Therefore, this assignment is correctly colored.

Vertex 9 (color 0) is connected to vertex 11 (color 1), sharing an
edge. Therefore, this assignment is correctly colored.

Vertex 10 (color 1) is connected to vertex 12 (color 2), sharing
an edge. Therefore, this assignment is correctly colored.

Vertex 11 (color 1) isn’t connected to vertex 10 (color 1), hence,
this assignment is correctly colored.

Vertex 12 (color 2) isn’t connected to vertex 2 (color 0), hence,
this assignment is correctly colored.

No adjacent vertices share a same color, and no colors exceed the
optimal coloring number. Hence, the coloring is correct.

Verifier confirmed success.

Examples of (Rare) Mangled, Illogical, and Otherwise Strange Output on the Verification
Task

Vertex 10, colored 4, is connected to vertex 11, also colored 1.
However, it is also colored 4, which is greater than the
optimal coloring of 4. So, this coloring is non-optimal.

============================

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Vertex 9 (Color 2) and Vertex 10 (Color 1) are connected and share
the same color. Vertex 9 (Color 2) and Vertex 11 (Color 1) are
also connected and share the same color.

============================
Vertex 2 (Color 0) is connected to Vertex 0 (Color 0).
Vertex 5 (Color 0) is connected to Vertex 1 (Color 2) and Vertex

14 (Color 1), but also to Vertex 7 (Color 1).
Vertex 6 (Color 0) is connected to Vertex 3 (Color 2), Vertex 10

(Color 1) and 13 (Color 2), but also to Vertex 8 (Color 2).
============================
The coloring is incorrect. Vertex 1 (Color 2) and Vertex 3 (Color

3) are connected but have different colors. Vertex 3 (Color 3)
is connected to Vertex 6 (Color 3).

============================
Vertex 10, colored 4, is connected to vertex 11, also colored 1.

However, it is also colored 4, which is greater than the
optimal coloring of 4. So, this coloring is non-optimal.

A.4.2 PROMPTS

All of following examples are built on the same graph instance.

DIMACS Format For Graphs

e 0 7
e 0 8
e 0 9
e 0 11
e 1 13
e 2 9
e 3 8
e 3 11
e 3 12
e 4 12
e 5 11
e 6 9
e 7 10
e 7 13
e 9 11
e 10 13
e 11 13
c OPTIMAL CHROMATIC NUMBER === 3

Baseline, Direct Prompt

Color the following graph, described as a set of edges, such that
no two vertices on the same edge share a color.

You may use at most 3 colors.
Vertex 0 is connected to vertex 7.
Vertex 0 is connected to vertex 8.
Vertex 0 is connected to vertex 9.
Vertex 0 is connected to vertex 11.
Vertex 1 is connected to vertex 13.
Vertex 2 is connected to vertex 9.
Vertex 3 is connected to vertex 8.
Vertex 3 is connected to vertex 11.
Vertex 3 is connected to vertex 12.
Vertex 4 is connected to vertex 12.
Vertex 5 is connected to vertex 11.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Vertex 6 is connected to vertex 9.
Vertex 7 is connected to vertex 10.
Vertex 7 is connected to vertex 13.
Vertex 9 is connected to vertex 11.
Vertex 10 is connected to vertex 13.
Vertex 11 is connected to vertex 13.
There are a total of 14 vertices. Please label every vertex, even

if it is disconnected from the rest of the graph.Please provide
each vertex’s color. Do not skip any vertices. Each color must
be provided on a new line in the response and should be
formatted as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}".
Please do not provide anything else in your response.

Example LLM Response

0: Color1
1: Color1
2: Color1
3: Color2
4: Color1
5: Color2
6: Color2
7: Color2
8: Color3
9: Color3
10: Color3
11: Color3
12: Color3
13: Color1

Prompt To Elicit Verification

The following graph, described as a set of edges, has an optimal
coloring number of 3:

Vertex 0 is connected to vertex 7.
Vertex 0 is connected to vertex 8.
Vertex 0 is connected to vertex 9.
Vertex 0 is connected to vertex 11.
Vertex 1 is connected to vertex 13.
Vertex 2 is connected to vertex 9.
Vertex 3 is connected to vertex 8.
Vertex 3 is connected to vertex 11.
Vertex 3 is connected to vertex 12.
Vertex 4 is connected to vertex 12.
Vertex 5 is connected to vertex 11.
Vertex 6 is connected to vertex 9.
Vertex 7 is connected to vertex 10.
Vertex 7 is connected to vertex 13.
Vertex 9 is connected to vertex 11.
Vertex 10 is connected to vertex 13.
Vertex 11 is connected to vertex 13.
Please check if this coloring is correct:0: Color1
1: Color1
2: Color1
3: Color2
4: Color1
5: Color2
6: Color2
7: Color2

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

8: Color3
9: Color3
10: Color3
11: Color3
12: Color3
13: Color1
If it is, say ’Verifier confirmed success.’ Do not provide

anything else in your response. If it is incorrect, please
point out which same-color vertices share an edge.

Prompt To Elicit CoT Verification

[Instructions]
When outputting your final answer, first print the [Answer] tag,

then put your final answer after the [Answer] tag. Respond only
in the following format:

Wrong Edges: a list of incorrect edges
All Vertices Colored: boolean representing if every vertex is

colored
Optimal Or Less: boolean representing if the number of colors is

no more than the optimal
Correct: boolean

[Graph]
The following graph, described as a set of edges, has an optimal

coloring number of 3:
Vertex 0 is connected to vertex 7.
Vertex 0 is connected to vertex 8.
Vertex 0 is connected to vertex 9.
Vertex 0 is connected to vertex 11.
Vertex 1 is connected to vertex 13.
Vertex 2 is connected to vertex 9.
Vertex 3 is connected to vertex 8.
Vertex 3 is connected to vertex 11.
Vertex 3 is connected to vertex 12.
Vertex 4 is connected to vertex 12.
Vertex 5 is connected to vertex 11.
Vertex 6 is connected to vertex 9.
Vertex 7 is connected to vertex 10.
Vertex 7 is connected to vertex 13.
Vertex 9 is connected to vertex 11.
Vertex 10 is connected to vertex 13.
Vertex 11 is connected to vertex 13.

[Coloring]
A coloring is correct if no adjacent vertices are the same color

and the total number of colors used is no more than the optimal
coloring number. Please check if this coloring is correct: 0:
Color1

1: Color1
2: Color1
3: Color1
4: Color1
5: Color1
6: Color1
7: Color2
8: Color2
9: Color2
10: Color1
11: Color3
12: Color2

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

13: Color3
[ANSWER END]

Let’s think step by step. Remember to output your final answer in
the format described in the instructions.

[Thoughts]

A.4.3 BACKPROMPTS

Backprompt Generated From Self-Critique

This is incorrect. Feedback:
Vertices 0 and 3 share an edge and are both colored with Color1.

Vertices 9 and 11 share an edge and are both colored with
Color3.

Using this feedback, please try again. Please provide each
vertex’s color. Do not skip any vertices. Each color must be
provided on a new line in the response and should be formatted
as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not
provide anything else in your response.

Backprompt Generated From Sound Verifier (Pass/Fail)

This is not correct. Using the previously provided graph, please
provide a correct coloring. Please provide each vertex’s color.
Do not skip any vertices. Each color must be provided on a new
line in the response and should be formatted as "{VERTEX
NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not provide
anything else in your response.

Backprompt Generated From Sound Verifier (First)

Vertex 9 and vertex 11 were both colored Color3 despite being
connected by an edge.

This is wrong. Please recolor. Please provide each vertex’s color.
Do not skip any vertices. Each color must be provided on a new
line in the response and should be formatted as "{VERTEX
NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not provide
anything else in your response.

Backprompt Generated From Sound Verifier (Full)

Vertex 9 and vertex 11 were both colored Color3 despite being
connected by an edge. Vertex 10 and vertex 13 were both colored
Color3 despite being connected by an edge. Vertex 11 and vertex
13 were both colored Color3 despite being connected by an edge.

This is wrong. Please recolor. Please provide each vertex’s color.
Do not skip any vertices. Each color must be provided on a new
line in the response and should be formatted as "{VERTEX
NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not provide
anything else in your response.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.4.4 COMPLETE EXAMPLE OF ITERATIVE PROMPT SEQUENCE

Full Sequence of 15 (LLM-Generated) Backprompts

Color the following graph, described as a set of edges, such that
no two vertices on the same edge share a color.

You may use at most 3 colors.
Vertex 0 is connected to vertex 7.
Vertex 0 is connected to vertex 8.
Vertex 0 is connected to vertex 9.
Vertex 0 is connected to vertex 11.
Vertex 1 is connected to vertex 13.
Vertex 2 is connected to vertex 9.
Vertex 3 is connected to vertex 8.
Vertex 3 is connected to vertex 11.
Vertex 3 is connected to vertex 12.
Vertex 4 is connected to vertex 12.
Vertex 5 is connected to vertex 11.
Vertex 6 is connected to vertex 9.
Vertex 7 is connected to vertex 10.
Vertex 7 is connected to vertex 13.
Vertex 9 is connected to vertex 11.
Vertex 10 is connected to vertex 13.
Vertex 11 is connected to vertex 13.
There are a total of 14 vertices. Please label every vertex, even

if it is disconnected from the rest of the graph.Please provide
each vertex’s color. Do not skip any vertices. Each color must
be provided on a new line in the response and should be
formatted as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}".
Please do not provide anything else in your response.

0: Color1
1: Color1
2: Color1
3: Color1
4: Color1
5: Color2
6: Color2
7: Color2
8: Color2
9: Color3
10: Color3
11: Color3
12: Color2
13: Color3

This is incorrect. Feedback:
Vertices 0 and 3 share an edge and are both colored with Color1.

Vertices 9 and 11 share an edge and are both colored with
Color3.

Using this feedback, please try again. Please provide each
vertex’s color. Do not skip any vertices. Each color must be
provided on a new line in the response and should be formatted
as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not
provide anything else in your response.

0: Color1
1: Color1
2: Color2
3: Color2
4: Color2
5: Color1

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

6: Color1
7: Color2
8: Color3
9: Color3
10: Color1
11: Color2
12: Color3
13: Color3

This is incorrect. Feedback:
Vertices 2 and 3 are both colored with Color2 and share an edge.

Vertices 7 and 11 are both colored with Color2 and share an
edge. Vertices 9 and 13 are both colored with Color3 and share
an edge.

Using this feedback, please try again. Please provide each
vertex’s color. Do not skip any vertices. Each color must be
provided on a new line in the response and should be formatted
as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not
provide anything else in your response.

0: Color1
1: Color1
2: Color2
3: Color3
4: Color3
5: Color3
6: Color3
7: Color3
8: Color2
9: Color1
10: Color2
11: Color2
12: Color1
13: Color1

This is incorrect. Feedback:
Vertices 0 and 9 share an edge and are both colored with Color1.

Vertices 0 and 11 share an edge and are both colored with
Color2. Vertices 1 and 13 share an edge and are both colored
with Color1. Vertices 7 and 13 share an edge and are both
colored with Color3.

Using this feedback, please try again. Please provide each
vertex’s color. Do not skip any vertices. Each color must be
provided on a new line in the response and should be formatted
as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not
provide anything else in your response.

0: Color1
1: Color1
2: Color2
3: Color2
4: Color3
5: Color1
6: Color1
7: Color2
8: Color3
9: Color3
10: Color1
11: Color3
12: Color1
13: Color3

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

This is incorrect. Feedback:
Vertices 0 and 5 both have Color1 and share an edge. Vertices 0

and 11 both have Color3 and share an edge. Vertices 7 and 10
both have Color2 and share an edge. Vertices 11 and 13 both
have Color3 and share an edge.

Using this feedback, please try again. Please provide each
vertex’s color. Do not skip any vertices. Each color must be
provided on a new line in the response and should be formatted
as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not
provide anything else in your response.

0: Color1
1: Color1
2: Color2
3: Color2
4: Color1
5: Color1
6: Color1
7: Color2
8: Color3
9: Color3
10: Color3
11: Color2
12: Color3
13: Color1

This is incorrect. Feedback:
Vertices 0 and 1 both have Color1 and share an edge. Vertices 0

and 5 also both have Color1 and share an edge. Vertices 0 and 6
also both have Color1 and share an edge. Vertices 7 and 11 both
have Color2 and share an edge. Vertices 9 and 11 both have
Color2 and share an edge.

Using this feedback, please try again. Please provide each
vertex’s color. Do not skip any vertices. Each color must be
provided on a new line in the response and should be formatted
as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not
provide anything else in your response.

0: Color1
1: Color2
2: Color2
3: Color2
4: Color2
5: Color3
6: Color3
7: Color3
8: Color2
9: Color3
10: Color1
11: Color2
12: Color3
13: Color1

This is incorrect. Feedback:
Vertices 0 and 8 both have Color1 and share an edge. Vertices 0

and 11 both have Color1 and share an edge. Vertices 3 and 8
both have Color2 and share an edge. Vertices 3 and 11 both have
Color2 and share an edge. Vertices 7 and 13 both have Color3
and share an edge. Vertices 9 and 11 both have Color3 and share
an edge. Vertices 11 and 13 both have Color2 and share an edge.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Using this feedback, please try again. Please provide each
vertex’s color. Do not skip any vertices. Each color must be
provided on a new line in the response and should be formatted
as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not
provide anything else in your response.

0: Color1
1: Color2
2: Color2
3: Color3
4: Color1
5: Color1
6: Color1
7: Color3
8: Color2
9: Color3
10: Color2
11: Color2
12: Color3
13: Color1

This is incorrect. Feedback:
Vertices 0 and 11 share an edge and are both colored with Color1.

Vertices 2 and 9 share an edge and are both colored with
Color2. Vertices 3 and 12 share an edge and are both colored
with Color3.

Using this feedback, please try again. Please provide each
vertex’s color. Do not skip any vertices. Each color must be
provided on a new line in the response and should be formatted
as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not
provide anything else in your response.

0: Color1
1: Color2
2: Color2
3: Color2
4: Color3
5: Color3
6: Color3
7: Color2
8: Color3
9: Color1
10: Color3
11: Color3
12: Color1
13: Color1

This is incorrect. Feedback:
Vertices 11 and 13 both have Color3 and share an edge.

Using this feedback, please try again. Please provide each
vertex’s color. Do not skip any vertices. Each color must be
provided on a new line in the response and should be formatted
as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not
provide anything else in your response.

0: Color1
1: Color2
2: Color2
3: Color2
4: Color3

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

5: Color3
6: Color3
7: Color2
8: Color3
9: Color1
10: Color3
11: Color1
12: Color1
13: Color2

This is incorrect. Feedback:
Vertices 0 and 11 share an edge and both are colored with Color1.

Using this feedback, please try again. Please provide each
vertex’s color. Do not skip any vertices. Each color must be
provided on a new line in the response and should be formatted
as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not
provide anything else in your response.

0: Color1
1: Color2
2: Color2
3: Color3
4: Color1
5: Color2
6: Color3
7: Color3
8: Color2
9: Color3
10: Color1
11: Color2
12: Color2
13: Color1

This is incorrect. Feedback:
Vertices 2 and 9 share an edge and are both colored with Color2.

Similarly, vertices 11 and 13 share an edge and are both
colored with Color2.

Using this feedback, please try again. Please provide each
vertex’s color. Do not skip any vertices. Each color must be
provided on a new line in the response and should be formatted
as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not
provide anything else in your response.

0: Color1
1: Color2
2: Color2
3: Color3
4: Color1
5: Color2
6: Color3
7: Color3
8: Color2
9: Color1
10: Color2
11: Color3
12: Color2
13: Color1

This is incorrect. Feedback:
Vertices 2 and 9 share an edge and are both colored with Color2.

Vertices 3 and 11 share an edge and are both colored with

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Color3. Vertices 7 and 13 share an edge and are both colored
with Color3.

Using this feedback, please try again. Please provide each
vertex’s color. Do not skip any vertices. Each color must be
provided on a new line in the response and should be formatted
as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not
provide anything else in your response.

0: Color1
1: Color2
2: Color2
3: Color3
4: Color1
5: Color2
6: Color3
7: Color2
8: Color3
9: Color3
10: Color1
11: Color2
12: Color3
13: Color1

This is incorrect. Feedback:
Vertices 0 and 11 share an edge and are both colored with Color1.

Vertices 3 and 8 share an edge and are both colored with
Color3. Vertices 7 and 13 share an edge and are both colored
with Color2.

Using this feedback, please try again. Please provide each
vertex’s color. Do not skip any vertices. Each color must be
provided on a new line in the response and should be formatted
as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not
provide anything else in your response.

0: Color1
1: Color2
2: Color2
3: Color3
4: Color1
5: Color2
6: Color3
7: Color2
8: Color3
9: Color1
10: Color3
11: Color2
12: Color1
13: Color3

This is incorrect. Feedback:
The coloring is incorrect. Vertices 0 and 11 share an edge and are

both colored with Color1. Vertices 7 and 13 share an edge and
are both colored with Color2.

Using this feedback, please try again. Please provide each
vertex’s color. Do not skip any vertices. Each color must be
provided on a new line in the response and should be formatted
as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not
provide anything else in your response.

0: Color1

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

1: Color2
2: Color2
3: Color3
4: Color1
5: Color2
6: Color3
7: Color3
8: Color2
9: Color1
10: Color2
11: Color3
12: Color1
13: Color1

This is incorrect. Feedback:
Vertices 0 and 9 share an edge and are both colored with Color1.

Vertices 7 and 11 share an edge and are both colored with
Color3. Vertices 1 and 13 share an edge and are both colored
with Color2.

Using this feedback, please try again. Please provide each
vertex’s color. Do not skip any vertices. Each color must be
provided on a new line in the response and should be formatted
as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not
provide anything else in your response.

0: Color1
1: Color2
2: Color3
3: Color2
4: Color2
5: Color1
6: Color2
7: Color3
8: Color3
9: Color2
10: Color1
11: Color3
12: Color1
13: Color1

This is incorrect. Feedback:
Vertices 3 and 9 share an edge and are both colored with Color2.

Using this feedback, please try again. Please provide each
vertex’s color. Do not skip any vertices. Each color must be
provided on a new line in the response and should be formatted
as "{VERTEX NUMBER}: {VERTEX COLOR ASSIGNMENT}". Please do not
provide anything else in your response.

0: Color1
1: Color2
2: Color3
3: Color2
4: Color3
5: Color1
6: Color2
7: Color3
8: Color2
9: Color1
10: Color2
11: Color3
12: Color1

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Binary Verification Type Identified Critique Generation

Correct 78/100 (78%) 78/100 (78%) 78/100 (78%)

Inexecutable 70/100 (70%) 63/100 (63%) 8/100 (8%)

Non Goal Reaching 98/100 (98%) 12/100 (12%) 12/100 (12%)

Random 100/100 (100%) 94/100 (94%) 2/100 (2%)

LLM
Correct 53/55 (96.36%) 53/55 (96.36%) 53/55 (96.36%)

Inexecutable 25/40 (62.5%) 24/40 (60%) 0/40 (0%)

Non Goal Reaching 3/5 (60%) 2/5 (40%) 2/5 (40%)

Table A5: This table presents the verification and critique accuracy of LLM-as-verifier across five
different kinds of plans over 100 instances of Blocksworld.

Binary Verification Type Identified Critique Generation

Correct 3/100 (3%) 3/100 (3%) 3/100 (3%)

Inexecutable 100/100 (100%) 100/100 (100%) 24/100 (24%)

Non Goal Reaching 98/100 (98%) 12/100 (12%) 12/100 (12%)

Random 100/100 (100%) 100/100 (100%) 59/100 (100%)

LLM
Correct 0/3 (0%) 0/3 (0%) 0/3 (0%)

Inexecutable 89/89 (100%) 89/89 (100%) 12/89 (13.48%)

Non Goal Reaching 8/8 (100%) 0/8 (0%) 0/8 (0%)

Table A6: This table presents the verification and critique accuracy of LLM-as-verifier across five
different kinds of plans over 100 instances of Mystery Blocksworld.

13: Color1

A.5 PLANNING

A.5.1 ACCURACY OF PLANNING CRITIQUE

For each instance, we generated five different kind of plans: correct, inexecutable (where an action is
inexecutable and the plan is thus invalid), non goal reaching (all actions are executable but the plan
does not reach the desired state), random, and LLM (sampled from the LLM generations). For each
of these prompts, we sent a query to the LLM asking it to verify the plan and critique it in a certain
format. We provide an example in the following prompts section. Specifically, if the plan is valid, the
LLM has to just output that. If a plan is invalid and inexecutable, it has to provide the first action that
the plan is rendered invalid and the unmet preconditions for that action. If the plan is invalid and non
goal reaching, it has to provide the unmet goals for the plan. We evaluate the binary verification and
the critique by comparing it to the ground truth provided by VAL (Howey et al., 2004). We check
the binary verification, whether or not the detected the type of invalidity (inexecutable or non goal
reaching) and if the critique is valid. Tables A5 and A6 show the inability of LLMs in generating the
right critique for proposed solutions even though they get the label correct.

A.5.2 PROMPTS - BLOCKSWORLD

All of following examples are built on the same graph instance.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Baseline, Direct Prompt

I am playing with a set of blocks where I need to arrange the
blocks into stacks. Here are the actions I can do

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the

block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the
block I am unstacking is clear.

Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding

the block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down or stack a block, my hand becomes empty.
Once you stack a block on top of a second block, the second block

is no longer clear.

[STATEMENT]
As initial conditions I have that, the red block is clear, the

yellow block is clear, the hand is empty, the red block is on
top of the blue block, the yellow block is on top of the orange
block, the blue block is on the table and the orange block is
on the table.

My goal is to have that the orange block is on top of the red
block.

My plan is as follows:

[PLAN]
unstack the yellow block from on top of the orange block
put down the yellow block
pick up the orange block
stack the orange block on top of the red block
[PLAN END]

[STATEMENT]
As initial conditions I have that, the blue block is clear, the

hand is empty, the blue block is on top of the orange block,
the orange block is on top of the yellow block, the yellow
block is on top of the red block and the red block is on the
table.

My goal is to have that the red block is on top of the orange
block and the yellow block is on top of the red block.

My plan is as follows:

[PLAN]

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Example LLM Response

unstack the blue block from on top of the orange block
put down the blue block
unstack the orange block from on top of the yellow block
put down the orange block
unstack the yellow block from on top of the red block
put down the yellow block
pick up the red block
stack the red block on top of the orange block
pick up the yellow block
stack the yellow block on top of the red block
[PLAN END]

Prompt To Elicit Verification (Open Ended)

I am playing with a set of blocks where I need to arrange the
blocks into stacks. Here are the actions I can do

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the

block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the
block I am unstacking is clear.

Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding

the block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down or stack a block, my hand becomes empty.
Once you stack a block on top of a second block, the second block

is no longer clear.

[STATEMENT]
As initial conditions I have that, the blue block is clear, the

orange block is clear, the hand is empty, the orange block is
on top of the yellow block, the yellow block is on top of the
red block, the red block is on the table and the blue block is
on the table.

My goal is to have that the red block is on top of the orange
block, the blue block is on top of the red block and the yellow
block is on top of the blue block.

My plan is as follows:

[PLAN]
unstack the orange block from on top of the yellow block
put down the orange block
unstack the yellow block from on top of the red block
put down the yellow block
pick up the blue block
stack the blue block on top of the red block

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

pick up the orange block
stack the orange block on top of the blue block
pick up the yellow block
stack the yellow block on top of the orange block
[PLAN END]

Verify whether the above plan is valid. If it is valid, please say
"Plan is valid." and nothing else. If it is invalid, please say
"Plan is invalid." and then provide feedback on why the plan
fails.

Prompt To Elicit Verification (Format based)

I am playing with a set of blocks where I need to arrange the
blocks into stacks. Here are the actions I can do

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the

block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the
block I am unstacking is clear.

Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding

the block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down or stack a block, my hand becomes empty.
Once you stack a block on top of a second block, the second block

is no longer clear.

[STATEMENT]
As initial conditions I have that, the blue block is clear, the

orange block is clear, the hand is empty, the orange block is
on top of the yellow block, the yellow block is on top of the
red block, the red block is on the table and the blue block is
on the table.

My goal is to have that the red block is on top of the orange
block, the blue block is on top of the red block and the yellow
block is on top of the blue block.

My plan is as follows:

[PLAN]
unstack the orange block from on top of the yellow block
put down the orange block
unstack the yellow block from on top of the red block
put down the yellow block
pick up the red block
stack the red block on top of the orange block
pick up the blue block
stack the blue block on top of the red block

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

pick up the yellow block
stack the yellow block on top of the blue block
[PLAN END]

Verify whether the above plan is valid. Provide a JSON between
tags [JSON] and [JSON_END] for the verification information.
The JSON should contain three main keys: (1) "valid": a binary
value that tells if the plan is valid or not i.e., the plan
when executed satisfies the goal conditions. If the plan is
invalid and inexecutable then include (2)
"unmet_preconditions": This contains two more keys; (2.1)
"action": This is the name of the first action that renders the
plan inexecutable (2.2) "preconditions": A list of unmet
preconditions for the mentioned action; If the plan is
executable but not goal reaching then include (3)
"unmet_goals": A list of unmet goal conditions in the JSON.
Include only one of the keys (2) or (3) based on the plan
invalidity.

Prompt To Elicit Verification (Chain of thought based)

I am playing with a set of blocks where I need to arrange the
blocks into stacks. Here are the actions I can do

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the

block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the
block I am unstacking is clear.

Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding

the block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down or stack a block, my hand becomes empty.
Once you stack a block on top of a second block, the second block

is no longer clear.

[STATEMENT]
As initial conditions I have that, the red block is clear, the

yellow block is clear, the hand is empty, the red block is on
top of the blue block, the yellow block is on top of the orange
block, the blue block is on the table and the orange block is
on the table.

My goal is to have that the orange block is on top of the red
block.

My plan is as follows:

[PLAN]
unstack the yellow block from on top of the orange block

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

put down the yellow block
pick up the orange block
stack the orange block on top of the red block
[PLAN END]

Verify whether the above plan is valid. You will think step by
step and output intermediate reasoning steps and thoughts for
the verification after the [THOUGHTS] tag. Then, provide a JSON
between the tags [JSON] and [JSON_END] for the verification
information. The JSON should contain three main keys: If the
plan is invalid and inexecutable then include (1)
"unmet_preconditions": This contains two more keys; (1.1)
"action": This is the name of the first action that renders the
plan inexecutable (1.2) "preconditions": A list of unmet
preconditions for the mentioned action; If the plan is
executable but not goal reaching then include (2)
"unmet_goals": A list of unmet goal conditions in the JSON.
Finally include (3) "valid": a binary value that tells if the
plan is valid or not i.e., the plan when executed satisfies the
goal conditions. Include only one of the keys (1) or (2) based
on the type of plan invalidity.

Let’s think step by step
[THOUGHTS]

Prompt To Elicit Verification (Swapping Answer and Reason Order)

I am playing with a set of blocks where I need to arrange the
blocks into stacks. Here are the actions I can do

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the

block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the
block I am unstacking is clear.

Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding

the block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down or stack a block, my hand becomes empty.
Once you stack a block on top of a second block, the second block

is no longer clear.

[STATEMENT]
As initial conditions I have that, the red block is clear, the

yellow block is clear, the hand is empty, the red block is on
top of the blue block, the yellow block is on top of the orange
block, the blue block is on the table and the orange block is
on the table.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

My goal is to have that the orange block is on top of the red
block.

My plan is as follows:

[PLAN]
unstack the yellow block from on top of the orange block
put down the yellow block
pick up the orange block
stack the orange block on top of the red block
[PLAN END]

Verify whether the above plan is valid. Provide a JSON between
tags [JSON] and [JSON_END] for the verification information.
The JSON should contain three main keys: If the plan is invalid
and inexecutable then include (1) "unmet_preconditions": This
contains two more keys; (1.1) "action": This is the name of the
first action that renders the plan inexecutable (1.2)
"preconditions": A list of unmet preconditions for the
mentioned action; If the plan is executable but not goal
reaching then include (2) "unmet_goals": A list of unmet goal
conditions in the JSON. Finally include (3) "valid": a binary
value that tells if the plan is valid or not i.e., the plan
when executed satisfies the goal conditions. Include only one
of the keys (1) or (2) based on the type of plan invalidity.

A.5.3 BACKPROMPTS - BLOCKSWORLD

Backprompt Generated From Self-Critique

Plan is invalid.
The plan fails because after you stack the blue block on top of

the red block, you cannot unstack the yellow block from on top
of the orange block because the yellow block is not clear. It
has the blue block on top of it.

Backprompt Generated From Sound Verifier (First)

The above plan is invalid.
The following action at step 7 has an unmet precondition:
pick up the red block
The unmet precondition is:
the red block is clear

Backprompt Generated From Sound Verifier (Full)

The above plan is invalid.
There are unsatisfied preconditions.
The following action at step 7 has an unmet precondition:
pick up the red block
The unmet precondition is:
the red block is clear
The following action at step 8 has an unmet precondition:
stack the red block on top of the orange block
The unmet precondition is:
the orange block is clear
The following action at step 11 has an unmet precondition:
pick up the yellow block
The unmet precondition is:
the yellow block is on the table

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

A.5.4 COMPLETE EXAMPLE OF ITERATIVE PROMPT SEQUENCE - BLOCKSWORLD

Full Sequence of (LLM-Generated) Backprompts

I am playing with a set of blocks where I need to arrange the
blocks into stacks. Here are the actions I can do

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the

block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the
block I am unstacking is clear.

Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding

the block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down or stack a block, my hand becomes empty.
Once you stack a block on top of a second block, the second block

is no longer clear.

[STATEMENT]
As initial conditions I have that, the red block is clear, the

blue block is clear, the yellow block is clear, the hand is
empty, the blue block is on top of the orange block, the red
block is on the table, the orange block is on the table and the
yellow block is on the table.

My goal is to have that the red block is on top of the blue block,
the blue block is on top of the yellow block and the yellow
block is on top of the orange block.

My plan is as follows:

[PLAN]
unstack the blue block from on top of the orange block
stack the blue block on top of the red block
pick up the yellow block
stack the yellow block on top of the orange block
unstack the blue block from on top of the red block
stack the blue block on top of the yellow block
pick up the red block
stack the red block on top of the blue block
[PLAN END]

[STATEMENT]
As initial conditions I have that, the blue block is clear, the

orange block is clear, the hand is empty, the orange block is
on top of the yellow block, the yellow block is on top of the
red block, the red block is on the table and the blue block is
on the table.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

My goal is to have that the red block is on top of the orange
block, the blue block is on top of the red block and the yellow
block is on top of the blue block.

My plan is as follows:

[PLAN]
-----------GPT4-as-Planner Response-----------
unstack the orange block from on top of the yellow block
put down the orange block
unstack the yellow block from on top of the red block
stack the yellow block on top of the orange block
pick up the blue block
stack the blue block on top of the red block
unstack the yellow block from on top of the orange block
stack the yellow block on top of the blue block
pick up the red block
unstack the blue block from on top of the red block
stack the blue block on top of the yellow block
stack the red block on top of the orange block
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is invalid. The plan fails because after you stack the blue

block on top of the red block, you cannot unstack the yellow
block from on top of the orange block because the yellow block
is not clear. It has the blue block on top of it.

-----------GPT4-as-Planner Response-----------
I apologize for the oversight. Here is the corrected plan:

[PLAN]
unstack the orange block from on top of the yellow block
put down the orange block
unstack the yellow block from on top of the red block
put down the yellow block
pick up the blue block
stack the blue block on top of the red block
pick up the orange block
stack the orange block on top of the red block
pick up the yellow block
stack the yellow block on top of the blue block
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is invalid. The plan fails because after stacking the blue

block on top of the red block, you are trying to stack the
orange block on top of the red block. However, the red block is
not clear because the blue block is on top of it.

-----------GPT4-as-Planner Response-----------
I apologize for the mistake. Here is the corrected plan:

[PLAN]
unstack the orange block from on top of the yellow block
put down the orange block
unstack the yellow block from on top of the red block
put down the yellow block
pick up the blue block
stack the blue block on top of the red block
pick up the orange block
stack the orange block on top of the blue block
pick up the yellow block
stack the yellow block on top of the orange block
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is valid.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

A.5.5 LLM AS VERIFIER - BLOCKSWORLD

Examples of LLM Output on the Verification Task

[STATEMENT]
As initial conditions I have that, the blue block is clear, the

orange block is clear, the hand is empty, the orange block is
on top of the yellow block, the yellow block is on top of the
red block, the red block is on the table and the blue block is
on the table.

My goal is to have that the red block is on top of the orange
block, the blue block is on top of the red block and the yellow
block is on top of the blue block.

My plan is as follows:

[PLAN]
------------GPT-4 Response-------------
unstack the orange block from on top of the yellow block
put down the orange block
unstack the yellow block from on top of the red block
stack the yellow block on top of the orange block
pick up the blue block
stack the blue block on top of the red block
unstack the yellow block from on top of the orange block
stack the yellow block on top of the blue block
pick up the red block
unstack the blue block from on top of the red block
stack the blue block on top of the yellow block
stack the red block on top of the orange block
[PLAN END]
---------GPT-4 Verifier Incorrect Response---------
Plan is invalid. The plan fails because after you stack the blue

block on top of the red block, you cannot unstack the yellow
block from on top of the orange block because the yellow block
is not clear. It has the blue block on top of it.

A.5.6 PROMPTS - MYSTERY BLOCKSWORLD

All of following examples are built on the same graph instance.

Baseline, Direct Prompt

I am playing with a set of objects. Here are the actions I can do

Attack object
Feast object from another object
Succumb object
Overcome object from another object

I have the following restrictions on my actions:
To perform Attack action, the following facts need to be true:
Province object, Planet object, Harmony.
Once Attack action is performed the following facts will be
true: Pain object.
Once Attack action is performed the following facts will be
false: Province object, Planet object, Harmony.
To perform Succumb action, the following facts need to be
true: Pain object.
Once Succumb action is performed the following facts will be
true: Province object, Planet object, Harmony.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Once Succumb action is performed the following facts will be
false: Pain object.
To perform Overcome action, the following needs to be true:
Province other object, Pain object.
Once Overcome action is performed the following will be true:
Harmony, Province object, Object Craves other object.
Once Overcome action is performed the following will be false:
Province other object, Pain object.
To perform Feast action, the following needs to be true:
Object Craves other object, Province object, Harmony.
Once Feast action is performed the following will be true:
Pain object, Province other object.
Once Feast action is performed the following will be false:,
Object Craves other object, Province object, Harmony.

[STATEMENT]
As initial conditions I have that, object a craves object b,

object d craves object c, harmony, planet object b, planet
object c, province object a and province object d.

My goal is to have that object c craves object a.

My plan is as follows:

[PLAN]
feast object d from object c
succumb object d
attack object c
overcome object c from object a
[PLAN END]

[STATEMENT]
As initial conditions I have that, object b craves object c,

object c craves object d, object d craves object a, harmony,
planet object a and province object b.

My goal is to have that object a craves object c and object d
craves object a.

My plan is as follows:

[PLAN]

Example LLM Response

feast object b from object c
succumb object b
attack object a
overcome object a from object c
feast object d from object a
succumb object d
attack object c
overcome object c from object a
[PLAN END]

Prompt To Elicit Verification (Open Ended)

I am playing with a set of objects. Here are the actions I can do

Attack object
Feast object from another object
Succumb object

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Overcome object from another object

I have the following restrictions on my actions:
To perform Attack action, the following facts need to be true:
Province object, Planet object, Harmony.
Once Attack action is performed the following facts will be
true: Pain object.
Once Attack action is performed the following facts will be
false: Province object, Planet object, Harmony.
To perform Succumb action, the following facts need to be
true: Pain object.
Once Succumb action is performed the following facts will be
true: Province object, Planet object, Harmony.
Once Succumb action is performed the following facts will be
false: Pain object.
To perform Overcome action, the following needs to be true:
Province other object, Pain object.
Once Overcome action is performed the following will be true:
Harmony, Province object, Object Craves other object.
Once Overcome action is performed the following will be false:
Province other object, Pain object.
To perform Feast action, the following needs to be true:
Object Craves other object, Province object, Harmony.
Once Feast action is performed the following will be true:
Pain object, Province other object.
Once Feast action is performed the following will be false:,
Object Craves other object, Province object, Harmony.

[STATEMENT]
As initial conditions I have that, object b craves object c,

object c craves object d, object d craves object a, harmony,
planet object a and province object b.

My goal is to have that object a craves object c and object d
craves object a.

My plan is as follows:

[PLAN]
feast object a from object d
succumb object a
attack object a
overcome object a from object c
feast object c from object d
succumb object c
attack object c
overcome object c from object a
[PLAN END]

Verify whether the above plan is valid. If it is valid, please say
"Plan is valid." and nothing else. If it is invalid, please say
"Plan is invalid." and then provide feedback on why the plan
fails.

Prompt To Elicit Verification (Format based)

I am playing with a set of objects. Here are the actions I can do

Attack object
Feast object from another object
Succumb object
Overcome object from another object

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

I have the following restrictions on my actions:
To perform Attack action, the following facts need to be true:
Province object, Planet object, Harmony.
Once Attack action is performed the following facts will be
true: Pain object.
Once Attack action is performed the following facts will be
false: Province object, Planet object, Harmony.
To perform Succumb action, the following facts need to be
true: Pain object.
Once Succumb action is performed the following facts will be
true: Province object, Planet object, Harmony.
Once Succumb action is performed the following facts will be
false: Pain object.
To perform Overcome action, the following needs to be true:
Province other object, Pain object.
Once Overcome action is performed the following will be true:
Harmony, Province object, Object Craves other object.
Once Overcome action is performed the following will be false:
Province other object, Pain object.
To perform Feast action, the following needs to be true:
Object Craves other object, Province object, Harmony.
Once Feast action is performed the following will be true:
Pain object, Province other object.
Once Feast action is performed the following will be false:,
Object Craves other object, Province object, Harmony.

[STATEMENT]
As initial conditions I have that, object a craves object b,

object d craves object c, harmony, planet object b, planet
object c, province object a and province object d.

My goal is to have that object c craves object a.
My plan is as follows:

[PLAN]
feast object d from object c
succumb object d
attack object c
overcome object c from object a
[PLAN END]

Verify whether the above plan is valid. Provide a JSON between
tags [JSON] and [JSON_END] for the verification information.
The JSON should contain three main keys: (1) "valid": a binary
value that tells if the plan is valid or not i.e., the plan
when executed satisfies the goal conditions. If the plan is
invalid and inexecutable then include (2)
"unmet_preconditions": This contains two more keys; (2.1)
"action": This is the name of the first action that renders the
plan inexecutable (2.2) "preconditions": A list of unmet
preconditions for the mentioned action; If the plan is
executable but not goal reaching then include (3)
"unmet_goals": A list of unmet goal conditions in the JSON.
Include only one of the keys (2) or (3) based on the plan
invalidity.

Prompt To Elicit Verification (Chain of thought based)

I am playing with a set of objects. Here are the actions I can do

Attack object
Feast object from another object

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Succumb object
Overcome object from another object

I have the following restrictions on my actions:
To perform Attack action, the following facts need to be true:
Province object, Planet object, Harmony.
Once Attack action is performed the following facts will be
true: Pain object.
Once Attack action is performed the following facts will be
false: Province object, Planet object, Harmony.
To perform Succumb action, the following facts need to be
true: Pain object.
Once Succumb action is performed the following facts will be
true: Province object, Planet object, Harmony.
Once Succumb action is performed the following facts will be
false: Pain object.
To perform Overcome action, the following needs to be true:
Province other object, Pain object.
Once Overcome action is performed the following will be true:
Harmony, Province object, Object Craves other object.
Once Overcome action is performed the following will be false:
Province other object, Pain object.
To perform Feast action, the following needs to be true:
Object Craves other object, Province object, Harmony.
Once Feast action is performed the following will be true:
Pain object, Province other object.
Once Feast action is performed the following will be false:,
Object Craves other object, Province object, Harmony.

[STATEMENT]
As initial conditions I have that, object a craves object b,

object d craves object c, harmony, planet object b, planet
object c, province object a and province object d.

My goal is to have that object c craves object a.
My plan is as follows:

[PLAN]
feast object d from object c
succumb object d
attack object c
overcome object c from object a
[PLAN END]

Verify whether the above plan is valid. You will think step by
step and output intermediate reasoning steps and thoughts for
the verification after the [THOUGHTS] tag. Then, provide a JSON
between the tags [JSON] and [JSON_END] for the verification
information. The JSON should contain three main keys: If the
plan is invalid and inexecutable then include (1)
"unmet_preconditions": This contains two more keys; (1.1)
"action": This is the name of the first action that renders the
plan inexecutable (1.2) "preconditions": A list of unmet
preconditions for the mentioned action; If the plan is
executable but not goal reaching then include (2)
"unmet_goals": A list of unmet goal conditions in the JSON.
Finally include (3) "valid": a binary value that tells if the
plan is valid or not i.e., the plan when executed satisfies the
goal conditions. Include only one of the keys (1) or (2) based
on the type of plan invalidity.

Let’s think step by step
[THOUGHTS]

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Prompt To Elicit Verification (Swapping Answer and Reason Order)

I am playing with a set of objects. Here are the actions I can do

Attack object
Feast object from another object
Succumb object
Overcome object from another object

I have the following restrictions on my actions:
To perform Attack action, the following facts need to be true:
Province object, Planet object, Harmony.
Once Attack action is performed the following facts will be
true: Pain object.
Once Attack action is performed the following facts will be
false: Province object, Planet object, Harmony.
To perform Succumb action, the following facts need to be
true: Pain object.
Once Succumb action is performed the following facts will be
true: Province object, Planet object, Harmony.
Once Succumb action is performed the following facts will be
false: Pain object.
To perform Overcome action, the following needs to be true:
Province other object, Pain object.
Once Overcome action is performed the following will be true:
Harmony, Province object, Object Craves other object.
Once Overcome action is performed the following will be false:
Province other object, Pain object.
To perform Feast action, the following needs to be true:
Object Craves other object, Province object, Harmony.
Once Feast action is performed the following will be true:
Pain object, Province other object.
Once Feast action is performed the following will be false:,
Object Craves other object, Province object, Harmony.

[STATEMENT]
As initial conditions I have that, object a craves object b,

object d craves object c, harmony, planet object b, planet
object c, province object a and province object d.

My goal is to have that object c craves object a.
My plan is as follows:

[PLAN]
feast object d from object c
succumb object d
attack object c
overcome object c from object a
[PLAN END]

Verify whether the above plan is valid. Provide a JSON between
tags [JSON] and [JSON_END] for the verification information.
The JSON should contain three main keys: If the plan is invalid
and inexecutable then include (1) "unmet_preconditions": This
contains two more keys; (1.1) "action": This is the name of the
first action that renders the plan inexecutable (1.2)
"preconditions": A list of unmet preconditions for the
mentioned action; If the plan is executable but not goal
reaching then include (2) "unmet_goals": A list of unmet goal
conditions in the JSON. Finally include (3) "valid": a binary
value that tells if the plan is valid or not i.e., the plan
when executed satisfies the goal conditions. Include only one
of the keys (1) or (2) based on the type of plan invalidity.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

A.5.7 BACKPROMPTS - MYSTERY BLOCKSWORLD

Backprompt Generated From Self-Critique

Plan is invalid.

The first action "feast object b from object c" is not possible
because the initial conditions do not include "Province object
b" which is required for the Feast action.

Backprompt Generated From Sound Verifier (First)

The above plan is invalid.
The following action at step 3 has an unmet precondition:
attack object a
The unmet precondition is:
province object a

Backprompt Generated From Sound Verifier (Full)

The above plan is invalid.
There is an unmet goal condition. This is:
object d craves object a
There are unsatisfied preconditions.
The following action at step 3 has an unmet precondition:
attack object a
The unmet precondition is:
province object a
The following action at step 5 has an unmet precondition:
feast object d from object a
The unmet precondition is:
province object d

A.5.8 COMPLETE EXAMPLE OF ITERATIVE PROMPT SEQUENCE - MYSTERY BLOCKSWORLD

Full Sequence of 15 (LLM-Generated) Backprompts

I am playing with a set of objects. Here are the actions I can do

Attack object
Feast object from another object
Succumb object
Overcome object from another object

I have the following restrictions on my actions:
To perform Attack action, the following facts need to be true:
Province object, Planet object, Harmony.
Once Attack action is performed the following facts will be
true: Pain object.
Once Attack action is performed the following facts will be
false: Province object, Planet object, Harmony.
To perform Succumb action, the following facts need to be
true: Pain object.
Once Succumb action is performed the following facts will be
true: Province object, Planet object, Harmony.
Once Succumb action is performed the following facts will be
false: Pain object.
To perform Overcome action, the following needs to be true:
Province other object, Pain object.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Once Overcome action is performed the following will be true:
Harmony, Province object, Object Craves other object.
Once Overcome action is performed the following will be false:
Province other object, Pain object.
To perform Feast action, the following needs to be true:
Object Craves other object, Province object, Harmony.
Once Feast action is performed the following will be true:
Pain object, Province other object.
Once Feast action is performed the following will be false:,
Object Craves other object, Province object, Harmony.

[STATEMENT]
As initial conditions I have that, object a craves object b,

object d craves object c, harmony, planet object b, planet
object c, province object a and province object d.

My goal is to have that object c craves object a.

My plan is as follows:

[PLAN]
feast object d from object c
succumb object d
attack object c
overcome object c from object a
[PLAN END]

[STATEMENT]
As initial conditions I have that, object b craves object c,

object c craves object d, object d craves object a, harmony,
planet object a and province object b.

My goal is to have that object a craves object c and object d
craves object a.

My plan is as follows:

[PLAN]
-----------GPT4-as-Planner Response-----------
feast object b from object c
succumb object b
attack object a
overcome object a from object c
feast object d from object a
succumb object d
attack object c
overcome object c from object a
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is invalid.

The first action "feast object b from object c" is not possible
because the initial conditions do not include "Province object
b" which is required for the Feast action.

-----------GPT4-as-Planner Response-----------
I apologize for the oversight. Let’s correct the plan.

[PLAN]
attack object a
succumb object a
feast object b from object c
overcome object c from object a
attack object d
succumb object d
feast object c from object a

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

overcome object a from object c
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is invalid.

The first action "attack object a" cannot be performed because the
conditions for the attack action are not met. According to the
restrictions, to perform an attack action, the following facts
need to be true: Province object, Planet object, Harmony. In
the initial conditions, you have Province object b, not
Province object a. Therefore, the attack action cannot be
performed on object a.

-----------GPT4-as-Planner Response-----------
I apologize for the confusion. Let’s revise the plan.

[PLAN]
attack object b
succumb object b
feast object c from object d
overcome object d from object a
attack object a
succumb object a
feast object d from object a
overcome object a from object c
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is invalid.

The first action "attack object b" cannot be performed because the
conditions for the attack action are not met. The attack action
requires the facts: Province object, Planet object, Harmony to
be true. In the initial conditions, you have Province object b
and Harmony, but you do not have Planet object. Therefore, the
attack action cannot be performed.

-----------GPT4-as-Planner Response-----------
I apologize for the confusion. Let’s revise the plan.

[PLAN]
feast object b from object c
succumb object b
attack object d
overcome object d from object a
feast object a from object d
succumb object a
attack object c
overcome object c from object a
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is invalid.

The first action "feast object b from object c" cannot be
performed because the initial conditions do not satisfy the
requirements for the Feast action. According to the rules, to
perform Feast action, the following needs to be true: Object
Craves other object, Province object, Harmony. In the initial
conditions, object b craves object c, harmony, and province
object b are true. However, the Feast action requires that the
object performing the action (object b in this case) is the
Province object, which is not the case in the initial
conditions. Therefore, the first action cannot be performed,
making the plan invalid.

-----------GPT4-as-Planner Response-----------
I apologize for the confusion. Let’s revise the plan.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

[PLAN]
attack object b
succumb object b
feast object c from object d
overcome object d from object a
feast object a from object d
succumb object a
attack object c
overcome object c from object a
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is invalid.

The first action "attack object b" is valid because the initial
conditions meet the requirements for the attack action.
However, the second action "succumb object b" is invalid
because the "Pain object" fact is not true after the first
action. The "Attack object b" action makes the "Pain object"
fact true, but it also makes the "Province object" fact false,
which is a requirement for the "Succumb" action. Therefore, the
plan fails at the second action.

-----------GPT4-as-Planner Response-----------
I apologize for the confusion. Let’s revise the plan.

[PLAN]
attack object b
succumb object b
feast object c from object d
overcome object d from object a
feast object a from object d
succumb object a
attack object c
overcome object c from object a
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is invalid.

The first action "attack object b" is valid because the initial
conditions meet the requirements for the attack action:
Province object, Planet object, Harmony.

However, the second action "succumb object b" is invalid. The
succumb action requires the fact "Pain object" to be true,
which is achieved after the attack action. But the object for
the succumb action should be the same as the object that was
attacked, which is not the case in your plan.

The rest of the plan cannot be validated because it depends on the
outcome of the invalid succumb action.

-----------GPT4-as-Planner Response-----------
I apologize for the confusion. Let’s revise the plan.

[PLAN]
attack object b
succumb object b
feast object b from object c
overcome object c from object a
attack object a
succumb object a
feast object a from object d
overcome object d from object a
[PLAN END]

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

-----------GPT4-as-Verifier Response-----------
Plan is invalid.

The plan fails at the first step "attack object b". According to
the rules, to perform the Attack action, the following facts
need to be true: Province object, Planet object, Harmony. In
the initial conditions, you have Province object b, Planet
object a, and Harmony. However, for the Attack action, you need
the same object for Province and Planet, which is not the case
here. Therefore, you cannot perform the Attack action on object
b.

-----------GPT4-as-Planner Response-----------
I apologize for the confusion. Let’s revise the plan.

[PLAN]
attack object a
succumb object a
feast object b from object c
overcome object c from object a
attack object a
succumb object a
feast object a from object d
overcome object d from object a
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is invalid.

The first action "attack object a" cannot be performed because the
initial conditions do not meet the requirements for the attack
action. The attack action requires the facts: Province object,
Planet object, Harmony to be true. In the initial conditions,
the Province object is object b, not object a. Therefore, the
attack action cannot be performed on object a.

-----------GPT4-as-Planner Response-----------
I apologize for the confusion. Let’s revise the plan.

[PLAN]
attack object d
succumb object d
feast object a from object b
overcome object b from object c
attack object c
succumb object c
feast object c from object d
overcome object d from object a
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is invalid.

The first action "attack object d" cannot be performed because the
conditions for the Attack action are not met. According to the
rules, to perform the Attack action, the following facts need
to be true: Province object, Planet object, Harmony. In the
initial conditions, you have Province object b, Planet object
a, and Harmony. However, you are trying to attack object d, not
object a or b. Therefore, the first action in your plan is not
valid.

-----------GPT4-as-Planner Response-----------
I apologize for the confusion. Let’s revise the plan.

[PLAN]
attack object b
succumb object b

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

feast object b from object c
overcome object c from object a
attack object a
succumb object a
feast object a from object d
overcome object d from object a
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is invalid.

The first action "attack object b" is invalid because the
conditions for the attack action are not met. The conditions
for the attack action are: Province object, Planet object,
Harmony. In the initial conditions, you have Province object b,
Planet object a, and Harmony. The Province object and Planet
object must be the same for the attack action to be valid.
Therefore, you cannot attack object b with the given initial
conditions.

-----------GPT4-as-Planner Response-----------
I apologize for the confusion. Let’s revise the plan.

[PLAN]
feast object a from object b
succumb object a
attack object a
overcome object a from object c
feast object c from object d
succumb object c
attack object c
overcome object c from object a
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is invalid.

The first action "feast object a from object b" is not possible
because the initial conditions state that "object b craves
object c", not "object b craves object a". Therefore, the Feast
action cannot be performed as the condition "Object Craves
other object" is not met.

The plan fails at the first step.
-----------GPT4-as-Planner Response-----------
I apologize for the confusion. Let’s revise the plan.

[PLAN]
feast object d from object a
succumb object d
attack object d
overcome object d from object c
feast object c from object d
succumb object c
attack object c
overcome object c from object a
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is invalid.

The first action "feast object d from object a" cannot be
performed because the initial conditions do not satisfy the
requirements for the Feast action. The Feast action requires
that the object performing the action (in this case, object d)
craves the other object (in this case, object a). However, the
initial conditions state that object d craves object a, not the

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

other way around. Therefore, the Feast action cannot be
performed, and the plan is invalid.

-----------GPT4-as-Planner Response-----------
I apologize for the confusion. Let’s revise the plan.

[PLAN]
feast object a from object b
succumb object a
attack object a
overcome object a from object c
feast object c from object d
succumb object c
attack object c
overcome object c from object a
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is invalid.

The first action "feast object a from object b" cannot be
performed because the initial conditions state that "object b
craves object c", not "object a". Therefore, the Feast action
cannot be performed as it requires the fact "Object Craves
other object" to be true, which in this case would be "object b
craves object a".

-----------GPT4-as-Planner Response-----------
I apologize for the confusion. Let’s revise the plan.

[PLAN]
feast object d from object c
succumb object d
attack object d
overcome object d from object a
feast object a from object d
succumb object a
attack object a
overcome object a from object c
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is invalid.

The first action in your plan, "feast object d from object c",
cannot be performed because the initial conditions do not
include "Object d craves object c". The initial conditions
state that "object b craves object c, object c craves object d,
object d craves object a". Therefore, the first action in your
plan is not valid according to the restrictions on the Feast
action.

-----------GPT4-as-Planner Response-----------
I apologize for the confusion. Let’s revise the plan.

[PLAN]
feast object a from object d
succumb object a
attack object a
overcome object a from object c
feast object c from object d
succumb object c
attack object c
overcome object c from object a
[PLAN END]
-----------GPT4-as-Verifier Response-----------
Plan is invalid.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

The first action in your plan, "feast object a from object d",
cannot be performed because the initial conditions do not
include "Object a craves object d". According to the rules, to
perform the Feast action, the following needs to be true:
"Object Craves other object, Province object, Harmony". In your
initial conditions, you have "Object b craves object c, Object
c craves object d, Object d craves object a, Harmony, Planet
object a and Province object b". Therefore, you cannot perform
the Feast action on object a from object d as your first action.

A.5.9 LLM AS VERIFIER - MYSTERY BLOCKSWORLD

Examples of LLM Output on the Verification Task

=========Current State==========
object b craves object c, object c craves object d, object d

craves object a, harmony, planet object a and province object b.

==========GPT-4-as-Verifier============
Plan is invalid.

The first action "feast object b from object c" is not possible
because the initial conditions do not include "Province object
b" which is required for the Feast action.

==========GPT-4-as-Verifier============
Plan is invalid.

The first action "feast object b from object c" cannot be
performed because the initial conditions do not satisfy the
requirements for the Feast action. According to the rules, to
perform Feast action, the following needs to be true: Object
Craves other object, Province object, Harmony. In the initial
conditions, object b craves object c, harmony, and province
object b are true. However, the Feast action requires that the
object performing the action (object b in this case) is the
Province object, which is not the case in the initial
conditions. Therefore, the first action cannot be performed,
making the plan invalid.

==========GPT-4-as-Verifier============
Plan is invalid.

The first action "attack object b" is valid because the initial
conditions meet the requirements for the attack action:
Province object, Planet object, Harmony.

However, the second action "succumb object b" is invalid. The
succumb action requires the fact "Pain object" to be true,
which is achieved after the attack action. But the object for
the succumb action should be the same as the object that was
attacked, which is not the case in your plan.

The rest of the plan cannot be validated because it depends on the
outcome of the invalid succumb action.

54

	Introduction
	Related Work
	Background On Test Tasks
	Game of 24
	Graph Coloring
	STRIPS planning

	Methodology
	Examining Self-Verification
	Critique generation
	Critique consideration

	Conclusion
	Appendix
	Prompt Variation and Chain of Thought
	On Tree of Thoughts
	Game of 24
	Evaluation vs. Binary Verification for Game of 24
	Prompts
	Backprompts
	Complete Example of Iterative Prompt Sequence

	Graph Coloring
	Hallucinations in Graph Coloring Critique
	Prompts
	Backprompts
	Complete Example of Iterative Prompt Sequence

	Planning
	Accuracy of Planning Critique
	Prompts - Blocksworld
	Backprompts - Blocksworld
	Complete Example of Iterative Prompt Sequence - Blocksworld
	LLM as Verifier - Blocksworld
	Prompts - Mystery Blocksworld
	Backprompts - Mystery Blocksworld
	Complete Example of Iterative Prompt Sequence - Mystery Blocksworld
	LLM as Verifier - Mystery Blocksworld

