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ABSTRACT

Sparsely-activated neural networks with conditional computation learn to route
their inputs through different subnetworks, providing a strong structural prior and
reducing computational costs. Despite their possible benefits, models with learned
routing often underperform their parameter-matched densely-activated counter-
parts as well as models that use non-learned heuristic routing strategies. In this
paper, we hypothesize that these shortcomings stem from the gradient estima-
tion techniques used to train sparsely-activated models with non-differentiable
discrete routing decisions. To test this hypothesis, we evaluate the performance of
sparsely-activated models trained with various gradient estimation techniques in
three settings where a high-quality heuristic routing strategy can be designed. Our
experiments reveal that learned routing reaches substantially different (and worse)
solutions than heuristic routing in various settings. As a first step towards reme-
dying this gap, we demonstrate that supervising the routing decision on a small
fraction of the examples is sufficient to help the model to learn better routing
strategies. Our results shed light on the difficulties of learning effective routing
and set the stage for future work on conditional computation mechanisms and
training techniques.

1 INTRODUCTION

Neural networks typically use all of their parameters to process an example. This means that the
computational cost of a neural network is often directly related to the number of parameters it has.
However, there are cases where it might be appropriate to use a model architecture where different
parts of the model are active for different inputs. Such an architecture can decouple the computa-
tional cost of a model from the number of parameters that it has. This possibility is increasingly
useful given the current trend of scaling up models (Kaplan et al., 2020) because there may be cases
where it is beneficial to train a model with more parameters but it is prohibitively expensive to train
a typical densely-activated neural network (Fedus et al., 2021). Separately, specializing different
parts of the model to different types of data may reduce interference and allocate capacity more ef-
fectively across downstream tasks (Sanh et al., 2021; Wei et al., 2021; Zamir et al., 2018; Bao et al.,
2021) or languages (Pires et al., 2019; Liu et al., 2020b; Xue et al., 2020).

Conditional computation techniques provide a possible way to attack these issues because they allow
the network to selectively apply a subset of its parameters to an input. Specifically, models with con-
dition computation typically consist of multiple subnetworks (often called “experts”) controlled by
routers that decide which subnetwork should be active. As a result, a model with many subnetworks
can have a large number of parameters while incurring a lower computational cost by selecting a
small number of subnetworks to activate. When the model is trained with diverse data, conditional
computation can allow subnetworks to specialize to different types of inputs while allowing flexible
knowledge sharing across subnetworks (Ma et al., 2019). However, because routing involves making
a discrete decision as to which subnetwork to use, the loss on final prediction cannot back-propagate
though the routing decision to update the router. Consequently, conditional computation often uses
gradient estimation techniques to train the routers (Jang et al., 2016; Clark et al., 2022; Fedus et al.,
2021; Bengio et al., 2013).

In practice, past work has shown models with conditional computation do not always learn effective
routing strategies. For example, Mittal et al. (2022) investigate models with a continuous router in
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Figure 1: In this work, we compare learned routing (left) to heuristic routing (right) in models
with conditional computation. Gradient estimation techniques must be used to train models with
learned routing due to the discrete routing decision. Our results show that the gradient estimators we
consider do not recover the performance of models with hand-designed heuristic routing schemes.

a controlled setting and find the models do not route examples from the same group to the same
subnetworks, and perform poorly comparing to models with oracle routing. However, models with
task-specific modules (Gururangan et al., 2021; Kudugunta et al., 2021) provide evidence that it is
possible to train effective models with specialized subnetworks. As an extreme example, Roller
et al. (2021) achieves results comparable to learned routing with a fixed random routing. Relatedly,
Fedus et al. (2021) find the gain from scaling up parameters by 30⇥ with a sparsely-activated model
is smaller than scaling up both parameters and FLOPs by 3⇥ in a dense model. As a possible
explanation, Clark et al. (2022) characterize how models with conditional computation improve
with scale and find a detrimental term that scales with the product of the log number of subnetworks
and active parameters. Consequently, increasing the number of subnetworks yields limited returns
and existing methods for training conditional computation models may only be helpful when the
number of active parameters is moderate.

In this work, we hypothesize that issues with conditional computation stem from difficulties with
gradient estimation. Specifically, we design experimental settings where we can compare learned
routing to a performant hand-designed heuristic routing scheme. A schematic of these two possi-
bilities is shown in fig. 1. We find that all gradient estimation techniques that we consider produce
models that underperform the heuristic routing, even in cases where a better routing strategy than
the hand-designed one is possible. We investigate the extent to which learned routing agrees with
heuristic routing, and find that subnetworks in models with learned routing do not specialize to
specific kinds of inputs. We therefore experiment with training the router to follow the heuristic
routing for different subsets of the training data and find that it consistently improves performance
and sometimes results in better performance than using the heuristic routing alone. Our results shed
light on existing shortcomings of models with conditional computation and provide a new testbed
for designing more performant methods.

After providing the background on conditional computation models and gradient estimators in the
following section, we introduce the overall experiment setting in section 3. In section 4, we thor-
oughly investigate the behavior and characteristics of learned routing through a large-scale study.
Finally, we discuss related works in section 5 and conclude in section 6.

2 BACKGROUND

To provide the necessary background for our experimental study, we first explain how sparsely-
activated neural networks use conditional computation, then discuss gradient estimators that enable
learning routing strategies. In addition, we introduce the idea of “heuristic” routing strategies in
settings where a performant routing can be hand-designed.

2.1 MODELS WITH CONDITIONAL COMPUTATION

To use conditional computation, models organize subnetwork modules by blocks and incorporate
such blocks into deep neural network architectures. A conditional computation block B comprises
a set of N subnetworks {f1, f2, . . . fN} and a router R. Subnetworks in the same block are required
to accept inputs of the same dimensionality. Given a hidden-state representation u of example x, the
output of the i-th subnetwork is fi(u). In our work, the router chooses a single fi to process the input
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of the block (though sparsely-activated models in other work may use more than one subnetwork
(Shazeer et al., 2017; Du et al., 2022)). Thus we can use B like any regular building block in a
neural networks.

2.2 GRADIENT ESTIMATORS

Because the router decision is discrete and therefore not differentiable, we can’t train the router’s
parameters through standard gradient-based learning. Fortunately, gradient estimators can provide
approximate gradients to the router parameters. There are a few common designs shared by models
that use gradient estimators to train routers. Their router R often applies a lightweight network to
some intermediate hidden states v in the model rather than the original input x. The lightweight
routing network yields a probability distribution P (v) over all the N subnetworks. Different gradi-
ent estimators vary in how they make the routing decision from P and how they construct the output
from the chosen subnetwork. Additionally, some estimators may introduce additional loss terms.
Beyond those that we mention here, we also experimented with more sophisticated (and more com-
putationally expensive) gradient estimators (Kool et al., 2019; Tucker et al., 2017; Grathwohl et al.,
2017) but found that they did not improve performance in our setting.

REINFORCE Gradients can be estimated through nondifferentiable operations through rein-
forcement learning techniques (Schulman et al., 2015; Bengio et al., 2013). In reinforcement learn-
ing, a policy loss is used to train an agent to learn optimal actions in an environment. In this paper,
we use the REINFORCE algorithm which computes the policy loss as log(⇡)r where r denotes the
received reward for taking an action whose assigned probability is ⇡. In our conditional computation
setup, we aim to train the model to choose which subnetwork to use to process a given input. Here,
the router R acts an agent that samples a subnetwork to use according to the routing probabiltiies.
In order to train such a router, we use the router’s assigned probability to the sampled subnetwork
as ⇡. For the reward r, we use the negative of the model’s loss. The router is therefore trained to
pick subnetworks that maximize the reward which, in turn, minimizes the loss. The REINFORCE
estimator often suffers from high variance because of the sampling operation. This motivates the
use of baselines, which reduce variance without changing the optimal solution. Here, we follow the
approach of Clark et al. (2022): The baseline b is generated by a small neural network with a single
hidden layer that takes as input v. This baseline network is trained with the loss

Lvalue =

⇢ 1
2 (r � b)2, if |r � b|  �
�(|r � b|� 0.5 ⇤ �), otherwise

(1)

where � is a hyperparameter. The overall loss function then becomes

L = Ei⇠P (v)↵ logP (v)i(r � b)� �P (v) logP (v) + �Lvalue (2)

where P (v) is the routing probability distribution and ↵, �, and � are hyperparameters that corre-
spond to policy gradient weight, policy entropy weight, and value loss weight. Finally, the output of
the block B is just fi(u).

Straight Through Gumbel-Softmax (ST-Gumbel) The Gumbel-Softmax trick (Jang et al., 2016)
provides a continuous differentiable approximation to sampling from a categorical distribution.
Specifically, Gumbel noise is added to the logits of the distribution and a temperature scale is ap-
plied in the softmax operation. Denoting gi ⇠ Gumbel(0, 1) and ⌧ as the temperature, the Gumbel-
Softmax trick produces the following modified distribution:

P̂ (v)i =
exp((log(P (v)i) + gi)/⌧)PN
j=1 exp((log(P (v)i) + gi)/⌧)

(3)

The subnetwork fi with the highest assigned probability is chosen by applying an argmax operation
over this distribution. In order to approximate gradients through the argmax operation, we use
the Straight-Through estimator which replaces fi(u) with (1 � sg[P̂ (v)i] + P̂ (v)i)fi(u) where sg
stands for the stop-gradient operator. During forward pass, the multiplier for fi(u) becomes 1 and
the multiplier receives gradients for the term P̂ (v)i in the backward pass. This estimator gradually
anneals temperature ⌧ from a high to low value so that the approximated samples are more and more
similar to discrete samples.
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Top-k Shazeer et al. (2017) propose a gradient estimation scheme where the router sends the
input through the k subnetworks that are assigned the highest probability. Fedus et al. (2021) later
found that this router could be used effectively when k = 1. Specifically, the estimator selects
the subnetwork with the highest probability and scale its output using its corresponding routing
probability. The output of the block is therefore pi(v)fi(u), where i = argmaxi(P (v)).

2.3 HEURISTIC ROUTING

In this work, we are interested in determining whether existing techniques for training sparsely-
activated models can learn an effective routing strategy. As a point of comparison, we therefore
hand-design three baseline routing strategies that do not require training a router.

Tag Routing If we have prior knowledge about the data that a model will be applied to, it can
be possible to hand-design a heuristic routing strategy for choosing which subnetworks to use for
a given example based on data properties. Tag routing takes advantage of tags associated with the
examples (such as domain or dataset in multitask learning) and associates each subnetwork in a
given conditional computation block with a particular tag. In this work, we assume each example
has a single tag. As such, examples are routed to the subnetwork corresponding to their tag.

Hash Routing Roller et al. (2021) propose hash routing which uses a fixed hashing function to
determine which subnetwork to use for a given example. Specifically, each example is assigned
an approximately-random subnetwork to use in each conditional computation block consistently
over the course of training. This approach disregards any shared characteristics across examples.
We adopt this routing strategy by mapping each example to a fixed subnetwork within a given
conditional computaion block and always route that example to that subnetwork throughout training.

Monolithic Routing As a baseline, we consider models where each conditional computation block
only has a single subnetwork. This provides an important point of comparison as it is a degenerate
solution that can be found with learned routing.

3 EXPERIMENTAL SETUP

To comprehensively study the capacity and issues of models with conditional computation, we
perform experiments in three scenarios that differ in architecture and datasets. In each scenario,
we compare learned routing using the gradient estimators from section 2.2 to the heuristic routing
strategies from section 2.3. We repeat all our experiments with three random seeds and calculate the
average performance for a given scenario. Hyperparameters, model architectures, and dataset exam-
ples are detailed in appendix B. For scenarios with multiple datasets, we only provide the average
performance across datasets in the main paper due to space limitations. Full results are available in
appendix E.

Discrete Autoencoders for Synthetic Images (DAE-Syn) In the first scenario, we consider syn-
thetic image reconstruction using a discrete autoencoder model with categorical random variables.
Such a model can be seen as a conditional computation model because the layer immediately after
the discrete bottleneck can be seen as the chosen subnetwork. Figure 3 (appendix) shows a few
images in this dataset. Each image is uniquely determined by 4 independent random variables, each
of which take on 8 possible values, representing alphabet identity, alphabet location, foreground
color, and background color. We treat these values as tags in tag routing, with 32 = 8 ⇥ 4 tags in
total. We generate the 84 = 4096 unique images as the training set and train the model with an
L2 reconstruction loss. We measure the model performance as the loss of the entire dataset after
training for a fixed number of steps. Our model contains an encoder and a decoder. The encoder is a
convolution network followed by four parallel routers, each of which chooses from 8 subnetworks.
Each router consists of a batch normalization, a linear layer, and a softmax function. The decoder
first uses 32 subnetworks that consist of a single embedding vector each. The subnetworks, when
chosen, output the corresponding vector regardless of their input. Together with the routers in the
encoder, these subnetworks form 4 conditional computation blocks placed in parallel. The chosen
embedding vectors are used to compute the outputs of the conditional blocks and their sum is fed
into a transpose-convolution network to reconstruct the image.
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T5 with Adapters for GLUE (T5-GLUE) In the second scenario, we focus on Adapters (Houlsby
et al., 2019), which can be seen as conditional computation blocks that typically use tag routing.
Specifically, we focus on training a T5 model (Raffel et al., 2020) on the GLUE benchmark (Wang
et al., 2018) for natural language processing. GLUE consists of nine datasets ranging across sen-
timental analysis (SST-2 (Socher et al., 2013)), acceptability judgement (CoLA (Warstadt et al.,
2019)), natural language inference (MNLI (Williams et al., 2017), RTE (Bentivogli et al., 2009)),
semantic similarity (QQP1, MRPC (Dolan & Brockett, 2005), STS-B (Cer et al., 2017)), question
answering (QNLI (Rajpurkar et al., 2016)), and commonsense reasoning (WNLI (Levesque et al.,
2012)). Following convention, we exclude WNLI and use the remaining 8 datasets. We adopt the
method from Raffel et al. (2020) to process examples into input and target text and base our im-
plementation on Mahabadi et al. (2021). When using tag routing, we consider the dataset of each
example as the tags. We use the pretrained T5-small model as the backbone and adapt the model in a
way similar to adding adapters Houlsby et al. (2019) for a single task, i.e. we keep all pretrained pa-
rameters frozen except for layer normalization parameters and insert conditional computation blocks
after self-attention and feed-forward modules. Since T5-small has 6 Transformer layers each in the
encoder and decoder and each layer includes one self-attention and one feed-forward module, there
are 24 conditional computation blocks in total. In each block, we include 8 adapters (the number
of datasets in GLUE) as the subnetworks. For the routers, we use a stack of a batch normalization,
a linear layer, and a softmax nonlinearity to produce the routing probability distribution. In the
encoder, a router takes as input the preceding hidden states, averaged over the input sequence. In
the decoder, routers receive the average of the encoder’s final hidden states instead of the decoder
hidden states so that there is no information leakage from later target tokens to earlier target tokens.

ResNet with Adapters for DomainNet (Res-Dom) Our last scenario is similar to the second but
with images. We use DomainNet dataset (Peng et al., 2019) and ResNet18 backbone model (He
et al., 2016). DomainNet is an object recognition task covering six distinct domains. All domains
include the same 345 object categories. We treat domains as tags. As in the T5-GLUE scenario, we
freeze the pretrained model, and insert 8 conditional computation blocks after each of the 8 residual
layer groups in the model. Each condition computation block includes 6 Adapters (corresponding
to the number of domains). We use the same architecture for routers and Adapters as in T5-Small
and feed average-pooled hidden states into the router to compute the routing probability.

4 RESEARCH QUESTIONS AND RESULTS

We now turn to the central question of our work: Whether techniques for learning routing can match
the performance of heuristic routing. In section 4.1, we demonstrate conclusively that learned rout-
ing produces inferior solutions in all of the scenarios discussed in section 3. We therefore undertake
a series of diagnostic experiments to help determine why. Finally, we demonstrate how using a small
amount of tag supervision can help close this gap.

4.1 CAN LEARNED ROUTING FIND A PERFORMANT SOLUTION?

No. We find that in all settings, our hand-designed heuristic routing is better than learned routing
schemes, though learned routing does usually outperform hash routing and monolithic routing.

Method To assess the overall effectiveness of learned routing strategies, we compare the perfor-
mance of sparsely-activated models trained with the gradient estimators described in section 2.2 to
models with different heuristic routing strategies. In addition, we note that learned routing strategies
could in principle outperform tag routing by discovering and exploiting shared characteristics of the
data. Based on prior results in transfer learning on GLUE that show that intermediate- or multi-task
training on MNLI and RTE can improve performance on RTE (Phang et al., 2018; Devlin et al.,
2018; Pruksachatkun et al., 2020; Vu et al., 2020), we include an additional tag routing scheme
(“Tag+”) for GLUE where in conditional computation blocks from the encoder we route examples
from RTE and MNLI to the same subnetwork. We can directly assess the effectiveness of techniques
for learning routing by observing whether they match or outperform heuristic routing schemes.

1https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

5

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs


Under review as a conference paper at ICLR 2023

Routing DAE-Syn T5-GLUE Res-Dom

Tag 0.2 81.3 62.5
Hash 1587.2 74.0 54.5
Monolithic 1018.6 77.9 60.5
Tag+ – 82.0 –

Top-k 0.7 79.2 61.5
ST-Gumbel 20.9 79.1 60.3
REINFORCE 26.0 80.5 61.5

Table 1: Performance of heuristic and learned
routing strategies.

Routing DAE-Syn T5-GLUE Res-Dom

Tag 0.2 81.3 62.5

Top-k 0.7 79.2 61.5
+subnet init 0.2 (-0.5) 79.4 (+0.2) 62.0 (+0.5)

ST-Gumbel 20.9 79.1 60.3
+subnet init 3.9 (-17.0) 78.2 (-0.9) 60.8 (+0.5)

REINFORCE 26.0 80.5 61.5
+subnet init 26.9 (+0.9) 80.0 (-0.5) 61.9 (+0.4)

Table 2: Performance of initializing subnetworks
from tag routing.

Results In all settings and across all gradient estimators, we find that learned routing underper-
forms heuristic routing. In particular, the best learned routing scheme underperforms heuristic rout-
ing by 0.8% in T5-GLUE and by 1.0% in Res-Dom. In addition, the hand-designed RTE-MNLI
routing strategy (which could in principle be found by learned routing) is 1.5% better than the best
learned routing scheme, suggesting that gradient estimators are even further behind the best-possible
performance. The only setting where a learned routing scheme achieved comparable performance to
tag routing was the Top-k estimator on DAE-Syn, which achieved a slightly-worse loss of 0.7 com-
pared to tag routing’s 0.2. We note that top-k routing produces an autoencoder that is not strictly dis-
crete because it involves rescaling the chosen subnetwork’s output by the probability assigned to that
subnetwork. This property could be the primary factor that contributes to its improved performance
when compared to other estimators, which all attained substantially worse loss than tag routing.
In all settings, we find that Hash routing significantly underperforms both tag and learned routing,
suggesting that learned routing is at least better than a random routing baseline. For DAE-Syn and
T5-GLUE, learned routing also outperformed monolothic routing. However, the worst-performing
gradient estimator (ST-Gumbel) on Res-Dom had comparable performance to monolothic routing,
suggesting that learned routing may have found a solution no better than a pathological one.

4.2 HOW SIMILAR IS LEARNED ROUTING TO TAG ROUTING?

Not very similar. Learned routing generally doesn’t follow tags in making routing decisions, though
it is closer to tag routing than random (hash) routing.

Method Given the finding that learned routing underperforms tag routing, we first aim to measure
whether or not learned routing finds a similar solution to tag routing. To quantify this similarity, for
the i-th tag and j-th subnetwork, we compute the subnetwork tag alignment Aij across all test ex-
amples as the F1 score between whether tag i is present in a given example and whether subnetwork
j is active for that example. To provide intuitive summary statistics of Aij , we define the scores
Focus = 1

C

PC
j=1 maxi Aij and Cover = 1

T

PT
i=1 maxj Aij where C is the number of subnet-

works across all blocks in a model and T is the number of tags for a given setting. Focus measures
how much subnetworks specialize to a specific tag, while Cover measures whether all tags have at
least one subnetwork that is specialized to it. The two scores are complementary. For instance, in
DAE-Syn, if the model only uses background color to determine routing for all the subnetworks,
Focus will be high because all subnetworks are specialized to one specific tag, but Cover will be
at most 1/C = 1/4 because three of the four tags are unused. As another example, in T5-GLUE,
if the model learns to route MNLI and RTE to the same subnetwork for some routers but not oth-
ers, Focus will be less than 1 since some subnetworks are not task-specialized but Cover will be
unaffected because there are some subnetworks that are specialized to each task.

Result We show Focus and Cover scores for each scenario and for each gradient estimator in
tables 3 and 4 (appendix). In general, we find that all estimators in all scenarios have focus and
cover scores that are less than 1, suggesting that routing schemes learned through gradient estimation
produce less-specialized subnetworks. In addition, we generally find that Focus scores are lower
than Cover scores, suggesting that while most tags have at least one subnetwork (across the whole
model) specialized to them, many subnetworks are not specialized to one particular tag. Notably, the
Focus score for ST-Gumbel on Res-Dom was only 0.13, which was nearly as low as the Monolithic
score of 0.08. This provides further evidence that the routing scheme learned by ST-Gumbel is
similar to a degenerate solution where all domains are sent to the same subnetwork.
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4.3 CAN GRADIENT ESTIMATORS ATTAIN BETTER PERFORMANCE IF THEY ARE GIVEN
SPECIALIZED SUBNETWORKS?

Yes. If we pre-train the subnetworks using tag routing then train routers using gradient estimation,
performance improves in some cases.

Method The results from section 4.2 indicate that when using gradient estimators, both the router
and subnetworks have different behavior from their tag routing counterparts. Given these results, we
now test whether using pre-trained and pre-specialized subnetworks leads to routers that learn a more
performant routing scheme. Specifically, we first pre-train the subnetworks (and, for DAE-Syn, the
decoder) using tag routing for the same amount of training as a typical training run and then further
train the subnetworks (and, for DAE-Syn, the full model) along with randomly-initialized routers
using gradient estimation techniques with as much additional training as another training run.

Result We find that using pre-trained subnetworks from tag routing can improve performance in
some cases. Specifically, on DAE-Syn, performance improves a small amount for Top-k and a
large amount for ST-Gumbel, and on Res-Dom, performance improves slightly in all cases. Results
are more mixed on T5-GLUE with no discernible pattern. The fact that performance improves in
some cases further suggests that the lack of subnetwork specialization in learned routing may hinder
performance.

4.4 CAN MODELS LEARN EFFECTIVE ROUTING WITH THE HELP OF EXTRA SUPERVISION?

Yes. Even a small amount of supervision can help close the gap between learned routing and tag
routing.

Method While we found that initializing specialized subnetworks from tag routing can improve
learned routing performance in some cases, this does not always help close the gap between learned
routing and tag routing. One possible explanation is that gradients estimators are ineffective, but
it is also possible that the tags are hard to discover from input so the routers can’t simulate tag
routing regardless of the gradient provided by the estimators. To investigate these possibilities, we
add supervision on the routing decisions for different subsets of the training dataset and observe
the model performance as well as the Focus and Cover scores from section 4.2. Specifically, we
choose a subset (including all) of the training examples to include a tag annotation for and add
supervision by training the router to output the tag for annotated examples via a standard cross-
entropy classification loss. After training with the cross-entropy loss, we also test whether additional
training of the converged model with the tag supervision removed causes the performance to improve
or regress.

Result In all settings, we find that adding routing supervision improves performance. On DAE-
Syn and T5-GLUE, supervision allows learned routing to match the performance of tag routing.
Furthermore, in T5-GLUE, we found that learned routing with tag supervision actually outperformed
tag routing in some cases, with the strongest performance of 81.9% being attained by top-k with 1%
of training examples supervised, which nearly matched the “Tag+” (routing MNLI and RTE to the
same subnetwork) performance of 82.0%. Notably, performance on T5-GLUE decreased back to
tag routing-level performance (81.3%) as the proportion of tag-annotated examples increased. This
suggests that only a hint of tag supervision is enough to enable gradient estimators to discover highly
performant routing schemes. On the other hand, on Res-Dom we found that tag supervision only
went about halfway towards closing the gap between learned and tag routing. In addition, we tested
whether further training without supervision caused performance to increase or decrease. In all cases
shown in table 5 (appendix), performance stayed consistent, which suggests that once a performant
routing is found, the gradient estimators we considered do not cause the model to degrade to a worse
solution.

To further analyze the change in behavior when adding tag supervision, we computed Focus and
Cover scores for all scenarios with varying levels of supervision and list the results in tables 3 and 4
(appendix). Generally, we find that Focus and Cover scores increase about as quickly as the task
performance as we add supervision. For example, both Focus and Cover become close to 1 in T5-
GLUE as soon as 1% of training examples are annotated with tags, and on DAE-Syn, Focus and
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Figure 2: Effect of training the router to produce tag annotations for varying subsets of the training
data. “Tag+” routing (for GLUE only) refers to routing MNLI and RTE to the same subnetwork.

Cover become close to 1 when 10% of examples are annotated. On Res-Dom, Focus and Cover
scores do not reach 1 even when 100% supervision is provided. To investigate why learned routing
on Res-Dom does not reach tag routing’s performance and why Focus and Cover scores do not
reach 1, we trained a ResNet model to predict the domain of a given example from DomainNet and
found that it only attained 85% accuracy on held-out data. This suggests that the tags might not
be reconstructable from the input, so tag routing might not be a discoverable solution by learned
routing in the Res-Dom case.

4.5 DISCUSSION

As a summary, we first demonstrated that gradient estimation techniques are unable to learn effective
routing schemes when compared to hand-designed heuristic routing. We found that learned routing
tends to result in less subnetwork specialization, and therefore experimented with training the router
to produce tag routing for varying subsets of the training dataset. Interestingly, such supervision can
uncover better solutions than tag routing when the amount of supervision is small, suggesting that
this strategy may provide a hint to learned routing that unlocks better performance. While it may
not always be possible to hand-design a performant heuristic routing strategy, simple heuristics such
as hash routing have been shown to be effective in prior work Roller et al. (2021). Our results sug-
gest that combining a small amount of heuristic routing supervision with strong gradient estimation
techniques could unlock better performance in conditional computation models.

5 RELATED WORKS

Models with Gated Subnetworks or Conditional Computation Researchers have long been
using sparse models to learn multiple tasks or domains and found a few ways to circumvent the
difficulties in routing. Deecke et al. (2020); Hazimeh et al. (2021); Dua et al. (2021) start training
with most of the subnetworks activated and gradually introduce sparsity. Kudugunta et al. (2021);
Ponti et al. (2022); Ma et al. (2019); Gupta et al. (2022) group examples from the same task to-
gether and introduce task-specific parameters in the router. Some works avoid learned routing by
hand-crafting heuristic routing strategies. Gururangan et al. (2021) build sparsely-activated language
models where different domains use separate subnetworks. On an unknown domain, the model as-
sesses the subnetworks’ fitness and combines the subnetworks accordingly. Li et al. (2022) repeat
this process to initialize subnetworks for new domains and create a forest of subnetworks iteratively.
Tang et al. (2022); Pfeiffer et al. (2022; 2020) specify skills for subnetworks and assign subnetworks
to tasks based on human knowledge. Interestingly, Zuo et al. (2021); Wang et al. (2022) explore ran-
dom routing with consistency regularization as a form of model ensembling, achieving performance
gain even without specialized subnetworks.

Because sparsely-activated models disentangle computation and and parameter count, significant
effort has gone into leveraging conditional computation to create massive pretrained models with
a feasible computation cost (Fedus et al., 2022). Since Shazeer et al. (2017)’s early work to train
an outrageously large sparsely-activated LSTM language model, subsequent works have leveraged
newer architectures (Fedus et al., 2021; Du et al., 2022; Zoph et al., 2022; Yu et al., 2022) and
improved efficiency in distributed training settings (Rajbhandari et al., 2022; Lepikhin et al., 2020;
He et al., 2021). Many works explore different routing methods in this setting, with heavy focus
on balancing the load of subnetworks (Lewis et al., 2021; Zhou et al., 2022; Kool et al., 2021).
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Roller et al. (2021) found that “hash routing”, where each text token is assigned a fixed random
subnetwork, achieves competitive results. Another line of work aims to introduce ways to convert
trained dense models into similar-sized sparse models with a lower computational footprint. (Lee-
Thorp & Ainslie, 2022) initialize the subnetworks with neurons selected according to an importance
metric and perform layerwise distillation. Alternatively, (Zhang et al., 2022) group neurons that are
commonly activated together to create subnetworks.

More generally, there are other forms of conditional computation beyond the formulation we de-
scribe in this work (Han et al., 2021). Modular networks (Kirsch et al., 2018; Jiang & Bansal, 2019;
Hu et al., 2017) use a router to assemble heterogeneous subnetworks into a network layout specific
to given input example. Early exiting (Graves, 2016; Xin et al., 2020; Liu et al., 2020a; Bengio et al.,
2015) aims to save computation and potentially improve performance by terminating inference in
earlier layers or recurrent steps.

Gradient Estimation Techniques For learning discrete representations that involve sampling,
many gradient estimators have been proposed to produce approximate gradients. Our work uses a
learned baseline from Clark et al. (2022) to reduce the variance of the REINFORCE estimator. The
REBAR estimator (Tucker et al., 2017) adds an additional reparameterizable term to REINFORCE
as a baseline that results in a more effective unbiased estimator. This additional term uses a relaxed
sample similar to Gumbel-Softmax (Jang et al., 2016). RELAX (Grathwohl et al., 2017) is similar to
REBAR but uses a learnable neural network for the reparameterizable term. The above two estima-
tors need to evaluate multiple subnetworks to reduce variance since they use relaxed samples. Kool
et al. (2019) uses additional samples from the policy as a built-in baseline for REINFORCE. Yin &
Zhou (2018) and Dong et al. (2020) use the idea of coupling between multiple samples to reduce the
variance of the gradient estimator and are designed for binary latent variables. Dong et al. (2021)
improve upon Yin & Zhou (2018) and Dong et al. (2020) by extending the estimator to categorical
variables.

Investigating the Issues with Condition Computation Multiple previous works have studied the
limitations of sparsely-activated models from different angles. Clark et al. (2022) derive a scaling
law from the parameter count and computational requirement of sparse language models, and dis-
cover a computational cutoff above which no additional benefits are observed. Relatedly, Du et al.
(2022) observe worse results when further scaling up the number of subnetworks in sparse language
models. Chi et al. (2022) discover the representation collapse issue in sparsely-activated models and
propose a method that computes routing scores in a low-dimensional space. Dai et al. (2022) point
out existing learning-to-route models suffer from routing fluctuation issues, and propose a method
that involves first learning a balanced routing then distilling it in to a frozen lightweight model in-
dependent from the backbone. Mittal et al. (2022) creates a set of simple and modular data modular
distributions, and show that systems with modular architecture can not find the most beneficial so-
lution when trained end-to-end. Ye et al. (2022) experiment with various designs for multi-task
learning with task-level routing and find that although learned routing partially discovers task cat-
egories, the routing decisions are not significantly different between models with strong and weak
routers, and the performance is still worse than multi-task baseline, suggesting the ineffectiveness
of learned routing.

6 CONCLUSION

In this work, we investigated why conditional computation models with learned routing produce
suboptimal routing strategies. Specifically, we designed three experimental settings where a perfor-
mant heuristic routing strategy could be hand-designed and thoroughly analyzed the performance
and behavior of learned routing schemes produced by different gradient estimation techniques. We
found that, while subnetworks do specialize when routing is learned, they specialize in a suboptimal
manner. As a small step towards a remedy, we experimented with using tag annotations to supervise
learned routing, finding that this improved learned routing performance in all cases. Furthermore,
we found one setting where learned routing could outperform tag routing when only 1% of examples
were given tag annotations. Our results shed light on shortcomings of models with conditional com-
putation and the gradient estimation techniques used to train them and provide a testbed for future
work in the area.
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7 ETHICS STATEMENT

We are not aware of any negative ethical implications of our work. Our work does not involve
human subjects and is primarily focused on diagnosing issues with an efficient class of neural net-
works. While conditional computation has been used to design extremely large neural networks
(Shazeer et al., 2017; Fedus et al., 2021; Du et al., 2022) that have high computational costs (and,
correspondingly, energy usage), our work primarily focuses on smaller-scale models.

8 REPRODUCIBILITY STATEMENT

All of the code used in all of our experiments will be made publicly available. We use public datasets
and all processing steps are documented in our code.
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