Under review as a conference paper at ICLR 2026

HIERARCHICAL INSTRUCTION-AWARE
EMBODIED VISUAL TRACKING

Anonymous authors
Paper under double-blind review

ABSTRACT

User-centric embodied visual tracking (UC-EVT) requires embodied agents to fol-
low dynamic, natural language instructions specifying not only which target to track,
but also how to track—including distance, angle, and directional constraints. This
dual requirement for robust language understanding and low-latency control poses
significant challenges, as current approaches using end-to-end RL, VLM/VLA, and
LLM-based methods fail to adequately balance comprehension with low-latency
tracking. In this paper, we introduce Hierarchical Instruction-aware Embodied
Visual Tracking (HIEVT), which decomposes the problem into on-demand in-
struction understanding with spatial goal generation (high-level) and asynchronous
continuous goal-conditioned control execution (low-level). HIEVT employs an
LLM-based Semantic-Spatial Goal Aligner to parse diverse human instructions
into spatial goals that directly specify desired target positioning, coupled with an
RL-based Adaptive Goal-Aligned Policy that enables real-time target positioning
according to generated spatial goals. We establish a comprehensive UC-EVT
benchmark using over 1.7 million training trajectories, evaluating performance
across one seen environment and nine challenging unseen environments. Extensive
experiments and real-world deployments demonstrate HIEVT’s superior robustness,
generalizability, and long-horizon tracking capabilities across diverse environments,
varying target dynamics, and complex instruction combinations. The complete
project is available at https://sites.google.com/view/hievt,

1 INTRODUCTION

Providing User-Centric Embodied Visual Tracking (UC-EVT) has become increasingly appealing
for modern intelligent robots and downstream applications |Zuo et al.|(2025); Olaiya et al.|(2025));
Hoffman et al| (2024); [Wu et al| (2023)); [Pueyo et al| (2024), as users demand more dynamic
and interactive systems beyond fixed targets and distance |Van Toan et al.| (2023); [Zhang et al.
(2023). In particular, users expect systems that can quickly comprehend instructions and respond
effectively to dynamic and complex tracking scenarios [Li et al. (2023)); [Zhou et al| (2024));
(2023). Motivated by the above needs, this paper proposes three core requirements for UC-
EVT: 1) User Instructions Understanding. The UC-EVT agent must be capable of interpreting
user instructions, such as natural language commands, to dynamically adjust the tracking agent,
including targets, angles, and distances. 2) Real-Time Responsiveness. The agent must operate in
real time, maintaining robust performance while receiving continuous instructions or switching to
different targets in dynamic environments. 3) Flexibility and Generalizability. The agent should

——————— [~ Folowine T
AN
8 J 2
¥
{
—?—

kkkkk

N,/ Beagle

~

[\
| Place the women |

——_ | ontheleft. Y I
Lmmms L ontheEt g v Seer ¥4
Q‘Target. ,) v 4 b % >

¥ rader

-=~. | woman
. N, omen
| Target v

e /
H rracker

Figure 1: Examples of User-Centric embodied visual tracking with diverse instructions.

https://sites.google.com/view/hievt

Under review as a conference paper at ICLR 2026

flexibly adapt to various targets, changing environments, diverse instructions, and evolving spatial
relationships, all without requiring retraining.

Existing methods for embodied visual tracking (EVT) [Luo et al.[|(2019)); Zhong et al.| (2019b; 2021}
2023) primarily focus on static or predefined goals, such as maintaining fixed distances or angles
relative to a target. Reinforcement learning (RL)-based models, for example, utilize the distance
from the target to the expected location (usually at the center of the view) as the reward to train
tracking policy in an end-to-end manner |Luo et al.|(2019); Zhong et al.|(2019b;|2021)) or based on
vision foundation models Zhong et al.| (2023} |2024). Additionally, systems like Vision-Language-
Action Models (VLA) and general-purpose large models (e.g., LLMs and VLMs) have demonstrated
improved instruction comprehension capabilities due to their large-scale parameterization.

Despite these advancements, existing EVT models face significant limitations when applied to
UC-EVT tasks: 1) Limited Comprehension and Flexibility in RL-based EVT: RL-based EVT
models struggle to handle complex user instructions and exhibit poor transferability across different
environments and embodiments. Their rigid tracking strategies (e.g., fixed distances or angles) hinder
adaptability to user-centric instructions. 2) Limited Generalization of VLA Models: VLA models
rely heavily on large-scale annotated data, making them ill-suited for unseen conditions such as novel
environments, instructions, targets, or agents. 3) Inference Latency in Large Models: While large
models exhibit strong capabilities, their inference speeds (typically 0.5-3 FPS) are insufficient for
real-time tracking, resulting in frequent target loss during fast movements.

To address these limitations, we propose a Hierarchical Instruction-aware Embodied Visual
Tracking (HIEVT) agent that integrates instruction comprehension models with adaptive tracking
policies and introduces intermediate spatial goals to bridge human instructions and agent behavior.
Specifically, HIEVT introduces an LLM-based Semantic-Spatial Goal Aligner, which translates
diverse human instructions into spatial goals. This is followed by the RL-Based Adaptive Goal-
Aligned Policy, a general offline policy enabling the agent to efficiently approximate the spatial goal
and achieve precise tracking.

Our contributions are summarized as follows: 1) We introduce the User-Centric Embodied Visual
Tracking (UC-EVT) task, which lays the foundation for user-centric human-robot interactions,
enabling robots to follow users and provide personalized services. 2) We propose a novel Hierarchical
Instruction-aware EVT (HIEVT) model that effectively addresses the limitations of state-of-the-art
(SOTA) models while preserving their advantages. 3) We benchmark UC-EVT by implementing
competitive baselines including classical control, RL-based policies, and state-of-the-art VLA/VLM
models. In addition, we prepared over 1.7 million annotated trajectories and conducted extensive
evaluations across 10 challenging virtual environments. 4) Our extensive experiments in simulation
and real-world highlight UC-EVT challenges: dynamic instruction adaptation, generalization ability,
and real-time responsiveness. HIEVT addresses these while showing UC-EVT as a step toward
embodied intelligence in human-centered environments.

2 RELATED WORKS

Embodied Visual Tracking (EVT) is a foundational skill of embodied Al. Early EVT systems
Yoshimi et al.| (2006)); |Ye et al.| (2023)); Miiller & Koltun| (2021) often relied on passive visual
feature extractors combined with handcrafted controllers such as PID or Kalman filters to drive the
robot toward the target. While these approaches achieved basic tracking functionality, they lacked
robustness in cluttered or dynamic environments and could not flexibly adapt to different tracking
objectives or user demands. To improve robustness and generalisation in complex environments,
recent EVT research has shifted toward reinforcement learning (RL)-based method |[Zhong et al.
(2019a; 2021)). Recent work Zhong et al.| (2024)) combines the visual foundation model |Cheng et al.
(2023a)) and offline reinforcement learning to improve the training efficiency and generalization of
the tracker. However, these methods train the agent to track at a specific relative position to the target.
If we need to change the goal, fine-tuning the policy network is required to adapt to new goals. This
limits the flexibility and applicability of the agents across varied scenarios and tasks.

Instruction-aware Robot is developed to complete tasks by understanding and following human
instructions, bridging the gap between high-level human intentions and low-level robotic actions.
Early works such as Touchdown |Chen et al.| (2019) and R2R |Anderson et al.[| (2018) focused on

Under review as a conference paper at ICLR 2026

vision-language navigation in real-world environments. Subsequent efforts leveraged large pre-
trained models to fuse multimodal instructions and enhance generalization. For instance, PALM-
E Driess et al.| (2023) builds on a large language model for embodied reasoning, AVLEN |Paul
et al.| (2022) incorporates audio and natural language in 3D navigation, and VIMA [Jiang et al.
(2022) uses multimodal prompts for systematic generalization. While recent VLA paradigm like
TrackVLA [Wang et al.| (2025)shows that VL As can be extended to EVT, it still exhibits limited
generalization to unseen target categories and various dynamics. Furthermore, these models cannot
accurately follow fine-grained user instructions that require precise spatial placement of the target,
which is essential in UC-EVT. These limitations highlight the need for a hierarchical framework that
integrates the reasoning strength of large models with the real-time responsiveness of lightweight
control policies.

3 HIERARCHICAL INSTRUCTION-AWARE EMBODIED VISUAL TRACKING

In this section, we present the design insight of our proposed model, Hierarchical Instruction-aware
Embodied Visual Tracking (HIEVT) . The core challenge of the User-Centric Embodied Visual
Tracking (UC-EVT) is the giant gap from the user instruction Z; and the actual state S; of the tracker.
Moreover, the instruction Z; is given by a user-friendly mode rather than an agent-friendly mode. To
bridge the gap, it is necessary to import an intermediate goal G;,,¢..-(t) to bridge the user’s instruction
and the agent’s state. This decomposition allows for user instruction understanding as well as efficient
agent decision-making, formulated as:

D(Ita St) ~ D(Ita gintcr (t)) + D(ginter (t)a St)) (1)

Semantic-Spatial Goal Aligner Adaptive Goal-Aligned Policy

where D(Z, Ginter(t)) represents the distance between the user instruction and the intermediate
goal, and D(Gipter(t), St)) represents the distance between the intermediate goal and the agent state.
We then detail the design of the key components, LLM-based Semantic-Spatial Goal Aligner and
RL-based Adaptive Goal-Aligned Policy, the entire model structure is illustrated in Figure [2] At
inference time, our system adopts asynchronous processing between goal generation and policy
execution. When the Semantic-Spatial Goal Aligner receives a new instruction, it may incur variable
latency due to LLM inference or communication delays. Rather than blocking the control loop, the
system maintains a continuous and stable tracking by using the recent available spatial goal G,. This
design ensures the adaptive goal-aligned policy runs smoothly without pausing(up to 50 fps with
lightweight VFM configuration), while the goal aligner operates at its own pace. This asynchronous
architecture decouples slow semantic reasoning from fast control, enabling both rich instruction
understanding and real-time control.

3.1 LLM-BASED SEMANTIC-SPATIAL GOAL ALIGNER

The Semantic-Spatial Goal Aligner (SSGA) is the fundamental component responsible for translating
the user instruction Z; to a spatial goal G; ¢, (t). Given the input user instruction Z;, the SSGA outputs
an intermediate goal G;,te(t) = (Ct, Gt), where C; is the target category, and G} = [, Y, Wi, Iy
is a spatial goal, representing the expected target’s spatial position in the bounding box format. The
SSGA consists of three core components:

Semantic Parsing The first step in SSGA is to interpret the user instruction Z; and extract critical
information for goal specification: the target category C;. This process is performed by the semantic
parser C; = Psem (Zt), where C; € T indicates the target attributes. For instance, given the instruction
“Get closer to the blue car” the semantic parser identifies C; = {“blue car"}.

Spatial-Goal Generation To resolve ambiguities in user instructions, our parser grounds its inter-
pretation of input instruction Z; in both linguistic context and visual features. This dual-grounding
approach enables robust semantic alignment between natural language commands and environmental
observations. Through this process, the parser generates a spatial goal representation G that accu-
rately reflects the intended spatial directives. This is achieved using a chain-of-thought (COT)-based
reasoning mechanism |[Wei et al.| (2022), which incrementally adjusts the current target’s spatial
representation GG;. The spatial goal generation process is formulated as:

G; = Gy + AGy, Gy = B(WFM(O4,Cy)) 2)

Under review as a conference paper at ICLR 2026

User Instruction (High-Level)
“‘Please move closer to the

man, keeping him on_your Semantic Parsing Spatial-Goal Generation Memory-Aug. Goal Correction
front right.” Question: What can I see? Question: How to adjust the Question: What does the target in
What’s the target category? goal? What’s the adjustment? Memory Buffer look like?
Ce = Poem(Ie) Gi = Ge + AG, Grety = R(It, M)

Intermediate Spatial Goal
Reflecting move closer,
c front right Instruction.

G Asynchronous Updating

Memory

Target: man Buffer he—1,¢e1
v
Goal State Recurrent .
VFM Aligner | : Policy = l}_ﬁte'a?"
. ' Reward ' hgcp
Current State 4 Spatial Goal ! Prediction ! Angular
Tracker Observation (Low-Level) RL-based Adaptive Goal-Aligned Policy |

Figure 2: Overview of the Hierarchical Instruction-aware Embodied Visual Tracker (HIEVT). Given a
natural language instruction and environmental observation, our system first processes the instruction
through the LLM-based Semantic-Spatial Goal Aligner including Semantic Parsing, Spatial-Goal
Generation, and Memory-Augmented Goal Correction. This produces a target attribute and a
bounding box format spatial goal. The RL-based Adaptive Goal-Aligned Policy then combines this
goal with the Visual Foundation Model (VFEM) processed observation, feeds them into the following
policy network. The Goal State Aligner and Recurrent Policy then generate appropriate action signals
to maintain the desired spatial relationship with the target.

where VFM (O, C;) uses Vision Foundation Models (VFMs) to extract text-conditioned segmen-
tation mask with target-highlighted format given the target category name |Zhong et al.| (2024)),
B(+) detects target’s bounding box from segmentation mask by filtering the target’s corresponding
mask color (white color), AG; = [Axy, Ay, Awy, Ahy] represents the adjustment to the current
target’s spatial representation. The adjustment is determined by AG; = Foor(Z:, Gt), where Foor
represents a chain-of-thought reasoning process implemented through a large language models. This
reasoning process interprets how the spatial directive in instruction Z; should modify the current
observed target’s spatial representation G, producing adjustment parameters AG; for both position
and size. To guide this interpretation, we developed a system prompt that structures the model’s
reasoning, ensuring it correctly analyzes spatial relationships (provided in supplementary materi-
als) and translates natural language instructions into geometric transformations. The COT-based
approach ensures that the bounding box adjustments are interpretable and aligned with the user’s
intent, allowing for dynamic and context-aware reasoning about the spatial relationship.

Memory-Augmented Goal Correction After generating the spatial goal G, the SSGA applies
a correction step using a memory-augmented generation (RAG) mechanism. This step ensures
that the generated bounding box is consistent with trajectory priors stored in a memory buffer M.
The RAG module retrieves similar instructions and their corresponding bounding boxes from M,
i.e., Gretr = R(Zy, M), where R is the retrieval function (i.e. Cosine similarity). The retrieved
spatial goal G'r.¢, is then used for determining if the generated goal G satisfies the target’s physical
constraints (e.g., aspect ratio or perspective effect). If conflicts arise, specifically, the Intersection
over Union (IoU) |Leal-Taixé et al.| (2015)); |Cordts et al.| (2016)) value is lower than a threshold, the
historical mask is used as the final spatial goal G :

. H IoU (G}, Gretr) > 0.5
— to ts
Gt a { Greer, 10U (GraGretr) <05 3)

This correction mechanism combines the adaptability of COT-based reasoning with the consistency
of target physical constraints, ensuring robust and accurate bounding box predictions.

3.2 RL-BASED ADAPTIVE GOAL-ALIGNED POLICY

The proposed Adaptive Goal-Aligned Policy (AGAP) module bridges the intermediate goal G;per (1)
and the user implied state S, ensuring precise alignment of the agent’s actions with user instructions.

Under review as a conference paper at ICLR 2026

This alignment is achieved by an adaptive motion policy which dynamically adjust the agent’s
movement based on the observation O; towards the spatial position indicated by G;nze(t). The
adaptive policy is optimized using offline reinforcement learning with an auxiliary reward regression
task to facilitate the alignment, formulated as: 7(a; | G*, O;). Below, we elaborate on the key
components of this module.

Architechture The policy consists of two main components: 1) Goal-State Aligner contains mul-
tiple convolutional neural network (CNN) layers, serving as the feature extraction and alignment
module, encoding the VFM pre-processed observations and the spatial goal representation at image-
level space. This aligner outputs a latent aligned representation. Then, a reward prediction layer
follows the aligner, serving as the auxiliary task to improve the aligned ability in a self-supervised
manner. 2) Recurrent Policy Network consists of a long short-term memory (LSTM) network that
models the temporal dynamics of the tracking process to enhance the spatial-temporal consistency of
the representation and an actor network V. The latent representation from the Goal-state aligner was
fed to the LSTM network, followed by the Actor Network to generate motion control action a;. More
details about the networks are in supplementary materials.

Goal-conditioned Offline Policy Optimization For Adaptive Goal-Aligned Policy (AGAP), our
aim is to train a policy that can adapt to diverse spatial goals and achieve precise and fast alignment.
Traditional Online RL methods are typically designed for a single-goal objective, and require a
huge amount of trial-and-error to converge. Therefore, we use the offline reinforcement learning
(Offline-RL) paradigm to train the goal-conditioned policy, considering the training efficiency and
dataset diversity’s contribution to the overall performance. Meanwhile, we introduce an auxiliary
regression task to improve the alignment ability. Below, we detail the reward design, offline-RL
training objectives and the auxiliary regression task.

Training Data Preparation. We extend the data collection procedure in [Zhong et al.| (2024)) to
incorporate a broader range of goal conditions, as the generalization capabilities of our frame-
work critically depend on trajectory diversity. Our dataset D consists of trajectories 7; =
(St, O, at, 14, O 11, Spr1, G,{ mal), where ¢ is the time step, S; and O, represent the tracker’s state
and observation, a; and r; denote the action and IoU-based reward, and G{ inal specifies the spatial
goal. For each episode, we randomly sample goals within the tracker’s field of view to ensure diverse
spatial configurations, with relative distances p; € (200, pmax) and angles 0; € (—Omax/2, Omax/2)- A
state-based PID controller with injected noise perturbations generates the goal-conditioned tracking
trajectories, enhancing variability and robustness. The final training dataset comprises 10 million
steps.

loU-based Training Reward. The reward function ry is designed to guide the policy move toward
aligning O, with G{ ™! At each time step ¢, the reward is defined as:

Ty = IOU(G{inal, B(V.FM(Ota Ct)))ﬂ (4)

where higher values of Intersection over Union (IoU) indicate the agent is moving towards better
alignment in the 2D image.

Offline Reinforcement Learning. In this paper, we extend from the standard offline RL algorithms,
Conservative Q-Learning (CQL) [Kumar et al.|(2020), adapting to goal-conditioned setting. Specifi-
callu, we use two critic networks Qé, Qg to estimate goal-conditioned Q values. The Q-functions are
updated by minimizing the following objective: Ly = Zgzl Lg, where the objective consists of the
sum of the losses from all sampled goals in the batch, with each goal’s loss computed according to
the following formula:

Lg =E; [IOg Z exp Qé(& a’) - Ea~ﬂ¢(a|s) [Qfo(& (l)]

1)
+ §]Es,a,s’ [(th(s’ a) - (T + VEG/NW¢ [Qmin(slv a,) - alog 7r¢(a/ | SI)D)Q] (5)

where 6 and ¢ are network parameters, « is the entropy regularization coefficient which controls the
degree of exploration. i € {1, 2}, Qumin = minie{m}Qé, <y is the discount factor, 7y is the learned
policy that derived from the actor network V. Note that the state-goal aligner and the recurrent
policy are jointly optimized by the RL loss.

Under review as a conference paper at ICLR 2026

Auxiliary Reward Regression. For the goal-state aligner, we introduce an auxiliary reward regression
task during training to facilitate the alignment between the goal and state representations. This task
encourages the agent to recognize high-reward states associated with different goals, effectively
steering the learned action policy toward these states. Specifically, we incorporate a fully connected
layer following the goal-state aligner, predicting the alignment reward 7, the alignment loss is
computed using Lz = MSE(r, 7,), where MSE denotes the mean squared error, the gradients are
only updated to the goal-state aligner. Note that, the output of the fully connected layer will not be
fed to the recurrent policy network, which will not affect inference stage.

4 EXPERIMENT

In this section, we conduct comprehensive experiments in virtual environments and real-world
scenarios, aiming to address the following five questions: Q1) Can HIEVT outperform state-of-the-art
models on tracking performance, robustness, and generalizability? Q2) How does the adjusting
precision and efficiency of HIEVT when there is a new instruction? Q3) How do HIEVT and baselines
perform under different target moving speeds and dynamic target category switches? Q4) How do
key components of HIEVT affect its performance? Q5) How does HIEVT perform in real world?

4.1 EXPERIMENTAL SETUP

Environments. We evaluate our approach across 10 virtual environments based on UnrealCV |Qiu
et al.| (2017)), including FlexibleRoom |Zhong et al.| (2024)) for training, and rest for testing, as shown
in Figure E} These environments span urban, confined, industrial, and architectural settings with
varied challenges. Please refer to the Appendix [D]for detailed introduction of these environments.

Instruction Set Creation. To evaluate UC-EVT, we construct an instruction set that includes
sequential instructions and target-switch instructions. Specific details can be found in Appendix [D.4]
For sequential instructions, we parse the comma-separated sub-instructions and input each subsequent
sub-instruction at 120-step intervals during trajectory execution, achieving continuous instruction
input throughout the trajectory. For target-switch instructions, since animals perform random walks
in the environment, we utilize the environment’s absolute information to detect when animals enter
the field of view and trigger the corresponding instruction input accordingly.

Evaluation Metric. Our ultimate goal is to realise the flexibility and versatility of embodied visual
tracking and enable more natural human-robot interactions through our hierarchical aligned agents.
Therefore, we keep the consistency with the task definition, assessing our method’s ability given
diverse textual instructions. In the experiment, we call the UnrealCV API to obtain the tracker’s
real-time spatial position (p;, 6;) and calculate the reward corresponding to different instructions,

—p* 9, —0* . .
formulated as: r([;,s;) = 1 — loi=pi] ﬁ, where (pmaz; Omas) are the maximum distance

Pmazx

and angle within the tracker’s field of view, (p;, 8;) are spatial goal corresponding to Instruction ;.
We follow the evaluation setting in previous works [Zhong et al.| (2023 2024), setting the episode
length to 500 steps with corresponding termination conditions. We use three evaluation metrics: 1)
Average Accumulated Reward (AR) calculates the average accumulated reward over 50 episodes,
indicating overall performance in instruction-behavior alignment; 2) Average Episode Length (EL)
is the average number of steps across 50 episodes, reflecting long-term tracking performance. 3)
Success Rate (SR) calculates the percentage of episodes reaching 500 steps in 50 episodes.

Baselines. To evaluate the tracking performance of our method under instruction settings, we compare
it with six representative baselines from classical control, reinforcement learning, and large-model
paradigms: (i) Mask-PID: A traditional two-stage tracking paradigm using target masks and a PID
controller for spatial goal alignment. (ii) Ensembled RL Policy: An extension of the RL-based EVT
model (ECCV24 [Zhong et al.| (2024))), where multiple policies are trained for different spatial goals
and evaluated using regex-based goal matching. (iii) Word2Vec+RL: A variant of Ensembled RL that
jointly trains an instruction encoder with a policy network using pretrained Word2Vec embeddings
Mikolov et al.|(2013) . (iv) GPT-40: A model that generates discrete actions from observed images
and natural language instructions through multimodal reasoning. (v) TrackVLA: A state-of-the-art
VLA-based tracker [Wang et al.|(2025)) that adapts large vision-language-action models for embodied
visual tracking tasks.Details of these baselines are provided in the Appendix

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison across ten environments using sequential instructions as input.
Each cell reports Average Accumulated Reward (AR), Average Episode Length (EL), and Success

Rate (SR) in the format AR/EL/SR.

‘ Mask-PID Ensembled RL ‘ Word2Vec+RL ‘ GPT-40 TrackVLA ‘ Ours
(real-time) (real-time) (real-time) (<1 FPS) (8 FPS) (real-time)
Environment | ART ELT SRT | ART ELT SRT | ART ELf SRT | ARf EL{ SRt | ARt ELT SRT | AR ELT SRf
FlexibleRoom 154 365 0.50 183 330 0.36 28 357 042 15 194 0.10 57 500 1.00 278 500 1.00
Suburb 124 386 036 126 294 022 182 0.00 14 241 020 -46 306 0.30 166 445 0.72
Supermarket 175 298 0.26 114 393 0.38 -6 186 0.00 54 286 0.16 35 337 048 212 422 0.64
Parking Lot 112 356 0.38 169 301 042 2 192 0.00 23 286 0.30 70 441 0.80 169 491 093
Old Factory 80 309 0.30 64 334 036 -15 183 0.00 5 297 0.32 22 390 0.60 128 469 0.84
Container Yard 140 369 042 27 327 024 -28 121 0.00 -43 149 0.00 -43 398 0.60 156 469 0.76
Desert Ruins 128 297 0.26 56 368 0.34 9 182 0.00 -5 249 0.26 56 421 0.72 148 434 0.74
Brass Garden 120 302 038 -8 348 0.34 -6 142 0.00 3 243 0.18 -1 324 044 126 425 0.72
Old Town 73 305 0.32 14 35 032 -12 196 0.00 29 304 0.28 -133 247 0.16 85 433 0.64
Roof City 64 289 034 19 322 038 -8 173 0.00 18 256 0.20 -60 301 036 8 400 0.58
Average (Mean) | 117.0 327.6 0.35 764 337. 0.34 -4.1 191 0.04 11.3 250 0.20 43 367 0.55 1554 448.8 0.76

Average (Std) +34.0 +34.9 £0.07 | +64.1 £28.5 +0.06

+14.2 £59.6 £0.13 | £23.8 £46.1 £0.09 | £61.7 £72.7 +£0.24 | £54.8 +30.6 +0.13

Figure 3: Pixel-level distance between target cen- Table 2: Speed robustness analysis in Flexible-
ter and goal center across time steps. The spike Room. Values: AR/EL/SR. Only our method main-
at step #101 represents a goal shift instruction, tains high success rates at high speeds (SR=0.84 at
followed by rapid corrections (steps #107, #112) 2.0 m/s) while baselines show severe degradation.
as our agent adjusts to the new spatial goal.

The pixel-level distance from target center to goal center Method

\ Maximum moving speed of the target

#95 #101 A
,

Distance(pixel)

#107 #112

‘ 0.5 m/s 1.0 m/s 2.0 m/s

Word2Vec+RL | 28/357/0.42 21/310/0.36 -56/224/0.12

| o peon g o ot v e Mask-PID 154/365/0.50 -5/330/0.44 -23/125/0.02
m 1'!!’? Ensembled RL | 183/330/0.36 187/313/0.32 -183/208/0.10

GPT-40 15/194/0.10 4/229/0.08 -119/122/0.00
TrackVLA 57/500/1.00 19/431/0.70 -2/287/0.30
Ours 278/500/1.00 274/496/0.98 145/463/0.84

50 7 80 % 100 110 120 130

Step

Table 3: Generalization to different
target. Four useen animals were intro-
duced to FlexibleRoom. Results with
dynamic target switching

Method | AR EL SR

Mask-based PID | 152 364 0.52
Ensembled Policy | 76 210 0.22
Word2Vec+RL -48 92 0.00

TrackVLA 122 312 0.20
GPT-40 18 186 0.08
Ours 234 435 0.82

4.2 MAIN RESULTS (Q1)

Table 4: Real-world evaluation of UC-EVT perfor-
mance on a target person walking in S-patterns for 60
seconds, starting from three different initial distances
(1.5m, 2.0m, 3.0m). We report average loU between the
current and desired bounding box positions and success
rate over three trials per distance.

Initial Distance | Avg. IoU | Success Rate

1.5m 0.68 +0.04 0.86
2.0m 0.78 £ 0.05 1.00
3.0m 0.72 £0.07 0.98

Overall Performance As shown in Table [#.1] our method achieves the best performance in the
FlexibleRoom environment, with a perfect success rate and the highest reward (AR = 278). While
TrackVLA also attains a success rate of 1.0, its reward is much lower (AR = 57), reflecting weak
alignment despite target retention. Traditional baselines such as Mask-PID , Ensembled RL , and
Word2Vec+RL achieve moderate episode lengths but fail to ensure dynamic intention alignment.
In contrast, large-model approaches (GPT-40) suffer from low efficiency and poor responsiveness,

leading to significantly degraded tracking.

Generalization Across Environments More importantly, our approach maintains robust perfor-
mance across all nine unseen environments, with success rates ranging from 0.58 (Roof City) to

Under review as a conference paper at ICLR 2026

0.93 (Parking Lot) and episode lengths consistently exceeding 400 steps. This demonstrates strong
environmental generalization, in sharp contrast to baselines that degrade severely in unseen settings.
Although TrackVLA achieves reasonable tracking in certain environments (e.g., FlexilbeRoom,
ParkinglLot and Desert Ruins), its performance varies drastically across scenes and reveals weak
cross-environment generalization, further underscoring the robustness of HIEVT.

Baseline Limitations The comparative analysis reveals distinct failure modes across baselines:
(1) Mask-PID benefits from using absolute ground-truth annotations, showing relatively smaller
degradation across different environments. However, it still lags far behind HIEVT due to the inherent
limitations of regex parsing and PID control. In particular, when the tracking distance or goal changes,
the intrinsic oscillatory behavior of PID often causes the target to drift out of view, especially during
rapid switches near the frame boundary. (2) Ensemble RL preserves the strengths of RL-based
methods (SOTA in ECCV’24), showing good generalization and stability when tracking fixed targets.
However, its main limitation lies in handling dynamic goal switches: frequent policy loading incurs
inference delays, and temporal feature inconsistency across different policies leads to misalignment
between instructions and behavior. (3) GPT-40, despite strong reasoning capabilities, is constrained
by extreme inference latency (<1 FPS), resulting in a disastrous performance. (4) TrackVLA, while
performing reasonably well in human-centered scenarios, lacks explicit spatial goal representations
and shows poor robustness in generalization. It fails to adapt to unseen target categories (Table 3]
and quickly degrades under higher target speeds (Table [2), underscoring its limited applicability to
UC-EVT;

Key Advantages Our approach’s superior performance stems from its spatial goal representation
serving as an intermediate abstraction between language and action. This design enables consistent
tracking across diverse environments without requiring environment-specific adaptation, while main-
taining real-time performance (50 FPS). The results demonstrate that our framework successfully
bridges the gap between natural language instructions and precise spatial tracking behaviors in
dynamic, real-world scenarios.

4.3 ADAPTABILITY OF THE GOAL-ALIGNED POLICY (Q2)

Precise and Fast Alignment. To demonstrate HIAEVT’s precise and efficient adaptation to dynam-
ically changed instructions, we visualised a goal-switch case and recorded the pixel-level deviation in
real-world deployment. for quality analysis, as shown in Figure [3] When the goal changes at step
#101, our system responds with remarkable speed—reducing the pixel distance from 67 to 24 pixels
within just 6 steps (#107) and achieving near-perfect alignment (2 pixels) by step #112. This repre-
sents complete adaptation within 220ms of real-time operation. The system maintains this precision
through step #127 despite continued target movement, showcasing both initial responsiveness and
sustained tracking accuracy. Table [2]further validates this capability across varying target speeds,
with our method maintaining a 0.84 success rate even at 2.0 m/s while all baselines fail (0.00-0.30
success rates).

Real-time inference challenges (Q3) We tested system robustness by increasing target speeds
from 0.5m/s to 2.0m/s (Table . This experiment reveals a critical real-world challenge: mak-
ing decisions under real-time constraints. Large-model based methods (TrackVLA, GPT-40) fail
completely at higher speeds (0.30 SR at 2.0m/s) due to inference latency (8 FPS, <1 FPS), while
conventional approaches (PID, Ensembled RL) degrade significantly (0.50—0.02 SR, 0.36—0.10
SR). In contrast, our method maintains a high success rate (0.84 SR) even at 2.0m/s. This demon-
strates our hierarchical framework successfully balances semantic understanding with operational
efficiency—a crucial capability for real-world deployment where targets move at unpredictable speeds
and instructions require immediate responses.

Adaption to dynamic unseen target switches (Q3). We further evaluate the ability of baseline meth-
ods to handle dynamic target switching when unseen target appear in the environment. Specifically,
four animals (cow, dog, leopard, horse) were introduced in the FlexibleRoom, and whenever a new
animal entered the view, we call the corresponding target-switching instruction (Appendix Table [6).
This setting simultaneously tests both instruction comprehension and cross-category generalization.
As shown in Table 3] most baselines experience a sharp performance drop under target switches. Only
HIEVT and Mask-PID maintain relatively stable performance, with HIEVT achieving the highest

Under review as a conference paper at ICLR 2026

Table 5: Ablation study and model variant Figure 4: The ablation of memory buffer size.

performance comparison in FlexibleRoom

environment. Each cell shows average re- 300

ward/episode length/success rate. 950 /
Method AR EL SR gAY, |
Ours (GPT-40) 274 496 0.98 % o0 bo 1
Ours (Gemma3-27B) 230 492 0.98 5)
Ours (Gemma3-4B) 179 484 0.94 2 1004
Ours (Gemma3-1B) 144 448 0.86 &
w/o spatial goal(Vector) | 27 487 0.46 501
w/o spatial goal (CLIP) | 102 244 0.24 ol * v
W/O reward regresslon 16 378 0.46 "] —%— Ours—O— Mask-PID—A— Ensembled RL—¥— GPT-40—— TrackVLA
w/o I0U-based reward | -1 341 0.42 0 100 200 300 400 500

Buffer Size

success rate (82%). Although TrackVLA performs well when tracking humans, its success rate drops
drastically on unseen animal categories, reflecting weak cross-category generalization. These results
highlight the difficulty of UC-EVT and the effectiveness of HIEVT in handling dynamic, multi-target
scenarios.

4.4 ABLATION STUDIES (Q4)

We conduct ablation studies (Table[5) to verify each component’s contribution. Our findings reveal:
1) Goal representation: Vector-based goals maintain reasonable episode lengths but limit precise
spatial strategy learning. CLIP-encoded text goals perform poorly due to CLIP’s limited semantic-
visual aligning capabilities. 2)Training objectives: Removing reward regression or IoU-based
rewards significantly decreases performance during goal transitions, demonstrating their critical role
in maintaining dynamic adaptability. 3) LLM scaling: While larger models (GPT-40 vs. Gemma3-
27B) generally provide better instruction-goal alignment, even smaller models (Gemma3-1B/4B)
achieve strong results, indicating our framework’s efficiency across computational constraints. 4)
Memory-Augmented Goal Correction: We further analyze the impact of memory buffer size,
which accumulates recent trajectory information to refine LLM-generated spatial goals. As shown in
Figure 4] larger buffers consistently improve average reward. This demonstrates that Goal Correction
effectively adapts high-level goal expectations to the target’s actual spatial morphology and dynamics,
yielding more accurate and stable tracking.

4.5 RESULTS ON REAL-WORLD ENVIRONMENTS (Q5)

To demonstrate the practical applicability and robustness of our goal-behavior alignment framework,
we deploy the agent on a mobile wheel robot to handle real-world variability and dynamically adapt
to human instructions, the deployment detail and more video clips are available in Appendix [I|

Quantitative Analysis. Except the quality analysis exhibited in Figure |3] We conducted additional
quantitative experiments in real-world settings. We evaluated tracking performance with the target
person walking in S-patterns for continuous 60 seconds from three different initial distances (1.5m,
2m, 3m). We measured IoU between the current and initial bounding box positions (target at the
desired location) across three trials per distance, shown in Table |4 For each setting, we repeated the
experiments five times to ensure robust and reliable performance metrics. These results demonstrate
that HIEVT excels in real-world robustness, generalization, and accuracy, successfully adapting to
real-world and varying initial conditions while maintaining high tracking performance.

5 CONCLUSION

In this paper, we introduced HIEVT, a hierarchical tracking agent for User-Centric Embodied Visual
Tracking that bridges the semantic-spatial gap in human-robot interaction. By decoupling language
understanding from motion control through intermediate spatial goals, our approach combines the
reasoning capabilities of large language models with the real-time performance demands of dynamic
tracking. Experimental results across ten diverse environments demonstrate substantial performance
advantages over existing methods, particularly in adaptability and generalization to unseen environ-
ments. Our successful real-world robot deployment validates that this hierarchical design effectively
balances sophisticated instruction understanding with operational efficiency, providing an elegant and
practical solution for user-guided spatial intelligence in embodied systems that scales with minimal
additional data requirements.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The authors have read and acknowledge adherence to the ICLR Code of Ethics. We address potential ethical
considerations related to our work below:

Potential Applications and Societal Impact: Our instruction-guided visual tracking method is designed for
robotic applications in controlled environments such as search and rescue, elderly care assistance, and automated
monitoring systems. We acknowledge that tracking technologies could potentially be misused for surveillance
purposes that may infringe on privacy rights. However, our work focuses on beneficial applications and we
encourage responsible deployment of such technologies with appropriate oversight and consent mechanisms.

Bias and Fairness: The virtual environments and synthetic data used in our experiments are designed to be
diverse in terms of scenes, lighting conditions, and target entities. However, we acknowledge that the simulated
environments may not fully capture the diversity of real-world scenarios and populations. Future work should
consider broader environmental and demographic diversity to ensure fair performance across different contexts.

Environmental Considerations: Our experiments require computational resources for training and evaluation.
We have made efforts to optimize our methods for computational efficiency and provide clear documentation to
enable reproducible research without unnecessary resource waste.

Research Integrity: All experimental results reported in this paper are obtained through rigorous experimen-
tation with proper statistical analysis. We provide comprehensive implementation details and will make our
code available for reproducibility. No conflicts of interest exist among the authors that could bias the research
outcomes.

Data and Code Availability: We commit to releasing our implementation code and experimental configurations
to support reproducible research. The virtual environments used are publicly available through the UnrealZoo
platform, ensuring transparency and accessibility for the research community.

The authors believe this work contributes positively to the advancement of embodied Al research while adhering
to ethical research practices and acknowledging potential societal implications of the developed technology.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we have made the following efforts and provide comprehensive
implementation details:

Source Code Availability: We provide complete source code including data collection
scripts, training implementations, network architectures and virtual environment down-
load through an anonymous repository https://anonymous.4open.science/r/
Hierarchical-Instruction—-aware—-Embodied-Visual-Tracking—7357/. The code-
base contains all necessary components to reproduce our experimental results, including hyperparameter
configurations and training procedures.

REFERENCES

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Siinderhauf, Ian Reid, Stephen Gould,
and Anton Van Den Hengel. Vision-and-language navigation: Interpreting visually-grounded navigation
instructions in real environments. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pp. 3674-3683, 2018.

Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. Touchdown: Natural language
navigation and spatial reasoning in visual street environments. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 12538-12547, 2019.

Ho Kei Cheng, Seoung Wug Oh, Brian Price, Alexander Schwing, and Joon-Young Lee. Tracking anything
with decoupled video segmentation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1316-1326, 2023a.

Yangming Cheng, Liulei Li, Yuanyou Xu, Xiaodi Li, Zongxin Yang, Wenguan Wang, and Yi Yang. Segment and
track anything. arXiv preprint arXiv:2305.06558, 2023b.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 3213-3223, 2016.

10

https://anonymous.4open.science/r/Hierarchical-Instruction-aware-Embodied-Visual-Tracking-7357/
https://anonymous.4open.science/r/Hierarchical-Instruction-aware-Embodied-Visual-Tracking-7357/

Under review as a conference paper at ICLR 2026

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal language model. In
International Conference on Machine Learning, pp. 8469-8488. PMLR, 2023.

Guy Hoffman, Tapomayukh Bhattacharjee, and Stefanos Nikolaidis. Inferring human intent and predicting
human action in human-robot collaboration. Annual Review of Control, Robotics, and Autonomous Systems,
7,2024.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yonggiang Dou, Yanjun Chen, Li Fei-Fei, Anima
Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with multimodal prompts. arXiv
preprint arXiv:2210.03094, 2(3):6, 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline reinforcement
learning. Advances in Neural Information Processing Systems, 33:1179-1191, 2020.

Laura Leal-Taixé, Anton Milan, Ian Reid, Stefan Roth, and Konrad Schindler. Motchallenge 2015: Towards a
benchmark for multi-target tracking. arXiv preprint arXiv:1504.01942, 2015.

Mengqi Lei, Siqi Li, Yihong Wu, Han Hu, You Zhou, Xinhu Zheng, Guiguang Ding, Shaoyi Du, Zongze Wu,
and Yue Gao. Yolov13: Real-time object detection with hypergraph-enhanced adaptive visual perception.
arXiv preprint arXiv:2506.17733, 2025.

Shuo Li, Kirsty Milligan, Phil Blythe, Yanghanzi Zhang, Simon Edwards, Nic Palmarini, Lynne Corner, Yanjie
Ji, Fan Zhang, and Anil Namdeo. Exploring the role of human-following robots in supporting the mobility
and wellbeing of older people. Scientific reports, 13(1):6512, 2023.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang
Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for open-set object detection.
arXiv preprint arXiv:2303.05499, 2023.

Wenhan Luo, Peng Sun, Fangwei Zhong, Wei Liu, Tong Zhang, and Yizhou Wang. End-to-end active object
tracking and its real-world deployment via reinforcement learning. /EEE Transactions on Pattern Analysis
and Machine Intelligence, 2019.

Xiaoxuan Ma, Stephan Paul Kaufhold, Jiajun Su, Wentao Zhu, Jack Terwilliger, Andres Meza, Yixin Zhu,
Federico Rossano, and Yizhou Wang. ChimpACT: A longitudinal dataset for understanding chimpanzee
behaviors. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2023.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781, 2013.

Matthias Miiller and Vladlen Koltun. Openbot: Turning smartphones into robots. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pp. 9305-9311. IEEE, 2021.

Kelvin Olaiya, Giovanni Delnevo, Chiara Ceccarini, Chan-Tong Lam, Giovanni Pau, and Paola Salomoni.
Natural language and llms in human-robot interaction: Performance and challenges in a simulated setting. In
2025 7th International Congress on Human-Computer Interaction, Optimization and Robotic Applications
(ICHORA), pp. 1-8. IEEE, 2025.

Sudipta Paul, Amit Roy-Chowdhury, and Anoop Cherian. Avlen: Audio-visual-language embodied navigation
in 3d environments. Advances in Neural Information Processing Systems, 35:6236-6249, 2022.

Pablo Pueyo, Juan Dendarieta, Eduardo Montijano, Ana Cristina Murillo, and Mac Schwager. Cinempc: A fully
autonomous drone cinematography system incorporating zoom, focus, pose, and scene composition. /EEE
Transactions on Robotics, 40:1740-1757, 2024.

Weichao Qiu, Fangwei Zhong, Yi Zhang, Siyuan Qiao, Zihao Xiao, Tae Soo Kim, Yizhou Wang, and Alan Yuille.
Unrealcv: Virtual worlds for computer vision. In Proceedings of the 2017 ACM on Multimedia Conference,
pp. 1221-1224, 2017.

Nguyen Van Toan, Minh Do Hoang, Phan Bui Khoi, and Soo-Yeong Yi. The human-following strategy for
mobile robots in mixed environments. Robotics and Autonomous Systems, 160:104317, 2023.

Shaoan Wang, Jiazhao Zhang, Minghan Li, Jiahang Liu, Anqi Li, Kui Wu, Fangwei Zhong, Junzhi Yu, Zhizheng

Zhang, and He Wang. Trackvla: Embodied visual tracking in the wild. arXiv preprint arXiv:2505.23189,
2025.

11

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824-24837, 2022.

Xinyi Wu, Haohong Wang, and Aggelos K Katsaggelos. Automatic camera movement generation with enhanced
immersion for virtual cinematography. IEEE Transactions on Multimedia, 2025.

Hanjing Ye, Jieting Zhao, Yaling Pan, Weinan Chen, Li He, and Hong Zhang. Robot person following under
partial occlusion. arXiv preprint arXiv:2302.02121, 2023.

Takashi Yoshimi, Manabu Nishiyama, Takafumi Sonoura, Hideichi Nakamoto, Seiji Tokura, Hirokazu Sato,
Fumio Ozaki, Nobuto Matsuhira, and Hiroshi Mizoguchi. Development of a person following robot with
vision based target detection. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 5286-5291. IEEE, 2006.

Libo Zhang, Junyuan Gao, Zhen Xiao, and Heng Fan. Animaltrack: A benchmark for multi-animal tracking in
the wild. International Journal of Computer Vision, 131(2):496-513, 2023.

Fangwei Zhong, Peng Sun, Wenhan Luo, Tingyun Yan, and Yizhou Wang. AD-VAT: An asymmetric dueling
mechanism for learning visual active tracking. In International Conference on Learning Representations,
2019a. URL https://openreview.net/forum?id=HkgYmhRIOKX,

Fangwei Zhong, Peng Sun, Wenhan Luo, Tingyun Yan, and Yizhou Wang. Ad-vat+: An asymmetric dueling
mechanism for learning and understanding visual active tracking. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43(5):1467-1482, 2019b.

Fangwei Zhong, Peng Sun, Wenhan Luo, Tingyun Yan, and Yizhou Wang. Towards distraction-robust active
visual tracking. In International Conference on Machine Learning, pp. 12782-12792. PMLR, 2021.

Fangwei Zhong, Xiao Bi, Yudi Zhang, Wei Zhang, and Yizhou Wang. Rspt: reconstruct surroundings and
predict trajectory for generalizable active object tracking. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 3705-3714, 2023.

Fangwei Zhong, Kui Wu, Hai Ci, Churan Wang, and Hao Chen. Empowering embodied visual tracking with
visual foundation models and offline 1l. In European Conference on Computer Vision, pp. 139-155. Springer,
2024.

Fangwei Zhong, Kui Wu, Churan Wang, Hao Chen, Hai Ci, Zhoujun Li, and Yizhou Wang. Unrealzoo: Enriching
photo-realistic virtual worlds for embodied ai. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2025. URL https://openreview.net/forum?id=vQly086Kn2,

Qinhong Zhou, Sunli Chen, Yisong Wang, Haozhe Xu, Weihua Du, Hongxin Zhang, Yilun Du, Joshua B.
Tenenbaum, and Chuang Gan. HAZARD challenge: Embodied decision making in dynamically changing
environments. In The Twelfth International Conference on Learning Representations, 2024. URL https |
//openreview.net/forum?id=n6mLhaBahdJl

Jie Zuo, Jun Huo, Xiling Xiao, Yanzhao Zhang, and Jian Huang. Human-robot coordination control for sit-to-
stand assistance in hemiparetic patients with supernumerary robotic leg. IEEE Transactions on Automation
Science and Engineering, 2025.

A APPENDIX

B USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models were used in this work solely as a writing assistance tool. Specifically, we utilized
LLMs for: Language polishing and refinement: Improving sentence structure, grammar, and overall readability
of the manuscript.

Important clarifications:
* LLMs were not involved in research ideation, methodology design, experimental design, or result

interpretation.

 All technical contributions, algorithmic innovations, and scientific insights are entirely the work of the
human authors.

* LLMs did not generate any substantial content, figures, tables, or technical descriptions.

12

https://openreview.net/forum?id=HkgYmhR9KX
https://openreview.net/forum?id=vQ1y086Kn2
https://openreview.net/forum?id=n6mLhaBahJ
https://openreview.net/forum?id=n6mLhaBahJ

Under review as a conference paper at ICLR 2026

* The research direction, experimental methodology, and all conclusions were independently developed
by the authors.

* LLM assistance was limited to linguistic improvements of already-written content, with all technical
and scientific content remaining unchanged.

The role of LLMs in this work was purely editorial and did not contribute to the research contributions or
scientific merit of the paper.

C PRELIMINARIES

Problem Definition. User-Centric Embodied Visual Tracking (UC-EVT) starts with an initial user instruction
and a target. The tracker then attempts to track the target immediately by following the user’s instructions. The
main components of this problem are outlined as follows:

.

User Instruction. The user initially provides an instruction Zy, which serves as the starting command for the
tracking agent. At any subsequent time step ¢, the user can issue a new instruction Z; to update the agent’s
behavior.

Tracking State. The tracking agent’s state at time ¢, denoted as s, is represented by the relative distance p;
and the relative angle 6; with respect to the target. Specifically, the tracking state is given as: St = (p¢, 0%).

Agent Action. At each time step ¢, the tracking agent executes an action a, to adjust its position and orientation
in order to minimize the discrepancy between the current tracking state and the user’s instruction.

* Environment Transferring. To ensure applicability to real-world scenarios, the tracker should be tested
in unseen environments. This setup is designed to test the generalization and transferability of the tracking
system.

Objective Function. The goal of UC-EVT is to minimize the discrepancy between the user instruction Z;
and the tracking state s; throughout the entire tracking period 7". This discrepancy is measured using a distance
function D(Z;, s¢). The objective function is defined as min 3", D(Zs, s¢), where D(Z, s;) quantifies the
difference between the user instruction Z; and the tracking state s; at each time step ¢. The objective aims to
ensure that the tracking agent follows the user’s instructions as closely as possible over the entire tracking period
(episode).

D VIRTUAL ENVIRONMENT

Our experiments were conducted across 10 diverse virtual environments built using Unreal Engine and integrating
UnrealCV |Qiu et al.|(2017) for programmatic control. These environments were developed based on UnrealZoo
Zhong et al.|(2025), aiming to evaluate different aspects of instruction-aware tracking under various challenging
conditions. Environment binary could be downloaded from https://modelscope.cn/datasets/
UnrealZoo/UnrealZoo—-UE4, and code are available in https://anonymous.4open.science/,
r/Hierarchical-Instruction-aware-Embodied-Visual-Tracking-7357/

D.1 TRAINING ENVIRONMENT

FlexibleRoom: This environment, adopted from previous work |Zhong et al.| (2023} |2021)), serves as our primary
training venue. It features an adaptable indoor space with programmable lighting conditions, furniture layouts,
and target navigation patterns. The environment’s built-in navigation system enables automatic generation of
diverse trajectories through randomly sampled destinations, which is particularly valuable for data collection in
goal-conditioned reinforcement learning. We extended this environment with customizable appearance factors
like texture, lighting, and furniture placement to enhance training diversity and reduce overfitting. The modular
design allows us to systematically control visual complexity while maintaining consistency in the underlying
spatial relationships.

D.2 TESTING ENVIRONMENTS

Suburb: A meticulously designed suburban neighborhood featuring irregular terrain, diverse vegetation, and
dynamic obstacles that simulate pedestrian and vehicular movement. This environment tests the agent’s ability to
maintain tracking across changing elevation, lighting conditions, and partial occlusions from trees and structures.
The open spaces combined with clustered obstacles create complex tracking scenarios with variable target
visibility.

Supermarket: An indoor retail environment with intricate item shelves, static displays, and narrow aisles that
closely mimic real-world shopping scenarios. The dense arrangement of objects creates numerous occlusion

13

https://modelscope.cn/datasets/UnrealZoo/UnrealZoo-UE4
https://modelscope.cn/datasets/UnrealZoo/UnrealZoo-UE4
https://anonymous.4open.science/r/Hierarchical-Instruction-aware-Embodied-Visual-Tracking-7357/
https://anonymous.4open.science/r/Hierarchical-Instruction-aware-Embodied-Visual-Tracking-7357/

Under review as a conference paper at ICLR 2026

Real-world
Augmented Photo-realistic Virtual Environments
Environments Deployment

Figure 5: The examples of virtual and real-world environments used in our experiments. The
FlexibleRoom environment is used for training data collection, featuring diverse augmentable factor.
the nine photo-realistic environments in the middle are used for quantitative evaluation, we also deploy
our proposed method on three real-world scenarios to validate the effectiveness and transferability.

challenges and confined spaces for navigation. This environment evaluates the system’s performance in crowded
indoor settings where the target frequently disappears behind shelves and reappears elsewhere.

Parking Lot: An outdoor environment featuring multiple parked vehicles under dim lighting conditions. The
uniform structure combined with low visibility areas and complex shadows tests the agent’s ability to discriminate
targets in visually challenging scenes. The environment transitions between open areas and confined spaces
between vehicles, requiring adaptive tracking strategies.

Old Factory: A deteriorated industrial setting characterized by numerous steel pillars, scattered wooden crates,
and uneven lighting. The environment features high ceilings with exposed structural elements and complex
shadows that create challenging visual conditions. The combination of open factory floor areas and cluttered
storage zones tests the agent’s ability to track across rapidly changing visual contexts.

Container Yard: A dynamic logistics environment featuring stacked shipping containers under changing
lighting conditions. The geometric regularity of the containers combined with dramatic lighting variations
creates challenging perception scenarios. The environment features narrow corridors between container stacks
that frequently occlude targets, testing the system’s ability to predict movement through temporary visual
obstruction.

Desert Ruins: An archaeological site set in harsh desert lighting conditions with scattered walls and pillars
creating a complex spatial layout. The environment combines open areas with confined passages and features
extreme lighting contrasts between shadow and direct sunlight. This tests the agent’s robustness to challenging
lighting conditions and irregular spatial structures.

Brass Gardens: A palace-style architectural complex featuring narrow corridors and multi-level platforms
connected by staircases. This environment uniquely tests non-planar tracking capabilities, as targets frequently
change elevation while moving through the environment. The ornate architectural elements and varying ceiling
heights create complex spatial reasoning challenges for maintaining consistent tracking.

Old Town: A European-style hillside village with interconnected indoor and outdoor spaces linked by narrow,
undulating stairways. This environment combines both open plazas and confined interior spaces, requiring
frequent adaptation to changing spatial contexts. The irregular layout with multiple elevation changes tests the
agent’s ability to maintain tracking continuity across diverse architectural spaces.

Roof City: A rooftop cityscape featuring protruding air ducts, walkways, and scattered debris that create a
maze-like environment. The constrained navigation paths combined with varying elevation levels test the agent’s
ability to predict movement in spatially restricted areas. The urban setting also introduces complex background
textures and challenging lighting conditions from reflective surfaces.

14

Under review as a conference paper at ICLR 2026

D.3 GOAL RANDOMIZATION

During training, we implement goal randomization within a continuous space, within the range of p* €
(200,600) and 6" € (—25°,25°). However, due to computational constraints, it is impractical to evaluate
all points within this continuous space. Therefore, for evaluation, we manually select four representative
discrete goal points as a goal list: [geiose, g Fars Gleft gm-ght}. In the experimental section, each random goal
switch is performed by sampling without replacement from this goal list. Four discrete goal are as follows:
Jelose = [200, 0°], representing a scenario where the target should remain close to the tracker and centered in its
field of view; gfar = [450, 0°], requiring the target to be farther away while still centered; gic s+ = [350, —20°],
where the target is positioned to the left; gr;gne = [350, 20°], where the target is positioned to the right.

D.4 INSTRUCTIONS

To fairly and accurately evaluate our method’s ability to align with human-like real world instructions, we
generated a list of sequential text instructions containing various spatial objectives. These instructions, as shown
in Table[f] are designed to reflect both absolute and relative position changes, as well as some ambiguous
representation and target-switching behaviors. The instructions are organized into two main categories: sequential
instructions and target-switching instructions:

Sequential instructions are designed to evaluate the model’s ability to dynamically understand and align with a
sequence of instructions over time. These instructions require the agent to follow a series of spatial objectives,
each dependent on the previous one. By evaluating the agent’s performance with sequential commands, we test
the system’s capacity to adapt its behavior as the instruction set evolves, ensuring that the model can consistently
track and follow a set of changing goals.

Target-switching instructions, on the other hand, are aimed at evaluating the model’s dynamic generalization
ability to different target categories under changing conditions. These instructions ask the agent to switch focus
from one target (e.g., "the person") to another (e.g., "the beagle"), while maintaining consistent tracking and
navigation behavior.

To balance natural language variation with consistent evaluation metrics, we manually map these instructions
to the expected absolute or relative spatial transitions for each instruction. This predefined mapping serves as a
benchmark, allowing for objective comparison between the agent’s actions and the desired user intent.

Table 6: Examples of instruction pools, including sequential instructions and target switch instructions,
along with the corresponding spatial goal transitions.

Instruction | Corresponding Spatial Goal Transition

Sequential Instructions

Keep the person in the close center, move slightly | target < person, (200,0°) — (200,—20°) —
to the left, increase the distance, keep the person | (350, —20°) — (450,0°)
at the far center.

Maintain the person on the right, bring the person | target < person, (350,20°) — (200,20°) —
closer, stay roughly near the center, keep the person | (350,0°) — (350, —20°)
aligned to the left.

Keep the person in the far-away center, shift a bit | target < person, (450,0°) — (450,20°) — (p*
to the right, make sure it is not too far away, keep | 350,20°) — (200, 0°)
the person in the close center.

IN

Position the person on the left, move the person | target < person, (350, —20°) — (200, —20°) —
closer, stay closer but still on the left side, keep the | (p* < 250, —20°) — (200,0°)
person in the center at close range.

Keep the person directly ahead, move slightly to | target < person, (350,0°) — (350,20°) —
the right, increase the distance, keep the person far | (450,20°) — (450, 20°)
on the right.

Ensure the person is on the left, reduce the distance, | target < person, (350, —20°) — (200,—-20°) —
stay roughly near the center, maintain the person | (350,0°) — (350,0°)
at medium range in front.

Keep the person near the center, step back slightly, | target < person, (200,0°) — (350,0°) —
move slightly to the left, keep the person far on the | (350, —20°) — (450, —20°)
left side.

Keep the person in the close right, increase the | target < person, (200,20°) — (350,20°) —
distance, shift slightly to the left, keep the person | (350,0°) — (450,0°)
at the far center.

Continued on next page

15

Under review as a conference paper at ICLR 2026

Table 6 — continued from previous page

Instruction

Corresponding Spatial Goal Transition

Position the person at medium distance in the cen- | target < person, (350,0°) — (350,20°) —
ter, move slightly to the right, reduce the distance, | (200,20°) — (200, 0°)

keep the person close in the center.

Keep the person in the far left, move closer, stay | target < person, (450, —20°) — (350,—20°) —
roughly in front, keep the person at medium range | (350,0°) — (350,0°)

in the center.

Start with the person at close right, gradually in- | target <+ person, (200,20°) — (350,20°) —
crease distance, move to center alignment, then | (400,0°) — (450, —20°)

position far to the left.

Position the person at medium right, increase dis- | target < person, (350,20°) — (450,20°) —
tance while maintaining angle, shift to left align- | (450, —20°) — (350, —20°)

ment, bring closer to medium left.

Keep the person close center, move to close right, | target < person, (200,0°) — (200,20°) —
step back to medium distance, finally position far | (350,20°) — (450, 20°)

right.

Maintain person at close left, step back gradually, | target < person, (200,—20°) — (350,—20°) —
center the alignment, continue stepping back to far | (350,0°) — (450, 0°)

center.

Position person at medium center, shift to medium | target < person, (350,0°) — (350,—20°) —
left, increase distance to far left, then center while | (450, —20°) — (450, 0°)

maintaining far distance.

Keep person far right, bring significantly closer | target < person, (450,20°) — (200,20°) —
to close right, shift toward center, maintain close | (200,10°) — (200,0°)

center position.

Start with person close right, move to medium | target < person, (200,20°) — (350,20°) —
right, shift to medium center, then extend to far | (350,0°) — (450,0°)

center.

Position person at far left, bring to medium left, | target < person, (450, —20°) — (350, —20°) —
center the alignment, then move closer to close | (350,0°) — (200,0°)

center.

Keep person at medium left, extend to far left, shift | target « person, (350, —20°) — (450,—20°) —
toward center while maintaining distance, bring | (450,0°) — (350,0°)

closer to medium center.

Start close center, move to close left, extend dis- | target < person, (200,0°) — (200,—20°) —
tance to medium left, further extend to far left. (350, —20°) — (450, —20°)

Position person far right, shift slightly toward cen- | target « person, (450,20°) — (450,10°) —
ter, bring much closer, maintain close center-right. | (250, 10°) — (200, 15°)

Keep person close left, extend to medium left, shift | target < person, (200, —20°) — (350, —20°) —
to medium right, bring closer to close right. (350,20°) — (200, 20°)

Start medium center, shift to medium right, extend | target < person, (350,0°) — (350,20°) —

to far right, center while maintaining far distance.

(450, 20°) — (450,0°)

Target-Switching Instructions

“Switch to tracking the beagle, keep it on the
right.”

target <— dog, (350, 20°)

“Track the dog with a far distance.”

target < dog, (450, 0°)

“Follow the beagle from the left side.”

target < dog, (350, 20°)

“Follow the cow now, keep it on the left.”

“Track the cow at a safe distance. ”

(
target <— cow, (350, —20°)
target <— cow, (450, 0°)

“Keep your eye on the cow ”

target <— cow, (350, 0°)

“Tracking the leopard, keep it on a far distance.”

target < leopard, (450, 0°)

“Follow the leopard from the left side, keep a safe
distance.”

target < leopard, (450, 20°)

“Stop following the person, track the horse.”

target < horse, (350, 0°)

“Look at the horse, follow it.”

target < horse, (350, 0°)

“keep following the horse from right side.”

target < horse, (350, —20°)

“Switch back to the person at close range.”

target <— person, (200, 0°)

16

Under review as a conference paper at ICLR 2026

it
thit

Figure 6: 18 humanoid models are used in data collection and evaluation.

E DATA COLLECTION

In our experiment setting, the tracking goal’s relative spatial position is constrained within the range of p* €
(200, 600) and 0" € (—25°,25°). We uniformly sample tracking goals from this range, resulting in an offline
dataset of 1,750,000 steps used to train our proposed method. In this section, we introduce the details of the data
collection process, including player initialization, and state-based PID controller with noise perturbation for
tracker and trajectory generation.

E.1 PLAYER INITIALIZATION

We use 18 humanoid models as targets and trackers, as shown in Figure[6] At the beginning of each episode, we
randomly sample their appearance from the 18 humanoid models, and the target player will be randomly placed
in the tracker’s visible region.

E.2 STATE-BASED PID CONTROLLER WITH MULTI-LEVEL PERTURBATION

We first use PID controllers to enable the agent to follow a target object, maintaining a specific distance and
relative angle(e.g., 3 meters directly in front of the agent). The process is as follows:

 Setpoints: Define the desired distance and angle as the setpoints for the PID controller (e.g., 3 meters
for distance and 0 degrees for angle).

* Process Variables: Measure the actual distance and angle between the agent and the target object using
the grounded state data accessible via the UnrealCV API. These measurements serve as the process
variables for the PID controller.

» Error Calculation: Calculate the error between the setpoints and the process variables, which will be
used as inputs for the PID controller.

Control Output: Apply the PID equation to generate the control output, determining the agent’s speed

and direction:

de(t)
dt

where u(t) is the control output, e(t) is the error, K, K;, and K are the proportional, integral, and
derivative gains, respectively.

t
u(t) = Kpe(t) + Ki/ e(r)dr + Kq (6)
0

Fine-tune the PID gains to achieve optimal controller performance. For instance, increasing K, will
enhance the agent’s responsiveness to errors but may introduce overshoot or oscillations. Raising K;
helps minimize steady-state error but can lead to integral windup or slower response. Boosting Ky
reduces overshoot and dampens oscillations but may also amplify noise or cause derivative kick. If the
control output exceeds the defined action space limits, it is clipped. The tuned gains are detailed in
Table [1

Then, we introduce noise perturbation to the PID output, causing the agent to alternately deviate from and

recover towards the desired distance and angle. This set-up aims to collect trajectories with diverse step rewards,
alleviating the overestimation problem during offline training. We set a threshold p = 0.15, and if the probability

17

Under review as a conference paper at ICLR 2026

Table 7: The parameters we used in the state-based PID controller.

Controller K, K; Ky
Speed 5 0.1 0.05
Angle 1 0.01 0

value at time ¢ is greater than p, which is P(¢) > p, the agent takes a random action from the action space and
continues for L steps. We also adopt a random strategy to set the step length L, with an upper limit of 4. After
the random actions of the agent end, we use a random function to determine the duration of the next random
action L. Here, we set the upper limit to 4 because we found that the number of times the agent failed in a round
significantly increased beyond 4. Therefore, we empirically set the upper limit of the random step length to 4.

F IMPLEMENTATION DETAILS

In this section, we detail the implementation of our basic setup, baseline methods, and proposed policy network
structures.

Table 8: The fine-tuned parameter for Bbox-based PID Controller.

Controller K, K; Ky
Speed 0.2 0.01 0.03
Angle 0.05 0.01 0.1

F.1 BASIC SETTING

In our experiments, we utilize a continuous action space for agent movement control. The action space comprises
two variables: the angular velocity, ranging from(—30° /s, 30° /s) and the linear velocity, ranging from (—1 m/s
,1 m/s). We train our models using the Adam optimizer with a learning rate of 3e-5 and a batch size of 128.

F.2 BASELINE METHODS

Mask-PID: A traditional two-stage tracking paradigm. A PID controller aligns the mask with the instructed
spatial goal, while a simple regex-based parser maps natural language directives to predefined goals. To facilitate
the influence of different vision models [Lei et al.|(2025)); Liu et al.|(2023)); \Cheng et al.|(2023b)), focusing on the
limitation of traditional tracking paradigm, we leverage the virtual environment built on UnrealEngine and the
unrealcv api (Qiu et al. (2017) to generate the ground truth target’s mask, using predefined bounding box images
as the goal representation, adjusting the agent’s actions to maximize the intersection-over-union (IoU) with
the target mask. We implemented two PID controllers to jointly control the agent’s movement: one for linear
velocity and one for angular velocity. For linear velocity(Viineaqr), We use the areas of the target bounding box
mask A, detected from state s, and goal bounding box masks Agoq; as input variables, the Vjineqr is calculated
as:

t
‘/linear(t) :Kp(Agoal - As (t)) + Kz/ (Agoal - As (T))dT
) 0 (N

d(Agoal - As (t)

dt
where K, K;, and K, are the proportional, integral, and derivative gains, respectively. The linear velocity
is constrained within the range (—100, 100) to match the training setup. A positive Vjineqr moves the agent
forward if A is smaller than Agoq;.

+ Kg

For angular velocity (Vang), the PID controller aims to minimize the angular deviation by computing the
difference between the x-axis coordinates of the centers of the target mask x, and the goal mask z., the
visualization is shown in Figure [/} The control input V4 is given by:

Vang(t) =Kp(xc — zs(t)) + Ki/ (xe — xs(7))dT
—zs(1)) 0 ®

d(xe —x
dt

where K, K;, and K, are the proportional, integral, and derivative gains, respectively. The angular velocity is
constrained within the range (—30, 30).A positive V.4 results in a rightward rotation if x is to the right of z..

+ K4

18

Under review as a conference paper at ICLR 2026

1
|
Center(xs,Ys) Center(x.,y;)
i 1
Wéoal

T
|

|

|

|

|

s

&

1 /'

X

1

1

Ly

\

\\
QF‘_“““““

w, L——
As = Hg * W
Agoal = Hgoal o Wgoal

Figure 7: Illustration of the target bounding box (yellow box) and goal bounding box (red box) used
in PID controller. The center of target bounding box Center(zs,ys) and spatial goal Center(z., y.)
are used to calculate horizontal deviations. The area size of of target bounding box A, and spatial
goal Agq, are used to calculate distance deviations.

The final tuned parameters are detailed in the Table

Ensembled RL: An extension of the state-of-the-art RL-based EVT model(ECCV24), where multiple policies
are trained under different spatial goals (p*, 8"), and a regular expression (regex) is used during evaluation to
select the policy that best matches the goal inferred from natural language instructions. Specifically, We trained
four separate policy networks corresponding to four representative discrete goals:[geiose, §far; Gieft; Gright)-
The corresponding data for these goals were extracted and filtered from the 1750000 steps offline dataset,
providing a focused dataset for training ensemble policies. The policy network architecture is based on the
latest state-of-the-art method for Embodied Visual Tracking (EVT) as described by [Zhong et al.| (2024). Dur-
ing evaluation, we choose the corresponding policy based on the goal spatial position indicated by the instruction.

Word2Vec+RL: A variant of the Ensembled RL baseline where we jointly train an instruction encoder by
applying pretrained word2vec-google-news-300 Mikolov et al.|(2013) with a policy network, instead of relying
on regex mapping. In implementation, we use the same dataset to train an end-to-end model using word2vec-
google-news-300Mikolov et al.|(2013)) for text encoding (W2V), a basic four-layer convolutional neural network
for image encoding (CNN), with three consecutive observation frames concatenated as input, and a two-layer
MLP for feature alignment and action prediction. We use the same Conservative-Q learning method for offline
RL training. This approach highlights the limitations of directly combining existing NLP and neural network
modules in an end-to-end fashion.

GPT4-0: We leverage the multi-modal capabilities of GPT4-o to directly generate actions based on the observed
image and the desired goal. To ensure smooth and accurate transitions, we developed a system prompt that aids
the large model in comprehending the task and regularizes the output format, aligning it with our predefined
action settings. This prompt serves as a guiding framework, enabling the model to produce actions that are
coherent with the requirements of the task. Specifically, we converted the bounding box goal representation into
text-based coordinates, and the input image was first transformed to the same text-conditioned segmentation
mask in the paper, then detected the target’s bounding box coordinates as input of LLM. Note that the system
prompt could directly use image observation as input, but from our experience, the alignment performance is
quite poor. The system prompt content is shown by Figure

TrackVLA: A recent the state-of-the-art VLA-based tracker Wang et al.|(2025) that adapts large vision-language-
action models to embodied visual tracking tasks. In implementation, we obtained the pre-trained model of
TrackVLA through direct communication with the original authors via email |Wang et al.|(2025). This allowed
us to directly evaluate the model in our environment using the pre-trained weights without requiring additional
training. The only modification we made to the original TrackVLA implementation was adjusting the maximum
speed during varying speed testing. Specifically, when testing at 2 m/s, we increased TrackVLA’s speed limit to
220 to meet the dynamic requirements (slightly higher than the target’s speed for redundancy considerations).

F.3 PoLicY NETWORK

In our approach, we use convolutional neural networks (CNN) as the visual extraction module, which is followed
by a fully connected layer and a Reward Head. The output of the reward head is used for reward regression
during training. The output of the fully connected layer is fed into the recurrent policy network. We use a
long-short-term memory(LSTM) network to model temporal consistency. The recurrent policy network is an

19

Under review as a conference paper at ICLR 2026

extension of the CQL-SAC algorithm [Kumar et al|(2020), where we have modified the data sampling and
optimization processes to accommodate the LSTM network. The visual temporal features extracted by the CNN
and LSTM are then passed to the actor and critic networks, each consisting of two fully connected layers. The
hyperparameters and neural network structures employed in our method are detailed in Table[9]and Table [TT]

Table 9: The hyper-parameters used for offline training and the policy network.

Name Symbol Value
Learning Rate Q@ 3e-5
Discount Factor vy 0.99
Batch Size - 128
LSTM update step - 20
LSTM Input Dimension - 256
LSTM Output Dimension - 64
LSTM Hidden Layer size - 1
Reward Head Input Dimension - 256
Reward Head Ouput Dimension - 1

G LLM-BASED SEMANTIC-SPATIAL GOAL ALIGNER

In our method, we develop a hierarchical instruction parser, integrated with Large Language Models (LLM)
and chain-of-thought to translate human instructions into a mid-level goal representation. We first describe our
evaluation method, then visualize the evaluation result via a radar chart.

G.1 QUALITY EVALUATION

To evaluate the effectiveness of our instruction parser and investigate the impact of different reasoning mecha-
nisms on the accuracy of bounding box generation, we employ three different methods: GPT-40: We use GPT-40
with a system prompt that includes both a task introduction and chain-of-thought (CoT) reasoning guidelines for
evaluation. GPT-40 w/o CoT: We use GPT-40 with a system prompt containing only the task introduction for
evaluation. GPT-01: We use GPT-01 with a system prompt that includes the task introduction for evaluation.

We ensure a fair evaluation by sampling 140 instructions from the instruction list in Table ??, and each instruction
is paired with a corresponding spatial goal. This setup minimizes ambiguity in the textual instructions, providing
a baseline for evaluating the correctness of the generated bounding boxes. The performance is assessed by
the accuracy of generated bounding boxes. The accuracy is calculated as: the number of correctly generated
bounding boxes divided by the total sampled instances

For each instruction, we define two categories based on the type of spatial instruction: absolute spatial positions
and relative spatial position changes. The rules for evaluating bounding box correctness are as follows:

D)Instructions conveying absolute spatial positions (first 22 rows of Table 4): We use the final generated bounding
box [z, y, w, h], calculate horizontal position z and area size w * h to determine correctness.

* (p*,0") = (200, 0°): Valid if area size is within (0.06, 0.3) and z is within (0.4, 0.6).
o (p*,0") = (450,0°): Valid if area size is within (0, 0.06) and « is within (0.4, 0.6)

e (p*,0") = (350, —20°): Valid if x is within (0, 0.4).

* (p*,0") = (350,20°): Valid if z is within (0.6, 1).

2)Instructions conveying relative spatial position change (last 20 rows of Table 4): We evaluated based on
bounding box increments [Axz, Ay, Aw, Ah] generated by the parser.

* (Ap, AB) = (—150,0°): Valid if both Aw and Ah are positive.
o (Ap, AB) = (150, 0°) Valid if both Aw and Ah are negative.
o (Ap, AB) = (0,—20°): Valid if Az < 0.

* (Ap,A0) = (0, 200) Valid if Az > 0.

The results in Figure [§]confirm that the chain-of-thought (CoT) reasoning mechanism significantly improves the
accuracy of the bounding box generation. Compared with GPT-40 w/o CoT and GPT-01, GPT-40 consistently
exceeds 80%, achieving up to 100% accuracy in some cases, demonstrating its reliability in translating textual

20

Under review as a conference paper at ICLR 2026

Table 10: We directly map our adopted action space (continuous actions) from virtual to real. The
second and the third columns are the value ranges of velocities in the virtual and the real robot,
respectively.

. Linear
Bound of Action | vy 1 em/s) Real (m/s)
High 100, 30 0.5,1.0
Low -100, -30 -0.5,-1.0
Angular
Virtual (degree/s) Real (rad/s)
High 100, 30 0.5,1.0
Low -100, -30 -0.5,-1.0

Table 11: The neural network structure, where 8 x8-16S4 means 16 filters of size 8 X8 and stride 4,
FC256 indicates fully connected layer with dimension 256, Reward Head 1 means the fully connected
layer for reward regression layer with output dimension 1, and LSTM64 indicates that all the sizes in
the LSTM unit are 64.

Module Goal-state Aligner R ecurrent Policy
Layer# CNN CNN FC | Reward Head | LSTM | FC | FC
Parameters | 8x8-1654 | 4x4-3252 | 256 1 64 2 2

instructions into spatially accurate bounding boxes. We argue that CoT enhances the model’s ability to handle
more nuanced spatial relationships. GPT-O1 performs significantly worse than GPT-40 and GPT-40 w/o CoT,
and we believe this is largely due to the underlying reasoning mechanism. GPT-ol employs an automatic
decomposition reasoning approach, which decomposes tasks into smaller steps without considering the broader
context. This lack of holistic reasoning leads to poor performance in our task, particularly when handling
complex spatial relationships.

G.2 PROMPTS

We define a system prompt aiming to help the LLM understand the tracking task and introduce the Chain-of-
thought (CoT) to enhance the LLM’s understanding ability. The detailed content of the system prompt is shown

in Figure|[TT]

H GRAPHIC USER INTERFACE

To enable an intuitive visual interaction and multi-modal instruction input, we design a simple GUI for user
input instructions while observing the environment from the tracking agent’s first-person view. Users could
directly type text instructions and click the “send" button to update instructions. The GUI demonstration is
shown in Figure [T0]

I REAL-WORLD DEPLOYMENT

‘We transfer our agent into real-world scenarios to verify the practical contribution and the effectiveness of our
proposed method. Specifically, we use SAM-Track |Cheng et al.|(2023b) to generate segmentation masks from
the robot’s real-time observations. Comprehensive video demonstrations of these experiments are available on
our project website (https://sites.google.com/view/hievt).

I.1 HARDWARE SETUP

To evaluate our proposed method in real-world scenarios, we use RoboMaster EP[]_-] a 4-wheeled robot manu-
factured by DJI, as our experimental platform (Figure [0). Equipped with an RGB camera, the RoboMaster
captures images and allows direct control of linear speed and angular motion via a Python API. This advanced
design ensures precise control over the robot’s movements during our experiments. To enable real-time image
processing, we use a wireless LAN connection to transmit camera data to a laptop with an Nvidia RTX A3000
GPU, which acts as the computational platform to run the model and predict actions based on raw pixel images.

'https://www.dji-robomaster.com/robomaster-ep.html

21

Under review as a conference paper at ICLR 2026

Accuracy of Generated Bounding Boxes Based on Textual
Instructions and Spatial Goals

(pr, 6% =
(350, -20°)
83.3
(p*, 0%) = (p*, %) =
(350, 20°) 72.7 (450, 0°) GPT-40
——— GPT-40 w/o CoT

88.9 . GPT-o0l

(Ap, AB) = | 91.0 82.3 (p* &%) =
(150, 0°) (200, 0°)

(Ap, AB) =
-20°

(0, -20°)

Figure 8: The accuracy of generated bounding boxed based on textual instructions and spatial goals
by using GPT-40, GPT-40 w/o CoT, and GPT-ol.

Image

WIFI

Figure 9: In this real-world deployment, the robot’s onboard camera captures visual data, which is
wirelessly transmitted to a laptop for real-time processing. The model on the laptop interprets the
incoming images, generates appropriate action commands, and transmits them back to the robot via
WiFi, enabling precise control of its movements.

The corresponding control signals are then sent back to the robot, completing a closed-loop control system. This
seamless integration of hardware and software allows us to execute complex tasks efficiently and accurately,
advancing sim-to-real experimentation. In the training phase, we use a continuous action space, which enables
us to directly map the speed to robot control signals. The mapping relationship is shown in Table [I0}

22

Under review as a conference paper at ICLR 2026

Adaptive Tracking

Aidaptive Tracking

Humen Instruction Input: [move closer to the persorl] Send |

Figure 10: A real-time interactive GUI snapshot. The left panel displays the tracker’s first-person
view, while the right panel shows the text-conditioned mask generated by the game engine. Users can
input instructions in the text box at the bottom or draw a bounding box (e.g., the green box in the left
image) and click the "Send" button to interact with the system.

1.2 EXPERIMENTAL RESULTS AND OBSERVATIONS

The real-world experiments were conducted to verify three key hypotheses: (1) the system can maintain
robustness across diverse physical scenarios, (2) our hierarchical framework can effectively bridge the gap
between language instructions and tracking behavior in real environments, and (3) the intermediate spatial goal
representation provides sufficient flexibility for diverse instruction types.

1.2.1 ADAPTIVE RESPONSE TO DYNAMIC MOVEMENT

The robot successfully maintained tracking while targets performed unpredictable movements including sudden
direction changes and varying speeds(from walking to running). A critical observation from these experi-
ments was that the system’s performance directly validated our hierarchical design approach. The instruction
reasoning process (running at approximately 1-2 Hz) did not interfere with the high-frequency control policy,
allowing the tracking policy to operate continuously even during instruction processing. This asynchronous
execution enabled the system to maintain responsive tracking while simultaneously processing complex in-
structions—a capability that would be impossible with end-to-end approaches like GPT-40 or OpenVLA where
inference latency directly impacts control frequency. Our video demonstrations on project website clearly show
this advantage in action: even when new instructions are being processed (visible through Ul indicators in the
videos), the robot maintains smooth, continuous tracking without pauses or hesitation. This confirms that our
hierarchical framework effectively decouples semantic understanding from real-time control, enabling robust
performance in dynamic real-world scenarios.

1.2.2 SPATIAL GOAL ADAPTATION
These visual recordings confirm that our intermediate spatial goal representation effectively bridges the gap

between natural language instructions and robot behavior. Our adaptive policy could respond to dynamically
changed spatial goals fast and accurately.

23

Under review as a conference paper at ICLR 2026

System Prompt

Objective:

You are an intelligent tracking agent designed to follow human instructions and
dynamically adjust your tracking goal between you and the target. Your task is
twofold:

1.Identify the target category mentioned in the instruction (e.g., "person," "vehicle,"

"object") .

2.Understand the human instruction to determine the tracking goal. The goal is
represented as an expected bounding box position in your field of view, with the
center at [cx, cy], width w, and height h. This will guide your tracking strategy
to align the target object with the specified bounding box. The local control
strategy will then use this expected bounding box to achieve different tracking
angles and distances based on human instruction.

Representation detail:

All positions in the task should be represented as normalized bounding box coordinates
relative to the image size in the field of view with width and height (e.g., [cx,
cy, w, h]). 'cx’ and ’'cy’ represent the center of the bounding box, and 'w’ and ’'h
! represent the width and height of the bounding box, respectively, all normalized

to the range [0, 1].

Task Understanding:

1. x*xInstruction:** A natural language command describing the desired change in the
tracking of the target (e.g., "Get closer to the person," "Move further from the
car," "Keep the dog in the center," or "Keep the object on the left").

2. *xxCurrent bounding box:** The current bounding box coordinates and size of the
target in your field of view relative to the image size, normalized to [0, 1] (e.g

"Target position: [cx, cy, w, h]").

Task Definition:

Your task is to:

Extract the target category from the instruction (e.g., "person," "car," "dog") and
determine the expected bounding box position and size within your field of view
based on the human instruction and the current target position.

This should include:
1.xxTarget category:*x Based on the human instruction, provide the target category name

2.x*xBounding Box Increment:x* Based on the human instruction, provide the change in the
bounding box. This should be represented as [Acx, Acy, Aw, Ah], where Acx and
Acy are the changes in the center coordinates, and Aw and Ah are the changes in
the width and height of the bounding box.

Instructions: Given the provided human instruction, and current position, think step by
step, decide the target category name and best bounding box increment to meet the
human’s instructions.

Strategy Considerations:
The given Current Position represents the current target distance and angle relative to
the tracker.
The human instruction represented the demand for expected tracking distance and angle
between the target and tracker.
You should consider the human instruction first, and transform the abstract instruction
into the concrete bounding box position increment.
The increment value should be 20% each time with respect to the original proportion of
the target bounding box.
The increment value should consider the first-person view perspective effect.

Provide the target category name format in "xxTarget category:*x [target category]" and
the chain-of-though process of the increment of bounding box position and size
end with the format "x*Bounding Box Increment:xx chain-of-thought process.[Acx,
Acy, Aw, Ah]" in [output:]

Example:

Example:

[input:]

Instruction: "Get closer to the person."
Current bounding box: [0.51, 0.57, 0.07, 0.14].

[output:]

xTarget category:x [person]

xBounding Box Increment:+ The current bounding box indicates it is positioned near
the center of view. If the instruction wants to get closer to the target, the
bounding box size should be larger without horizontal change and a slight
increment in vertical position, which should be increased Aw, Ah and Acy.[0.0,
0.05, 0.03, 0.17].

Figure 11: System prompt used in instruction parser module.

24

Under review as a conference paper at ICLR 2026

System Prompt

You are an intelligent tracking agent designed to generate discrete control actions to
control the robot to follow the target object at an expected distance and angle.

Representation detail:

Bounding box: The bounding box position and size within your field of view, represented
as [cx, cy, w, h]l. "cx’ and 'cy’ represent the center of the bounding box, and ’w
' and 'h’ represent the width and height of the bounding box, respectively.

Control Actions: The control actions are discrete and include the following:

-move forward: control the robot to move forward for 0.5 meters.

—-move backward: control the robot to move backward for 0.5 meters.

—-stop: control the robot to stop moving.

—turn left: control the robot to move forward for 0.25 meters and turn left for 15
degrees.

—turn right: control the robot to move forward for 0.25 meters and turn right for
15 degrees.

Task Understanding:

1. x*Goal bounding box:** This is provided by the user to indicate the expected
distance and angle between the target and the tracker, which is a bounding box
format, the agent should try to align the target bounding box with the goal
bounding box as much as possible.

2. xxTarget bounding box:x* This is provided by user to indicate the current target
position in the image, in the bounding box format.

Task Definition:

Your task is to give a suitable action from Control actions, and try to align the Goal
bounding box with the target bounding box as much as possible.

1. x*xActions:*x Based on the given Goal bounding box and Target bounding box, you
should provide the best control action from the control actions to align the
target bounding box with the goal bounding box as much as possible.

Strategy Considerations:

The target bounding box size in the image represents the spatial distance, the smaller
size corresponds to a larger distance between the robot to the target.

If the center of the target bounding box is on the right side of the goal bounding box
center, the robot should turn right to align the target bounding box with the goal
bounding box. In contrast, if the center of the target bounding box is on the
left side of the goal bounding box center, the robot should turn left to align the
target bounding box with the goal bounding box.

Instructions: Given the provided target bounding box and goal bounding box, decide the
best action to adjust the robot’s position.
Provide ONLY and the increment of bounding box position and size in [output:] format in
[Control Action] without additional explanations or additional text.

Figure 12: System prompt used in baseline method GPT4-o.

25

	Introduction
	Related Works
	Hierarchical Instruction-aware Embodied Visual Tracking
	LLM-based Semantic-Spatial Goal Aligner
	RL-based Adaptive Goal-Aligned Policy

	Experiment
	Experimental Setup
	Main Results (Q1)
	Adaptability of the goal-aligned Policy (Q2)
	Ablation Studies (Q4)
	Results on Real-world Environments (Q5)

	Conclusion
	Appendix
	Use of Large Language Models (LLMs)
	Preliminaries
	Virtual Environment
	Training Environment
	Testing Environments
	Goal Randomization
	Instructions

	Data Collection
	Player Initialization
	State-based PID Controller with Multi-level Perturbation

	Implementation Details
	Basic Setting
	Baseline Methods
	Policy Network

	LLM-based Semantic-Spatial Goal Aligner
	Quality Evaluation
	Prompts

	Graphic User Interface
	Real-world Deployment
	Hardware setup
	Experimental Results and Observations
	Adaptive Response to Dynamic Movement
	Spatial Goal Adaptation

