
Published as a conference paper at ICLR 2025

MOMENTUM LOOK-AHEAD FOR ASYNCHRONOUS
DISTRIBUTED LOW-COMMUNICATION TRAINING

Thalaiyasingam Ajanthan, Sameera Ramasinghe, Gil Avraham, Yan Zuo, & Alexander Long
Pluralis Research
{aj,sameera,gil,yan,alexander}@pluralis.ai

ABSTRACT

Distributed Low-Communication (DiLoCo) allows large-scale model training
across geographically distributed datacenters by reducing the communication
overhead in the data parallel setting. Asynchronous DiLoCo further relaxes the
requirement to synchronize the model updates, eliminating any bottlenecks due to
slow devices or interconnects. Nevertheless, asynchronous updates introduce stale
(or delayed) gradients as model updates and gradient computation are no longer
synchronized. To alleviate staleness, we introduce a look-ahead based delay cor-
rection mechanism by extrapolating the negative direction of momentum. Our
experiments on language modelling tasks with decoder-only architectures demon-
strate that our approach consistently outperforms asynchronous and synchronous
DiLoCo methods in both homogeneous and heterogeneous settings.

1 INTRODUCTION

Data Parallelism (DP) allows large-batch neural network training by replicating the model into mul-
tiple devices, and synchronizing the gradients at each iteration with the server to optimize the model
parameters (Goyal, 2017). This is communication intensive as the gradients are communicated at
each training iteration and the slowest device (or the interconnect) bottlenecks the training due to the
synchronization requirement. Inspired by the federated learning literature (McMahan et al., 2017;
Reddi et al., 2020), Distributed Low-Communication (DiLoCo) method (Douillard et al., 2023) for-
mulates DP as a bilevel optimization, and shows that gradients can be communicated infrequently
without deteriorating convergence, substantially reducing the communication overhead.

The synchronization requirement of DiLoCo is further relaxed in Liu et al. (2024), by allowing each
worker (i.e., device) to communicate its gradients to the server independently of other workers. This
eliminates the bottleneck due to slow workers, however, introduces asynchronous model updates.
Specifically, while some workers are still computing the gradient, the server model would have been
updated, leading to stale (or delayed) gradients. This presents a significant optimization challenge,
necessitating sophisticated delay correction mechanisms, even in the traditional DP setting (Zheng
et al., 2017; Stich & Karimireddy, 2019; Assran et al., 2020). Nonetheless, adapting these delay
correction mechanisms to DiLoCo requires further investigation (Liu et al., 2024).

In this work, we introduce a look-ahead based delay correction for asynchronous DiLoCo optimiza-
tion. Our idea is to perform delay correction in the weight space by extrapolating the negative
direction of momentum. Specifically, we compute momentum as the exponential moving average
of gradients and by extrapolating the negative momentum direction, our look-ahead step robustly
approximates the past gradients steps, alleviating gradient staleness. Our approach is a simple, yet
elegant modification to the Nesterov Accelerated Gradient (NAG) method (Nesterov, 1983; 2013)
that alters the look-ahead step to act as delay correction in the weight space, without introducing any
additional hyperparameters.

We demonstrate the merits of our approach on large-scale language modelling tasks with decoder-
only transformer architectures (Vaswani, 2017; Karpathy, 2022) on DiLoCo training with homo-
geneous and heterogenous devices. In short, our approach consistently outperforms existing asyn-
chronous DiLoCo methods, even surpassing the synchronous baseline.

1



Published as a conference paper at ICLR 2025

2 PRELIMINARIES

We briefly review the Nesterov Accelerated Gradient (NAG) (Nesterov, 1983; 2013) method and the
Distributed Low-Communication (DiLoCo) method (Douillard et al., 2023) upon which we build our
work. We refer the interested reader to the respective papers for more details.

2.1 NESTEROV ACCELERATED GRADIENT

Nesterov Accelerated Gradient (NAG) (Nesterov, 1983; 2013; Bubeck et al., 2015) is an accelerated
gradient method that has the optimal superlinear convergence rate for smooth convex functions in
the non-stochastic setting. The main idea is performing a look-ahead step in the previous update
direction, combined with a carefully selected step-size sequence to ensure accelerated convergence.

Let f : Rm → R be the objective function. Then, NAG performs the following iterations starting
from an initial point w1 ∈ Rm:

dt = γt(wt −wt−1) , (1)
wt+1 = wt + dt − η∇f(wt + dt) .

Here, the learning rate η > 0, the momentum coefficient γt satisfies, γ1 = 0, 0 < γt < 1, and
the sequence of γt is derived as part of the convergence proof (Bubeck et al., 2015). Note that,
dt corresponds to the look-ahead step which extrapolates the update (wt − wt−1) by γt and the
gradients are computed at the extrapolated point (wt + dt).

Analogous to the classical momentum (Polyak, 1964; Sutskever et al., 2013), by denoting the update
as wt+1 = wt − ηmt+1, the look-ahead can be thought of as taking a step in the negative direction
of momentum, i.e., dt = −η γt mt

1. Here, the momentum mt takes the following form:

mt+1 = γt mt +∇f(wt + dt) . (2)

This interpretation is useful in deriving our momentum based look-ahead method.

NAG has been incorporated into popular deep learning optimizers such as SGD (Sutskever et al.,
2013) and Adam (Dozat, 2016), although it often slightly underperforms for usual neural network
training. Nevertheless, for DiLoCo setting, it has shown to be superior in both synchronous and
asynchronous outer-optimization (Douillard et al., 2023; Liu et al., 2024), and we further improve it
by adapting the look-ahead step.

2.2 DISTRIBUTED LOW-COMMUNICATION TRAINING

In a traditional DP setup (Goyal, 2017), the dataset is split into multiple worker nodes where each
worker computes the gradients on its data-split, and communicates it to the parameter server. The
server then updates the parameters by aggregating the gradients from all workers and distributes
the updated parameters back to the workers for the next iteration. This process is communication
intensive as the gradients are communicated at each iteration.

Inspired by the federated learning literature (McMahan et al., 2017; Reddi et al., 2020),
DiLoCo (Douillard et al., 2023) shows that infrequent communication with the server is sufficient
for convergence. Specifically, DiLoCo formulates DP as a bilevel optimization problem, where the
inner-optimization is performed on each worker (i.e., local SGD) and the server model is updated
by synchronizing the model parameters from all workers (i.e., outer-optimization), at a predefined
interval (e.g., every 50 inner-iterations).

Formally, let wi
t be the local model parameters of worker i at time step t. It performs multiple

optimization steps locally using its own data-split to obtain wi
t+1, and communicates the weight dif-

ference gi
t := wi

t−wi
t+1 (i.e., pseudogradient)2 to the server. The server model receives the pseudo-

gradients {gi} from all workers, and updates its parameters in the negative direction of the average
pseudogradient. Precisely, let wt be the server model parameters, then the outer-optimization step
can be written as:

1This is simply a rewrite of dt in Eq. (1) in terms of mt.
2This approximates the gradient of the inner-optimization process with respect to the model parameters

using first-order difference.

2



Published as a conference paper at ICLR 2025

wt+1 = wt − η
1

k

k∑
i=1

gi
t︷ ︸︸ ︷[

wi
t −wi

t+1

]
︸ ︷︷ ︸

gt

, (3)

where η > 0 is the learning rate, and k is the number of workers. We omit optimizer specific
updates for brevity. Then, the server communicates the updated parameters to all workers, setting
their parameters as wi

t+1 = wt+1 for all i, for the next iteration. In DiLoCo, since all workers are
synchronized at each outer optimization step t, wi

t = wt for all i, hence, the update in Eq. (3) takes a
step towards the average of all worker model parameters. By taking a small step rather than directly
averaging worker model parameters, DiLoCo stabilizes training.

Asynchronous DiLoCo. The synchronization requirement in DiLoCo is a latency bottleneck due
to the communication overhead and/or heterogeneity of devices. Relaxing this requirement alleviates
the bottleneck at the cost of gradient staleness, which we discuss below.

In asynchronous DiLoCo (Liu et al., 2024) each worker communicates its parameters to the server
independently to other workers, leading to asynchronous updates of the server model. Precisely, the
outer-update takes the following form:

wt+1 = wt − η
[
wi

t −wi
t+1

]
. (4)

Note, the server updates its parameters whenever it receives the pseudogradient from a worker3,
and therefore wt would have been updated multiple times, while worker i is performing its inner-
optimization. Therefore, wi

t is older compared to the server parameters wt, and consequently, the
pseudogradients are also stale. Suppose the delay for worker i be τi, then wi

t = wt−τi . Substituting
this in Eq. (4):

wt+1 = wt − η
[
wt−τi −wi

t+1

]︸ ︷︷ ︸
ḡi
t

. (5)

The stale (or delayed) pseudogradient is denoted as ḡi
t. This gradient staleness causes optimization

challenges and sophisticated delay correction mechanisms need to be employed.

In Liu et al. (2024), a buffer-based Nesterov approach is employed to aggregate the pseudogradients
so as to stabilize the outer-optimization. Specifically, pseudogradients are accumulated into a fixed
size buffer, and when the buffer is full, Nesterov method is applied. For all other iterations (i.e., when
the buffer is being filled) standard SGD is employed. Additionally, the number of inner-optimization
steps are adjusted to cater for the heterogeneity of devices. We will show subsequently that, the look-
ahead step in the Nesterov method can be repurposed to handle staleness in pseudogradients without
any additional heuristics or hyperparameters.

3 METHOD

We follow the asynchronous DiLoCo (Liu et al., 2024) setup and derive a momentum based look-
ahead method inspired by NAG to mitigate gradient staleness in the outer-optimization. Our method
extrapolates the momentum direction, so that the pseudogradients are computed at a point that is
closer to the ideal one. This is appealing as it does not make any assumptions about the loss function
or gradients as in the delay correction methods (Zheng et al., 2017; Xie et al., 2019) tested in Liu
et al. (2024). The only assumption is that the outer-update directions can be approximated using the
momentum, which is valid for momentum-based optimizers.

3.1 MOMENTUM LOOK-AHEAD FOR DELAYED GRADIENTS

Let us consider a particular worker and drop the worker index for brevity. Suppose f : Rm → R
be the function for which the pseudogradient ∇f is computed. Now, our momentum look-ahead
method can be written as:

dt = −η γt mt , look-ahead (6)
wt+1 = wt + dt − η∇f(w̄t + dt) , weight update
mt+1 = γt mt + (1− γt)∇f(w̄t + dt) . momentum computation

3Asynchronous DiLoCo performs more frequent outer-updates (up to k× more) compared to DiLoCo.

3



Published as a conference paper at ICLR 2025

Here, w̄t denotes the delayed point, w̄t = wt−τ = wt −∆t, where τ is the delay. The main dif-
ference compared to NAG is the momentum computation, where we discount the gradient term by
(1 − γt) (in contrast to Eq. (2)). This ensures that the momentum is an exponential moving aver-
age of gradients. Intuitively, momentum in our case is a smooth approximation of gradients, and
look-ahead in the negative direction of momentum robustly approximates past gradient steps.

Specifically, due to the modification above, the look-ahead direction dt does not extrapolate the pre-
vious update direction (wt−wt−1) as in NAG, instead it follows the negative momentum direction.
Since the pseudogradient ḡt := ∇f(w̄t + dt) is noisy due to staleness, the update direction can
be noisy, however, momentum being the moving average of gradients, provides a robust look-ahead
direction. Alternatively, mt can be thought of as a proxy for latest gradient information as it is up
to date (i.e., no staleness) and doing a look-ahead in the direction reduces staleness. This subtle but
important difference, ensures that our update is an effective delay correction mechanism ensuring
empirical convergence in the presence of gradient staleness.

Note, in deep learning, ∇f is computed using automatic differentiation. Therefore, when NAG
is incorporated into deep learning optimizers (Sutskever et al., 2013; Dozat, 2016), θt := wt + dt

reparametrization is used to simplify the implementation. To this end, our reparametrized updates
can be written as:

mt+1 = γt mt + (1− γt)∇f(θ̄t) , momentum computation (7)

θt+1 = θt − η
[
γt+1 mt+1 +∇f(θ̄t)

]
, weight update

where θ̄t := w̄t + dt. These updates constitute to a one-line change in the SGD implementation
and can be easily incorporated. The pseudocode of our algorithm is provided in Appendix A.

Conceptually, the buffer-based approach presented in Liu et al. (2024) can be interpreted as a special
case of our method. In particular, the exponential moving average aggregates the gradients online
as opposed to a fixed size buffer, and enables us to apply Nesterov updates at every step, eliminating
the need for any additional heuristics or hyperparameters. As shown in our experiments, our method
consistently outperforms the buffer-based gradient aggregation. Furthermore, adjusting the number
of inner-optimization steps to cater for heterogeneous devices improves all asynchronous methods,
including ours.

4 RELATED WORK

Asynchronous data parallel methods. DP is a traditional distributed training setting, where each
device optimizes the full model and periodically synchronizes the model parameters. Asynchronous
DP methods are well-studied within the theoretical framework and many gradient delay correction
mechanisms have been developed (Agarwal & Duchi, 2011; Stich & Karimireddy, 2019; Assran
et al., 2020). Notable methods that improve over the simple asynchronous SGD (Recht et al.,
2011) include delay dependent learning rate (Barkai et al., 2019; Mishchenko et al., 2022), gra-
dient forecasting with second-order information (Zheng et al., 2017), and look-ahead in the weight
space (Hakimi et al., 2019). Some of these approaches (Zheng et al., 2017; Xie et al., 2019) are
shown to underperform in the asynchronous DiLoCo setting (Liu et al., 2024), and therefore, further
investigation is required when adopting them to this setting. Apart from this, training dynamics
of asynchronous DP methods have also been analyzed (Mitliagkas et al., 2016) and some of these
observations may be useful in the DiLoCo setting as well.

DiLoCo methods. DiLoCo improves the communication requirement of DP by showing that in-
frequent synchronization of server model parameters is sufficient for convergence. This setup is in-
spired by the federated learning literature, where this local-SGD (i.e., inner-optimization of DiLoCo)
is well-studied (McMahan et al., 2017; Reddi et al., 2020; Yang et al., 2022). Recent works, fur-
ther improve the efficiency of DiLoCo with asynchronous outer-optimization (Liu et al., 2024) or
via clever methods to mask the communication overhead (Douillard et al., 2025). In this work, we
consider asynchronous DiLoCo setup and introduce a variant of NAG for the outer-optimization to
mitigate gradient staleness.

4



Published as a conference paper at ICLR 2025

(a) Heterogeneous, w.r.t. iterations (b) Heterogeneous, w.r.t. time (c) Homogeneous

Figure 2: Results on WikiText with 4 workers. For both homogenous and heterogeneous settings, our
method clearly outperforms the asynchronous methods while being competitive to the synchronous
DiLoCo. Furthermore, asynchronous methods are much faster in the heterogeneous setup.

5 EXPERIMENTS

5.1 RESULTS ON A TOY DATASET

Figure 1: Results on a toy classification dataset.
Our method clearly outperforms both asyn-
chronous and synchronous methods.

As a sanity check, we first test our method on a
toy dataset provided by Liu et al. (2024). This is
a classification task on a mixture of mixtures on
Gaussian data using a Multi-Layer Perceptron
(MLP). This is proposed as a minimal exam-
ple that replicates the behaviour of large-scale
asynchronous DiLoCo. We use the provided
code4 and simply plug-in our optimizer while
keeping everything else unchanged. All meth-
ods use SGD+Nesterov as the outer optimizer.
As per the code, we use learning rate of 0.7 for
all methods except for Async-DiLoCo which uses 0.07 and the number of workers is set to 4. Async-
DiLoCo-DN is the delayed Nesterov method proposed in (Liu et al., 2024) which we implement
based on the provided pseudocode and the buffer size is set to 4. For this experiment, for our
method, γt in Eq. (6) is set to 0.99.

As shown in Fig. 1, Async-DiLoCo-DN outperforms Async-DiLoCo and the synchronous DiLoCo
method, and our method improves over Async-DiLoCo-DN. This experiment validates our imple-
mentation of Async-DiLoCo-DN and demonstrates the merits of our momentum look-ahead method.

5.2 LANGUAGE MODEL EXPERIMENTS

We evaluate our method on the WikiText (Merity et al., 2016) using decoder-only architectures. Our
model architecture is based on NanoGPT (Karpathy, 2022) with no dropout. The base configuration
includes a context length of 512, an embedding dimension of 768, 12 attention heads, and 6 layers,
with approximately 90M parameters. We use the Distilled-BERT-Uncased tokenizer (Sanh
et al., 2019) and train the model from scratch. Across all experiments, we maintain a batch size of
8, a inner-optimization learning rate of 3e-4, and a weight decay of 0.1, unless otherwise specified.
AdamW (Loshchilov, 2017) is used as the inner-optimizer with with a linear warmup of 1k iterations
starting from a learning rate of 1e-7. The learning rate is then decayed to 3e-5 following a cosine
decay schedule. The number of inner-optimization steps is set to 50 and the experiments are run for
a total of 80k inner-steps.

We use SGD+Nesterov as the outer optimizer for all methods. For the 4-worker experiment, a
constant learning rate of 0.7 is set for all the methods, except Async-DiLoCo which uses 0.07 as
it was unstable with larger learning rate. The buffer size of Async-DiLoCo-DN is set to 4 for all
experiments. Default values of momentum is used for all methods including ours where γt is set to
0.9. All experiments are run on a system equipped with 8 A10G GPUs. The heterogeneous setup is
simulated by sampling workers from different device speeds: {1.70, 1.33, 0.66, 0.30}, where each
entry corresponds to time taken per inner-iteration in seconds. The results are reported in Fig. 2.

4https://github.com/google-deepmind/asyncdiloco

5

https://github.com/google-deepmind/asyncdiloco


Published as a conference paper at ICLR 2025

Our method outperforms the asynchronous methods while being competitive to the synchronous
DiLoCo in both heterogenous and homogenous setups. Furthermore, asynchronous methods are
much faster in the heterogeneous setup. Notably, our method which extrapolates in the momentum
direction, is significantly better in the initial phase of training where the step sizes are larger and
noisier, validating our insight.

Dynamic local updates.

Figure 3: Dynamic local updates improves
all asynchronous methods. With DyLU, asyn-
chronous methods clearly outperform the syn-
chronous DiLoCo method.

Liu et al. (2024) discusses an approach
to dynamically adjust the number of inner-
optimization steps to cater for heterogeneous
devices, where the slower device executes pro-
portionally fewer number of steps, balancing
the time taken per inner-optimization in each
worker. Please refer to Eq. (6) of Liu et al.
(2024) for the exact formula. This is called, Dy-
namic Local Updates (DyLU), which brings the
heterogenous setup closer to a homogeneous
one and improves all asynchronous methods,
including ours.

We test DyLU on the WikiText dataset with 4
workers. As reported in Fig. 3, with DyLU,
all asynchronous methods outperform the syn-
chronous DiLoCo, where our method yields the
best performance. It is intriguing to observe that asynchronous methods can outperform synchronous
methods in DiLoCo. One plausible explanation is that it may be due to asynchronous methods per-
forming more frequent outer-updates (see Sec. 2.2) for the same amount of data (i.e., total inner-
optimization steps). Nevertheless, this warrants further investigation.

Increasing the number of workers.

Figure 4: Results on WikiText with 8 workers on
a heterogeneous setup. Consistent with 4 work-
ers experiment, our method outperforms asyn-
chronous methods while being competitive with
synchronous DiLoCo.

To test the robustness, we increase the number
of workers to 8 and evaluate the methods. We
simulate the heterogenous setup as described
above by sampling device speeds. We ran all
the methods for 80k inner-iterations, with a
constant learning rate of 0.5 for all methods,
except for Async-DiLoCo which uses 0.07.
All other hyperparameters remain unchanged.
This experiment was performed on a system
equipped with 8 A100 GPUs.

As reported in Fig. 4, the results are consistent
with the 4 worker setup. In short, our method outperformed the asynchronous methods and it is
competitive with synchronous DiLoCo. Our method is significantly better for the first half of training
but the synchronous DiLoCo bridges this gap towards the end of training. Tuning the learning
rate schedule for the outer-optimization might improve our method, but we leave such explorations
for future work. Interestingly, Async-DiLoCo is better than Async-DiLoCo-DN for most part of
training. Although intriguing, it indicates that more frequent updates using Nesterov method is
beneficial, however, in-depth investigation is required.

6 CONCLUSION

We introduce a simple momentum based look-ahead method to alleviate gradient staleness in asyn-
chronous DiLoCo optimization. Our method is a one-line change in the SGD+Nesterov optimizer
and does not introduce any additional hyperparameters. As shown in our experiments, it consistently
outperforms synchronous and asynchronous DiLoCo methods in both homogeneous and heteroge-
neous settings. In future, we intend to theoretically analyze the convergence properties of our method
in the presence of stale gradients.

6



Published as a conference paper at ICLR 2025

REFERENCES

Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. Advances in neural
information processing systems, 24, 2011.

Mahmoud Assran, Arda Aytekin, Hamid Reza Feyzmahdavian, Mikael Johansson, and Michael G
Rabbat. Advances in asynchronous parallel and distributed optimization. Proceedings of the
IEEE, 108(11):2013–2031, 2020.

Saar Barkai, Ido Hakimi, and Assaf Schuster. Gap aware mitigation of gradient staleness. arXiv
preprint arXiv:1909.10802, 2019.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. arXiv preprint arXiv:2311.08105, 2023.

Arthur Douillard, Yanislav Donchev, Keith Rush, Satyen Kale, Zachary Charles, Zachary Garrett,
Gabriel Teston, Dave Lacey, Ross McIlroy, Jiajun Shen, et al. Streaming diloco with overlapping
communication: Towards a distributed free lunch. arXiv preprint arXiv:2501.18512, 2025.

Timothy Dozat. Incorporating nesterov momentum into adam. ICLR Workshop, 2016.

P Goyal. Accurate, large minibatch sg d: training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

Ido Hakimi, Saar Barkai, Moshe Gabel, and Assaf Schuster. Taming momentum in a distributed
asynchronous environment. arXiv preprint arXiv:1907.11612, 2019.

Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

Bo Liu, Rachita Chhaparia, Arthur Douillard, Satyen Kale, Andrei A Rusu, Jiajun Shen, Arthur
Szlam, and Marc’Aurelio Ranzato. Asynchronous local-sgd training for language modeling.
arXiv preprint arXiv:2401.09135, 2024.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous sgd
beats minibatch sgd under arbitrary delays. URL https://arxiv. org/abs/2206.07638, 2(6):7, 2022.

Ioannis Mitliagkas, Ce Zhang, Stefan Hadjis, and Christopher Ré. Asynchrony begets momentum,
with an application to deep learning. In 2016 54th Annual Allerton Conference on Communica-
tion, Control, and Computing (Allerton), pp. 997–1004. IEEE, 2016.

Yurii Nesterov. A method for solving the convex programming problem with convergence rate o
(1/k2). In Dokl akad nauk Sssr, volume 269, pp. 543, 1983.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr compu-
tational mathematics and mathematical physics, 4(5):1–17, 1964.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach
to parallelizing stochastic gradient descent. Advances in neural information processing systems,
24, 2011.

7

https://github.com/karpathy/nanoGPT


Published as a conference paper at ICLR 2025

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Victor Sanh, L Debut, J Chaumond, and T Wolf. Distilbert, a distilled version of bert: Smaller,
faster, cheaper and lighter. arxiv 2019. arXiv preprint arXiv:1910.01108, 2019.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for
sgd with delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350,
2019.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147. PMLR, 2013.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. arXiv preprint
arXiv:1903.03934, 2019.

Zhengjie Yang, Wei Bao, Dong Yuan, Nguyen H Tran, and Albert Y Zomaya. Federated learning
with nesterov accelerated gradient. IEEE Transactions on Parallel and Distributed Systems, 33
(12):4863–4873, 2022.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu.
Asynchronous stochastic gradient descent with delay compensation. In International conference
on machine learning, pp. 4120–4129. PMLR, 2017.

8



Published as a conference paper at ICLR 2025

A APPENDIX

Below, we provide the pseudocode of our algorithm. For specific implementation details of the
server and worker logic, we refer the reader to the code provided by (Liu et al., 2024)5.

Algorithm 1 Momentum Look-Ahead for Asynchronous DiLoCo

Require: K replicas, H inner-steps, T total inner-steps, loss function f , data shards {D1, . . . ,DK}
Require: Initial model θ0, learning rate η, momentum coefficient γ, optimizer InnerOpt

At each worker k = 1 . . .K (in parallel): ▷ Worker logic as in (Liu et al., 2024)
1: Initialize local model: θk

0 ← θ0
2: for t = 1 . . . T do
3: x ∼ Dk ▷ Sample local data
4: Lk

t ← f(x,θk
t−1) ▷ Compute loss

5: θk
t ← InnerOpt(θk

t−1,∇Lk
t ) ▷ Local update

6: if t mod H = 0 then
7: ∆k

t ← θk
t−H − θk

t ▷ Compute pseudogradient
8: send(∆k

t ) to server ▷ Send pseudogradient
9: θk

t+1 ← recv(θt+1) ▷ Pull updated model from server
10: end if
11: end for

At server (runs continuously): ▷ Server logic as in (Liu et al., 2024)
12: while True do
13: ∆t ← recv(∆k

t ) ▷ Receive pseudogradient
14: θt+1 ← OuterOpt(θt,∆t) ▷ Update server model
15: send(θt+1) to worker k ▷ Send updated model
16: end while

17: Initialize optimizer state: m0 ← 0
18: function OUTEROPT(θt, ∆t) ▷ Momentum look-ahead as in Eq. (7)
19: mt+1 ← γmt + (1− γ)∆t ▷ Momentum update
20: θt+1 ← θt − η (γmt+1 +∆t) ▷ Weight update
21: return θt+1

22: end function

5https://github.com/google-deepmind/asyncdiloco

9

https://github.com/google-deepmind/asyncdiloco

	Introduction
	Preliminaries
	Nesterov Accelerated Gradient
	Distributed Low-Communication Training

	Method
	Momentum Look-Ahead for Delayed Gradients

	Related Work
	Experiments
	Results on a Toy Dataset
	Language Model Experiments

	Conclusion
	Appendix

