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ABSTRACT

This study aims to construct an audio-video generative model with minimal com-
putational cost by leveraging pre-trained single-modal generative models for audio
and video. We propose a novel method that guides single-modal models to coopera-
tively generate well-aligned samples across modalities to achieve this. Specifically,
given two pre-trained base diffusion models, we train a lightweight joint guidance
module to adjust scores separately estimated by the base models to match the
score of joint distribution over audio and video. We show that this guidance can
be computed using the gradient of the optimal discriminator, which distinguishes
real audio-video pairs from fake ones independently generated by the base models.
Based on this analysis, we construct a joint guidance module by training this dis-
criminator. Additionally, we adopt a loss function to stabilize the discriminator’s
gradient and make it work as a noise estimator, as in standard diffusion models.
Empirical evaluations on several benchmark datasets demonstrate that our method
improves both single-modal fidelity and multimodal alignment with relatively few
parameters.

1 INTRODUCTION

Deep generative modeling has progressed rapidly in the last few years. Diffusion models are one of
the keys to this progress, and they can be applied to various tasks, including image, audio, and video
generation (Yang et al., 2023). Following the success of single-modal data, several attempts have been
made to apply diffusion models to multimodal data (Bao et al., 2023). However, since multimodal
data is more complex and harder to collect than single-modal data, developing multimodal generative
models by simply extending single-modal ones remains challenging. One promising way to alleviate
this problem is to integrate several pre-trained single-modal models to build a multimodal generative
model (Tang et al., 2023; Xing et al., 2024). As there are numerous publicly-available models that
can generate high-quality single-modal data (Rombach et al., 2022; Liu et al., 2023; Guo et al., 2024),
their effective integration would substantially reduce the computational cost to build multimodal
generative models. In this work, we focus on audio-video joint generation on top of two pre-trained
diffusion models for audio and video.

There are two approaches for audio-video generation that integrate several single-modal models:
training-free and training-based. The training-free approach employs pre-trained single-modal base
generative models with their parameters fixed. It uses an off-the-shelf recognition model to guide
them to generate well-aligned samples across modalities (Xing et al., 2024). While this can improve
multimodal alignment without any training cost, it may degrade the fidelity of a single modality
(Xing et al., 2024). In contrast, the training-based approach extends single-modal generative models
for multimodal data by designing a neural network tailored to it (Ruan et al., 2023; Tang et al., 2023).
Although this approach can achieve better performance in terms of both multimodal alignment and
the fidelity of each single modality, it tends to require a significant computational cost for training.
More importantly, their architectures for handling multimodal data heavily depend on those of base
models (i.e., they are not model-agnostic). Therefore, when updating base models, we must manually
redesign them, which requires a lot of trial and error. In short, the existing two approaches involve
a trade-off between the quality of generated samples and model dependency, which increases the
computational cost.
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In this paper, we propose a novel method that is training-based but model-agnostic. Our method does
not require backpropagation through the base models for the optimization. Specifically, we introduce
a lightweight joint guidance module on top of audio and video base models that adjust their outputs
for audio-video joint generation. We assume that pre-trained base models are black box diffusion
models (i.e., we can access only their outputs and do not depend on a specific architecture design like
a cross-attention module to construct a joint generation model). We formulate the joint generation
process as an extension of the classifier guidance (C-guide) for single-modal data (Song et al., 2021;
Dhariwal and Nichol, 2021). We show that this joint guidance can be computed through the gradient
of the optimal discriminator that distinguishes real audio-video pairs from the fake ones independently
generated by base models. We only train the discriminator with proper regularization inspired by
Denoising Likelihood Score Matching (DLSM) (Chao et al., 2022). Extensive experiments on several
benchmark datasets demonstrate that our proposed method can efficiently integrate single-modal
base models for audio and video into a joint generation model, maintaining the performance of each
single-modal generation without incurring a significant computational cost (empirically shown in
appendix A.9) .

2 RELATED WORK

2.1 AUDIO-VIDEO JOINT GENERATION BY DIFFUSION MODELS

Since an audio-video pair is one of the most popular types of multimodal data, several works train
diffusion models with such pairs to achieve a conditional single-modal generation: video-conditional
audio generation (Luo et al., 2023b; Mo et al., 2023; Su et al., 2023; Pascual et al., 2024) or audio-
conditional video generation (Jeong et al., 2023; Lee et al., 2023; Yariv et al., 2024). However, these
works mainly focus on a single modality as a generation target. Extending these works to the joint
generation of audio and video is not trivial due to the high dimensionality and heterogeneous data
structure of audio-video joint data.

Joint generation of audio and video pairs has been addressed in only a few recent studies (Ruan
et al., 2023; Tang et al., 2023; Xing et al., 2024). MM-Diffusion (Ruan et al., 2023) is a multimodal
diffusion model specific for audio-video joint generation. While MM-Diffusion is trained from
scratch on audio-video pairs, CoDi (Tang et al., 2023) integrates several pre-trained single-modal
diffusion models by adopting environment encoders to share modality-specific information across
modalities during the generation process. Since they adopt a novel architecture strongly tied to the
main network of diffusion models, it is difficult to directly apply their method to other types of
architectures, which hinders its applicability. In contrast, our method handles base models as black
boxes and depends only on their outputs. Therefore, our method is widely applicable to any type of
architecture used in base models.

Xing et al. (2024) shares a similar motivation to ours in the sense that they achieve audio-video
cooperative generation from pre-trained single-modal base models. Given multimodal embedding
models (e.g., ImageBind (Girdhar et al., 2023)), they utilize universal guidance (Bansal et al., 2023)
to make the embeddings from two modalities close. Although their approach is model-agnostic
and can be applied to any base model, their guidance roughly ensures semantic alignment in the
space of embeddings learned by ImageBind. Thus, it does not achieve sampling from the actual
joint distribution of audio-video pairs. In contrast, our method is theoretically grounded to adjust the
scores predicted from base models to the score of the joint distribution, explicitly achieving sampling
from the joint distribution.

2.2 GUIDANCE FOR PRE-TRAINED DIFFUSION MODELS

The guidance (Song et al., 2021; Dhariwal and Nichol, 2021) provides a proper way to update
intermediate representations at each generation step so that the generated samples satisfy a given
condition, even when the model is not trained for that type of conditional generation. Since the
guidance does not require additional training in diffusion models, it is widely used to control the
generation process with additional conditional signals. C-guide (Song et al., 2021; Dhariwal and
Nichol, 2021) was proposed to guide an image generation model by class label, such as "cat" or "dog",
using an additionally trained classifier. Several works extend this to utilize off-the-shelf recognition
models to achieve beyond class-conditional generation (Graikos et al., 2022; Bansal et al., 2023).
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Figure 1: Overview of the training process of our proposed method. We train a joint discriminator on the top
of two base diffusion models to distinguish real video-audio pairs from fake ones generated by base models.
Additionally, we adopt a denoising objective, as in standard diffusion models, to match the gradient of the
discriminator with regard to the inputs to the residual noise between ground truth noises and predicted noises
from base models.

Our proposed method is the first attempt to extend the C-guide for joint multimodal generation. We
derive our methodology from the theory of C-guide, enabling us to theoretically sample data from the
joint distribution.

The samples generated with C-guide may suffer from degraded quality without careful tuning of its
scale (Dhariwal and Nichol, 2021). Chao et al. (2022) denote this problem as the score mismatch
issue, where the posterior scores estimated by a diffusion model and a classifier are unstable and
deviate from the true ones. They proposed DLSM loss to alleviate this problem. DLSM regularizes
a classifier’s gradient to match the residual error of noise prediction by trained diffusion models,
providing a stable gradient for the generation process. Our work can be seen as an extension of
DLSM for multimodal generation. We employ DLSM to stabilize the gradient of our discriminator.

Kim et al. (2023) proposed Discriminator Guidance, which guides a Text-to-Image (T2I) model
by a discriminator distinguishing real images from generated images to improve the quality of the
generated samples by a pre-trained T2I model. Although Kim et al. (2023) share a similar concept to
ours regarding using a discriminator to bridge the gap between the score predicted by a pre-trained
model and the target score, our goal is to integrate single-modal models into a joint generation
model. Their method is particularly designed to handle the gap within a single modality, and it
cannot be straightforwardly applied to the multimodal generation. In contrast, our method is derived
from directly bridging the gap between a single-modal distribution and a joint one. Moreover, we
show a single discriminator can serve as a guidance module for both domains, resulting in minimal
computational cost for developing a joint generation model.

3 METHODOLOGY

In this section, we first briefly review Diffusion models on a single modal data. Here, we follow
Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020), broadly used as a standard
definition of diffusion models. Then, we describe our formulation of joint score estimation on top of
two pre-trained diffusion models.

3
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3.1 PRELIMINARY: DIFFUSION MODELS

Basics Diffusion models are a family of probabilistic generative models that reverse a diffusion
process from data to pure noise. Specifically, let x0 ∼ p(x0) be a sample of a data distribution and
xt be a noisy representation at diffusion timestep t ∈ {0, 1, ..., T}. A forward diffusion process is
defined as a Markov process:

q(xt|xt−1) = N (
√

1− βtxt−1, βtI), (1)

where βt ∈ (0, 1) controls how fast the data is diffused at each timestep. On the basis of Eq. (1),
xt|x0 also follows the Gaussian distribution of p(xt|x0) = N (

√
ᾱtx0, (1 − ᾱt)I), where ᾱt =∏t

s=1(1− βs) is the accumulation of diffusion coefficients, and the noisy sample at the last step xT
would follow the standard Gaussian distribution N (0|I) with an appropriate setting of T and βt. If
βt is small enough (or T is large enough), the reverse process of Eq. (1) can be approximated to be
Gaussian. Diffusion models are trained to estimate its mean by predicting the noise in xt as follows:

pϕ(xt−1|xt) = N (µϕ(xt, t), σ
2
t I), (2)

µϕ(xt, t) =
1√

1− βt

(
xt −

βt√
1− ᾱt

ϵϕ(xt, t)
)
, σ2

t =
1− ᾱt−1

1− ᾱt
βt, (3)

where ϵϕ represents the noise prediction model with parameters ϕ. This model ϵϕ can be trained by
minimizing the following mean squared error between the noise predicted by the model and that
added to the data:

ϕ∗ = argmin
ϕ

Ex0,ϵ,t

∥∥ϵϕ(√ᾱtx0 +√1− ᾱtϵ, t)− ϵ∥∥2 , (4)

where ϵ ∼ N (0, I) is a noise, and t ∼ U(1, T ) is a timestep. For generation, we can sample x0
through the iterative sampling from t = T to 1 using Eq. (2) with ϵϕ∗ .

Equation (4) is a form of denoising score matching. Specifically, from Tweedie’s formula (Efron,
2011), the noise added to the data and the score function is equivalent up to a constant factor. On the
basis of this fact, we can approximate the score function by using a noise prediction network trained
by Eq. (4) as:

∇xt log q(xt) ≈ −
1√

1− ᾱt
ϵϕ∗(xt, t). (5)

From Eq. (5), a noise prediction model trained by Eq. (4) can be considered as a model estimating
score of q(xt).

Guidance for conditional generation We can extend the generation process of diffusion models
to the conditional one using classifier guidance (C-guide) (Song et al., 2021; Dhariwal and Nichol,
2021). The C-guide can be derived from the perspective of score estimation. By Bayes’ theorem, we
can write the conditional score as:

∇xt log q(xt|c) = ∇xt log q(xt) +∇xt log q(c|xt), (6)

where c is a conditional vector. The first term on the right-hand side can be estimated by ϵϕ∗ trained
with Eq. (4). The second term on the right-hand side can be estimated by computing a classifier’s
gradient with respect to its input, where the classifier is trained to predict c given xt.

3.2 JOINT SCORE ESTIMATION ON THE TOP OF PRE-TRAINED DIFFUSION MODELS

We aim to achieve joint generation based on two independently trained diffusion models. Namely,
let x ∈ RDx and y ∈ RDy be samples of two different modalities. We want to sample x and y
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from a joint distribution q(x, y). From the perspective of the score function, we need to estimate
∇xt log q(xt, yt) and ∇yt log q(xt, yt). By Bayes rule, we can derive the following equations:

∇xt log q(xt, yt) = ∇xt log q(xt) +∇xt log q(yt|xt), (7)
∇yt log q(xt, yt) = ∇yt log q(yt) +∇yt log q(xt|yt). (8)

Similar to the classifier guidance, the first terms in the right-hand side of Eqs. (7) and (8) can be
estimated by the two diffusion models independently trained on the modalities x and y. On the other
hand, modeling the second terms on the right-hand side are not trivial. One can naively construct two
additional generative models of xt|yt and yt|xt and compute the gradient of such models with regard
to condition vectors. However, training them is difficult due to high dimensionality and requires a
significant computational cost. Instead of training additional high-cost generative models, we train
a single lightweight discriminator that distinguishes real pairs of (xt, yt) from fake ones generated
by pre-trained single-modal base models. We theoretically show that it is sufficient to compute the
gradient of this discriminator to approximate these terms.

Specifically, we propose to train a discriminator between the joint distribution q(xt, yt) and indepen-
dent distribution q(xt)q(yt). Let x′ ∼ pϕ(x) and y′ ∼ pψ(y) be fake paired samples independently
generated by pre-trained diffusion models. Here, we denote these diffusion models independently
pre-trained by each modality x and y as ϵ(x)ϕ and ϵ(y)ψ , where ϕ and ψ are the parameters of these
models. We train a discriminator Dθ : xt, yt, t→ [0, 1] with the following loss function:

θ∗ = argmin
θ

E(x,y)∼q(x,y),x′∼pϕ(x),y′∼pψ(y)

[
L(θ)
disc(x, y, x

′, y′)
]
, (9)

L(θ)
disc(x, y, x

′, y′) = Eϵ(x),ϵ(y),ϵ(x′),ϵ(y′),t [logDθ(x
′
t, y

′
t, t) + log (1−Dθ(xt, yt, t))] , (10)

where ϵ(z) and zt are a noise and a noisy sample for z ∈ {x, y, x′, y′}, respectively. The noisy
sample zt is derived by a forward process zt =

√
ᾱzt z +

√
1− ᾱzt ϵ(z), where ᾱzt is a coefficient of

the forward diffusion process for each modality, and this is omitted from Eq. (10) for brevity. Note
that this discriminator Dθ is trained to output one for real pairs and zero for fake pairs.

Similar to a discriminator in Generative Adversarial Networks (GANs) (Goodfellow et al., 2014),
an optimal discriminator Dθ∗(xt, yt, t) that minimizes Eq. (10) can be seen as an estimator of the
density ratio q(xt,yt)

q(xt,yt)+pϕ(xt)pψ(yt)
. Therefore, the second term in the right-hand side of Eqs. (7)

and (8) can be approximated by utilizing Dθ∗ as follows (see Section A.1 in appendix for details of
this derivation):

∇xt log q(yt|xt) ≈ ∇xt log
Dθ∗(xt, yt, t)

1−Dθ∗(xt, yt, t)
, (11)

∇yt log q(xt|yt) ≈ ∇yt log
Dθ∗(xt, yt, t)

1−Dθ∗(xt, yt, t)
. (12)

In summary, we can estimate a joint score as the sum of the scores independently estimated by
base models ϵ(x)ϕ and ϵ(y)ψ , and the gradient of an optimal discriminator D∗ shown in Eqs. (11)
and (12).1 In inference, we independently compute the outputs from base models and the gradient of
our discriminator for the intermediate noisy samples xt and yt at each timestep. Then, their sum is
used as a predicted noise for the denoising step. Note that, in the discussion above, we assume that
the distribution of samples generated by base models is equal to the marginal distribution of joint
data for brevity (i.e., q(xt) = pϕ(xt) and q(yt) = pϕ(yt)). However, our proposed method can be
applied even when these are not equal (see Section A.2 in the appendix for more details). We also
tested this setting in our experiment.

1In this work, we adopt the most basic form of density ratio estimator. We expect that using advanced ones
may improve the performance of joint guidance, which we leave for future work.
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Algorithm 1 Training process of Dθ.

Require: ϵ(x)ϕ , ϵ(y)ψ , and paired dataset
repeat

Sample x, y from paired dataset.
Generate x′ using ϵ(x)ϕ .

Generate y′ using ϵ(y)ψ .
Compute Ldisc(x, y, x

′, y′) by Eq. (10).
Compute Ldenoise(x, y) by Eq. (13).
Update θ based on ∇θLall.

until converged
Return Dθ∗ .

Algorithm 2 Joint inference by Dθ∗ .

Require: ϵ(x)ϕ , ϵ
(y)
ψ , and Dθ∗

Initialize xT , yT with Gaussian noise.
for t in [T , ..., 1] do

Dratio ← log Dθ∗ (xt,yt,t)
1−Dθ∗ (xt,yt,t)

.

ϵ̂(x) ← ϵ
(x)
ϕ (xt, t)−

√
1− ᾱxt∇xDratio.

ϵ̂(y) ← ϵ
(y)
ψ (yt, t)−

√
1− ᾱyt∇yDratio.

Sample (xt−1, yt−1) based on (ϵ̂(x), ϵ̂(y)).
end for
Return (x0, y0).

3.3 RESIDUAL SCORE ESTIMATION FROM AN OPTIMAL DISCRIMINATOR

As we described in Section 3.2, we can sample x and y from a joint distribution using guidance with a
discriminator that can distinguish real paired data from paired samples generated by pre-trained single-
modal diffusion models. However, in our preliminary experiments, using a discriminator trained by
only Eq. (9) degrades the fidelity of generated samples as a single modality. We conjectured that this
is caused by the score estimation mismatch issue mentioned by Chao et al. (2022). They argued that
the score may deviate from the true one when estimating it using a gradient of a classification model.
To alleviate this issue, inspired by Chao et al. (2022), we adopt regularization for the gradient of the
discriminator to match the residual of true noises and noises predicted by the base diffusion models.
Specifically, we define a denoising regularization loss as follows:

L(θ,ϕ,ψ)
denoise(x, y) = Eϵ(x),ϵ(y),t

[
L(θ,ϕ)
denoise

(
x, y, ϵ(x), ϵ(y), t

)
+ L(θ,ψ)

denoise

(
x, y, ϵ(x), ϵ(y), t

)]
, (13)

L(θ,ϕ)
denoise

(
x, y, ϵ(x), ϵ(y), t

)
=

∥∥∥∥ϵ(x) − ϵ(x)ϕ (xt, t) +
√
1− ᾱxt∇xt log

Dθ(xt, yt, t)

1−Dθ(xt, yt, t)

∥∥∥∥2 , (14)

L(θ,ψ)
denoise

(
x, y, ϵ(x), ϵ(y), t

)
=

∥∥∥∥ϵ(y) − ϵ(y)ψ (yt, t) +
√
1− ᾱyt∇yt log

Dθ(xt, yt, t)

1−Dθ(xt, yt, t)

∥∥∥∥2 . (15)

Note that the base models’ parameters ϕ, ψ are fixed during training and just used to compute noise
estimation errors. Our final objective (denoted Lall hereinafter) to train the discriminator Dθ is the
sum of the discriminator loss (Eq. (10)) and denoising regularization loss (Eq. (13)):

θ∗ = argmin
θ

E(x,y)∼q(x,y),x′∼pϕ(x),y′∼pψ(y)

[
L(θ)
disc(x, y, x

′, y′) + λL(θ,ϕ,ψ)
denoise(x, y)

]
, (16)

where λ is a weight to balance these two losses. We use λ = 1 throughout this paper. The training
and generation process of our proposed method is summarized in Algorithms 1 and 2, respectively.

4 EXPERIMENTS

In this section, we first show the results of preliminary experiments with toy datasets to confirm our
proposed method can guide the generation process of two independently trained diffusion models to
the desired joint distribution. Then, we show the experimental results with real data.

4.1 PRELIMINARY EXPERIMENTS WITH TOY DATASETS

Datasets To create the training dataset for a base model, we evenly sampled data from five
Gaussian distributions whose means were [−3,−1.5, 0, 1.5, 3], and variances were all 0.01,
resulting in 500 samples. For training the guidance module, we constructed two types of

6
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Independent Guided (IND) Guided (OOD)

Gen.

GT

Figure 2: Visualization of guidance results on toy datasets. The top
row shows samples drawn from ground truth distribution (GT), and
the bottom row shows generated samples (Gen.).

Table 1: Negative log likelihood (NLL) of
generated samples over target distribution.

Dataset Method NLL ↓

GT samples 1.67
No joint 18.80

IND Ldisc 3.29
Ldenoise 2.40
Lall 1.94
GT samples 1.67
No Joint 22.10

OOD Ldisc 16.60
Ldenoise 2.63
Lall 2.53

datasets. The first one simulates an in-domain (IND) situation, where the marginal distribu-
tions q(x) and q(y) were equal to the distribution on which the base model had been trained.
This dataset was constructed by sampling from five Gaussian distributions whose means were
[(−3, 1.5), (−1.5,−3), (0, 3), (1.5, 0), (3,−1.5)], respectively. The second one simulates an out-of-
domain (OOD) situation, where the marginal distributions differ from the distribution on which the
base model is trained. This dataset was constructed by sampling from five Gaussian distributions
whose means were [(−2.25,−2.25), (2.25, 2.25), (−2.25, 2.25), (2.25,−2.25), (0, 0)], respectively.
We set the same variance for all Gaussians as 0.01. In the former case, the peaks of the distribution
are a subset of the independent data distribution, and its marginal distributions for x and y are the
same as the data used to train the base model. On the other hand, the peaks are shifted in the latter
case, and the marginal distribution differs from the original. To train our discriminator by Ldisc

(Eq. (9)), we sampled 500 fake pairs in advance from the base model.

Setup We first trained a base diffusion model on scalar value samples from a mixture of five
Gaussian distributions. The base diffusion model outputs a single scalar x ∈ R, and we duplicated
the trained base model to generate a two-dimensional vector (x, y) ∈ R2 by concatenating outputs
from them. Since each x and y has five peaks as a distribution, (x, y) has 25 peaks when x and y are
generated independently, as shown in the leftmost column in Fig. 2. Then, we guided the base models
using our proposed method to generate samples that follow the target joint distribution. We used a
neural network consisting of five fully connected layers for the base diffusion and one with three
layers for the guidance module. See Section A.3 in the appendix for more details about the settings.

Results Figure 2 shows the generated samples from our proposed method. Our proposed model
successfully guides the base models to generate samples from the target distributions in both in-
domain and out-of-domain settings. For an ablation study, we evaluated the effectiveness of each
loss by negative log likelihood (NLL) against the target distribution (Table 1). We confirmed that
both losses, Ldisc and Ldenoise, contribute to substantially improving NLL. These results demonstrate
that our proposed method effectively guides base models in generating samples of the target joint
distribution.

4.2 EXPERIMENTS WITH BENCHMARK DATASETS UNDER IN-DOMAIN SETTING

Setup To investigate the applicability of our proposed method to real data, we first applied it to an
in-domain setting. In this setting, we used the same dataset to train the base models and our proposed
model. We trained our discriminator on top of MM-Diffusion (Ruan et al., 2023), which was already
trained to generate audio-video data jointly, and guided it to generate further aligned samples. This
setting is similar to adopting guidance to a conditional diffusion model with a condition that the
diffusion model can directly handle. The discriminator consists of a stack of two-stream ResBlock
layers for each audio and video, followed by a linear layer to output a scalar. The total number of
its parameters is 12.7M, whereas MM-Diffusion has 133M parameters. We used the pre-trained
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Table 2: Quantitative evaluation on Landscape and AIST++ datasets for the in-domain adaptation setting. We
use MM-Diffusion trained on Landscape or AIST++ dataset at a 64× 64 resolution and additionally guide its
outputs by our proposed method.

Dataset Method FVD ↓ FAD ↓ IB-AV ↑

Landscape MM-Diffusion 447 5.78 0.156
+ Ours 405 5.52 0.162

AIST++ MM-Diffusion 513 2.31 0.0897
+ Ours 450 2.17 0.0909

MM-Diffusion released in the official repository and only trained our discriminator while freezing
the parameters of MM-Diffusion. For training, we used the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 1e-3, and the batch size and the number of epochs were set to 16 and 100,
respectively. For generation, we used DPM-Solver (Lu et al., 2022) and set its number of function
evaluations (NFE) to 20, the standard setting in MM-Diffusion. See Section A.3 in the appendix for
more details about the settings.

Datasets We conducted experiments on the Landscape (Lee et al., 2022) and AIST++ (Li et al.,
2021) datasets. The Landscape dataset contains 928 videos of nine classes of natural scenes, such as
fire crackling and waterfall burbling. The AIST++ dataset contains 1020 video clips of street dance
with 60 copyright-cleared dancing songs. Note that, in this experiment, we do not use these class
labels as input. We trained our discriminator to generate 1.6 second audio-video pairs. Each video
comprises ten frames per second at a 64× 64 spatial resolution, and the sampling rate of the audio is
16kHz. We followed the MM-Diffusion setting for audio and video preprocessing and training split.

Evaluation metrics We evaluated the generated samples in terms of the cross-modal semantic
alignment as well as the fidelity of each modality. To measure the cross-modal semantic alignment,
we used the ImageBind score (Girdhar et al., 2023) computed for audio and video embeddings
(IB-AV). To evaluate the fidelity of each modality, we used FVD (Unterthiner et al., 2018) for video
and FAD (Kilgour et al., 2019) for audio.

Results Table 2 shows the quantitative evaluation on both the Landscape and AIST++ datasets.
For the fidelity of each single modality, our proposed method improves both FVD and FAD. These
results demonstrate that our proposed guidance module captures the training data distribution well
and bridges the gap between the distribution of the training data and that of the generated samples.
For the alignment score, IB-AV scores are also marginally improved, illustrating our guidance module
properly guides generated samples to be well-aligned across modalities.

4.3 EXPERIMENTS FOR OUT-OF-DOMAIN GENERATION WITH BENCHMARK DATASETS

Setup We also applied our proposed method to an out-of-domain setting. In this setting, we used
a different dataset for training our discriminator compared with the base models. Specifically, we
used two pairs of base models, AudioLDM (Liu et al., 2023) + AnimateDiff (Guo et al., 2024) and
Auffusion (Xue et al., 2024) + VideoCrafter2 (Chen et al., 2024), to generate audio and video, each
pretrained with respective single-modal large-scale datasets. On top of these independent models, we
trained our proposed discriminator using an audio-video dataset to facilitate audio-video alignment
of the generated samples from the base models. Note that these base models can accept text input
as an additional condition. To enable classifier-free guidance (Ho and Salimans, 2021), we also fed
conditional text into our discriminator and trained it with a 10% text dropout rate. We doubled the
channel size of each layer of the discriminator to match the larger size of the base models compared
to the MM-Diffusion case. We trained our model to generate videos with a spatial size of 256× 256
to match the outputs of the base models. For generation, we adopted classifier-free guidance with
its strength set to 2.5 for the AudioLDM, 7.5 for the AnimateDiff, and 8 for the Auffusion and the
VideoCrafter2, respectively. See Section A.3 in the appendix for more details.
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Table 3: Quantitative evaluation under the OOD setting on the Landscape dataset.

Video Audio Cross-modal

Method FVD ↓ IB-TV ↑ FAD ↓ IB-TA ↑ IB-AV ↑

Grand truth 207 - 0.16 - 0.247

AnimateDiff → SpecVQGAN (852) (0.308) 10.69 0.050 0.086
VideoCrafter2 → SpecVQGAN (700) (0.309) 11.63 0.049 0.074

AnimateDiff → DiffFoley (852) (0.308) 8.58 0.053 0.113
VideoCrafter2 → DiffFoley (700) (0.309) 9.14 0.045 0.111

AudioLDM / AnimateDiff 852 0.308 8.26 0.053 0.093
+ Ours 667 0.303 7.69 0.061 0.102

Auffusion / VideoCrafter2 700 0.309 8.06 0.103 0.134
+ Ours 687 0.309 7.86 0.109 0.137

Table 4: Quantitative evaluation under the OOD setting on the VGGSound dataset.

Video Audio Cross-modal

Method FVD ↓ IB-TV ↑ FAD ↓ IB-TA ↑ IB-AV ↑

Grand truth 256 - 1.32 - 0.336

AnimateDiff → SpecVQGAN (739) (0.295) 8.65 0.064 0.084
VideoCrafter2 → SpecVQGAN (831) (0.302) 8.91 0.061 0.089

AnimateDiff → DiffFoley (739) (0.295) 14.42 0.046 0.098
VideoCrafter2 → DiffFoley (831) (0.302) 13.11 0.060 0.105

AudioLDM / AnimateDiff 739 0.295 15.5 0.107 0.121
+ Ours 754 0.291 12.1 0.116 0.127

Auffusion / VideoCrafter2 831 0.302 5.32 0.190 0.192
+ Ours 704 0.302 4.79 0.197 0.201

Dataset We conducted experiments with the Landscape (Lee et al., 2022) and VGGSound (Chen
et al., 2020) datasets. The VGGSound dataset contains nearly 200K video clips of 300 sound classes.
Following Yariv et al. (2024), we filtered 60K videos with weak audio-video alignment to enhance
the data quality. For both datasets, we resized videos while maintaining the aspect ratio of the spatial
resolution and cropped 256× 256 center pixels to create the training dataset. Regarding text captions
for the training dataset, we used the original labels for the VGGSound dataset. For the Landscape
dataset, we additionally created captions by applying InstructBLIP (Dai et al., 2024) to the first frame
of each video because the original labels are too vague to generate plausible samples (see Section
A.4 in the appendix for more details).

Evaluation metrics We evaluated the generated samples using FAD, FVD, and IB-AV as described
in Section 4.2. Additionally, to measure the correspondence between a generated sample and its text
condition, we computed the ImageBind score for text-video and text-audio pairs (denoted by IB-TV
and IB-TA, respectively).

Baselines We compared our method with existing works that can be reproduced and are publicly
available. Specifically, we used a sequential approach, Text-to-Video (T2V) generation, followed
by Video-to-Audio (V2A) generation, as the baseline for comparison. We used the pre-trained
SpecVQGAN (Iashin and Rahtu, 2021) and Diff-Foley (Luo et al., 2023a) released in the official
repository as a V2A model and generated audios conditioned by the videos from AnimateDiff or
VideoCrafter2. For the text conditions of T2V models, we randomly sampled the captions generated
by InstructBLIP for the Landscape dataset and the class labels of the VGGSound dataset, which is
the same setting as the one for our method.
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Figure 3: Generated samples from AnimateDiff + AudioLDM and ours trained on VGGSound dataset. We used
the captions shown on the leftmost side and the same random seed for both settings to generate samples.

Results Tables 3 and 4 show the results of the quantitative evaluation on the Landscape and
VGGSound datasets. For single-modal evaluation, our proposed guidance improves all scores except
IB-TV and FVD for the VGGSound. This result indicates our method properly guides the generation
process to match the distribution of generated samples with the training dataset, even for the OOD
setting. Since IB-TV scores of the base models are substantially higher than IB-TA, we conjecture
that the captions are suitable for video generation. Therefore, the base video model can generate
videos well-aligned with the text captions, possibly resulting in slight degradation of FVD and IB-TV
for the setting of AudioLDM and AnimateDiff but improvement of FAD and IB-TA. For cross-modal
metrics, the IB-AV scores are consistently improved, indicating that our method successfully enhances
semantic audiovisual alignment. Our method generally delivers superior performance in terms of
audio fidelity and IB-AV scores compared with the T2V + V2A generation. We hypothesize that
pre-trained T2A models, trained on larger-scale datasets, have the capacity to generate not only
high-quality but also sufficiently diverse samples to accommodate various, potentially out-of-domain
videos produced by T2V models. Combined with our method, the fidelity of the generated audio
and its semantic alignment with the corresponding generated videos are further enhanced. Fig. 3
illustrates the effect of our guidance module qualitatively. Although the generated samples from
the base models look reasonable as a single modality, they look unnatural from the perspective of
audio-video joint generation because there is no player, but the sound is generated. In contrast, our
guidance tends to generate players successfully, and the generated audio is temporally aligned with
their motion (see appendix for more generated samples).

5 CONCLUSION

In this work, we have proposed a novel training-based but model-agnostic guidance module that
enables base models to generate well-aligned samples across modalities cooperatively. Specifically,
given two pre-trained base diffusion models, we train a lightweight joint guidance module that
modifies the scores estimated by the two base models to match the joint data distribution. We show
that this guidance can be formulated as the gradient of an optimal discriminator that distinguishes
real audio-video pairs from fake pairs generated independently by the base models. We also propose
regularizing this gradient using a denoising objective, as in standard diffusion models, which provides
a stable gradient of the discriminator. On several benchmark datasets, we empirically show that our
proposed method improves alignment scores as well as single-modal fidelity scores without requiring
a huge number of parameters compared with the base models.

Limitation Since our model is built on top of pre-trained models for each modality, the quality of
the generated samples strongly depends on the base models. However, our method benefits from the
advancements in each modality’s generative modeling. It enables us to integrate new state-of-the-art
works into a joint generative model without a huge computational cost.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 PROOF OF DISCRIMINATOR GUIDANCE

Our discriminator is trained by Eq. (10). This loss function can be decomposed into the loss function
at each timestep as:

L(θ)
disc,t = Eq(xt,yt) [logDθ(xt, yt, t)] + Epϕ(xt),pψ(yt) [log (1−Dθ(xt, yt, t))] (17)

=

∫
xt,yt

q(xt, yt) logDθ(xt, yt, t) + pϕ(xt)pψ(yt) log (1−Dθ(xt, yt, t)) dxtdyt. (18)

Here, q(xt, yt) is a distribution of real paired data, and pϕ(xt)pϕ(yt) is that of a fake one learned by
base models. By Proposition 1 in Goodfellow et al. (2014), for any fixed generators, the optimal
discriminator that minimizes Eq. (18) yields:

Dθ∗(xt, yt, t) ≈
q(xt, yt)

q(xt, yt) + pϕ(xt)pψ(yt)
. (19)

Using this optimal discriminator, we can compute the density ratio between a real and fake data
distribution as follows:

q(xt, yt)

pϕ(xt)pψ(yt)
≈ Dθ∗(xt, yt, t)

1−Dθ∗(xt, yt, t)
. (20)

Assuming the base models perfectly align with the marginal distribution of the real data (i.e.,
q(xt) = pϕ(xt) and q(yt) = pψ(yt)), we can compute ∇xt log q(yt|xt) and ∇yt log q(xt|yt) as
follows:

∇xt log q(yt|xt) = ∇xt log
q(xt, yt)

q(xt)
(21)

= ∇xt log
q(xt, yt)

q(xt)q(yt)
(22)

= ∇xt log
q(xt, yt)

pϕ(xt)pψ(yt)
(23)

≈ ∇xt log
Dθ∗(xt, yt, t)

1−Dθ∗(xt, yt, t)
, (24)

∇yt log q(xt|yt) = ∇yt log
q(xt, yt)

q(yt)
(25)

= ∇yt log
q(xt, yt)

q(xt)q(yt)
(26)

= ∇yt log
q(xt, yt)

pϕ(xt)pψ(yt)
(27)

≈ ∇yt log
Dθ∗(xt, yt, t)

1−Dθ∗(xt, yt, t)
. (28)

Therefore, Eqs. (11) and (12) hold.

A.2 DISCRIMINATOR GUIDANCE FOR THE OOD CASE

In Section A.1, we assume q(xt) = pϕ(xt) and q(yt) = pψ(yt) to derive Eqs. (11) and (12). Here,
we prove that they also hold even in the case of q(xt) ̸= pϕ(xt) and q(yt) ̸= pψ(yt).
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Equations (7) and (8) can be rewritten by using pϕ(xt) and pψ(yt) as follows:

∇xt log q(xt, yt) = ∇xt log q(xt) +∇xt log q(yt|xt), (29)

= ∇xt log pϕ(xt) +∇xt log
q(xt)

pϕ(xt)
+∇xt log

q(xt, yt)

q(xt)
(30)

= ∇xt log pϕ(xt) +∇xt log
q(xt, yt)

pϕ(xt)
(31)

≈ ∇xt log pϕ(xt) +∇xt log
Dθ∗(xt, yt, t)

1−Dθ∗(xt, yt, t)
, (32)

∇yt log q(xt, yt) = ∇yt log q(yt) +∇yt log q(xt|yt) (33)

= ∇yt log pψ(yt) +∇yt log
q(yt)

pψ(yt)
+∇yt log

q(xt, yt)

q(yt)
(34)

= ∇yt log pψ(yt) +∇yt log
q(xt, yt)

pψ(yt)
(35)

≈ ∇yt log pψ(yt) +∇yt log
Dθ∗(xt, yt, t)

1−Dθ∗(xt, yt, t)
. (36)

Therefore, we can use the optimal discriminator as a joint guidance module for the OOD case as long
as a discriminator is trained to distinguish real paired samples from fake ones generated by the base
models.

A.3 DETAILS OF EXPERIMENTS

This section provides more details of the settings we used in each experiment.

Experiments with toy dataset Table 5 shows the settings for the toy dataset described in Section
4.1. As described in Section 3, residual noise prediction for the denoising step is computed through
the gradient of the discriminator with respect to its input, and its dimensionality is two. For evaluation
and visualization, we sample 4000 samples.

Experiments with benchmark datasets Table 6 shows the settings for real benchmark datasets.
We implemented our discriminator based on the official implementation of MM-Diffusion (Ruan
et al., 2023). 2 A notable difference is that we only used its encoder part and removed all attention
layers from the encoder, which is commonly used in the implementation of diffusion models. Our
preliminary experiments found that using attention layers causes unstable discriminator training.
Thus, the architecture of our discriminator is a stack of individual 2-stream ResBlocks followed by a
linear layer. Exploring more advanced architectures for our discriminator may boost the performance
further, which we leave for future work. For the OOD case, we constructed our discriminator on the
latent space learned by the base models. To train the discriminator, we sampled 1K samples for the
IND settings and 10K samples for the OOD settings in advance.

For evaluation, we generated 2048 samples and computed quantitative metrics. Specifically, we
utilized the evaluation code provided by StyleGAN-V (Yu et al., 2022) for FVD,3 that provided by
AudioLDM (Liu et al., 2023) for FAD,4 and that of IB-score (Girdhar et al., 2023),5 respectively.
During inference, we add the discriminator’s gradient to the base models’ predictions without scaling.
However, when Auffusion and VideoCrafter2 are used as base models, we observed that the gradient
norm with respect to the noisy video latents was significantly smaller than the predicted noise from
the base models. To address this discrepancy in scale, we apply scaling to the discriminator’s gradient
with respect to the video latents, but only in this particular setting. We determined the scaling factor

2https://github.com/researchmm/MM-Diffusion
3https://github.com/universome/stylegan-v
4https://github.com/haoheliu/audioldm_eval
5https://github.com/facebookresearch/ImageBind

15

https://github.com/researchmm/MM-Diffusion
https://github.com/universome/stylegan-v
https://github.com/haoheliu/audioldm_eval
https://github.com/facebookresearch/ImageBind


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Hyperparameters for the base model and discriminator in the experiments with toy dataset (used in
Section 4.1).

Model Base model Discriminator (IND) Discriminator (OOD)
Hyperparameters
Architecture MLP MLP MLP
Input dim 1 2 2
# of layers 5 3 3
Channel sizes 16, 64, 256, 64, 16 64, 32, 8 64, 32, 8
Output dim 1 1 1
Normalization LayerNorm LayerNorm LayerNorm
Activation SiLU SiLU SiLU
Timestep dim 256 64 64
Timestep input type Adaptive Adaptive Adaptive
Optimizer Adam Adam Adam
Learning rate 0.001 0.001 0.001
Total batch size 512 512 512
Total # of params 2.2M 171K 171K

Diffusion setup
Diffusion steps 500 500 500
Noise schedule linear linear linear
β0 0.0001 0.0001 0.0001
βT 0.02 0.02 0.02

Dataset
µx of GMM [-3, -1.5, 0, 1.5, 3] [-3, -1.5, 0, 1.5, 3] [2.25, -2.25, 2.25, -2.25, 0]
µy of GMM - [1.5, -3, 3, 0, -1.5] [2.25, -2.25, 2.25, -2.25, 0]
σ of GMM 0.1 0.1 0.1
# of fake samples - 500 500
# of real samples 500 500 500

by performing a grid search across [1, 2, 4, 6, 8, 10], with a scale of 8 producing the best quantitative
results.

We utilized 16GB Nvidia V100 × 4 GPUs for the IND case and 40GB Nvidia A100 × 8 GPUs for
the OOD case. The training time for the IND case was about 1.5 hours with both Landscape and
AIST++ datasets, and that for the OOD case was about two hours with the Landscape dataset and 30
hours with the VGGSound dataset. All evaluation was performed by 16GB Nvidia V100 × 4 GPUs.
It takes about one hour for the IND case and about five hours for the OOD case.

A.4 DETAIL OF CAPTIONING PROCESS OF LANDSCAPE DATASET FOR OOD SETTING.

We found that the original labels added to the Landscape dataset are too ambiguous for the base
models to generate reasonable samples. For instance, the generated results with the caption "wind
noise" tend to look like just a noise video and audio, and evaluation for the samples, including these
unnatural ones, is unstable and not desired. Therefore, we obtained simple captions for each video
using InstructBLIP (Dai et al., 2024) and used them only for the OOD experiment with the Landscape
dataset. Specifically, we extracted the first frame of each video and passed it to the InstructBLIP. As
an instruction for the captioning, we used the sentence: "Write a short sentence for the image starting
with ’The image captures a scene with’." and generated up to 128 characters for each video. Note
that these captions are generated only from videos without audio. They tend to describe only visual
content and provide less information about audio. Therefore, these captions may not be suitable for
audio generation by AudioLDM, as we show in Tables 3 and 4 where IB-TA is worse than IB-TV.
These results show that the text condition strongly affects the quality of generated results. Designing
and manipulating the input condition is also important for the joint generation, which we leave for
future work.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Hyperparameters used in the experiments with benchmark datasets (used in Sections 4.2 and 4.3). †
We jointly generate audio and video by MM-Diffusion in the IND case.

Model Discriminator (IND) Discriminator (OOD)
Hyperparameters
Audio base model MM-Diffusion† AudioLDM / Auffusion
Video base model MM-Diffusion† AnimateDiff / VideoCrafter2
Architecture ResBlocks ResBlocks
Audio input dims 1, 25600 8, 50, 16
Video input dims 3, 16, 64, 64 4, 16, 32, 32
Video fps 10 8
Audio fps 16k 16k
Duration (sec) 1.6 2.0
# of ResBlocks per resolution 2 4
Audio conv type 1d 2d
Audio conv dilation size 1, 2, 4, ..., 210 1
Video conv type 2d + 1d 2d + 1d
Channels 128 256
Channel multiplier 1, 2, 4 1, 2, 4
Audio downsample factor 4 (1, 2)
Video downsample factor (1, 2, 2) (1, 2, 2)
Output dim 1 1
Normalization GroupNorm GroupNorm
Activation SiLU SiLU
Timestep dim 128 256
Timestep input type Adaptive Adaptive
Conditional input - Text
Condition drop rate - 0.1
Text embed dim for video - 768
Text embed dim for audio - 512
Text embed input type - Add
Optimizer Adam Adam
Learning rate 0.001 0.001
Total batch size 16 32
Total training epochs 100 Landscape: 100 / VGGSound: 10
Total # of params for base models 133M 2.15B / 2.86B
Total # of params for discriminator 13M 132M

Diffusion setup
Diffusion steps 1000 1000
Noise schedule linear scaled linear
β0 and βT for audio 0.0001 / 0.02 0.0015 / 0.0195
β0 and βT for video 0.0001 / 0.02 0.00085 / 0.012

Inference parameters
Sampler DPM-Solver DPM-Solver ++
NFE 20 50
Order 3 2
Audio text guidance scale - 2.5 / 8.0
Video text guidance scale - 7.5 / 8.0
Audio joint guidance scale 1.0 1.0 / 1.0
Video joint guidance scale 1.0 1.0 / 8.0
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GT ℒ𝑑𝑖𝑠𝑐 ℒ𝑑𝑒𝑛𝑜𝑖𝑠𝑒 ℒ𝑎𝑙𝑙

Figure 4: Visualization of the generated samples across loss functions used to train our guidance module with
the toy dataset. The top row shows the IND setting, and the bottom shows the OOD setting.

Table 7: Ablation study about the loss functions on the landscape dataset.

Video Audio Cross-modal

Settings FVD ↓ IB-TV ↑ FAD ↓ IB-TA ↑ IB-AV ↑

Dataset 207 - 0.16 - 0.247

No Joint 852 0.308 8.26 0.053 0.093

Ldisc 818 0.305 7.80 0.060 0.102
Ldenoise 700 0.303 7.19 0.064 0.088
Lall 667 0.303 7.69 0.061 0.102

A.5 VISUALIZATION OF THE EFFECT BY EACH LOSS FUNCTION WITH TOY DATASETS

Figure 4 visualizes the effect of each loss function. The top row shows the IND case, and the bottom
shows the OOD case. At each row, the leftmost column shows the samples from the target distribution,
and the others show generated samples with our guidance modules trained by different loss functions.
Note that the NNL at each setting has been shown in Table 1. In the IND case, both Ldisc and Ldenoise

work similarly, whereas in the OOD case, the guidance trained by only Ldisc can roughly concentrate
the samples at four corners but struggles to force them be in a single peak. In contrast, combining
with Ldenoise drastically improves this issue, and using both of them yields the best result.

A.6 ABLATION STUDY ABOUT THE LOSS FUNCTIONS ON REAL DATA

We conducted an ablation study about the loss functions on the landscape dataset. Table 7 shows
quantitative results of our model trained with Ldisc, Ldenoise, and Lall. We used AudioLDM and
AnimateDiff as base models in this experiment. The model trained on Ldisc achieves better IB-AV and
shows good performance in terms of the cross-modal semantic alignment, while it shows moderate
improvements in the fidelity scores. On the other hand, the one trained on Ldenoise achieves better
fidelity scores while suffering from lower cross-modal alignment scores. Compared to these, the one
trained on Lall achieves both better fidelity scores and cross-modal alignment, which has the best of
both worlds.
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Table 8: Ablation study for the channel size C of the discriminator with the number of ResBlocks per resolution
L fixed to 2.

Architecture Metrics

Settings # of params FVD ↓ FAD ↓ IB-AV ↑

Base model (MM-Diffusion) 133M 447 5.78 0.156

C = 32, L = 2 798K 423 5.60 0.159
C = 64, L = 2 3.2M 410 5.48 0.161
C = 128, L = 2 12.7M 405 5.52 0.162
C = 256, L = 2 50.7M 399 5.46 0.160

Table 9: Ablation study for the number of ResBlocks per resolution L of the discriminator with the channel size
C fixed to 32 and 128.

Architecture Metrics

Settings # of params FVD ↓ FAD ↓ IB-AV ↑

Base model (MM-Diffusion) 133M 447 5.78 0.156

C = 32, L = 1 401K 421 5.65 0.159
C = 32, L = 2 798K 423 5.60 0.159
C = 32, L = 4 1.6M 425 5.51 0.160
C = 128, L = 1 19.0M 415 5.60 0.161
C = 128, L = 2 12.7M 405 5.52 0.162
C = 128, L = 4 25.3M 407 5.43 0.162

A.7 ABLATION STUDY ABOUT THE PARAMETER SIZE OF THE DISCRIMINATOR

We conducted the ablation study for the parameter size of the discriminator as well as the number of
training epochs in the IND setting with the Landscape dataset.

Table 8 shows the effect of increasing the channel size (denoted by C) with the number of ResBlocks
per resolution fixed. As we increase the channel size, performance substantially increases for both
the single-modal fidelity score and the multimodal alignment score. We observed that the multimodal
alignment is slightly degraded at C = 256 and concluded that the setting with C = 128 is the most
appropriate for multimodal guidance, requiring only less than 10% additional parameters. Note that
our proposed method successfully improves the base model’s performance even when we only used
less than 1% additional parameters (the setting with C = 32).

Table 9 shows the effect of increasing the number of ResBlocks per resolution (denoted by L) with
the channel size fixed. We did experiments on the settings with C = 32 and C = 128. For both
settings, increasing L improves FAD mainly, while the differences of other metrics are marginal.
We suppose this may be the effect of the increase in the receptive field. Since MM-diffusion is
trained on the raw data space (pixel for video and waveform for audio), the size of the time axis for
audio is extremely large. Therefore, following the implementation of MM-diffusion, we used dilated
convolutions for the audio branch to capture features at multiple scales. Using more ResBlocks
containing dilated convolutions may improve the audio encoder’s capacity, resulting in improved
audio performance. This indicates that using an advanced architecture for multimodal recognition
may improve the performance of our proposed guidance module, which we leave for future work.

Figure 5 shows the performance of our guidance module over the number of training epochs. We used
C = 128 and L = 2 for the discriminator and trained it longer. For evaluation, we generated samples
with five different random seeds and computed the average and standard deviation of each metric.
Our guidance module converged around 100 epochs, and we did not observe clear improvement by
training further.
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Figure 5: Ablation study for the training epochs. We trained the discriminator with C = 128 and L = 2 for 300
training epochs. We generated samples with five different random seeds and computed their average and std.

Table 10: Ablation study for the different discriminator designs. For the notation of the architectures, we denote
"i) / ii)" where i) is the architecture of the feature extractor module and ii) is the feature fusion module described
in Section A.8.

Metrics

Architecture FVD ↓ IB-TV ↑ FAD ↓ IB-TA ↑ IB-AV ↑

Auffusion / VideoCrafter2 831 0.302 5.32 0.190 0.192
+ Ours default (Res / MLP) 704 0.302 4.79 0.197 0.201

Res / Naive transformer 709 0.303 4.69 0.200 0.202
Res / Frieren 710 0.302 4.77 0.202 0.205
ViT / MLP 730 0.301 5.07 0.192 0.199

ViT / Naive transformer 716 0.302 5.09 0.194 0.202
ViT / Frieren 720 0.302 5.06 0.194 0.202

A.8 ABLATION STUDY ABOUT THE DIFFERENT STRUCTURES OF THE DISCRIMINATOR

Our default discriminator structure used in this work is split into two modules in terms of functionality:
i) feature extraction module and ii) feature fusion module. We used a stack of ResBlock layers to
extract modality-specific features for i) and channel-wise concatenation of pooled features along the
time axis, followed by an MLP to handle crossmodal interaction for ii). We denote these default
structures as "Res" for i) and "MLP" for ii). To further improve the performance of joint generation,
we tested integrating transformer architecture into our discriminator, inspired by its recent success
(Vaswani, 2017; Dosovitskiy et al., 2021; Peebles and Xie, 2023; Wang et al., 2024). Specifically,
we used two input types for the transformer encoder to replace the module ii). The shapes of audio
and video features extracted from i) are (B,Fa, C) and (B,Fv, C) for audio and video, where B is a
batch size, Fa and Fv are the numbers of frames of audio and video, and C is a channel size. For the
first design, we concatenated these two features along the frame axis to get a crossmodal feature of the
shape (B,Fa+Fv, C) (denoted as "Naive Transformer"). For the second design, following the design
proposed by Wang et al. (2024), we upsampled shorter features and concatenated these two features
along the channel axis to get a crossmodal feature of the shape (B,max(Fa, Fv), 2C) (denoted as
"Frieren"). For both settings, the input is supplemented with a learnable positional embedding and
a special token, which is used for the final output, and the transformer encoder with four layers is
applied. We used xFormers6 for the transformer implementation and tested these two designs on top
of Auffusion and VideoCrafter2 as base models. Table. 10 shows the results of this ablation study. We
trained the discriminators for ten epochs on the VGGSound dataset. Overall, both designs improve
the fidelity and crossmodal alignment. This result indicates that a more sophisticated discriminator
structure improves the performance of crossmodal generation. Although we also roughly tested
replacing ResBlock layers with vision transformer architecture (Dosovitskiy et al., 2021; Arnab
et al., 2021) (the 4D audio latents are processed by ViT, and the 5D video latents are processed by
ViViT), we do not observe performance improvement (denoted as "ViT"). Further exploration of the
discriminator structures would be an interesting direction for future work.

6https://github.com/facebookresearch/xformers
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Table 11: Computational cost for the training. The Computation times of forward and backward execution for
the base models and our discriminator are shown. Those of the base models include the computation times
required for both audio and video.

Base Models

MM-Diffusion AudioLDM / AnimateDiff Auffusion / VideoCrafter2

Base Fwd [sec] 0.273 (0.009) 0.254 (0.057) 0.349 (0.020)
Base Bwd [sec] 0.660 (0.001) 0.505 (0.007) 0.952 (0.013)
Disc Fwd [sec] 0.054 (0.006) 0.081 (0.007) 0.081 (0.006)
Disc Bwd [sec] 0.135 (0.009) 0.186 (0.005) 0.186 (0.007)

Baseline 1step [sec] 0.933 (0.009) 0.759 (0.057) 1.301 (0.023)
Ours 1step [sec] 0.462 (0.014) 0.521 (0.058) 0.616 (0.022)
Speed-up Ratio 202% 146% 211%

Table 12: Computation time for the inference with and without the proposed method. All numbers in the table
show the time in seconds for generating one pair of audio and video ([second / sample]).

Base Models

MM-Diffusion AudioLDM / AnimateDiff Auffusion / VideoCrafter2

w/o ours 1.09 (0.03) 3.10 (0.02) 4.45 (0.03)
w/ ours 1.25 (0.04) 3.77 (0.09) 4.91 (0.04)

Overhead [%] 15% 22% 10%

A.9 COMPUTATIONAL COST FOR THE TRAINING AND INFERENCE

To highlight the computational efficiency of our proposed method, we compared the computation
time for the training and inference of base models, both with and without our method. For this
experiment, we used the same network configurations as described in Sections 4.2 and 4.3, with a
batch size of 8, and conducted all runs on a single Nvidia H100 GPU.

Table 11 shows the elapsed time for each base model’s forward and backward computations and
our discriminator’s during a single training step. Each configuration was run 500 times, with the
mean and standard deviation for each value reported in the table. As a baseline, we measured
the computation times for the single training step of all base models (represented as the sum of
Base Fwd and Base Bwd in Table 11). Note that this baseline reflects the cost for fine-tuning base
models without incorporating additional learnable layers (Hu et al., 2022) or cross-modal modules
(Tang et al., 2023), thereby serving as a lower-bound estimate for the training costs associated with
building a joint generation model by simply combining base models. Our method achieves training
speeds approximately 1.5 to 2 times faster than baselines. These results demonstrate that our method
integrates base models into a joint model in a computationally efficient manner.

Table 12 shows the time required to sample a pair of audio and video. Due to the additional
computation required by the discriminator, the inference times are slightly longer (around 10 to 20
%) compared to those of the base models. This overhead can be mitigated by designing a more
computationally efficient network architecture.

A.10 GENERATED AUDIO AND VIDEO PAIRS

This section shows the results generated from the base models and ours. Note that, to evaluate the
effectiveness of our proposed method visually, we used the same random seed for the base models
and ours, with which we can expect them to provide similar samples.

Figure 6 shows the results of unconditional generation from MM-Diffusion and that with our guidance
module. Since MM-Diffusion was already trained by the same dataset (i.e., the IND setting), the
generated pairs of audio and video look well-aligned in their semantics. However, our guidance
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module improves the quality of detail at each modality or forces the generated audio and video to be
temporally aligned, which is coherent with the quantitative evaluation results.

Figure 7 shows the results of text-conditional generation from base models (AudioLDM and Animate-
Diff) and ours (i.e., the OOD setting). Our guidance module substantially improves the quality of
generated samples from base models compared to the IND setting. In this case, since the base models
independently generate audio and video, the generated audio and video are not always well-aligned.
As described in Section 4.3, our guidance tends to generate players successfully, and the generated
audios are also temporally aligned with their motion.
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No joint Ours

Figure 6: More generated samples from MM-Diffusion and ours trained on the Landscape dataset in the IND
setting. We used the same random seed for both settings, and the generated results at each row should be similar.
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Figure 7: More generated samples from AnimateDiff + AudioLDM and ours trained on the VGGSound dataset
in the OOD setting. The captions given for the generation of each sample are shown in the leftmost column, and
we used the same random seed for both settings.
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