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Abstract
Vision-and-language navigation (VLN) is a001
multimodal task where an agent follows nat-002
ural language instructions and navigates in vi-003
sual environments. Multiple setups have been004
proposed, and researchers apply new model005
architectures or training techniques to boost006
navigation performance. However, there still007
exist non-negligible gaps between machines’008
performance and human benchmarks. More-009
over, the agents’ inner mechanisms for navi-010
gation decisions remain unclear. To the best011
of our knowledge, how the agents perceive the012
multimodal input is under-studied and needs013
investigation. In this work, we conduct a series014
of diagnostic experiments to unveil agents’ fo-015
cus during navigation. Results show that indoor016
navigation agents refer to both object and direc-017
tion tokens when making decisions. In contrast,018
outdoor navigation agents heavily rely on di-019
rection tokens and poorly understand the object020
tokens. The differences in dataset designs and021
the visual features lead to distinct behaviors on022
visual environment understanding. Many mod-023
els claim that they can align object tokens with024
specific visual targets when it comes to vision-025
and-language alignments. We find unbalanced026
attention on the vision and text input and doubt027
the reliability of such cross-modal alignments.028

1 Introduction029

A key challenge for Artificial Intelligence (AI) re-030

search is to move beyond Independent and Iden-031

tically Distributed (i.i.d.) data analysis: We need032

to teach AI agents to understand multimodal input033

data, and jointly learn to reason and perform incre-034

mental and dynamic decision-making with the help035

from humans. Vision-and-Language Navigation036

(VLN) has received much attention due to its ac-037

tive perception and multimodal grounding setting,038

dynamic decision-making nature, rich applications,039

and accurate evaluation of agents’ performances040

in language-guided visual grounding. As the AI041

research community gradually shifts the attention042

R2R RxR Touchdown

Human Performance 86 94 92
SoTA Model Performance 78 53 17

Table 1: There exists salient gaps between machines’
vision-and-language navigation (VLN) performance and
human benchmarks. Navigation success rates are re-
ported on the R2R (Anderson et al., 2018) and the RxR
dataset (Ku et al., 2020b) for indoor VLN and the Touch-
down dataset (Chen et al., 2019) for outdoor VLN.

from the static empirical analysis of datasets to 043

more challenging settings that require incremental 044

decision-making processes, the interactive task of 045

VLN deserves a more in-depth analysis of why it 046

works and how it works. 047

Various setups have been proposed to address to 048

the VLN task. Researchers generate visual trajec- 049

tories and collect human-annotated instructions for 050

indoor (Anderson et al., 2018; Jain et al., 2019a; 051

Ku et al., 2020a; Chen et al., 2021) and outdoor 052

environment (Chen et al., 2019; Mehta et al., 2020; 053

Mirowski et al., 2018). There are also interactive 054

VLN settings based on dialogues (Nguyen et al., 055

2019; Nguyen and III, 2019; Zhu et al., 2020c), and 056

task that navigates agents to localize a remote ob- 057

ject (Qi et al., 2020c). However, few studies ask the 058

Why and How questions: Why do these agents work 059

(or do not work)? How do agents make decisions 060

in different setups? 061

Through the years, agents with different model 062

architectures and training mechanisms have been 063

proposed for indoor VLN (Anderson et al., 2018; 064

Fried et al., 2018; Hao et al., 2020; Hong et al., 065

2020a,b; Huang et al., 2019; Ke et al., 2019; Li 066

et al., 2019; Ma et al., 2019a; Qi et al., 2020b; Tan 067

et al., 2019; Wang et al., 2020a, 2019, 2018, 2020b; 068

Zhu et al., 2020a) and outdoor VLN (Chen et al., 069

2019; Ma et al., 2019b; Mirowski et al., 2018; Xia 070

et al., 2020; Xiang et al., 2020; Zhu et al., 2020b). 071

Back-translation eases the urgent problem of data 072

scarcity (Fried et al., 2018). Imitation learning and 073
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reinforcement learning enhance agents’ generaliza-074

tion ability (Wang et al., 2019, 2018). With the075

rise of BERT-based models, researchers also apply076

Transformer and pre-training to further improve077

navigation performance (Hao et al., 2020; Hong078

et al., 2020b; Zhu et al., 2020b). While apply-079

ing new techniques to the navigation agents might080

boost their performance, we still know little about081

how agents make each turning decision. Treatment082

of the agents’ processing of instructions and per-083

ception of the visual environment as a black box084

might hinder the design of a generic model that085

fully understands visual and textual input regard-086

less of VLN setups. Table 1 shows that there are087

still non-negligible performance gaps between neu-088

ral agents and humans on both indoor and outdoor089

VLN tasks1.090

Therefore, we focus on analyzing how the navi-091

gation agents understand the multimodal input data092

in this work. We conduct our investigation from093

the perspectives of natural language instruction, vi-094

sual environment, and the interpretation of vision-095

language alignment. We create counterfactual inter-096

ventions to alter the instructions and the visual envi-097

ronment in the validation dataset, focusing on vari-098

ables related to object and direction. More specif-099

ically, we modify the instruction by removing or100

replacing the object/direction tokens, and we adjust101

the environment by masking out visual instances102

or horizontally flipping the viewpoint images. Sub-103

sequently, we examine the interventions’ treatment104

effects on agents’ evaluation performance while105

keeping other variables unchanged. We set up ex-106

periments on the R2R (Anderson et al., 2018) and107

the RxR dataset (Ku et al., 2020b) for indoor VLN108

and the Touchdown dataset (Chen et al., 2019) for109

outdoor VLN. We examine nine VLN agents on the110

three datasets with quantitative ablation diagnostics111

on the text and visual inputs.112

In summary, our key findings include:113

1. Indoor navigation agents refer to both objects114

and directions in the instruction when mak-115

ing decisions. In contrast, outdoor navigation116

agents heavily rely on directions and poorly117

understand visual objects. (Section 4)118

2. The differences of dataset designs and the vi-119

sual features lead to distinct behaviors on vi-120

sual environment understanding. R2R agents121

rely more on background information to navi-122

1We record the published state-of-the-art performance on
R2R, RxR and Touchdown leaderboards on Dec.15th, 2021.

gate over RxR agents. Compared to ImageNet 123

ResNet-152 features, CLIP-ViT features are 124

less affected by the loss of visual object infor- 125

mation. (Section 5) 126

3. Indoor agents can align object tokens to cer- 127

tain targets in the visual environment to a cer- 128

tain extent, but display in-balanced attention 129

on text and visual input. (Section 6) 130

We hope these findings reveal opportunities and 131

obstacles of current VLN models and lead to new 132

research directions. 133

2 Related Work 134

Instruction Following is a long-standing topic 135

in AI studies that ask an agent to follow natural 136

language instructions and accomplish target tasks, 137

which can be dated back to the SHRLDU (Wino- 138

grad, 1971). Efforts made to tackle this clas- 139

sic problem spans broadly from defining tem- 140

plates (Klingspor et al., 1997; Antoniol et al., 2011), 141

designing hard-encoded concepts to ground visual 142

attributes and spatial relations (Steels and Vogt, 143

1997; Roy, 2002; Guadarrama et al., 2013; Kollar 144

et al., 2013; Matuszek et al., 2014), to constructing 145

varies datasets and learning environments (Ander- 146

son et al., 1991; Bisk et al., 2016; Misra et al., 147

2018). 148

Vision-and-Language Navigation is a task 149

where an agent comprehends the natural language 150

instructions and reasons through the visual en- 151

vironment. To enrich training data, a line of 152

work (Fried et al., 2018; Zhu et al., 2020b) use 153

back-translation to generate augmented instruc- 154

tions. To enforce cross-modal grounding, RPA and 155

RCM (Wang et al., 2018, 2019) use reinforcement 156

learning, SMNA (Ma et al., 2019a) uses a visual- 157

textual co-grounding module to improve cross- 158

modal alignment, RelGraph (Hong et al., 2020a) 159

uses graphs for task formulation. To address the 160

generalizability problem to unseen environment, 161

PRESS (Li et al., 2019) introduces a stochastic sam- 162

pling scheme, EnvDrop (Tan et al., 2019) proposes 163

environment dropout. To utilize visual information 164

from the environment, AuxRN (Zhu et al., 2020a) 165

uses auxiliary tasks to assist semantic information 166

extraction, VLN-HAMT (Chen et al., 2021) incor- 167

porates panorama history with a hierarchical vision 168

transformer. 169

With the success of BERT-related models in 170

NLP, researchers also started to build Transformer- 171

based navigation agents and add a pre-training pro- 172
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cess before fine-tuning on the downstream VLN173

task (Hao et al., 2020; Hong et al., 2020b; Zhu174

et al., 2020b; Chen et al., 2021). The increased175

model size and additional training phase help im-176

prove navigation performance to a certain extent.177

Above mentioned studies aim at improving agents’178

performance in one way or another.179

Model Behavior Analysis As multimodal stud-180

ies gain more and more attention, there are lines of181

works that focus on explaining models’ behaviors182

to understand better and handle the tasks. Some183

generate textual explanations by training another184

model to mimic human explanations (Hendricks185

et al., 2016; Park et al., 2018; Wu and Mooney,186

2019). Others generate visual explanations with187

the help of attention mechanism (Lu et al., 2016)188

or gradient analysis (Selvaraju et al., 2017). There189

are also attempts on providing multimodal expla-190

nations, e.g., (Li et al., 2018) breaks up the end-191

to-end VQA process and examines the interme-192

diate results by extracting attributes from the vi-193

sual instances. Another line of works examines194

model performance by conducting ablation studies195

on input data. Two recent analyses on language196

modelling (O’Connor and Andreas, 2021) and ma-197

chine translation (Fernandes et al., 2021) ablate198

both training and validation data. A study on mul-199

timodal models (Frank et al., 2021) only applies200

ablation during evaluation, which is the same with201

our settings.202

3 Background and Research Questions203

3.1 Vision-and-Language Navigation204

In the vision-and-language navigation task, the nav-205

igation agent is asked to find the path to reach the206

target location following the instructions X . The207

navigation procedure can be viewed as a sequen-208

tial decision-making process. At each time step t,209

the visual environment presents an image view vt.210

With reference to the instruction X and the visual211

view vt, the agent is expected to choose an action212

at such as turn left or stop.213

Datasets We conduct indoor navigation experi-214

ments on the Room-to-Room (R2R) dataset (An-215

derson et al., 2018) and the Room-across-Room216

(RxR) dataset (Ku et al., 2020b), and test outdoor217

VLN on Touchdown (Chen et al., 2019). R2R and218

RxR are built upon real estate layouts and contain219

separate graphs for each apartment/house. Unlike220

R2R that shoots for the shortest path, RxR con-221

Dataset Model Trans? Visual Feature

R2R

EnvDrop (Tan et al., 2019) ⇥

ResNet-152VLN � BERT (Hong et al., 2020b) ⇥
FAST (Ke et al., 2019) X
PREVALENT (Hao et al., 2020) X

R2R CLIP-ViL (Shen et al., 2021) ⇥ CLIP-ViTVLN-HAMT (Chen et al., 2021) X

Touchdown
RCONCAT (Chen et al., 2019) ⇥

ResNet-18ARC (Xiang et al., 2020) ⇥
VLN-Transfomer (Zhu et al., 2020b) X

Table 2: The VLN datasets and models covered in
this study. We record whether the model structure is
Transformer-based, and the pre-trained feature extractor
used to encode visual environment.

tains longer and more variable paths. R2R only 222

contains English instructions, while RxR also in- 223

cludes instructions in Hindi and Telugu.2 Naviga- 224

tion in Touchdown occurs in the urban environment, 225

where the viewpoints form a huge connected graph. 226

Compared to indoor environments, Touchdown has 227

more complicated visual environments and a more 228

extensive search space. The evaluation results in 229

this study are reported on the validation unseen sets 230

for R2R and RxR, and the test set for Touchdown. 231

Models Table 2 lists out the models in our study. 232

We use the code and trained checkpoints shared by 233

the authors in the following experiments. 234

For indoor navigation on R2R, we study a widely 235

adopted base model Envdrop (Tan et al., 2019), 236

a backtracking framework for self-correction 237

FAST (Ke et al., 2019), and two SoTA models 238

VLN � BERT (Hong et al., 2020b) and PREVA- 239

LENT (Hao et al., 2020). The Envdrop intro- 240

duces environment dropout on top of the Speaker- 241

Follower (Fried et al., 2018) model, FAST conducts 242

an asynchronous search for backtracking, PREVA- 243

LENT, and VLN � BERT are Transformer-based 244

agents with pre-trained models. 245

For navigation on RxR, we examine CLIP- 246

ViL (Shen et al., 2021) and VLN-HAMT (Chen 247

et al., 2021). CLIP-ViL shares the same model 248

structure with EnvDrop. The only difference is 249

that CLIP-ViL use CLIP (Radford et al., 2021) 250

to extract visual features, while EnvDrop use Im- 251

ageNet ResNet (Szegedy et al., 2017) features. 252

VLN-HAMT incorporates a long-horizon history 253

into decision-making by encoding all the past 254

panoramic observations via a hierarchical vision 255

transformer. 256

For outdoor navigation on Touchdown, we use 257

the common baseline RCONCAT (Chen et al., 258

2In this study, we only cover the English subset for RxR.
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2019), and two SoTA models ARC (Xiang et al.,259

2020) and VLN-Transfomer (Zhu et al., 2020b).260

RCONCAT encodes the trajectory and the instruc-261

tion in an LSTM-based manner. ARC improves262

RCONCAT by paying special attention to stop sig-263

nals. VLN-Transfomer is a Transformer-based264

agent that applies pre-training on a multimodal265

dataset.266

Metrics In the following experiments, we evalu-267

ate navigation performance with Success Rate (SR)268

for indoor agents and Task Completion (TC) rate269

for outdoor agents. Both SR and TC measure the270

accuracy of completing the navigation task, which271

reflects the agents’ overall ability to finish naviga-272

tion correctly. An indoor navigation task is consid-273

ered complete if the agent’s final position locates274

within 3 meters of the target location. For outdoor275

navigation, the task is considered completed if the276

agent stops at the target location or one of its adja-277

cent nodes in the environment graph.278

3.2 Research Questions279

Current VLN studies have reached their bottleneck280

as only minor performance improvements have281

been achieved recently, while a significant gap still282

exists between machine and human performance.283

This motivates us to find the reasons.284

To better understand how VLN agents make de-285

cisions during navigation, we conduct a series of286

experiments on indoor and outdoor VLN tasks, aim-287

ing to answer the following questions that might288

help us locate the deficiencies of current model289

designs and explore future research directions:290

1. What can the agents learn from the instruc-291

tions? Do they pay more attention to object292

tokens or directions tokens? Do they have the293

ability to count? (Section 4)294

2. What do agents see in the visual environment?295

Are they staring at the closely surrounded ob-296

jects or also browsing further layout? Do297

they focus on individual visual instances or298

perceive the overall outline? (Section 5)299

3. Can agents match textual tokens to visual en-300

tities? How reliable are such connections?301

(Section 6)302

4 Analysis on Instruction Understanding303

This section examines whether and to what extent304

the agent understands navigation instructions. We305

focus on how the agent perceives object-related to-306

kens, direction-related tokens, and numeric tokens,307

Dataset Instruction

R2R Walk through the door by the sink into the middle of the next room. Turn
right and walk down the hallway and enter the third door on your right.

RxR

You are standing inside a living room, turn right and exit, move towards the
stairs on your right, and then turn left take few steps towards two entrances
in front and then turn left, their should be a wine room on your right and on
your right a glass window on your left and an open door in front of you, go
towards the open door which has a black bench, on your right, once you are
their turn left and then proceed straight ahead towards the garage door, more
towards the lockers on your left, once you are their you are done .

Touchdown

Orient yourself so that you are moving in the same direction as traffic. Go
straight through 3 intersections. Keep moving forward, after the 3rd inter-
section, you should see a signs for a store with a white background and red
dots as well as a red and white bullseye target. Continue going straight past
this store and at the next intersection, turn left. Go through one intersection
and stop just after the wall on your left with the purple zig zag patterns.

Table 3: Instructions from R2R, RxR and Touch-
down with object-tokens, direction-tokens and
numeric-tokens highlighed.

Dataset #Data Avg_Len #Object Avg_#Obj Avg_#Direc

R2R 2.3k 29.4 1.3k 19.6% 7.6%
RxR 4.6k 114.0 2.9k 16.0% 6.5%
Touchdown 1.4k 91.1 1.7k 17.2% 6.8%

Table 4: Statistics of R2R, RxR and Touchdown datasets.
#Data is the number of data samples used for evalu-
tion in the following sections. Avg_Len is the average
#tokens in instructions, and #Object is the number of
unique objects in visual environments. Avg_#Obj and
Avg_#Direc denotes the percentage of object/direction
tokens per instruction.

and their effects on final navigation performance. 308

Table 3 shows exemplar instructions of these three 309

datasets. As shown in Table 4, the ratio of object 310

and direction tokens in R2R, RxR and Touchdown 311

are comparable. RxR and Touchdown have longer 312

instructions. Instructions in all three datasets in- 313

volve about two times more object tokens than di- 314

rection tokens. 315

4.1 The Effect of Object-related Tokens 316

We create counterfactual interventions on instruc- 317

tions by masking out the object tokens. We use 318

Stanza (Qi et al., 2020a) part-of-speech (POS) tag- 319

ger to locate object-related tokens. A token will be 320

regarded as an object token if its POS tag is NOUN 321

or PROPN. During masking, we replace the object 322

token with a specified mask token [MASK]. Then 323

we examine the average treatment effects of the in- 324

tervention on agents’ performance, while keeping 325

other variables unchanged. 326

Table 5 gives an example of removing object 327

tokens by masking. Noticeably, when we mask out 328

the object tokens, the tokens visible to the agent 329

also decrease, which is a coherent factor with #ob- 330

ject tokens and might interfere with our analysis. 331

To eliminate the effect of reducing visible tokens, 332

we add a controlled trial in which we randomly 333
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Setting Instruction

Original Go left down the hallway toward the exit sign. Turn right and go down the hallway. Go into the door on the left and stop by the table.

Mask Object Tokens Go left down the [MASK] toward the [MASK] [MASK]. Turn right and go down the [MASK]. To into the [MASK] on the left and stop by the [MASK].

Replace Object Tokens Go left down the portrait toward the sofa fountains. turn right and go down the door. Go into the football on the left and stop by the boats.

Controlled Trial Go left down the hallway [MASK] the exit sign. [MASK] right and go down the [MASK]. To into the door on [MASK] left and [MASK] by [MASK] table.

Mask Direction Tokens Go [MASK] down the hallway toward the exit sign. Turn [MASK] and go down the hallway. Go into the door on the [MASK] and [MASK] by the table.

Replace Direction Tokens Go right down the hallway toward the exit sign. Turn left and go down the hallway. Go into the door on the right and forward by the table.

Controlled Trial Go left down the [MASK] [MASK] the exit sign. Turn right and go down the [MASK]. Go into the door on the left and [MASK] by the table.

Table 5: Example of instruction modification. In the original instruction, there are six object-related tokens, and
four direction-related tokens. In the object token ablations, we mask out the object tokens, or replace them with
randomly sampled object tokens. The controlled trial randomly masked out six tokens from the instruction for a fair
comparison. Likewise the direction tokens.

Ablation Setting SR " on R2R SR " on RxR TC " on Touchdown

EnvDrop FAST VLN�BERT PREVALENT CLIP-ViL VLN-HAMT RCONCAT ARC VLN-Trans

– Vanilla 49.77 63.39 53.30 57.13 40.21 52.52 11.78 15.19 16.11

Object Mask -36% -38% -21% -20% -48% -32% -35% -35% -7%
Controlled Trial -30% -26% -9% -8% -35% -24% -50% -55% -19%

Direction Mask -23% -23% -15% -11% -39% -28% -74% -89% -45%
Controlled Trial -12% -11% -5% -3% -18% -9% -19% -26% -11%

Table 6: The navigation performance for indoor and outdoor agents on object-token and direction-token ablations.
The “vanilla” setting reports the validation score on R2R and RxR validation unseen set, and Touchdown test set.
For object-token ablations, the “mask” setting masks out all the object-tokens, while the controlled trial masks out
the same amount of random tokens. The same applies for direction-token ablations.

mask out the same amount of tokens.334

We follow each agent’s original experiment set-335

ting for all the experiments in this study and train336

it on the original train set. Then we apply masking337

to object tokens in the validation set, and report338

agents’ performance under each setting. We con-339

duct five repetitive experiments and report the aver-340

age scores for settings that involve random masking341

or replacing.342

Table 6 presents how the agents’ navigation per-343

formance change when object tokens are masked344

out. Intuitively, not knowing what objects are men-345

tioned in the instruction lowers all models’ per-346

formance. Comparing the masking ablations with347

the controlled trial for indoor VLN, we notice that348

masking out the object tokens result in a more349

drastic decrease in success rate than masking out350

random tokens. This holds for all indoor agents,351

which verifies that indoor agents depend on object352

tokens more than other tokens. However, when353

we compare results on the Touchdown for outdoor354

VLN, we notice in surprise that masking out the355

object tokens has a weaker impact on task comple-356

tion rate than masking out random tokens. This357

suggests that current outdoor navigation agents do358

not fully take object tokens into consideration in359

Touchdown instruction when making decisions.360

This may be caused by the weak visual recognition361

module in current outdoor agents. As addressed362

in Table 4, all three outdoor agents rely on visual 363

features extracted by ResNet-18, which may not 364

be powerful enough to incorporate the complicated 365

urban environments fully. 366

4.2 The Effect of Direction-related Tokens 367

We explicitly select the following tokens as 368

direction-related tokens: left, right, back, front, for- 369

ward, stop. Similar to how we ablate the object 370

tokens, we also mask out direction tokens from 371

the instruction and examine their impact on agents’ 372

navigation performance. Table 5 provides exam- 373

ples of masking out direction tokens, and the corre- 374

sponding controlled trial where the same amount 375

of random tokens are masked out. 376

Table 6 shows indoor and outdoor agents’ per- 377

formance when masking out direction tokens. For 378

indoor agents, masking out the direction tokens 379

cause the success rate to drop more than masking 380

out random tokens, which means the indoor naviga- 381

tion agents do consider the direction tokens during 382

navigation. We also notice that agents are more 383

sensitive to the loss of direction guidance on RxR 384

than on R2R. Such difference may be caused by 385

the way these two datasets are designed. R2R’s 386

ground-truth trajectories are the shortest path from 387

start to goal. Previous studies have noted that R2R 388

has the danger of exposing structural bias and leak- 389

ing hidden shortcuts (Thomason et al., 2019), and 390
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that such design encourages goal-seeking over path391

adherence (Jain et al., 2019b). RxR is crafted to in-392

clude longer and more variable paths to avoid such393

biases. Naturally, agents on RxR pay more atten-394

tion to direction tokens since they may approach395

their goal indirectly.396

For outdoor navigation agents, masking out di-397

rection tokens leads to a drastic decline in task com-398

pletion rate, compared to random masking. This399

indicates that current outdoor navigation agents400

heavily rely on the direction tokens when making401

decisions. Given the complicated visual environ-402

ments and instructions in the outdoor navigation403

task, current agents fail to fully use the instruc-404

tions, especially ignoring the rich object-related405

information. We notice that the ARC model shows406

the most salient performance decline of 89% to407

the instructions ablated by direction token mask-408

ing. Aside from the classifier that predicts the next409

direction to take, ARC also uses a stop indicator410

to decide whether to stop at each step or not. Its411

unique mechanism for detecting stop signals might412

explain why it is more sensitive to the instruction’s413

masking.414

4.3 The Effect of Numeric Tokens415

#Data Avg_Len Avg_#Num

RxR 2.4K 122.9 1.2%
Touchdown 0.9k 98.2 1.8%

Table 7: The number of data samples with numeric
tokens in the RxR and Touchdown dataset. For instruc-
tions containing numeric tokens, Avg_Len is average
length, and Avg_#Num denotes the percentage of nu-
meric tokens per instruction.

Setting SR " on RxR TC " on Touchdown

CLIPViL HAMT RCONCAT ARC VLN-Trans

Vanilla 38.48 50.63 10.23 15.15 15.55

Mask Number -4% -5% -4% -6% -2%
Replace Number -11% -15% -5% -4% -4%
Controlled Trial -4 -4% -8% -6% -5%

Table 8: Navigation performance on different numeric-
token ablations settings.

We conduct ablation studies on agents’ under-416

standing of numeric tokens on RxR for indoor417

agents and Touchdown for outdoor agents. We418

select a subset of examples whose instructions con-419

tain numeric tokens, and construct ablated instruc-420

tions on top. Table 7 provides the statistics of the421

instructions for numeric ablations. Table 8 lists422

out the results. The indoor agents on RxR have423

comparable performance when masking numeric 424

tokens over random tokens, and have worse per- 425

formance when replacing numeric tokens. This 426

suggests that agents on RxR have a certain ability 427

to count. In contrast, the outdoor agents on Touch- 428

down have similar performance drops in all three 429

ablation settings, which implies their insufficient 430

counting ability. 431

5 Analysis on Visual Environment 432

(a) Foreground Objects (b) All Visible Objects
Figure 1: Accessible objects within different ranges.

Setting #Object

All Visible Objects (except wall/floor/ceiling) 33.1

Foreground Objects 2.8

Objects Mentioned in the Instruction 6.5

Table 9: The average number of visual objects at each
viewpoint under different settings.

Setting SR " on R2R SR " on RxR

EnvDrop FAST Recur PVLT CLIPViL HAMT

Vanilla 49.77 63.39 53.30 57.13 40.21 52.52

Mask All Range -41% -55% -37% -47% -30% -43%
Mask Foreground -3% -5% -1% -8% -1% -2%
Controlled Trial -26% -12% -5% -10% -2% -2%

Table 10: The indoor navigation performance on dif-
ferent visual object ablation settings: mask all visible
objects, mask foreground objects, and the controlled
trial. Recur: VLN � BERT. PVLT: PREVALENT.

This section investigates what the agent per- 433

ceives in the visual environment. We set an eye 434

on inspecting the agent’s understanding of the sur- 435

rounding objects. We also verify the indoor agents’ 436

understandings of direction-related information in 437

the appendix. 438

Built upon the Matterport dataset (Chang et al., 439

2017), R2R obtains detailed object instances anno- 440

tations and serves as an excellent source for our vi- 441

sual object studies. Touchdown is based on Google 442

Street View and does not acquire object-related an- 443

notations. Thus, we conduct experiments on the 444

indoor VLN environment. 445

We designed several ablation settings for vi- 446

sual objects. The “mask all range” setting applies 447
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masking to all the visible visual objects in the en-448

vironment (except for walls/ceiling/floor). The449

“mask foreground” setting ablates the visual objects450

within 3 meters of the camera viewpoint, which we451

refer to as the foreground area. The region beyond452

3 meters from the camera viewpoint is regarded453

as the background area. Figure 1 shows an exam-454

ple for comparison. Table 9 compares the number455

of foreground and background visual objects. We456

choose 3 meters as the boundary because the bound-457

ing box annotations for objects within 3 meters are458

provided in REVERIE (Qi et al., 2020c). We de-459

note the number of visual objects within 3 meters460

as k, and add a controlled trial that masks out k461

random visual objects from all the visible objects462

at the current viewpoint, regardless of its depth.463

We mask out the objects in each view by filling464

the corresponding bounding boxes with the mean465

color of the surrounding. Then we follow origi-466

nal experiment settings and use ImageNet ResNet-467

152 (He et al., 2016) CNN to extract image features468

for R2R agents (Anderson et al., 2018; Hao et al.,469

2020; Ke et al., 2019; Hong et al., 2020b; Tan et al.,470

2019), and use CLIP ViT (Radford et al., 2021) to471

extract visual features for RxR agents (Shen et al.,472

2021; Chen et al., 2021).473

Results for visual object ablations are shown in474

Table 10. We examine the influence of masking out475

different quantities of visual objects by comparing476

the “mask all range” setting with the controlled477

trial. It comes naturally that masking out all the478

visible objects has a more salient impact on the479

success rate for all the listed indoor agents. We480

study the influence of masking visual objects at dif-481

ferent distances from the viewpoint by comparing482

the “mask foreground” setting with the controlled483

trial. If we only mask the foreground objects, all484

the agents’ performance rarely changes. This is485

because there are only a few foreground objects.486

On the R2R dataset, EnvDrop has much worse per-487

formance on the controlled trial, while FAST and488

the two Transformer-based agents have mild drops489

in success rates. On the RxR dataset, both agents490

have comparable performance on the controlled491

trial and the “mask foreground” setting.492

Noted here that the dataset domains and the vi-493

sual feature extractors are two coherent factors that494

may result in the performance difference between495

R2R agents and RxR agents. We further justify this496

by adding another set of ablation studies, where we497

apply ImageNet ResNet-152 to extract visual fea-498

tures for RxR. Results are shown in Table 11. Com- 499

paring line 1 and line 2, we notice that the agent is 500

affected more heavily in the R2R controlled trial, 501

suggesting that agents rely more on background in- 502

formation to navigate in R2R. This may be caused 503

by structural bias and hidden shortcuts leakage 504

in R2R (Thomason et al., 2019; Jain et al., 2019b). 505

Comparing line 2 and line 3, we found out that with 506

CLIP-ViT features, the agent has a higher success 507

rate and is less affected when all the visual objects 508

are masked out. Such difference originates from 509

the different architectures and training data for Im- 510

ageNet ResNet-152 and CLIP-ViT. 511

Dataset Vi-Feat Vanilla AR FG CT

R2R ResNet-152 49.77 -41% -3% -26%
RxR ResNet-152 35.27 -42% -1% -3%
RxR CLIP-ViT 40.21 -30% -1% -2%

Table 11: EnvDrop’s navigation performance on R2R
and RxR with different visual object ablation settings
when using different visual features. AR: mask all range.
FG: mask foreground. CT: controlled trial.

6 Analysis on Vision-Language 512

Alignment 513

This section examines the agents’ ability to learn 514

vision-language alignment in the VLN task. We 515

focus on whether the agents can understand the 516

objects mentioned in the instruction and align them 517

to the correct visual instance in the environment, 518

which is crucial to completing this multimodal task. 519

To verify the existence of vision-language align- 520

ment, we add perturbations to the visual and textual 521

input. 522

6.1 Instruction Side Perturbation 523

We add noise to the textual input by randomly re- 524

placing object tokens with other object tokens in 525

the instruction. Table 5 shows an example. This ex- 526

periment aims to verify whether the agent can line 527

the object tokens up to certain visual targets. The 528

assumption is that if the agent can correctly align 529

objects mentioned in the instruction to some targets 530

in the visual environment, then replacing the object 531

token will confuse and misguide the agent. 532

Examining Figure 2, we notice that for all three 533

datasets, the Transformer-based models have worse 534

performance when replacing the object tokens, 535

compared to simple masking. This indicates that 536

Transformer-based models have a better cross- 537

modal understanding of objects, and can align 538

7



(a) R2R

(b) Touchdown

(b) RxR

Figure 2: Performance gap between masking and re-
placing object tokens from instructions. If � > 0, then
replacing object tokens leads to worse navigation perfor-
mance, which suggests a better understanding of object
tokens.

object tokens to the visual targets. Such supe-539

rior performance may result from the fact that the540

Transformer-based models are often pre-trained on541

multimodal resources, thus displaying a slightly542

more vital ability to form alignment.543

6.2 Environment Side Perturbation544

Setting SR " on R2R SR " on RxR

EnvDrop FAST Recur PVLT CLIPViL HAMT

Vanilla 49.77 63.39 53.30 57.13 40.21 52.52

Dynamic Mask -13% -34% -11% -19% -20% -28%
Controlled Trial -8% -28% -8% -11% -13% -12%

Mask Tokens -36% -38% -21% -20% -48% -32%

Table 12: The indoor navigation performance when dy-
namically masking out the visual objects mentioned in
the instructions. Recur: VLN � BERT. PVLT: PREVA-
LENT.

We add noise to the visual input by conducting545

the following ablations. In the “dynamic mask” set-546

ting, we dynamically mask out the visual object re-547

gions mentioned in the instruction. In its controlled548

trial, we randomly mask out the same amount of549

visual objects at each viewpoint. We also compare550

with the “mask tokens” setting, where we mask 551

out all the object tokens in the instruction, while 552

leaving the visual environment untouched. This 553

experiment aims to determine if the agent aligns 554

the textual object tokens to the correct visual target. 555

The assumption is that if the agent builds proper 556

vision-language alignment and we mask out visual 557

objects mentioned in the instruction, then the agent 558

may get confused since it can not find the counter- 559

part in the visual environment. 560

Results are shown in Table 12. The success rate 561

witnesses a decline when dynamically masking out 562

the visual objects. However, comparing the “dy- 563

namic mask” setting with its controlled trial, we 564

notice in surprise that specifically masking out the 565

target visual objects only displays a slightly more 566

significant impact over random masking. Notice- 567

ably, when all visual objects mentioned in the in- 568

struction are masked out, the agents can still reach 569

a success rate higher than 40% on R2R and higher 570

than 32% on RxR. This contradicts the previous 571

assumption and casts doubt on the reliability of the 572

navigation agents’ vision-language alignment. 573

Comparing “dynamic mask” with the “mask to- 574

kens” setting, we notice that visual object ablation 575

has less impact on navigation performance than 576

text object ablations, which suggests that current 577

models have unbalanced attention on vision and 578

text for the VLN task. Recent studies on pre- 579

trained vision-and-language models (Frank et al., 580

2021) reveals that such asymmetry is also wit- 581

nessed in other multimodal tasks. Future study 582

may follow the line of constructing a more bal- 583

anced VLN agent. 584

7 Conclusion 585

In this paper, we inspect how the navigation agents 586

understand the multimodal information by conduct- 587

ing ablation diagnostics input data. We find out 588

that indoor navigation agents refer to both object 589

tokens and direction tokens in the instruction when 590

making decisions. In contrast, outdoor navigation 591

agents heavily rely on direction tokens and poorly 592

understand the object tokens. When it comes to 593

vision-and-language alignments, we witness unbal- 594

anced attention on text and vision, and doubt the 595

reliability of cross-modal alignments. We hope this 596

work encourages more investigation and research 597

into understanding neural VLN agents’ black-box 598

and improves the task setups and navigation agents’ 599

capacity for future studies. 600
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A Appendix967

A.1 Heuristics Model968

In this work, we use Stanza (Qi et al., 2020a) part-969

of-speech (POS) tagger to locate object-related to-970

kens. A token is regarded as object token if its POS971

tag is NOUN or PROPN. In this section, we verify972

the accuracy of heuristics models. We first ran-973

domly sample 50 instructions from R2R validation974

unseen set. Then the authors of this work manually975

mark out the object tokens in the instructions, and976

compare the annotations with the results yield by977

Stanza POS tagger. We report the recall and preci-978

sion score in Table 13. A few misaligned tokens979

are “turn”, “stand”, and the tokens mis-spelled in980

original instructions. However, the misalignment981

occurs infrequently. The heuristic POS tagging982

model is sufficient to detect object tokens in our983

study.984

Precision Recall

98.7% 99.1%

Table 13: The precision and recall when comparing
object token annotation results provided by human and
Stanza POS tagger.

A.2 Effect of Directions in the Environment985

We randomly flip some of the viewpoints horizon-986

tally. The objects’ relative positions at the flipped987

viewpoints will be reversed. Presumably, suppose988

the agent can follow the instruction and find the cor-989

responding direction to approach. In that case, the990

flipped viewpoints will misguide the agent in the991

opposite direction and lower the navigation success992

rate. As shown in Table 14, with more and more993

viewpoints being swapped from left to right, the994

SR drastically declines for all three agents. This995

verifies our previous finding that indoor agents can996

understand directions in the instruction.997

Setting SR " on R2R SR " on RxR

EnvDrop FAST Recur PVLT CLIPViL HAMT

Horizontal Flip -51% -29% -48% -59% -36% -47%

Table 14: The indoor navigation performance for vi-
sual direction ablations. Recur: VLN � BERT. PVLT:
PREVALENT.
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