
Interpretable Reinforcement Learning via Meta-Policy
Guidance

Raban Emunds∗1, Jannis Blüml1,2, Quentin Delfosse1,3, and Kristian Kersting1,2,4,5

1Department of Computer Science, Technical Universty Darmstadt, Germany
2Hessian Center for Artificial Intelligence (hessian.AI)

3National Research Center for Applied Cybersecurity (ATHENE), Germany
4Centre for Cognitive Science, Darmstadt

5German Research Center for Artificial Intelligence (DFKI)

Abstract

Deep reinforcement learning has demonstrated strong performance across a range
of tasks, but its reliance on opaque neural policies hinders interpretability and align-
ment. Neurosymbolic approaches attempt to improve transparency by integrating
symbolic reasoning, but when applied at the level of fine-grained actions, they often
produce policies whose complexity obscures interpretability. We introduce LENS,
an object-centric hierarchical reinforcement learning framework that combines
neural low-level skill policies with symbolic high-level meta-policies to achieve
both efficiency and interpretability. Our approach leverages the use of object-
centric representations, which structure the environment in a way that enables
large language models to generate meaningful skill definitions, reward functions,
and meta-policy rules. We further extend the symbolic reasoning layer with a
neuro-symbolic formulation of the meta-policies, improving expressiveness and
generalization. All components are trained jointly using an off-policy algorithm
that supports efficient and parallel learning of the sub-policies. LENS demonstrates
strong performance while maintaining interpretability.

1 Introduction

Recent advancements in Deep Reinforcement Learning (DRL) have led to highly capable agents
on a diverse set of tasks (Mnih et al., 2015; Schulman et al., 2017; Gallici et al., 2024); however,
these policies are most often neural that operate as black boxes and exhibit difficult to interpret
behaviors that may be misaligned (Rudin, 2019). Without interpretability, identifying misalignment
or correcting undesirable behaviors, remains a significant challenge for practitioners (Zahavy et al.,
2016; Zhang et al., 2018; Delfosse et al., 2024c).

Neurosymbolic approaches address this issue by combining neural networks for perceptual grounding
with symbolic reasoning modules for decision-making (Delfosse et al., 2023a; Hazra & Raedt,
2023; Acharya et al., 2024). These architectures aim to enhance transparency by representing
policies through symbolic structures that are more readily interpretable. Despite their promise,
applying symbolic reasoning directly to low-level action spaces often results in policies of prohibitive
complexity (cf. Figure 1). The combinatorial explosion of symbolic rules at fine-grained action levels
undermines interpretability and scalability. Hierarchical Reinforcement Learning (HRL) offers an
alternative by abstracting sequences of actions into higher-level skills or options (Sutton et al., 1999;
Dietterich, 2000; Barto & Mahadevan, 2003). While these framework introduce a natural structure,
the resulting policies often remain entangled and difficult to interpret.

∗raban.emunds@cs.tu-darmstadt.de

18th European Workshop on Reinforcement Learning (EWRL 2025).

Hierarchical Decision TreeNeural Logic Rule Set

Object CentricRGB Image

transparent
monolithic

excessive size

transparent
monolithic

excessive size

black box
modular

learns shortcuts

black box
monolithic

learns shortcuts

Figure 1: Common approaches are not truly interpretable. Conventional RL based on NNs
fails to reveal the agent’s current objective. Hierarchical RL can help by decomposing into sub-
policies, however, there is no reasoning that explains why a specific sub-policy is preferred. Symbolic
approaches leverage logical rule sets or decision trees on symbolic states for interpretable atomic
actions, but quickly become excessively complex.

To address these limitations, we draw inspiration from the dual-process theory of cognition (Kahne-
man, 2011), which distinguishes between fast, intuitive (System 1) and slow, deliberative (System 2)
reasoning. We emulate this cognitive structure by combining reactive, neural skills with symbolic,
high-level policies to achieve both robust performance and interpretability. Our framework LENS,
the Logically Enhanced Neuron Skills, preserves the effectiveness of neural policies at the low level
while introducing a meta-policy layer composed of simple, interpretable rule functions that retain
clarity even in complex environments (cf. Figure 2). We leverage the reasoning capabilities of Large
Language Models (LLMs) to identify the necessary skills, define high-level meta-policy functions,
and generate reward signals to guide the learning of low-level neural controllers. Both the low-level
skills and the meta-policy rule weights are learned jointly in an off-policy manner. This design
enables expressive and transparent high-level reasoning without compromising the efficiency of
low-level execution.

Our primary contributions are as follows:
(i) We introduce LENS, a hierarchical and interpretable reinforcement learning framework that

integrates high-level decision-making with low-level skill execution.
(ii) We extend PQN to hierarchical settings for efficient and scalable sub-policy learning.
(iii) We demonstrate that generated rewards and high-level meta-policy functions can be leveraged to

guide training towards aligned policies.
(iv) We propose a neuro-symbolic extension to the meta-policy functions, enhancing their general-

ization, and empirically evaluate its effectiveness.
We proceed as follows. We start off by discussing background and related work in Section 2, followed
by a detailed introduction of LENS in Section 3. Before concluding, we empirically evaluate our
method in Section 4.

2 Background and Related Work

2.1 Background

Deep Reinforcement Learning. Reinforcement Learning (RL) is a framework for sequential decision
making in which an agent learns to interact with an environment in order to maximize cumulative
reward. The environment is typically modeled as a Markov Decision Process (MDP), defined by
the tupleM = ⟨S,A, P,R, γ⟩, where S is the set of states, A is the set of actions, P (s′ | s, a) is
the transition probability from state s to state s′ under action a, R(s, a) is the reward function and
γ ∈ [0, 1) is the discount factor. The goal of the agent is to learn a policy π : S → A that maximizes
the expected discounted return: Eπ [

∑∞
t=0 γ

tR(st, at)].

2

In Q-learning, a value-based RL algorithm, the agent seeks to learn the optimal action-
value function Q∗(s, a), which satisfies the Bellman optimality equation: Q∗(s, a) =
Es′ [R(s, a) + γmaxa′ Q∗(s′, a′)]. This function is updated iteratively via the Q-learning update
rule: Q(st, at) ← Q(st, at) + α [rt + γmaxa′ Q(st+1, a

′)−Q(st, at)], where α is the learning
rate.

With growing state space S, it becomes infeasible to store and update a tabular Q-function. Deep
Q-Networks (DQN) (Mnih et al., 2015) address this by using a deep neural network Qθ(s, a),
parameterized by θ, to approximate Q(s, a). DQN introduces several key modifications to stabilize
learning, including experience replay, where transitions (st, at, rt, st+1) are stored in a replay buffer
and sampled randomly to break correlations between consecutive updates and target networks,
where a separate network Qθ−(s, a) is used to compute the target value and is updated periodically:
yt = rt + γmaxa′ Qθ−(st+1, a

′), L(θ) = (Qθ(st, at)− yt)
2.

More recently, Gallici et al. introduced Parallelised Q-Networks (PQN), a simplified variant of DQN
that eliminates the use of experience replay and target networks. Instead, PQN leverages a large
number of parallel (ideally vectorized) environments and applies normalization techniques to mitigate
training instabilities. This high degree of parallelization enables substantially faster training while
maintaining performance comparable to state-of-the-art reinforcement learning algorithms.

Interpretable Reinforcement Learning. Interpretability in RL is a widely studied problem and can
be addressed at various stages of the RL pipeline (Glanois et al., 2024). A prevalent strategy involves
extracting symbolic representations from raw observations using computer vision techniques such
as object recognition or instance segmentation. These representations can be derived using simple
methods like template matching (Li et al., 2017; Iyer et al., 2018), or through learned approaches
(Lin et al., 2020; Delfosse et al., 2023b).

In this work, we assume access to structured object-level information from the environment, allowing
us to concentrate on enhancing the transparency of the decision-making process. Prior research
leveraging symbolic state representations has explored interpretable policy learning via decision trees
(Silva et al., 2019; Likmeta et al., 2020; Pace et al., 2022), logical formulas (Maes et al., 2012; Hein
et al., 2018), (fuzzy) logic rules (Akrour et al., 2019; Jiang & Luo, 2019; Payani & Fekri, 2019;
Delfosse et al., 2023a), and programmatic policies (Verma et al., 2019; Anderson et al., 2020). Most
recently, Kohler et al. proposed distilling policies into Python programs to improve transparency and
facilitate user intervention. In a similar vein, our approach aims to produce concise Python functions
operating at the highest level of abstraction, prioritizing readability and ease of modification by end
users.

Hierarchical Reinforcement Learning. Hierarchical reinforcement learning (HRL) introduces a
structured approach to decision-making by decomposing complex tasks into a hierarchy of simpler
sub-tasks, often modeled as temporally extended actions or "options" (Sutton et al., 1999). In its
simplest form, HRL involves a high-level policy that selects among a set of lower-level sub-policies,
each responsible for achieving a specific subgoal. This abstraction enables more efficient exploration
and transfer, particularly in environments with long horizons or sparse rewards. These sub-policies —
or options — can either be learned autonomously using intrinsic objectives or temporal abstractions
(Bacon et al., 2017; Vezhnevets et al., 2017), or provided with manually designed reward functions
to guide learning toward interpretable or task-relevant behaviors (Dietterich, 2000). This flexibility
allows HRL frameworks to balance between automatic skill discovery and user-defined structure,
making them well-suited for interpretable and modular policy design.

2.2 Related Work

Prior work on interpretable reinforcement learning also explored hierarchical decompositions, where
a high-level interpretable policy selects among low-level, non-interpretable sub-policies.

Andreas et al. (2017) propose using annotated task sketches to define high-level structure and jointly
learn reusable sub-policies. Leonetti et al. (2016) constrain agent behavior via symbolic planning,
enabling more adaptable low-level RL. Yang et al. (2018) similarly integrates symbolic planning with
RL, using experience to iteratively refine the symbolic planner. Jin et al. (2022) plan in symbolic state
spaces using PDDL and execute predefined symbolic options. More recently, Ye et al. (2025) utilizes
differentiable symbolic planning to compose neural subpolicies. In contrast, James et al. (2022)
autonomously learn object-centric representations for transferable symbolic planning. Object-centric

3

RGB Game State Object-centric State

 x y o
 80 72 -1
 48 16 0
 68 44 1
 46 73 1

obj

...

Action Distribution
(Neuro-)symbolic

Meta-policy

 Neural
Skill Policies

LENS

Figure 2: LENS enables interpretable decision making via symbolic meta-policies. The process
begins with extracting an object-centric state from the image. Next, the meta-policy selects the most
suitable neural skill policy for the current subgoal. Finally, the chosen expert policy determines
the action to execute. The meta-policy can be generated by an LLM and consists of a set of rules,
potentially weighted by a learned meta Q-function.

hierarchical RL is also effective in robotics, e.g., Sharma et al. (2020) uses RL to select and sequence
object-axis controllers for manipulation tasks.

The above approaches depend on expert knowledge of both the environment and symbolic reasoning,
and are typically limited to simple domains. In contrast, we define the meta-policy as a rule-based
code function generable by LLMs, reducing the need for manual expertise and evaluate on more
complex environments. Furthermore, our neuro-symbolic extension to the meta-policy resolves rule
conflicts.

3 Logically Enhanced Neuron Skills

To address the challenge of building interpretable yet performant reinforcement learning agents,
we introduce LENS, a hierarchical framework that combines symbolic reasoning with neural skill
execution. At a high level, LENS decomposes decision-making into two layers: a high-level meta-
policy, defined as a set of human-readable rules, and a set of low-level neural skill policies optimized
for specific sub-goals. Object-centric representations form the backbone of this architecture, enabling
both structured reasoning and compatibility with LLMs for automated policy synthesis. Figure 2
describes the overall pipeline.

Each neural skill is associated with its own reward function and trained jointly with the overall
pipeline, using shared off-policy data. For the meta-policy on the hand, we provide three approaches
with various levels of interpretability and flexibility.

We first introduce hierarchical PQN (HPQN) in Section 3.1, which learns a neural meta-policy and
serves as the foundation for subsequent variants, offering high flexibility but limited interpretability.
In Section 3.2, we replace the learned meta-policy with a fixed, interpretable function, either manually
defined or LLM-generated, sacrificing flexibility for clarity. Finally, Section 3.3 presents a hybrid
approach that filters candidate skills via predefined rules and selects among them using Q-learning,
yielding a soft meta-policy that balances adaptability and interpretability, especially in scenarios with
overlapping skill applicability.

3.1 Hierarchical PQN

Inspired by MAXQ (Dietterich, 2000), we reformulate the environment as a collection of MDPs
M = {⟨S,A, P,Rn, γ⟩}Nn=1, for N options, where each Mn ∈M corresponds to a distinct option
policy πn ∈ Π. Additionally, we define a meta-level MDPMmeta = ⟨S,Π, P,R, γ⟩, solved by a
meta-policy πmeta that selects among the set of available options Π.

4

Unlike the MAXQ decomposition, in our setting, the option MDPs differ solely in their reward
functions, while the meta-level MDP preserves the original environment reward R. Moreover,
differing from the standard options framework (Sutton et al., 1999; Bacon et al., 2017), we invoke the
meta-policy at every time step for more flexible top-down decisions, instead of delegating termination
conditions to the option level.

To enable learning across sub-policies even when they are not actively selected, we adopt off-policy
Q-learning. This allows skills to learn from trajectories generated by the active skill and meta-policy
while optimizing for their respective reward structures. Exploration within each skill is conducted via
ϵ-greedy action selection.

For its simplicity and scalability through vectorization, we build upon PQL with λ-returns (Gallici
et al., 2024) as the foundation for our hierarchical training approach. However, instead of learning a
single shared Q-network Qϕ as in PQL, we learn separate Q-functions Qϕn for each low-level skill,
along with a meta-level Q-network Qϕmeta . Each Q-network is thus specialized for predicting returns
under its corresponding reward signal.

Each update step starts by rolling out small trajectories (s0, ..., sT) following the hierarchical policy
by selecting the next active skill πn ∈ Π using the meta-policy Q-function Qϕmeta

πn = argmax
πn∈Π

Qϕmeta(st, πn) (1)

and then sampling the next environment action a′ from the active skill
a′ = argmax

a′∈A
Qϕn

(st, a
′). (2)

This action is applied to the environment to retrieve the next state and obtain rewards. We employ
ϵ-greedy for exploration during both the skill and the action selection.

Next to the environment reward renv,t, we require skill-specific reward functions rn,t that are based
on the object-centric state st and may be automatically generated by LLMs (cf. Appendix D), which
we use to compute the λ-returns recursively back in time (for details, we refer the reader to Gallici
et al. (2024); Daley & Amato (2019)):

Rλ
n,t = rn,t + γ

[
λRλ

n,t+1 + (1− λ)max
a′

Qϕn
(st+1, a

′)
]
, (3)

and similarly, for the learned meta-policy using environment rewards:

Rλ
env,t = renv,t + γ

[
λRλ

env,t+1 + (1− λ)max
πn

Qϕmeta(st+1, πn)

]
, (4)

or, if st is terminal Rλ
n,t = rn,t and Rλ

env,t = renv,t. Finally, the learned Q-functions are updated
towards the λ-returns. The full algorithm can be found in Appendix A.

3.2 Interpretable Meta-Policy Function

While the hierarchical structure introduced in previous sections enables identification of the currently
active skill, it does not provide insight into the decision-making process that selected that skill. To
address this gap, we propose interpretable meta-policy functions that facilitate understanding of the
underlying selection rationale.

Although various interpretable policy representations exist, such as decision trees or FOL-based
formulations, we opt for programmatic rule-based functions due to two primary considerations.
First, rule-based policies offer accessibility to a broader audience: unlike FOL, simple conditional
statements can typically be understood and modified even by individuals with limited programming
experience. Second, LLMs are proficient in handling code-like structures, owing to extensive
pretraining on programming corpora. This allows for direct use of LLMs in synthesizing rule-based
meta-policies, enabling efficient generation of high-quality, interpretable policies with minimal
manual intervention. Further details on how we employ LLMs to generate the meta-policy function
are available in Appendix D.

Formally, instead of relying on a learned meta-level Q-function Qϕmeta , we define a meta-policy
πmeta : S → Π as a set of human-readable rules that directly maps the current object-centric state
st ∈ S to the selected low-level policy πn ∈ Π:

πn = πmeta(st). (5)

5

Algorithm 1 LENS Variants
Require: Skill policies {πn}Nn=1 with Q-functions {Qϕn}Nn=1, meta-policy Qϕmeta (for learned/soft)

1: for each episode do
2: for each environment step (in parallel) do
3: Extract object-centric state st
4: Select skill πn,t as follows:
5: I) Learned: πn,t = argmaxπn

Qϕmeta(st, πn)
6: II) Fixed: πn,t = πmeta(st)
7: III) Soft: πn,t = argmaxπn

(ct ⊙Qϕmeta(st, πn))
8: Select action at using ϵ-greedy from πn,t

9: Execute at and observe transition ({rn,t}Nn=0, renv,t, st+1)
10: end for
11: for each gradient step do
12: Compute Rλ

n,t and Rλ
env,t (if I or III)

13: Update each Qϕn
using skill-specific Rλ

n,t

14: Update Qϕmeta using environment Rλ
env,t (if I or III)

15: end for
16: end for

By constraining πmeta to consist of simple rules (cf. Figure 4, left side) that are mutually exclusive,
we enable transparent inspection of policy decisions. The active skill at any time can be traced back
to the specific rule that evaluates to true given the current state.

Beyond interpretability, rule-based meta-policies can also mitigate common failure modes in hierar-
chical reinforcement learning, such as premature convergence to a single sub-policy. This inductive
bias encourages broader exploration and more robust policy composition.

3.3 Soft Meta-Policy Function

Thus far, the meta-policy has been treated as a deterministic function that selects skills based on fixed
rules derived from the extracted environment state. However, this approach may become inefficient
in situations where multiple skills are simultaneously applicable.

Consider, for example, a Seaquest agent faced with the choice between shooting a nearby enemy or
resurfacing to replenish oxygen. Both actions could be viable depending on the specific context: if
oxygen levels are critically low, resurfacing may be prioritized; if an enemy is dangerously close,
attacking may take precedence. Crafting hand-coded rules to handle all such trade-offs would quickly
lead to complex, less interpretable policies.

Instead, we propose maintaining a set of high-level, interpretable conditions (e.g., “surface if oxygen
is low”, “fight if enemy is close”), represented as a binary condition vector ct ∈ {0, 1}N , where each
entry indicates whether a particular condition is active at time t. We formulate these rule-sets again as
simple functions and leverage LLMs for generation. However, this time we allow multiple conditions
to be active concurrently.

The skill selection is then modulated by these conditions using a binary mask applied to the meta-
policy Q-values:

πn = arg max
πn∈Π

(ct ⊙Qϕmeta(st, πn)) (6)

where ⊙ denotes element-wise multiplication, Qϕmeta(st, ·) ∈ RN is the vector of meta-policy Q-
values for each interpretable condition, and Π is the set of available skills.

This way, we preserve interpretability at the symbolic level while enabling the agent to resolve
ambiguous scenarios adaptively based on learned preferences. An overview of the different meta-
policy variations is provided in Algorithm 1.

6

4 Experimental Evaluation

The goal of this work is to define an object-centric pipeline for agents that can solve complex
environments while keeping the higher-level goals interpretable. We evaluate whether this goal was
reached by answering the following research questions:
(Q1) Does LENS provide meaningful and learnable reward functions?
(Q2) Are LENS policies interpretable?
(Q3) How does LENS compare to other agents?
(Q4) Does LENS improve robustness to game variations?

4.1 Experimental Setup

Our experiments assume access to pre-extracted object representations and attributes. We therefore
provide the agent with symbolic environment states directly, allowing us to remain agnostic to the
specific object extraction pipeline.

We conduct experiments on a JAX-based reimplementation of the Atari Learning Environment (ALE)
(Bellemare et al., 2013), specifically using the games Kangaroo and Seaquest, with object-centric
representations similar to OCatari (Delfosse et al., 2024b). These games are selected because their
gameplay can be naturally decomposed into low-level skills that can be combined to solve the overall
task. In Kangaroo, the objective is to ascend through platforms while avoiding enemies and collecting
berries. In Seaquest, the player navigates a submarine to rescue divers and return them to the surface,
while avoiding hazards such as sharks and enemy submarines.

To evaluate the agent’s generalization abilities, we test the agents that were trained on the original
games in modified versions generated using HackAtari (Delfosse et al., 2024a). These modifications
are designed to highlight the sensitivity of standard reinforcement learning agents to even minor
changes in the environment, including simplifications. For example, removing enemies from Seaquest
to reduce the task’s complexity already leads to a substantial drop in the agent’s performance. We
show that the decomposition of tasks into semantically meaningful, skill-level components, coupled
with a skill selection meta-policy, can enhance robustness to such distribution shifts.

We compare all three variations of LENS to the default, non-interpretable PQN (Gallici et al., 2024),
and the actor-critic PPO (Schulman et al., 2017) as baselines. Additionally, we compare to HPQN,
a hierarchical PQN variation that does not employ skill-specific rewards and has a purely neural
meta-policy. All results (including baselines) are directly trained on object-centric inputs with 200M
frames budget. We provide further implementation details in Appendix B.

Additional experiments that validate the applicability of LENS to other environments are available in
Appendix C.

4.2 Results

LENS learns meaningful skills (Q1). We first evaluate whether the generated rewards enable
efficient skill learning. Since each skill requires its own reward function, we leverage LLM’s
reasoning capabilities to generate them based on the game manual, skill definitions, and the object-
centric state.

As shown in Figure 3, LENS successfully learns all target skills jointly using the generated rewards.
Unlike PQN, which tends to overfit to a single skill that maximizes environment reward, LENS
promotes balanced skill acquisition. This highlights a key advantage: LENS enables reward-aligned,
generalizable behavior rather than environment reward exploitation.

LENS policies are interpretable and flexible (Q2).

A simple fixed meta-policy for the game Seaquest is visualized in Figure 4 (left side). Thanks to
the abstraction of the raw observation to object-centric states and from raw actions to intelligible
skills, the decision process is easily understandable to the user. For example, the agent selects the
skill responsible for fighting enemies if and only if there is an enemy in close proximity to the player.
We provide the meta-policies of all experiments in the appendix.

A flexible Seaquest agent trained with a soft meta-policy can be seen in action in Figure 5. The
corresponding filtering rules are in Figure 4 (right side). At each point in time, we can comprehend

7

0 1 2 3 4 5
Steps 1e7

0

2

4

6

8

10

12

Rescue Divers

0 1 2 3 4 5
Steps 1e7

0

20

40

60

80
Shoot Enemies

0 1 2 3 4 5
Steps 1e7

0.0

0.5

1.0

1.5

2.0

2.5
Surface

0 1 2 3 4 5
Steps 1e7

0

2

4

6

8

10

12
Move Up

0 1 2 3 4 5
Steps 1e7

0

2

4

6

8

10
Handle Threats

0 1 2 3 4 5
Steps 1e7

0

2

4

6

8

10

12
Collect Fruits

Se
aq

ue
st

K
an

ga
ro

o

PPO (baseline) PQN (baseline) HPQN (baseline) LENS (neural) LENS (fixed) LENS (ours)

Figure 3: LENS learns disentangled skills from off-policy data. In Seaquest (top), the baseline
methods mainly focus on shooting enemies, while the LENS approaches acquire the target skills
more evenly. Similarly, in Kangaroo (bottom), the LENS approaches learn ’Move Up’ and ’Collect
Fruits’ reliably, while the baselines focus mostly on ’Handle Threats’.

def meta_policy(st):
if enemy_close(st.enemies,
st.player):

fight_enemies()
elif diver_available(state.divers):

rescue_divers()
elif oxygen_low(st.oxygen):

surface() # replenish_oxygen
elif all_collected(st.divers):

surface() # deliver_divers
rescue_divers()

def meta_policy_rules(st):
fight_enemies = False
rescue_divers = True
surface = False
if enemy_close(st.enemies,
st.player):

fight_enemies = True
if oxygen_low(st.oxygen):

surface = True
[fight_enemies, rescue_divers,
surface]

Figure 4: LENS policies and rules are clear and interpretable. A fixed meta-policy (left) and
similar filtering rules for the soft meta-policy (right) for Seaquest.

which skill was active and why it was possible to be chosen. Most of the time, only one of the skills
can be chosen, because only one of the conditions is active. However, if multiple conditions resolve
to true, we let the meta-policy decide intuitively with accordance to maximizing the environment
reward.

enemy_closeby

diver_available

oxygen_low

all_collected

fight_enemies:
156.10

rescue_divers:
151.42

surface:
0.0

enemy_closeby

diver_available

oxygen_low

all_collected

fight_enemies:
273.32

rescue_divers:
277.47

surface: 0.0

enemy_closeby

diver_available

oxygen_low

all_collected

fight_enemies:
395.02

rescue_divers:
0.0

surface:
405.52

Figure 5: LENS produces interpretable, but flexible high-level plans. Left: the rules "en-
emy_closeby" and "diver_available" are true, the learned meta Q-function prefers to first fight the
enemy. Middle: the same conditions are true, but in this case, the meta-policy prefers to rescue the
diver. Right: There is an enemy close by and all divers are collected, in this case, returning to the
surface is preferred.

8

PPO (baseline)

PQN (baseline)

HPQN (baseline)

LENS (neural)

LENS (fixed)

LENS (ours)
0.00

0.02

0.04

0.06
HN

S

Seaquest

PPO (baseline)

PQN (baseline)

HPQN (baseline)

LENS (neural)

LENS (fixed)

LENS (ours)
0

1

2

3

HN
S

Kangaroo

0.0

2.5

5.0

7.5

10.0

12.5

Di
ve

rs
Re

scu
ed

0

20

40

60

80

100

%
lev

el
co

mp
let

ed

Figure 6: LENS is better aligned. Baselines score higher on HNS but are misaligned to the true
game objectives, while LENS, particularly with symbolic and neuro-symbolic meta-policies, achieves
better goal alignment.

LENS is better aligned than non-interpretable agents (Q3). We evaluate LENS against baselines
using two metrics: Human Normalized Scores (HNS) (Badia et al., 2020) for environment reward
performance, and Aligned Environment Goal Scores, which track progress toward goals defined in
game manuals (e.g., divers rescued in Seaquest, level completion in Kangaroo). The latter aims to
capture the overall alignment with the intended game objectives, which differ from maximizing the
reward for these environments, where deep agents usually perform reward hacking (Shihab et al.,
2025).

As shown in Figure 6, baselines often achieve higher HNS, but underperform on the actual games’
main goal, demonstrating their reward hacking tendency. In contrast, LENS with symbolic and
neuro-symbolic meta-policies better aligns with environment goals. The purely neural variant lags
behind, likely due to the absence of the positive inductive biases that the LLM incorporated in the
rule-based policies.

These results suggest that LENS mitigates reward misalignment by incorporating domain priors into
decision-making.

LENS is robust to game variations (Q4). Most RL algorithms struggle to adapt to even minor
variations in the environment Delfosse et al. (2025). Surprisingly, their performances drops includes
settings that simplify the game for humans, such as removing dealy threats like enemies and thier
projectiles in the games Seaquest or Kangaroo.

We assess whether LENS can agents generalize to such simplified variants by evaluating them on the
unseen simplifications (described above). We evaluate the agents trained on the standard versions of
Kangaroo and Seaquest.

Figure 7 presents the results. As expected, all baselines suffer substantial performance degradation
under simplifications. In contrast, the symbolic and neuro-symbolic LENS variants exhibit smaller
drops in performance, and in the case of Seaquest, even show improvements, particularly with respect
to the aligned goal metrics. We mainly attribute this to the meta-policy, which does not activate skills
related to enemy handling when no enemy is present in the state.

These findings demonstrate that LENS enhances robustness to minor distribution shifts, such as game
simplifications.

5 Conclusion

Practitioners are often faced with the choice between high-performing but opaque neural agents and
interpretable symbolic systems that lack scalability. LENS addresses this trade-off by combining

9

PPO (baseline)

PQN (baseline)

HPQN (baseline)

LENS (neural)

LENS (fixed)

LENS (ours)
0.00

0.05

0.10

0.15

0.20
HN

S

Seaquest

PPO (baseline)

PQN (baseline)

HPQN (baseline)

LENS (neural)

LENS (fixed)

LENS (ours)
0.0

0.2

0.4

0.6

0.8

HN
S

Kangaroo

0

10

20

30

40

Di
ve

rs
Re

scu
ed

0

20

40

60

%
lev

el
co

mp
let

ed

Figure 7: LENS remains practical on simplified games. Agents are trained on the original games
and evaluated on unseen simplifications. While baseline performance drops significantly, symbolic
and neuro-symbolic LENS exhibit improved robustness with smaller performance drops, and even
gains in Seaquest, which we attribute to the meta-policy omitting unnecessary skills.

neural sub-policies with symbolic meta-policies in an object-centric hierarchical RL framework. This
structure enables interpretable decision-making without sacrificing efficiency.

By leveraging LLMs for skill and reward design, and enhancing symbolic reasoning with a neuro-
symbolic formulation, our method allows for flexible and transparent policy construction. The
resulting agents demonstrate that interpretability and scalability need not be mutually exclusive.

Limitations and Future Work. While LENS enables transparent and modular policy learning, it
still relies on accurate symbolic representations and skill definitions. In practice, we found LLMs to
be effective at generating candidate skills, reward functions, and meta-policies based on the symbolic
state definitions, but their outputs typically require human verification to ensure correctness and
alignment with task intent.

Future directions include scaling to more complex, open-ended environments that demand broader
skill discovery and task generalization. We also plan to explore tighter feedback loops between
LLM-generated policies and environment-grounded corrections, moving toward more autonomous
and interpretable agent design.

Broader Impact. This work contributes to efforts in making RL more interpretable and modular
through symbolic structure and object-centric reasoning. By incorporating large language models to
assist with skill and policy specification, LENS may reduce the expertise barrier for designing and
understanding complex agent behaviors. However, as with any system involving language model
outputs, care must be taken to validate the correctness and safety of generated rules and reward
functions.

10

References
Kamal Acharya, Waleed Raza, Carlos M. J. M. Dourado Júnior, Alvaro Velasquez, and Houbing Her-

bert Song. Neurosymbolic Reinforcement Learning and Planning: A Survey. IEEE Transactions
on Artificial Intelligence, 5(5):1939–1953, 2024.

Riad Akrour, Davide Tateo, and Jan Peters. Towards reinforcement learning of human readable
policies. In The European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases: The 1st Workshop on Deep Continuous-Discrete
Machine Learning, 2019.

Greg Anderson, Abhinav Verma, Işıl Dillig, and Swarat Chaudhuri. Neurosymbolic Reinforcement
Learning with Formally Verified Exploration. In Neural Information Processing Systems,
volume abs/2009.12612, 2020.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular Multitask Reinforcement Learning with
Policy Sketches. In International Conference on Machine Learning (ICML), pp. 166–175,
2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The Option-Critic Architecture. In AAAI Confer-
ence on Artificial Intelligence (AAAI), pp. 1726–1734, 2017.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the Atari Human Benchmark.
In International Conference on Machine Learning (ICML), pp. 507–517, 2020.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13:341–379, 2003.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning
Environment: An Evaluation Platform for General Agents. Journal of Artificial Intelligence
Research (JAIR), 47:253–279, 2013.

Brett Daley and Christopher Amato. Reconciling λ-Returns with Experience Replay. In Conference
on Neural Information Processing Systems (NeurIPS), 2019.

Quentin Delfosse, Hikaru Shindo, Devendra Singh Dhami, and Kristian Kersting. Interpretable and
Explainable Logical Policies via Neurally Guided Symbolic Abstraction. In Conference on
Neural Information Processing Systems (NeurIPS), 2023a.

Quentin Delfosse, Wolfgang Stammer, Thomas Rothenbächer, Dwarak Vittal, and Kristian Kersting.
Boosting Object Representation Learning via Motion and Object Continuity. Springer
Nature Switzerland, 2023b.

Quentin Delfosse, Jannis Blüml, Bjarne Gregori, and Kristian Kersting. Hackatari: Atari learning
environments for robust and continual reinforcement learning. arXiv preprint arXiv:2406.03997,
2024a.

Quentin Delfosse, Jannis Blüml, Bjarne Gregori, Sebastian Sztwiertnia, and Kristian Kersting. Ocatari:
Object-Centric Atari 2600 Reinforcement Learning Environments. Reinforcement Learning
Conference (RLC), 1:400–449, 2024b.

Quentin Delfosse, Sebastian Sztwiertnia, Mark Rothermel, Wolfgang Stammer, and Kristian Kersting.
Interpretable Concept Bottlenecks to Align Reinforcement Learning Agents. In Conference on
Neural Information Processing Systems (NeurIPS), volume abs/2401.05821, 2024c.

Quentin Delfosse, Jannis Blüml, Fabian Tatai, Théo Vincent, Bjarne Gregori, Elisabeth Dillies, Jan
Peters, Constantin Rothkopf, and Kristian Kersting. Deep reinforcement learning agents are not
even close to human intelligence. arXiv preprint, 2025.

Thomas G. Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value Function
Decomposition. Journal of Artificial Intelligence Research (JAIR), 13:227–303, 2000.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, B. Pou, Ivan Masmitja, J. Foerster, and Mario Martin.
Simplifying Deep Temporal Difference Learning. arXiv.org, abs/2407.04811, 2024.

11

Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye Hao, and Wulong Liu.
A survey on interpretable reinforcement learning. Machine Learning, 113(8):5847–5890, 2024.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780,
2021.

Rishi Hazra and Luc De Raedt. Deep Explainable Relational Reinforcement Learning: A Neuro-
Symbolic Approach. In European Conference on Machine Learning and Knowledge Dis-
covery in Databases (PKDD), pp. 213–229, 2023.

Daniel Hein, Steffen Udluft, and Thomas A. Runkler. Interpretable policies for reinforcement learning
by genetic programming. Engineering Applications of Artificial Intelligence, 76:158–169, 2018.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep reinforce-
ment learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL
http://jmlr.org/papers/v23/21-1342.html.

Rahul Iyer, Yuezhang Li, Huao Li, Michael Lewis, Ramitha Sundar, and Katia Sycara. Transparency
and Explanation in Deep Reinforcement Learning Neural Networks. In Proceedings of the 2018
AAAI/ACM Conference on AI, Ethics, and Society, pp. 144–150. ACM, 2018.

Steven James, Benjamin Rosman, and George Konidaris. Autonomous Learning of Object-Centric
Abstractions for High-Level Planning. In International Conference on Learning Representa-
tions (ICLR), 2022.

Zhengyao Jiang and Shan Luo. Neural Logic Reinforcement Learning. In International Conference
on Machine Learning (ICML), pp. 3110–3119, 2019.

Mu Jin, Zhihao Ma, Kebing Jin, Hankz Hankui Zhuo, Chen Chen, and Chao Yu. Creativity of AI:
Automatic Symbolic Option Discovery for Facilitating Deep Reinforcement Learning. In AAAI
Conference on Artificial Intelligence (AAAI), pp. 7042–7050, 2022.

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Hector Kohler, Quentin Delfosse, R. Akrour, Kristian Kersting, and Philippe Preux. Interpretable
and Editable Programmatic Tree Policies for Reinforcement Learning. arXiv.org, abs/2405.14956,
2024.

Matteo Leonetti, Luca Iocchi, and Peter Stone. A synthesis of automated planning and reinforcement
learning for efficient, robust decision-making. Artificial Intelligence, 241:103–130, 2016.

Yuezhang Li, Katia P. Sycara, and Rahul Iyer. Object-sensitive Deep Reinforcement Learning. In
Global Conference on Artificial Intelligence (GCAI), pp. 20–35, 2017.

Amarildo Likmeta, Alberto Maria Metelli, Andrea Tirinzoni, Riccardo Giol, Marcello Restelli, and
Danilo Romano. Combining reinforcement learning with rule-based controllers for transparent
and general decision-making in autonomous driving. Robotics and Autonomous Systems, 131:
103568, 2020.

Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. Space: Unsupervised Object-Oriented Scene Representation via Spatial
Attention and Decomposition. In International Conference on Learning Representations
(ICLR), 2020.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob Foerster.
Discovered policy optimisation. Advances in Neural Information Processing Systems, 35:
16455–16468, 2022.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents (extended abstract). In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, 2018.

12

http://jmlr.org/papers/v23/21-1342.html

Francis Maes, Raphael Fonteneau, Louis Wehenkel, and Damien Ernst. Policy Search in a Space of
Simple Closed-form Formulas: Towards Interpretability of Reinforcement Learning. In Interna-
tional Conference on Discovery Science (DS), pp. 37–51, 2012.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,
Samuel Coward, and Jakob Foerster. Craftax: A Lightning-Fast Benchmark for Open-Ended
Reinforcement Learning. In International Conference on Machine Learning, volume
abs/2402.16801, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Alizée Pace, Alex J. Chan, and Mihaela van der Schaar. Poetree: Interpretable Policy Learning with
Adaptive Decision Trees. In International Conference on Learning Representations (ICLR),
2022.

Ali Payani and F. Fekri. Inductive Logic Programming via Differentiable Deep Neural Logic
Networks. arXiv.org, abs/1906.03523, 2019.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv.org, abs/1707.06347, 2017.

Mohit Sharma, Jacky Liang, Jialiang Zhao, Alex LaGrassa, and Oliver Kroemer. Learning to
Compose Hierarchical Object-Centric Controllers for Robotic Manipulation. In Conference on
Robot Learning (CoRL), pp. 822–844, 2020.

Ibne Farabi Shihab, Sanjeda Akter, and Anuj Sharma. Detecting and mitigating reward hacking in
reinforcement learning systems: A comprehensive empirical study. arXiv preprint, 2025.

Andrew Silva, Taylor W. Killian, I. D. Rodriguez, Sung-Hyun Son, and M. Gombolay. Optimization
Methods for Interpretable Differentiable Decision Trees in Reinforcement Learning. arXiv:
Learning, 2019.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and Semi-MDPs: A Framework
for Temporal Abstraction in Reinforcement Learning. Artificial Intelligence, 112(1-2):181–211,
1999.

Abhinav Verma, Hoang Minh Le, Yisong Yue, and Swarat Chaudhuri. Imitation-Projected Program-
matic Reinforcement Learning. In Conference on Neural Information Processing Systems
(NeurIPS), pp. 15726–15737, 2019.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal Networks for Hierarchical Reinforcement Learning. In
International Conference on Machine Learning (ICML), pp. 3540–3549, 2017.

Fangkai Yang, Daoming Lyu, Bo Liu, and Steven Gustafson. Peorl: Integrating Symbolic Planning
and Hierarchical Reinforcement Learning for Robust Decision-Making. In International Joint
Conference on Artificial Intelligence (IJCAI), pp. 4860–4866, 2018.

Zihan Ye, O. Arenz, and Kristian Kersting. Learning from Less: Guiding Deep Reinforcement
Learning with Differentiable Symbolic Planning. arXiv, 2025.

Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. Graying the black box: Understanding DQNs. In
International Conference on Machine Learning (ICML), pp. 1899–1908, 2016.

Chiyuan Zhang, O. Vinyals, R. Munos, and Samy Bengio. A Study on Overfitting in Deep Reinforce-
ment Learning. arXiv.org, abs/1804.06893, 2018.

13

A Hierarchical PQN Algorithm

The complete algorithm for hierarchical PQN with a neural meta-policy is provided in Algorithm 2.

Algorithm 2 Hierarchical PQN
Require: Update period U , number of parallel environments E, number of skills N , exploration

probability ϵ
Ensure: Learned Q-network parameters {ϕn}Nn=1, ϕmeta

1: Initialize Q-network parameters {ϕn}Nn=1, ϕmeta
2: Sample initial states se0 ∼ P0 for e ∈ {0, . . . , E − 1}
3: t← 0
4: for each episode do
5: for all e ∈ {0, . . . , E − 1} in parallel do
6: Sample skill πe

t ∼ πmeta
7: With probability ϵ: aet ∼ Unif, else aet ∼ πe

t
8: Sample rewards ret ∼ PR(s

e
t , a

e
t), skill rewards re,nt ∼ PR,n(s

e
t , a

e
t) for all n

9: Sample next state set+1 ∼ PS(s
e
t , a

e
t)

10: t← t+ 1
11: end for
12: if t mod U = 0 then
13: Compute meta λ-returns Re

λ,t−1 to Re
λ,t−U for all e

14: Compute skill λ-returns Re,n
λ,t−1 to Re,n

λ,t−U for all e, n
15: for number of epochs do
16: for number of minibatches do
17: Sample minibatch B of size b ≤ EU from {(t− U, 0), . . . , (t− 1, E − 1)}
18: Update meta:

ϕmeta ← ϕmeta +
αt

2b
∇ϕmeta

∑
(j,τ)∈B

(
Rj

λ,τ −Qϕmeta(s
j
τ)
)2

19: Update skills:

ϕn ← ϕn +
αt

2b
∇ϕn

∑
(j,τ)∈B

(
Rj,n

λ,τ −Qϕn(s
j,n
τ)

)2

, ∀n ∈ {1, . . . , N}

20: end for
21: end for
22: end if
23: end for

B Implementation Details

Setup. We base our implementations on CleanRL (Huang et al., 2022) and PureJaxRL (Lu et al.,
2022), adapting them to object-centric inputs by replacing convolutional encoders with lightweight
MLPs for feature extraction. Hyperparameters are listed in Table 1 and remain largely consistent
with the original implementations, except for an increased number of parallel environments enabled
by the efficiency of JAX-based code.

The exploration parameter ϵ was selected via a brief hyperparameter sweep in the range [1, 0.001],
using final test return as the selection criterion.

Each experiment is run with three random seeds (0, 1, 2) to ensure reproducibility. Reported plots
include the corresponding standard deviation.

All experiments were conducted on a single NVIDIA Tesla V100-SXM3-32GB-H GPU on an
NVIDIA DGX Server (Version 5.1.0) with CUDA 12.4.

14

Table 1: Hyperparameters

Parameter PQN(-based) PPO

Total Timesteps 5× 107 5× 107

Num Environments 1024 128
Num Steps per Update 128 128
Learning Rate 1.0× 10−4 2.5× 10−4

Max Grad Norm 10 0.5
Discount Factor (γ) 0.99 0.99
GAE Lambda (λ) 0.65 0.95
Num Epochs 5 2
Num Minibatches 128 4
Hidden Size 64 –
Num Layers 3 –
Normalization Layer Norm –
Clip ϵ – 0.2
Entropy Coef – 0.01
Value Function Coef – 0.5
Anneal LR False True
ϵ-Start/End/Decay 1.0 / 0.1 / 0.3 –
Meta ϵ-Start/End/Decay 0.1 / 0.001 / 0.1 –

B.1 Evaluation Metrics

We empirically evaluate agent performance using three metrics: (1) Skill Returns to test whether the
skills were learned successfully, (2) Human-Normalized Score (HNS) for absolute performance
relative to human and random baselines and (3) Aligned Environment Goal Scores that measure
performance based on the main goals described in the game’s manual.

Human Normalized Score. Human-Normalized Score standardizes agent performance across
Atari environments by accounting for differences in reward scales (Mnih et al., 2015; Machado et al.,
2018). Given the average agent score A, human score H , and random score R, HNS is defined as:

HNS =
A−R

|H −R|

A value of 1.0 indicates human-level performance, values greater than 1.0 indicate superhuman
performance, and values below 0 denote sub-random behavior. We adopt the human and random
baselines from Badia et al. (2020), derived from professional human play.

Aligned Environment Goal Scores. Environment reward signals may not always align with the
intended task objectives and can be susceptible to reward hacking. In such cases, agents may learn
high-reward behaviors that are non-intuitive and deviate from human-like solutions. To better capture
progress toward the actual environment goals, we define two aligned goal-based metrics grounded in
the objectives stated in the game manuals.

For Seaquest, the goal is to rescue as many divers as possible; for Kangaroo, it is to help the mother
kangaroo reach and rescue her baby, located on the topmost platform. Accordingly, we track the
number of divers retrieved and the number of platforms reached, respectively.

C Additional Results

To assess the generality of LENS, we extend our evaluation to three additional Atari environments:
Pong, Breakout, and Freeway. Skill learning curves for these environments are shown in Figure 8,
while comparisons to baseline agents and ablations—evaluated via human-normalized scores—are
presented in Figure 9. Note that these games are generally less complex than Kangaroo and Seaquest,
and the learned skills are not strictly necessary to achieve the environment goals. In particular,
the skills "Move Up" and "Avoid Crash" in Freeway largely correspond to atomic actions such as

15

0 1 2 3 4 5
Steps 1e7

0

200

400

600

800

Track Ball

0 1 2 3 4 5
Steps 1e7

20

0

20

40

60

80

Return Ball

0 1 2 3 4 5
Steps 1e7

0

200

400

600

Defensive Positioning

0 1 2 3 4 5
Steps 1e7

0

250

500

750

1000

1250

1500

Track Ball

0 1 2 3 4 5
Steps 1e7

0

10

20

30

40

50

60

70

Return Ball

0 1 2 3 4 5
Steps 1e7

0

500

1000

1500

2000

Defensive Positioning

0 1 2 3 4 5
Steps 1e7

2

0

2

4

6

Evade Crash

0 1 2 3 4 5
Steps 1e7

0

250

500

750

1000

1250

1500

Go

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

PPO (baseline) PQN (baseline) HPQN (baseline) LENS (neural) LENS (fixed) LENS (ours)

Figure 8: LENS successfully learns skills in Pong (top), Breakout (middle), and Freeway (bottom).

PPO (baseline)

PQN (baseline)

HPQN (baseline)

LENS (neural)

LENS (fix
ed)

LENS (ours)
0.0

0.5

1.0

H
N

S

Pong

PPO (baseline)

PQN (baseline)

HPQN (baseline)

LENS (neural)

LENS (fix
ed)

LENS (ours)
0

2

4

H
N

S

Breakout

PPO (baseline)

PQN (baseline)

HPQN (baseline)

LENS (neural)

LENS (fix
ed)

LENS (ours)
0.0

0.2

0.4

0.6

0.8

H
N

S

Freeway

Figure 9: LENS achieves performance comparable to baseline methods across the three evaluated
environments.

forward or noop. As such, a simple fixed meta-policy operating directly on primitive actions could
suffice for solving this task.

We further validate the applicability of LENS to more complex domains by evaluating on
Crafter (Hafner, 2021; Matthews et al., 2024). Using the game manual and state description, we
query an LLM for essential skills. LENS is then trained explicitly on these skills and compared to the
PQN baseline. Results are presented in Figure 10.

16

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e9

0.5

0.4

0.3

0.2

Survival

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e9

0.0

0.1

0.2

0.3

0.4

Combat

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e9

0.000

0.002

0.004

0.006

0.008

Craft

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e9

0.0

0.1

0.2

0.3

0.4

Collect Resources

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e9

0.005

0.010

0.015

0.020

0.025

Exploration

PQN (baseline) LENS (neural) LENS (fixed) LENS (ours)

Figure 10: LENS succesfully learns LLM-identified skills in Crafter.

D LLM Interaction

We outline the procedure for leveraging an LLM to generate task-relevant skills, associated reward
functions, and a fixed meta-policy rule set. The LLM is conditioned on the game’s original manual
and structured type information describing the object-centric observations available to the agent.

Initially, the LLM is queried for a set of skills and corresponding reward functions. These outputs
can be manually refined before querying the LLM for a meta-policy function that selects which skill
to execute. Prior prompts and responses are retained to maintain conversational context, consistent
with standard chat behavior. Prompt details are provided in Figure 11.

Unedited responses from GPT-4o (via chatgpt.com on 21-07-2025) for the games Kangaroo and
Seaquest are included in Figure 12–Figure 15. Final implementations were modified to align with our
framework constraints (e.g., JAX compatibility, indexing conventions).

You are a RL expert and develop a hierarchical agent to play the atari game <GameName>. Below, I have
provided a detailed description of the game. Your task is to come up with a short list of essential skills (3-4)
that are needed to solve the game.
Game Description: — <Game manual> —
Think about what the main goal of this game is, then come up with a list of the required skills to solve the
game and provide it in the output. Finally, create a pseudo reward function for each of these skills that a RL
agent can use to learn the skills.
The reward functions are called at each step in the environment and retrieve the current and previous
symbolic observation of the game. Here is the type definition for the observation:
<ObservationTypeDefinition>
Each skill and it’s reward function should be as simple as possible that achieves the wanted behavior. Provide:
List of skills and description, pseudo-code reward functions for each skill.

You are now creating a function that decides at each time step in the game, which skill to choose. The
skills are: <skills from previous prompt> The function again has access to the current and previous
observation.
Think about at what point in the game you want to use which skill, then provide the function.

Figure 11: Prompts to generate a skill-list and corresponding reward functions (top) and meta-policy
function (bottom).

17

Essential Skills for Solving Kangaroo (Atari 2600)

A hierarchical RL agent for Kangaroo can be built upon the following four primitive skills:

1. Obstacle Avoidance
Description: Avoid contact with apples or monkeys via dodging or punching.
Reward Function:

def reward_obstacle_avoidance(obs, prev_obs):
collided = any(np.array_equal(obs.player_x, x) and

np.array_equal(obs.player_y, y)
for (x, y) in obs.apple_positions + obs.monkey_positions)

return -1.0 if collided else 0.0

2. Vertical Navigation
Description: Climb ladders to ascend levels and progress.
Reward Function:

def reward_vertical_navigation(obs, prev_obs):
dy = prev_obs.player_y - obs.player_y
return 0.1 if dy > 0 else 0.0

3. Fruit Collection
Description: Collect fruits and optionally ring a bell to regenerate them.
Reward Function:

def reward_fruit_collection(obs, prev_obs):
reward = 0.0
if len(obs.fruit_positions) < len(prev_obs.fruit_positions):

reward += 0.5
if np.array_equal(obs.player_x, obs.bell_position[0]) and \

np.array_equal(obs.player_y, obs.bell_position[1]):
reward += 0.2

return reward

4. Goal Reaching (Child Rescue)
Description: Reach the child’s location to complete the level.
Reward Function:

def reward_reach_child(obs, prev_obs):
return 1.0 if np.array_equal(obs.player_x, obs.child_position[0]) and \

np.array_equal(obs.player_y, obs.child_position[1]) else 0.0

These modular rewards enable a high-level controller to invoke appropriate behaviors depend-
ing on context.

Figure 12: Generated reward functions for Kangaroo by GPT4-O

18

Kangaroo Skill Selection Function

To select appropriate skills, the agent follows a fixed priority:

(1) Obstacle Avoidance: If any apple or monkey is in close proximity.
(2) Goal Reaching: If the player is near the child on the top platform.
(3) Fruit Collection: If fruit is visible and reachable.
(4) Vertical Navigation: Default behavior to explore or ascend.

Skill Selector Function:

def select_skill(obs, prev_obs):
player_pos = np.array([obs.player_x, obs.player_y])

def in_danger():
danger_entities = obs.apple_positions + obs.monkey_positions
return any(np.linalg.norm(player_pos - np.array([x, y])) <= 1.0

for (x, y) in danger_entities)

def near_child():
child_pos = np.array([obs.child_position[0], obs.child_position[1]])
return np.linalg.norm(player_pos - child_pos) <= 1.5

def fruit_visible():
return any(abs(y - obs.player_y) <= 1 and

abs(x - obs.player_x) <= 3
for (x, y) in obs.fruit_positions)

if in_danger():
return obstacle_avoidance

elif near_child():
return goal_reaching

elif fruit_visible():
return fruit_collection

else:
return vertical_navigation

This rule-based selection policy balances safety, progression, and reward acquisition, enabling
effective hierarchical control.

Figure 13: Generated fixed meta-policy function for Kangaroo by GPT4-O

19

Essential Skills for Solving Seaquest (Atari 2600)

To solve Seaquest effectively, a hierarchical RL agent must master the following four core
skills:

1. Avoid Obstacles (Survival Navigation)
Description: Avoid collisions with sharks, enemy submarines, missiles, and the patrol sub,
both underwater and when surfacing.
Reward Function (pseudo-code):

def avoid_obstacles_reward(prev_obs, curr_obs):
if player_collided(curr_obs):

return -1.0
return 0.0

def player_collided(obs):
return check_collision_with_sharks(obs) or \

check_collision_with_subs(obs) or \
check_collision_with_missiles(obs) or \
check_collision_with_surface_sub(obs)

2. Collect Divers
Description: Navigate to and collect divers to accumulate score and progress.
Reward Function (pseudo-code):

def collect_divers_reward(prev_obs, curr_obs):
prev_count = count_nearby_divers(prev_obs)
curr_count = count_nearby_divers(curr_obs)
return float(prev_count > curr_count) * 1.0

def count_nearby_divers(obs):
return sum(is_near(obs.player_x, obs.player_y, dx, dy)

for dx, dy in obs.diver_positions)

3. Surface Strategically
Description: Surface safely when carrying six divers or when oxygen is low, to drop off
divers and replenish oxygen.
Reward Function (pseudo-code):

def surface_reward(prev_obs, curr_obs):
surfaced_now = prev_obs.player_y > 0 and curr_obs.player_y == 0
has_6_divers = num_divers_collected(prev_obs) == 6
low_oxygen = prev_obs.oxygen < OXYGEN_THRESHOLD
if surfaced_now and (has_6_divers or low_oxygen):

return 2.0 if has_6_divers else 0.5
return 0.0

def num_divers_collected(obs):
return 6 - sum(is_valid(dx, dy) for dx, dy in obs.diver_positions)

4. Eliminate Threats (Combat)
Description: Fire missiles to destroy sharks and enemy submarines, clearing paths and
increasing score.
Reward Function (pseudo-code):

def eliminate_threats_reward(prev_obs, curr_obs):
num_enemies_prev = count_enemies(prev_obs)
num_enemies_curr = count_enemies(curr_obs)
return float(num_enemies_curr < num_enemies_prev) * 0.5

def count_enemies(obs):
return sum(is_valid(dx, dy) for dx, dy in obs.shark_positions) + \

sum(is_valid(dx, dy) for dx, dy in obs.sub_positions)

Figure 14: Generated reward functions for Seaquest by GPT4-O
20

Seaquest Skill Selection Function

Here is a skill selection function that chooses the appropriate control skill at each time step
based on game context.

Skill Selection Function (pseudo-code):

def select_skill(prev_obs, curr_obs):
Skill names
AVOID = "obstacle_avoidance"
COLLECT = "collect_divers"
SURFACE = "surface_strategically"
COMBAT = "eliminate_threats"

=== Utility Functions ===
def is_threat_near(obs: SeaquestObservation) -> bool:

return check_collision_with_sharks(obs) or \
check_collision_with_subs(obs) or \
check_collision_with_missiles(obs) or \
check_collision_with_surface_sub(obs)

def num_divers_collected(obs: SeaquestObservation) -> int:
return 6 - sum(is_valid(x, y) for x, y in obs.diver_positions)

def low_oxygen(obs: SeaquestObservation) -> bool:
return obs.oxygen < 20 # adjustable threshold

def at_surface(obs: SeaquestObservation) -> bool:
return obs.player_y == 0

=== Skill Selection Logic ===
if is_threat_near(curr_obs):

return AVOID

if (num_divers_collected(curr_obs) == 6 or low_oxygen(curr_obs)) and \
not at_surface(curr_obs):
return SURFACE

if has_nearby_enemies(curr_obs): # e.g. visible on screen in front
return COMBAT

return COLLECT

Explanation of Logic:
• Obstacle Avoidance is triggered immediately when any nearby threat is detected.
• Surface Strategically is invoked if the agent has collected 6 divers or is low on

oxygen, and is not already at the surface.
• Eliminate Threats is used when enemies are visible but not an immediate threat.
• Collect Divers is the default skill when no critical conditions are active.

This rule-based selection mechanism allows a high-level controller to choose among primitive
skills in a safety-first manner while still enabling reward-driven exploration and progress.

Figure 15: Generated fixed meta-policy for Seaquest by GPT4-O

21

	Introduction
	Background and Related Work
	Background
	Related Work

	Logically Enhanced Neuron Skills
	Hierarchical PQN
	Interpretable Meta-Policy Function
	Soft Meta-Policy Function

	Experimental Evaluation
	Experimental Setup
	Results

	Conclusion
	Hierarchical PQN Algorithm
	Implementation Details
	Evaluation Metrics

	Additional Results
	LLM Interaction

